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Abstract

In a qualitative belief network, dependences between variables are indicated by qual-
itative signs. These signs serve to model monotonic probabilistic relationships only:
non-monotonic relationships between variables are modelled as lack of information.
In this paper, we propose to include information about non-monotonic probabilistic
influences between variables explicitly in a qualitative belief network. We show that
this information can be exploited in probabilistic inference to forestall unnecessarily
weak results.
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1 Introduction

In the late 1980s, the framework of belief networks was introduced for reasoning with un-
certainty [4]. A belief network is a concise representation of a joint probability distribution
on a set of statistical variables. It encodes the variables concerned along with their inter-
dependences in a directed graph; the dependences between the variables are quantified by
(conditional) probabilities. Associated with the belief-network formalism are algorithms
for probabilistic inference. The increasing number of knowledge-based systems built on a
belief network acknowledge the usefulness of the formalism and its associated algorithms
for addressing complex real-life problems. Experience shows, however, that the large num-
ber of probabilities required poses a major obstacle to their application [1]. Motivated by
this experience, the framework of qualitative belief networks was introduced in the early
1990s [5).

A qualitative belief network is a qualitative abstraction of a quantified belief network.
Like a belief network, it encodes the variables under consideration along with their interde-
pendences in a directed graph. Rather than by probabilities, however, a qualitative belief
network indicates the dependences between its variables by qualitative signs. These signs



serve to capture qualitative probabilistic influences between variables. For probabilistic
inference with a qualitative belief network, an elegant algorithm is available [2].

A qualitative belief network models, by means of signs, monotonic qualitative influences
between its variables only. A qualitative influence between two variables is monotonic if
observing higher values for one of these variables renders a shift in the probabilities of the
values for the other variable in a direction that is not dependent upon any other influence.
If the direction of shift does depend on influences from other variables, we say that the
probabilistic influence between the two variables is non-monotonic.

In a qualitative belief network, a non-monotonic qualitative influence between two
variables is indicated by a ‘?” sign. The same sign is used to express an unknown qualitative
influence, that is, a probabilistic influence for which the direction of shift is unknown. Non-
monotonicity of a qualitative influence and lack of information therefore are expressed in
the same way. Non-monotonicity and lack of information, however, are different from a
conceptual point of view. While an unknown qualitative influence does not provide any
information, a non-monotonic influence conveys at least some information by the nature of
its non-monotonicity. In this paper, we argue that it is worthwhile to explicitly distinguish
between non-monotonic influences and unknown influences in a qualitative belief network.
We show how useful information can be extracted from the non-monotonic influences of
a network that can be exploited in probabilistic inference to forestall unnecessarily weak
results.

The paper is organised as follows. In Section 2, we briefly review the belief-network
framework; qualitative belief networks are introduced in Section 3. In Section 4, we in-
vestigate non-monotonic qualitative influences between variables and discuss how these
influences can be exploited. The paper is rounded off with some conclusions and directions
for further research in Section 5.

2 Belief networks

A belief network is a concise representation of a joint probability distribution on a set of
statistical variables [4]. It consists of a qualitative part and an associated quantitative
part. The qualitative part is a graphical representation of the interdependences between
the variables in the encoded distribution. It takes the form of an acyclic directed graph G.
Each node A in G represents a statistical variable that takes one of a finite set of values.
In this paper, we assume all variables to be binary, taking one of the values true and false;
for abbreviation, we use a to denote A = true and a to denote A = false. The arcs in
the digraph G model possible dependences between the represented variables. Informally
speaking, we take an arc A — B between the nodes A and B to represent an influential
relationship between the associated variables A and B; the arc’s direction marks B as the
effect of the cause A. Absence of an arc between two nodes means that the corresponding
variables do not influence each other directly and, hence, are (conditionally) independent.

Associated with the qualitative part of a belief network are numerical quantities from
the encoded probability distribution. With each variable A in the digraph is associated



a set of conditional probabilities Pr(A | m(A)), describing the joint influence of values for
the causes 7(A) of A on the probabilities of variable A’s values. These sets of probabilities
constitute the quantitative part of the network.

Example 1 We consider the belief network shown in Figure 1. The network represents

Pr(l) =0.9 Pr(m) =0.4
Pr(c|Ilm)=0.35 Pr(c|lm) =0
Pr(c|Im) = 0.95 Pr(c|lm) =1.0

Figure 1: The Cervical Metastases belief network.

a small, highly simplified fragment of medical knowledge in oncology, pertaining to lym-
phatic metastases of an oesophageal carcinoma. The variable L represents the location
of an oesophageal carcinoma in a patient’s oesophagus. The value true of L represents
the information that the carcinoma resides in the lower two-third of the oesophagus; [ ex-
presses that the carcinoma is located in the oesophagus’ upper one-third. An oesophageal
carcinoma upon growth typically gives rise to lymphatic metastases. The variable M rep-
resents the extent of these metastases. The value false of M indicates that just the local
and regional lymph nodes are affected; m denotes that the distant lymph nodes are affected
by cancer cells as well. Which lymph nodes are local or regional and which are distant
depends on the location of the primary tumour in the oesophagus. The lymph nodes in
the neck, or cervix, for example, are regional for a carcinoma in the upper one-third of the
oesophagus and distant otherwise. The variable C' represents the presence or absence in a
patient of metastases in the cervical lymph nodes. [J

A belief network uniquely represents a joint probability distribution on its variables and
thus provides for computing any probability of interest. Various different algorithms for
probabilistic inference with a belief network are available.

3 Qualitative belief networks

Qualitative belief networks, as qualitative abstractions of belief networks, bear a strong
resemblance to their quantitative counterparts [5]. A qualitative belief network equally
comprises a graphical representation of the interdependences between a set of statistical
variables, once again taking the form of an acyclic digraph. Instead of conditional proba-
bilities, however, a qualitative belief network associates signs with its digraph. These signs
serve to capture the probabilistic influences and synergies between the various variables.
A qualitative probabilistic influence between two variables expresses how the values of
one variable influence the probabilities of the values of the other variable. For example, a
positive qualitative influence of a variable A on its effect B, denoted S*(A, B), expresses



that observing the value true for A makes the value true for B more likely, regardless of
any other direct influences on B, that is,

Pr(b | ax) > Pr(b | ax)

for any combination of values x for the set w(B) \ {A} of causes of B other than A. A
negative qualitative influence, denoted S~ (A, B), and a zero qualitative influence, denoted
SY(A, B), are defined analogously, replacing > in the above formula by < and =, respec-
tively. If the influence of A on B is non-monotonic, that is, the sign of the influence depends
upon the values of other causes of B, or unknown, we say that the influence is ambigu-
ous, denoted S?(A, B). With each arc in a qualitative network’s digraph an influence is
associated.

The set of influences of a qualitative belief network exhibits various convenient proper-
ties [5]. The property of symmetry guarantees that, if the network includes the qualitative
influence S*(A, B), then it also includes ST(B, A). The property of transitivity asserts
that the qualitative influences along a trail between two variables, specifying at most one
incoming arc for each variable, combine into a single compound influence between these
variables with the ®-operator from Table 1. The property of composition further asserts
that multiple qualitative influences between two variables along parallel trails combine into
a compound influence between these variables with the @-operator.

Table 1: The operators for combining signs.

|+ - 0 ? @+ 0 ?
+l+ = 07 +1+ 7+ 7
— + 0?7 -7 —- 7
0/0 000 O+ — 0 7
71?2 0 ? 7|7 7 7 7

In addition to influences, a qualitative belief network includes synergies modeling inter-
actions between influences. An additive synergy between three variables expresses how the
values of two variables jointly influence the probabilities of the values of the third variable.
For example, a positive additive synergy of the variables A and B on their common effect
C, denoted YT ({A, B},C), expresses that the joint influence of A and B on C' is greater
than the sum of their separate influences, regardless of any other influences on C, that is,

Pr(c| abx) + Pr(c | abz) > Pr(c | abx) + Pr(c | abx)

for any combination of values z for the set of causes of C' other than A and B. Nega-
tive, zero, and ambiguous additive synergy are defined analogously. A qualitative network
specifies an additive synergy for each pair of causes and their common effect in its digraph.

A product synergy between three variables expresses how the value of one variable
influences the probabilities of the values of another variable in view of an observed value



for the third variable [3]. For example, a negative product synergy of a variable A on a
variable B given the value true for their common effect C', denoted X ~({ A, B}, ¢), expresses
that, given ¢, the value true for A renders the value true for B less likely, that is,

Pr(c| abz) - Pr(c | abr) < Pr(c | abx) - Pr(c | abx)

for any combination of values z for the set of causes of C other than A and B. Positive,
zero, and ambiguous product synergy again are defined analogously. For each pair of causes
and their common effect, a qualitative belief network specifies two product synergies, one
for each value of the effect. Upon observation of a specific value for a common effect of
two causes, the associated product synergy induces an influence between the two causes;
the sign of this influence equals the sign of the synergy. A qualitative influence that is thus
induced by a product synergy is termed an intercausal influence.

Example 2 We consider the qualitative abstraction of the Cervical Metastases belief net-
work from Figure 1. From the conditional probabilities specified for the variable C, it
is readily verified that the variable L exerts a negative qualitative influence on C'; the
influence of the variable M on C' is ambiguous. The joint influence of L and M on C
is larger than the sum of their separate influences; L and M therefore exhibit a positive
additive synergy on C. Furthermore, either value for the variable C' induces an intercausal
influence between L and M. For the value true of C' this intercausal influence is captured
by a positive product synergy and for the value false the influence is captured by a neg-
ative synergy. The qualitative belief network that is thus abstracted from the Cervical
Metastases belief network is shown in Figure 2; the signs of the qualitative influences are

Figure 2: The qualitative Cervical Metastases belief network.

shown along the network’s arcs, the sign of the additive synergy is indicated over the curve
over the variable C, and the signs of the product synergies are shown over the dashed line
between the variables L and M. [

We would like to note that, although in the example above we have computed the signs
of the various qualitative probabilistic relationships from the probabilities of the original
belief network, in real-life applications these signs are elicited directly from domain experts.

For probabilistic inference with a qualitative belief network, an elegant algorithm is
available [2]. The basic idea of this algorithm is to trace the effect of observing a single
variable’s value on the probabilities of the other variables represented in the network by
message-passing between neighbours. For each variable, a sign is determined, indicating
the direction of the shift in the variable’s probabilities occasioned by the new observation
in the presence of previous observations. Initially, the sign of every variable equals ‘0’.



For the newly observed variable, an appropriate sign is entered, that is, either a ‘+’ for
the value true or a ‘—’ for the value false. The variable updates its sign and subsequently
sends a message to each neighbour in the digraph and every variable on which it exerts
an induced intercausal influence. The sign of this message equals the sign-product of the
variable’s (new) sign and the sign of the influence associated with the arc it traverses. A
variable that receives a message in turn updates its sign with the sign-sum of its original
sign and the sign of the message it receives. If its sign has changed, the variable sends
an appropriate message to any of its neighbours. This process is repeated throughout
the network, building upon the properties of symmetry, transitivity, and composition of
influences. Since a variable can change sign at most twice, the process visits each variable
at most twice and is therefore guaranteed to halt.

4 Non-monotonic influences

A qualitative belief network serves to capture in essence only monotonic qualitative in-
fluences between its variables. We recall from Section 3 that, for example, a positive
qualitative influence of a variable A on its effect B expresses that observing the value true
for A makes the value true for B more likely. The influence exerted by A on B results in a
shift in the probabilities of B’s values in a direction that is independent of any other influ-
ences exerted on B. Qualitative influences between variables, however, need not necessarily
be monotonic in nature as was demonstrated in Examples 1 and 2. The influence exerted
by a variable A on its effect B is non-monotonic, for example, if the resulting direction of
shift in the probabilities of B’s values depends upon the influence of some other cause C
on B.

In a qualitative belief network, a non-monotonic influence is denoted by the sign ‘?’. The
same sign is used to indicate an unknown qualitative influence. Non-monotonicity of an
influence and lack of information are thus represented in the same way. Non-monotonicity
and lack of information, however, are not the same from a conceptual point of view. While
an unknown qualitative influence does not provide any information at all, a non-monotonic
influence conveys at least some information by the nature of its non-monotonicity. Now,
the sign ‘77 in a qualitative belief network gives rise to unwished-for ambiguous results
in probabilistic inference, as is seen from Table 1. It is therefore worthwhile to try and
avoid ‘?’-signs whenever possible. For this purpose, we will distinguish between the non-
monotonic and unknown qualitative influences of a network explicitly and extract as much
information as possible from its non-monotonic influences. We will show that this informa-
tion can be exploited in probabilistic inference to forestall unnecessarily weak ambiguous
results.

A non-monotonic qualitative influence of a variable A on its effect B is a qualitative
influence of A on B that is not positive, negative, zero, or unknown. We say that the non-
monotonicity of the influence is provoked by another cause C' of B, denoted S™~¢(A, B),
if the sign of the influence depends unambiguously on the value of C'. More specifically,
the non-monotonic influence expresses that for all combinations of values y for the set of



causes of B other than A and C', we have either

Pr(b | acy) > Pr(b | acy) and
Pr(b | acy) < Pr(b | acy),
or Pr(b | acy) < Pr(b|acy) and

Pr(b | acy) > Pr(b | acy),

with strict inequalities for at least one combination of values y. From this definition,
it is readily seen that once a value for the provoking variable C' has been observed, the
non-monotonic influence of A on B reduces to a monotonic influence. We say that the
observation resolves the non-monotonicity of A’s influence on B. We would like to note
that the concept of provoking variable can easily be extended to sets of variables; for ease of
exposition, however, we restrict the discussion to non-monotonicities provoked by a single
variable.

Although an observation for its provoking variable reduces a non-monotonic influence
between two variables to a monotonic influence, the sign of the resulting influence is yet
unknown. This sign, however, can be readily determined from the additive synergy defined
for the variables concerned. We consider, as an example, a non-monotonic qualitative
influence S~¢(A, B) of a variable A on its effect B in which the non-monotonicity is
provoked by the variable C'. We suppose that the variables A and C' exhibit a positive
additive synergy on B, that is, we have

Pr(b | acy) + Pr(b | acy) > Pr(b | acy) + Pr(b | acy)

for any combination of values y for the set of causes of B other than A and C. From the
non-monotonicity of the influence of A on B and the sign of the additive synergy of A and
C on B, we conclude that

Pr(b | acy) > Pr(b | acy) and
Pr(b | acy) < Pr(b | acy)

for any combination y. Now, upon observation of the value true for the provoking variable
C, we find that
Pr(b | ax) > Pr(b | ax)

for any combination of values z, including the observation ¢, for the set of causes of B other
than A. We conclude that, after resolving the non-monotonicity involved, the variable A
exerts a positive qualitative influence on B. Alternatively, upon observation of ¢, the
variable A exerts a negative influence on B. A negative additive synergy of A and C' on
B leads to an analogous result. We conclude that the sign of the resolved non-monotonic
influence equals the sign-product of the sign of the additive synergy involved and the sign
of the observation for the provoking variable.

Example 3 We consider once again the qualitative Cervical Metastases belief network
from Figure 2. The ambiguous influence S”(M, C) of the extent of the lymphatic metastases
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of an oesophageal carcinoma, M, on the presence of metastases in the cervical lymph nodes,
C, is a non-monotonic influence in which the non-monotonicity is provoked by the location
of the carcinoma, L. From the probabilities specified for the variable C' in Figure 1, it is
readily seen that, given a carcinoma in the upper one-third of a patient’s oesophagus, that
is, given [, the variable M exerts a negative influence on C; given [, M exerts a positive
qualitative influence on the variable C. In the qualitative belief network, the sign of the
influence of M on C' after resolution by [ is computed to be the sign-product of the sign
‘+’ of the additive synergy of M and L on C' and the sign ‘—’ of the observation for L, that
is, the sign is computed to be + ® — = —. After resolution by [, the sign of the influence
of M on C' is computed to be + ® + = +.

We would like to note that in real-life applications of a qualitative belief network, non-
monotonic qualitative influences and their provoking variables are elicited directly from
domain experts.

For probabilistic inference with a qualitative belief network in which non-monotonic and
unknown influences are explicitly distinguished, basically the same algorithm can be used as
for probabilistic inference with a regular qualitative network. The only difference lies in the
traversal of a non-monotonic qualitative influence. Before propagating the sign of a non-
monotonic influence by sign multiplication, it is investigated whether or not the influence’s
non-monotonicity is resolved by the available observations. If the non-monotonicity is
resolved, the sign of the resolved influence as described above is propagated; otherwise,
the ambiguous sign ‘7’ is propagated. We would like to point out that by thus exploiting
information about non-monotonic influences in a qualitative belief network, at least some
ambiguous results in probabilistic inference are forestalled.

5 Conclusions and further research

A qualitative belief network in essence serves to capture monotonic probabilistic influences
between its variables only. We have argued that it is worthwhile to explicitly capture
information about non-monotonic influences as well. We have shown that this information
can be exploited in probabilistic inference to forestall unnecessarily weak ambiguous results.
In this paper, we have focused attention on non-monotonic influences between binary
variables. We would like to extend our ideas to induced intercausal influences that are
non-monotonic in nature. Furthermore, we would like to generalise our results to non-
binary variables. To conclude, we envision further investigation of the information that
can be derived from sets of variables provoking non-monotonicities to forestall even more
ambiguous results in probabilistic inference with a qualitative belief network.
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