A constructive linear time algorithm for small cutwidth™

Dimitrios M. Thilikos, Maria J. Serna

Departament de Llenguatges ¢ Sistemes Informatics, Universitat Politécnica de Catalunya,

Campus Nord — Modul C5, c/Jordi Girona Salgado 1-3, 08034 Barcelona, Spain

E-mail: {sedthilk, mjserna}@lsi.upc.es

and

Hans L. Bodlaender

Department of Computer Science, Utrecht University, P.0. Boz 80.089, 3508 TB Utrecht, The
Netherlands

E-mail: hansb@cs.uu.nl

The cutwidth of a graph G is defined to be the smallest integer k such that
the vertices of G can be arranged in a linear layout [v1, ... ,vy] in such a way
that foreveryz = 1,... ,n—1, there are at most k& edges with the one endpoint
in {v1,...,v;} and the otherin {vi41,...,vn}. In this paper we show how to
construct, for any constant k, a linear time algorithm that for any input graph
G, answers whether G has cutwidth at most k& and, in the case of a positive

answer, outputs the corresponding linear layout.

Key Words: cutwidth, graph immersion, pathwidth

1. INTRODUCTION
Layouts provide the framework for the definition of several graph theoretic parameters
with a wide range of applications. The cutwidth of a layout is the maximum number
of edges connecting vertices on opposite sides of any of the “gaps” between successive
vertices in the linear layout. The cutwidth of a graph is the minimum cutwidth over
all possible layouts of its vertex set. Deciding whether, for a given G and an integer

k, cutwidth(G) < k, is an NP-complete problem known in the literature as the MINI-

* The work of all the authors was supported by the EU project ALCOM-FT (IST-99-14186). The
work of the first author was partially supported by the Ministry of Education and Culture of Spain,
Grant number MEC-DGES SB98 0K148809.

T This paper is the full version of part of the paper titled “Constructive linear time algorithms for

small cutwidth and carving-width” which appeared in the proceedings of ISAAC 2000.
1

MUM CUT LINEAR ARRANGEMENT (see [12]). Cutwidth has been extensively examined
(see [7, 10, 11, 13, 15, 16, 19]). Tt is closely related with other graph theoretic param-
eters like pathwidth, bandwidth, modified bandwidth (see [14, 7, 15, 13, 8]), and it is
approximable within a factor of O(lognloglogn) in polynomial time (see [9]). Finally,
while it remains NP-complete even for planar graphs with maximum degree 3 (see [16]),
it is polynomially computable for trees (see [19]).

Our results concern the fixed parameter tractability of cutwidth. Recall that a graph
H is said to be immersed to G if a graph isomorphic to H can be obtained from a
subgraph of G by a series of lift operations. A lift operation replaces two adjacent edges
{a, b}, {b,c} by the edge {a,c}. The main motivation of our research were the results
of Robertson and Seymour in their Graph Minors series where, among others, they
prove that any set of graphs contains a finite number of immersion minimal elements
(see [17]). As a consequence, we have that for any class C of graphs the set of graphs
not in C contains a finite set (we call it immersion obstruction set of C) of immersion
minimal elements. Therefore, we have the following finite characterization for C: a
graph G is in C iff none of the graphs in the immersion obstruction set of C is immersed
in G. Combining this observation with the fact that, for any fixed H, there exists a
polynomial time algorithm deciding, given G' as input, whether a H is immersed in G
(see [18, 10]), we imply the existence of a polynomial time recognition algorithm for any
immersion-closed graph class.

Unfortunately, the result of Robertson and Seymour is non-constructive in the sense
that it does not provide any method of constructing the corresponding obstruction set.
Therefore, it only guarantees the ezistence of a polynomial time algorithm and does not
provide a way to construct it. However, it provides a strong motivation towards iden-
tifying the corresponding algorithms for a wide range of graph classes and parameters.
So far, it appears that the most popular class (see [10, 11]) that is immersion-closed, is
the class of graphs with cutwidth bounded by a fixed constant. A direct consequence is
that, for any fixed k, there exists a polynomial time algorithm checking whether a graph
has cutwidth at most k.

The first algorithm checking whether cutwidth< k was given by Makedon and Sud-
borough in [15] where a O(n*~1) dynamic programming algorithm is described. This
time complexity has been considerably improved by Fellows and Langston in [11] where,
among others, they prove that for any fixed k, a O(n®) algorithm can be constructed
checking whether a graph has cutwidth at most k. Furthermore, a technique introduced

in [10] (see also [2]) further reduced the bound to O(n?), while in [1] a general method

2

is given to construct a linear time algorithm that decides whether a given graph has
cutwidth at most k, for k constant. However the methodology in [1] gives only a de-
cision algorithm: it does not give any method to construct the corresponding layout
in the case of a positive answer, the corresponding layout. In this paper, we give an
explicit description, for any k& > 1, of a linear time algorithm that checks whether an
input graph G has cutwidth< k and, if this is the case, it further outputs a vertex layout
of G of minimum cutwidth.

The key tool in our algorithm, as for other parameters like pathwidth and treewidth
in [4], linear-width in [6], and branchwidth in [5], is the notion of characteristics. In
a few words, a characteristic serves to filter the main data structure of a parameter to
its essential part, a part that is able to be constructed from node to node of a path
decomposition. Moreover, as we will see, the information encoded by a characteristic
depends on the width of the path decomposition and, therefore, it is constant for graphs
with bounded pathwidth.

Our algorithm starts with an adequate bounded width path decomposition of the input
graph G. The path decomposition allows the definition of an appropriate sequence of
subgraphs. The algorithm computes, in a bottom-up fashion, a set of characteristics
that “represent” the vertex orderings that have cutwidth < k for any of the subgraphs.

A consequence of our result is that there exists an algorithm that, for any k, is able
to determine the immersion obstruction set for the class of the graphs with cutwidth at
most k. We mention that optimal constructive results exist so far only for minor closed
parameters such as treewidth and pathwidth [4, 3], agile search parameters [6], linear-
width [6], and branch-width [5]. Besides the fact that our techniques are motivated by
those used in the aforementioned minor-closed parameters, in our knowledge, our results
are the first concerning immersion-closed parameters and we believe that our approach
is applicable to other parameters as well (e.g. MoDIFIED CUTWIDTH, 2-D GRID LoAD

FACTOR, or BINARY GRID LoAD FACTOR- see [10]).

2. DEFINITIONS AND PRELIMINARY RESULTS
All the graphs of this paper are finite, undirected, and without loops or multiple edges
(our results can be straightforwardly generalized to the case where the last restriction
is altered). We denote the vertex (edge) set of a graph G by V(G) (F(G)). A linear
(one-dimensional) layout of the vertices of G is a bijection, mapping V(G) to the integers

in {1,...,n}. We denote such a layout by the sequence [v1, ..., v,].

We proceed with a number of definitions and notations, dealing with finite sequences
(i.e., ordered sets) of a given finite set . For our purposes, O can be a set of numbers,
sequences of numbers, vertices, or vertex sets. Let w be a sequence of elements from O.
We use the notation [wi, ... ,w,] to represent w and we define w[i, j] as the subsequence
[wiy. .. ,wj] of w (in case j < i, the result is the empty subsequence []). We also denote
as w(i) the element of w indexed by i.

Given a set S containing elements of O, we denote as w[S] the subsequence of w that

contains only the elements of w that are in S. Given two sequences w',w?, defined

on O, where w' = [wi,...,w;],i = 1,2 we define the concatenation of w; and w,
as w! @ w? = [w] wl w? w2]. Unless mentioned otherwise, we will always
- 19 r1? 19 rol® i y

consider that the first element of a sequence w is indexed by 1, i.e. w = w1, |w]].

Let G be a graph and S C V(G). We call the graph (S, E(G) N {{z,y} | z,y € S})
the subgraph of G induced by S and we denote it by G[S]. For any e € F(G), we set
G—e= (V(G), E(G) — {e}) and for any N C V(G) and u ¢ V(G), the graph G+N
is obtained by adding the new vertex u and the edges {{u,v} | v € N}. We denote by
E¢(S) the set of edges of G that have an endpoint in S; we also set Fg(v) = Eg({v})
for any vertex v. If E C F(G) then we denote as V(F) the set of all the endpoints of
the edges in F i.e. we set V(FE) = Ueepe. The neighborhood of a vertex v in graph
G is the set of vertices in G that are adjacent to v in G and we denote it as Ng(v),
i.e. Ng(v) = V(Fg(v)) — {v}. Tflis a sequence of vertices, we denote the set of its
vertices as V(I). If 2 € V(I) then we set [—z = I[V(l) — {z}]. Tf [is a sequences of all
the vertices of G without repetitions, then we will call it vertex ordering of G. If [is a
vertex ordering of G, the rank of a vertex u € V(I) is its position in the ordering, and

we denote it by rank(u).

2.1. Pathwidth

A path decomposition of a graph G is defined as a sequence X = [Xq,...,X,] of
subsets of V(G) satisfying the following properties.

1. UlfiSiXi = V(G)
2. veeE(G) Ji<i<r € C X;.
3. Vev(a) Jici<i<r Vich<r vE Xp & i< h <.
We call the sets Xi,...,X,, nodes of the path decomposition X. The width of X is

equal to maxi<i<,{|X;| — 1} and the pathwidth of a graph G is the minimum width over

all path decompositions of G. We say that a path decomposition X = [Xy,...,X,] is
4

nice if [X1| = 1 and Va<icix| [(Xi — Xi—1) U (X;-1 — X;)| = 1. The following lemma

follows directly from the definitions.

LEMMA 2.1. For some constant k, given a path decomposition of a graph G that has
width at most k and O(|V(G)|) nodes, one can find a nice path decomposition of G that
has width at most k and at most 2|V (G)| nodes in O(|V(G)|) time.

Let X; be a node of a nice path decomposition X. We say that X; is an introduce
(forget) node if | X; — X;_1] = 1 (|X;-1 — X;| = 1). Tt is easy to observe that any node
Xi,1> 2 of a nice path decomposition is either an introduce or a forget node. We call
the first node X7 of X, start node. Notice that if X, is a forget node, the node can be
removed and we still have a path decomposition. Hence we may assume that X, is an
introduce node.

Finally, for i = 1,...,r, we define V; = Ui<;<;X; and G; = G[Vi]. Notice that if X,
i > 1, is an introduce node then V(G;_1) # V(G;), and we will call the unique vertex
in X; — X;_1 the introduced vertex of G;. Notice that if X;, i > 1, is a forget node then
V(G;-1) = V(G}), and we will call the unique vertex in X;_1 — X; the forgotten vertex
of G;.

2.2. Cutwidth

The cutwidth of a graph G with n vertices is defined as follows. Let | = [vy,...,v,] be
alayout of V(G). Fori=1,...,n—1, we define ; ¢ (1) = Eq({[1,])NEc(l[i+1,n]) (ie.
0, (1) is the set of edges of G that have one endpoint in {[1, 7] and one in {[i+ 1, n]). The
cutwidth of an ordering [of V() is maxi<i<n—1{|01,c(7)|}. The cutwidth of a graph
is the minimum cutwidth over all the orderings of V(G). Tt is easy to see the following

(see also [15]).

LEmMMA 2.2. For any graph G, cutwidth(G) > pathwidth(G).

If | = [vy,...,v,] is a vertex ordering of a graph G, we set

Qg = ([0} [10.c(DI]; - .-, [16,,6(n =)], [0]].

)

We also assume that the indices of the elements of Q¢ ; start from 0 and finish on n, i.e.
Qc, = Qe 1[0, n]. Clearly, Qg,; is a sequence of sequences of numbers each containing

only one element. We insist on the, somewhat overloaded, definition of Q¢ for reasons

=

o]

of consistency with terminology that will be introduced later (for an example of Qg,,

see Figure 1).

2.3. Sequences of integers

We denote as § the set of all the sequences of non-negative integers. For any sequence
A = [a1,...,a14] € S and any integer t > 0 we set A+t = a1 +t,...,ap4 +1t]. If
A =lay,...,a)4)] €S, we define 7(A) as the subsequence obtained after iterating the

following operations, until none is possible any more.

(i) If for some i, 1 <i < |A|—1 a; = aj41, then set A «+ A[l,i] & Al + 2, |A]].
(ii) If the sequence contains two elements a; and a; such that j—i > 2 and V<< a; <

ar < a; or Vickej ai > ag > a;, then set A + A(L,7) & A(j, |A]).

For example, 7([5,5,6,7,7,7,4,4,3,5,4,6,8,2,9,3,4,6,7,2,7,5,4,4,6,4]) = [5,7,3,8,2,9,2,7,4].

We call a sequence A typical if A € S and 7(A4) = A.

The following result has been proved in [4] (Lemma 3.5).

LEMMA 2.3. The number of different typical sequences consisting of integers in {0, 1,. ..

is at most %22”.

Notice that B = 7(A) is a subsequence [a,,...,a;] of A ={a1,... a4 such that
for any j7 1 S .7 S |B| — 1 either ag; S ai;4+1 S S Q-1 S @i, OF Q4 Z ai;+1 S
<o+ > i, -1 > aj,,,. We can now define a function 34 : {1,...,[7(4)]} = {L,...,|A[}

where 84(j) = 1; is one of the possible original positions in A of the j-th element in

7(A). Consider the sequence of the previous example
A = [57 57 67 77 77 77 77 47 47 37 57 47 67 87 27 97 37 47 67 77 27 77 57 47 47 67 4]7

then we have

Ba(l) =1, Ba(2) =6 (or 4 or 5 or 7), Ba(3) = 10,
ﬂA(4) = 14, ﬂA(5) =15, ﬂA(ﬁ) =16,
Ba(T) =21, [a(8) =22, Ba(9) = 27.

Given two typical sequences A, B and an integer j, 1 < 1 < |r(A @ B)|, we define

(0, Bagn(5)) if Bagn (i) <A

(1, Bagnp(J) — |A]) otherwise
6

(A, B,j) =

As an example we have that if A = [1,3,2] and B = [8,5, 9], we have that 7(A® B) =
[1,9],6(A4,B,1) = (0,1), and §(4, B,2) = (1,3)

For any A € S we define a(A4) in the same way as 7(A) with the difference that
only operation (i) is considered, i.e., we remove repetitions of a number on successive

positions in the sequence. If now A is a typical sequence, we define the set of extensions

of A as
E(A)={A € S |a(d) = A}.

Let A = [a1,...,ar,] and B = [by,...,b,,] be two sequences in §. We say that
A< Bif ry = ry and Vi<i<r, a; < b;. In general, we say that A < B if there exist
extensions A € £(A), and B € £(B) such that A < B. For example if A = [1,7,2,6,4]
and B = [5,7,3,8] then 4 < B because B = [5,7,7,7,4,8,8,8,8] is an extension of B,
A =[1,7,2,6,4,4,4,4,4] is an extension of A, and A < B.

The following three lemmata are easy consequences of the definitions.

LEMMA 2.4. Given R € S, if we set A = 7(R) then, for any m,1 < m < |A|, there
exists a 1, 1 <1 <|R| such that A[1,m] = 7(RI[L,4]) and A[m,|R|] = T(R[,|A]])-

LEMMA 2.5. Let Ay, Ay be two typical sequences where Ay < Ay. Then, for any
my, 1 < mqy < |Aq|, there exists a ma, 1 < mo < |As| such that As[l, ma] < Aq[l, my]
and Az[ma, |As]] < Aq[my, [Aq]].

LEMMA 2.6. Let A;, B;,t = 1,2 be four typical sequences where A; < Bj,i = 1,2.
Then 7(A1 @ By) < 7(A2 @ Bz).

LEMMA 2.7. Given R € S, if we set A = 7(R) then, for any r,1 < r < |R|, there
exists an integer i, 1 < i < |A| such that A[1,i] < 7(R[1,7]) and A[i, |R|] < 7(R[r, |A]]).

Proof. In the case where there exists an integer i, 1 < i < |A| such that A[l,:] =
7(R[1,r]) and A[i, |A|] = 7(R]r, | R|]) we have a stronger version of the required and we
are done.

Otherwise, there exist an integer j, 1 < j < |A| and two integers k ,I, where 1 < k <
r < I < |R| and such that A[l,] = 7(R[1,k]) and A[j + 1,|A|] = 7(R[/,|R]]). As A is a

typical sequence, we have that A(j) # A(j + 1) and therefore, R(k) # R(l).
7

Let us show that, in case R(k) > R(!), the lemma holds taking i = j + 1. When
R(k) > R(l) we have that A(j) = R(k) and that [A(j + 1)] = [R(!)] < R[k+ 1,7].
Therefore, A[j,j + 1] < 7(R[k,r]) and A[j + 1,7+ 1] < 7(R[r,{]). Using the fact that
A[l,j]= 7(R[1, k]) and Lemma 2.6, we get

Al j+1] = 7(A[1, 5] © [A(G + D)) < 7(7(R[L, k]) © 7(R[k + 1,7]))
= 7(R[1,k] ® R[k + 1,7])

= 7(R[1,7]).
Now using the fact that A[j + 1,]|A|] = 7(R[l, |R|]) and Lemma 2.6, we get

AL+ 1, A = 7L+ 1,5+ 1] AL+ 1, 4]} < 7(r(Blr,) & (B[| R]))
= 7(R[r,]]® B[, |R])
= T(R[T, |R|])

In the case where R(k) < R(l) a symmetric argument shows that A[1, j] < 7(R[1,r]

and A[j, |A|] < 7(R][r, |R|]), so the lemma holds taking i = j. |

As an example of Lemma 2.7 we consider the sequences
R=12,6,7,85,4,3,5,2,4,6,4,4] and A = 7(R) = [2,8,2,6,4].
If we choose » = 7 we have that j = 2, k = 4, and [= 9. Notice that,

[2,8] = 7([1,6,7,8]),

[8,2] < 7([8, 5,4, 3]),

2
[2] < 7([3,5,2]),

[2,6,4] = 7[2,4,6,4,4],

2,8,2] < 7([1,6,7,8,5,4,3]) and

(2,6,4] < 7([3,5,2,4,6,4,4]).

Suppose now that A = [A4,...,4,] and B = [By,...,B,] are two sequences of
typical sequences. We say that A < B if Vi<i<, 4; < B;. For any integer ¢ we set
A+t =[A1+t,..., A4 +t] and max(A) = maxi<icjaj{maxA4;}. Finally, for any
sequence of typical sequences A we set 7(A) =7(A(1)®---® A(J]A])). As an example,

T([[57 2,8, 1]7 [47 9, 3]7 [3]7 [3797 2,5, 3]]) = T([57 2,8,1,4,9,3,3,3,9,2,5, 3])
= [572787179727573]'

2.4. Characteristic pairs

We call a characteristic pair any pair (A, A) where X is a sequence over a set O and
A is a sequence of typical sequences such that |A| = |A| + 1. Notice that for any graph
G and any order ! of V(G) the pair (I, Qg,i) is a characteristic pair.

The following procedure defines the compression of a characteristic pair relative to a
subset of O.

Procedure Com(/, R, 5).

Input: A characteristic pair (/,R) and a set S.

Output: A characteristic pair (A, A).

We assume the notations [= [vy,..., vy] and A = [vi,, vy, ..., 0;,]

1: A« I[S].

2: A « [r(R]0,i1 — 1)), 7(R[é1, 42 — 1]), ..., T(R[ipo1, 1, — 1)), T(RDp, [1]])].

3: Output (A, A).

4: End.

The pair ([a, b, ¢, d, €], [[0, 3], [4],[3, 7, 2], [3], [8, 1, 3], [3, 8, 4, 6]]) is an example of a char-

acteristic pair. We also use a different notation for characteristic pairs, e.g.:
[0,3] @ [4] b[3,7,2] c [3] d [8,1,3] e [3, 8,4, 6].
The compression of this characteristic pair to the set S = {a, c} is the characteristic pair

[0,3] a [4,7,2] ¢ [3,8,1,8,6].

3. A DECISION ALGORITHM FOR CUTWIDTH

In this section, we give for any pair of integer constants k, w, an algorithm that, given
a graph GG and a nice path decomposition X = [X7,..., X,] of width at most w, decides
whether G has cutwidth at most k.

Let us start by defining a characteristic of a vertex ordering of a graph. Given a graph
G with n vertices, a vertex ordering { of G and S C V(G), the S-characteristic of | is
Cs(G,l) = Com(l,Qgq,, S). Notice that, from the definition of the S-characteristic of
a vertex ordering ! of a graph G' we have that the V(G)-characteristic of { is equal to
(1, Qa,), ie. Cyv(g)(G,1) = (1, Qa,) (clearly, Com(l,Qg,, V(G)) = (I, Qa,))-

As an example we mention that, for the graph and ordering [given in Figure 1, the

characteristic pairs Cny (G, 1) and Cy(q)-n (G, 1) are:

[0,3] b [3,4,3] e [3,2] g [0] [0] a [3] ¢ [4] d [3] £ [2,0].

Given the S-characteristics (A\!, A?),i = 1,2, of two different vertex orderings of G we
say that (A', A1) < (A%, A?) when A' = A\? and A' < A%

The following result is an easy consequence of the definition of compression and the
obvious fact that for a sequence of typical sequences A, if A = 7(R), then A 4+ 1 =
(R +1).

LEMMA 3.1. Given a graph G, a vertex ordering | of G, and a vertex subset S.
Assume that Cs(l,G) = (X, A). For any two vertices a, b of S, with ranks i,j (i',j') in

l and X respectively, we have

()‘7 A[la i— 1] @ (A[lvj - 1] + 1) @ A[Ja |A|D

= Com(l, Qgu[1, i = 1] ® (Qau[7, i — 1]+ 1) ® Qa5 1Qa,], S).

Given a graph G and a vertex subset S, we say that a characteristic pair (A, A) is a
S-characteristic when (A, A) = Cs(l, G) for some ordering [of the vertices of G.

Using now Lemma 2.3 and working in a similar way as in the proof of Lemma 3.1
in [4] we can prove that for any i, the number of X; characteristics depends only on k

and w.

LEMMA 3.2. Let G be a graph and let X = [X4, ..., X,] be a nice path decomposition
of G with width at most w. Let X;, 1 < i < r be some node in X. The number
of different X;-characteristics of all possible vertex orderings of G; = G[Ué-:lXj] with

cutwidth at most k, is bounded by w! (% 22kyw+l,

Proof. Let (A, A) be a X;-characteristic of some vertex ordering of G;. Clearly,
V(A) C X; and, as | X;| < w, there are at most w! ways to choose A. For each one of

them, there are < w4+ 1 typical sequences in A to be chosen. From lemma 2.3, there are

at most %2% different ways to choose each of these sequences and the lemma follows. |

Assume from now on that we have a graph G and that X = [X1,..., X,] is a nice path
decomposition of GG, with width at most w. A set FS(7) of X;-characteristics of vertex
orderings of the graph G; = G[Ué»:lXi] with cutwidth at most k is called a full set of
characteristics for G; if for each vertex ordering [of G; with cutwidth at most k, there
is a vertex ordering I’ of G; such that Cx,(G;,l') < Cx,(G;,1) and Cx,(G;,l') € FS(i),
i.e. the X;-characteristic of I/ is in FS(7). The following lemma can be derived directly

from the definitions.

10

LEMMA 3.3. A full set of characteristics for the graph G; is non-empty if and only if
the cutwidth of G; is at most k. If some full set of characteristics for G; is non-empty,

then any full set of characteristics for G; is non-empty.

An important consequence of Lemma 3.3 is that the cutwidth of G is at most &, if
and only if any full set of characteristics of G, = G is non-empty. In what follows, we
will show how to compute a full set of characteristics at a node X; in O(1) time, when

a full set of characteristics for G;_1 is given (i > 2).

3.1. A full set for a start node

We first give a full set of characteristics for G1. Clearly, G; consists only of the unique

vertex in {Zstart} = X1 and a full set of characteristics is {[zstart], [[0], [0]]}-

3.2. A full set for an introduce node
We will now consider the case where X; is an introduce node. The following procedure

is the basis to compute a characteristic after the insertion of the introduced vertex and
the additional edges that appear in Gj.
Procedure Ins(G,u, S, N, A, A, j,m).
Input: A graph G, a vertex u ¢ V(G), two sets S, N where N C S C V(G),

a S-characteristic (A, A) of some vertex ordering [of G,

an integer 7,0 < j < ||, and an integer m, 1 < m < |A(j)].
Output: An (S U {u})-characteristic (', A’) of some vertex ordering

UV=1I1,.... @&y +1,....,[[]of G'= G+ N where 0 <~ < |Il.

Assume the notations: A = [u1,...,u,], and [uj,,...,u;,] = A[N].

1: (Insertion of u)
Set M = A[L,j] @ [u] ® A[j + 1, o]
and A’ = A[0,7 — 1] & [A(§)[1,m]] & [A(j)[m, |A)[)] ® Al + 1, p].

2: (Insertion of the edges from u)
for h=1to o do
(3) TF ju < j then set A’ A0, ju— 1@ (A'ljn, 71+ 1) © AL+ 1, p+ 1]
(i) I j > j + 1 then set A’ — A'[0,]@ (A'[j+ L, ju] + 1) ® A'ljn + 1, p+ 1.
3: Output (A, A’).

4: End.
11

« "‘ 0@0
®
[

f
/,« O
e a b c d u e f q

QG’,I’ = [[O]a [3] [4]7 [5]7 [4]7 [5]7 [4]7 [3] [0]]

FIG. 1. An example of Lemma 3.4 where G = G'[V(G’) — {u}],l = [a,b,c,d,e, f,g], N = {b,e, g},
and v = 4.

The following lemma is a direct consequence of the definitions of Qg,;, Qg v and
the insertion procedure. Notice that the sequences in Qg,; and Qg+ are sequences
consisting of only one element counting the number of “crossing edges” in the “gaps” of

[and ! respectively (for an example, see Figure 1).

LEMMA 3.4. Let G be a graph, | be a vertex ordering of G and v be an integer where
0<y<|l|. IfG' = GYN where N CV(G) andu ¢ V(G), then Ins(G,u, V(G),N,{, Qa1,7, 1)
is the V(G')-characteristic of ' = I(1, y)®[u]®l(y+1, [I]), i.e. Ins(G,u, V(G),N,[,Qq,,7v,1) =
(', Qarrr).

The following Lemma supports the correctness of the output of the procedure Ins
and constitutes the main tool for the construction of a full set of characteristics for an

introduce node.

LEMMA 3.5. Let G be a graph, N C S be two subsets of V(G), | be a vertex ordering
of G, (A,A) = Cs(l,Qq,1) be the S-characteristic of | and G' = G N where u ¢ V(G).
Then the following hold.

(i)For any 7,0 < j < |A|,m,1 < m < |A(j)| there exists an integer 0 < v < |l| such
that Ins(G, u, S, N, A, A, j,m) = Com(Ins(G, u, V(G), N,l,Qq 1,7, 1), S U {u}).

(ii)For any 4,0 < v < |l|, there exist two integers j,0 < j < |A|,m, 1 < m < |A(J)]
such that Ins(G,u, S, N, \, A, j,m) < Com(Ins(G, u, V(G),N,l,Qq.,7,1),S U {u}).

Proof. Let us start by proving part (i). Recall that (A, A) = Com(l, Qg, S). Let I =

[v1,..., vy and A = [v;,,...,v;,]. From Procedure Com we have that Vj, 0<n<,A(h) =
12

7(Qa,i[in, tn+1 — 1]) (for convenience, we set igp = 0). It is now easy to verify that

A[Oa] - 1] = [T(QG,I[Oail - 1])7 T(QG,l[ila Z'2 - 1])7 ce 7T(QG,l[ij—la ij - 1])] (1)
A(j) = 7(Qa.lijyij41 —1]) (2)

Alj+1,p] = [1(Qqulij+1:3542 = 1]), -, 7(Qaalip-1, 1, — 1]), 7(Qa,ulip, [L])] (3)

Applying now Lemma 2.4 on (2), we have that there exists v,1; < v < ;41 such that

AL m] = 7(Q[i5,7]) (4)

AG)m, [AG = 7(Qy, i — 1]) (5)
Observe that, as i; <+ < i;41, the following hold

[1,7]NS = Afl,J] (6)

Iy +LIUINS = Alj+1,p] (7)

Let (A, A’) and (', R) be the characteristic pairs constructed by step 1 of Procedures
Ins(G,u, S, N, A\, A, j,m) and Ins(G, u, V(G), N,l, Qa,,~, 1) respectively. We will prove
now that (A, A’) = Com((!',R), S).

Notice first that A = A[1, j]® [u] D A[i+ 1, |p|] and I’ = {[1, 4] ® [u] ®I[y+ 1, |!|]- Using
now (6) and (7), it follows that A = I'[SU {u}] = [vi,, ..., v;,, u,v;

,v;,]. Notice

PP
now that
A" = Al - 1@ [AG) L m]] @ [AG)m, [AG)] & Al + 1,] (3)
R = Qcu[0,7 — 1] @ Qaulij; 7] © Qauly, 141 — 1 ® Qaulij4, 1] 9)
Taking now in mind (9) and the fact that X = [v;,,..., v, u,v;,,,,...,2;,], we can

conclude that the sequence of typical sequences in the output of Com({, R, S U {u}) is

[7(Qg,[0,i1 — 1]), 7(Qa i1, 12 — 1]), .., T(Qa,[i-1, 35 — 1]), T(Qa,[75, 7]),

(Qau[v Gi41 — 1), T(Qaulij1,i42 — 1))y -+, T(Qalip—1, 1, — 1]), T(Qaylip, [1]])] (10)

Using now (1), (4), (5), and (3) we have that the sequence of typical sequences in (10)
is equal to A’ in the form it is presented in (8).

So far, we have seen that (A, A’) = Com((!/,R), S U {u}). In what follows we will
prove that this relation is invariant under the transformations applied on (X, A’) and
(I, R) during the loops of step 2 of the computation of Ins(G,u, S, N, A, A, j, m) and

Ins(G,u, V(G), N,l,Qq,,7, 1) respectively.
13

Notice that during the execution of step 2, no vertex is introduced, only new edges
are taken into account, therefore the respective vertex orderings do not change. We
will use the notation (M, A(®)) and (', R(") for the results of the h-th execution of the
loop in step 2 of Ins(G,u, S, N, A, A, j,m) and Ins(G,u, V(G),N,l, Qa,i,7,1), S U {u})
respectively. And for convenience we denote (), A’) as (X', A(®)), and (', R) as (', R(9)).
Our proof is by induction.

Suppose that (\, A®)) = Com(l’, R, S U {u}) for any h, 0 < h < &. Tt remains to
prove that (\, A(€)) = Com(I’,R©), S U {u}).

Assume that gy = ([N NV ({[1,4])] and p2 = INNV({[y+ 1,]!]])]- Then we have

rank; (v) = rank (v) for v € V(u1),
rank;(v) + 1 = rank (v) for v € V(u2)
rank) (v) = ranky/ (v) for v € V(p1)
rank) (v) + 1 = ranky (v) for v € V(pu2)
ranky (u) =y + 1
ranky (u) =7+ 1
A= 1 D pio
N =1 @ [u] © pa
Assume that the vertex to be taken from NV in this step has rank j¢ in [and rank ¢ in

A
In the case that j¢ < j we have that

RO =RED[0, je — 1@ RE Ve,]+) e REDy 1,01 +1] and (1)
A = ACD[0, 6~ 1] @ AV 1+ 1) @ AL+ 1, p+ 1), (12)
As je and v + 1 (£ and j + 1) are the ranks of u;, and u in I’ ('), Lemma 3.1 implies

that (A&, A(©)) = Com({(€-1) RE), S U {u}).
In the case j¢ > j + 1 we have that

RE® =REV0, 1] 0 (REVy+1,5) @REVje + 11|+ 1] and (13)

A® = A0, 1o (A + 1,8+ 1) @ AV [e+1,p41]. (14)

Asy+1land je +1 (j+1and { + 1) are the ranks of u and u;, in I’ ()\'), Lemma 3.1
implies that ()\(5), A(f)) = Com(l(g_l), R®) sU {u}) and this completes the proof of (i).
The flow of the proof for (ii) is exactly the same as in the proof of (i) with the

difference that now weaker versions of (1), (3), (4), and (5) are required. As (A, A) =
14

Com(l, Qg 1, S), we can assume again that [= [v1,...,v)y] and A = [v;,,...,v;]. From
Procedure Com we have that there exists a j, 0 < j < |p| such that i; < v < 1;41 (for
convenience, we set 4o = 0 and 7,41 = |{| + 1). Notice now that for this choice of j,

(1)-(3) hold as well and (1) and (3) can be rewritten in the following weaker form.

A[Ovj - 1] < [T(QGJ[Oa i — 1])7 T(QG,l[ila iz — 1])7 s 7T(QG,l[ij—17 ij - 1])] (15)

A[] +1, ,0] =< [T(QG,l[ij+17 Tjp2 — 1])7 s 7QG7l[iP—17 ip— 1])7 T(QG,l[ipv |l|])] (16)

From Lemma 2.7 there exists an integer m, 1 <m < A(j) where

A m] < 7(Q[ij,7]) (17)
AG)m, [AG)T < T(Qly, i1 —1]) (18)
Notice that (15), (16), (17), and (18) are the same as (1), (3), (4), and (5) with the

difference that “=" has been replaced by “<”.
It is now easy to check that repeating the steps of the proof of case (i) it follows that

Ins(G,u, S, N, A\, A, j,m) < Com(lns(G, u, V(G), N, 1, Qa1,7, 1), SU{u}). 1

As an example for Lemma 3.5 we consider the graphs G and G’ and their vertex
orderings [and !’ respectively as they are depicted in Figure 1. If we set S = NU{d} =
{b,d, e, g} we have that Cs(G,l) = (A, A) is the characteristic pair

[0,3] & [3,4] d [3] e [3,2] g [0].
For v = 4 we have that, for j =2 and m = 1,

|ns(G, u, S, N, A AL 2, 1) = ([u, b,d,e, g], [[07 3]7 [37 5]7 [4]7 [5]7 [47 3]7 [0]])
= Com(Ilns(G, v, V(G),N,{,Qau,4,1), SU{u}).

Moreover, for j = 0, and m = 2 we have that, for y = 1 (see Figure 2), Ins(G, u, S, N, A, A, 0,2) =
Com(Ins(G, u, V(G), N,[,Qa,, 1,1),SU {u}) is the pair

[0,3] w [6] b [5,6] d [5] e [4,3] g [0]

(in this example, the stronger version holds where “<” can be replaced by “=").

Let us prove now some monotonicity properties of the insertion procedure.

LEMMA 3.6. Let (A A;),i = 1,2 be two characteristic pairs of a graph G where

(A, Ag) < (A Ayq). Let also N, S be subsets of V(G), and G' = G 1N where u ¢ V(G).
15

g b a b c d e f g
Qe =[], B, B, ®©, B, B, [, I[0]
! c)
N
. a u b c d e f g
QG’J’ = [[0]5 [3]5 [6]7 [5]5 [6]7 [5]7 [4]5 [3]5 [0]]
FIG. 2. An example of Lemma 3.5 where G = G'[V(G’) — {u}],l = [a,b,c,d,e, f,g], N = {b,e, g},
and v = 1.

Then for any j, 0 < j < |A1| and any my, 1 < my < |A1(j)|, there exists a maq,
1 < mgq < |Ax(j)| such that

Ins(G,u, S, N, A\, Ag, j,mz2) < Ins(G,u, S, N, A\, Ay, j,mq).

Proof. Since, A2(j) < A1(j), Lemma 2.5 implies that there exists an mg, 1 < mgy <
|A2(7)| such that

Az (7)1, ma] < A1(j)[L, mu] and As(j)[m2, |[A2(5)[] < A1(j)[ma, [A1(5)]-
Moreover, V; o<i<j—1, A2(i) < A1(7) and V; jy1<i<,, A2(i) < Aq(i). Therefore, if
Al =Ai[0,5 — 1] @ [A: ()1, mu]] @ [Ai () [mas [A ()] © As[G + 1, p), i = 1,2,

then A} < Af.

Clearly, A} and A} are the sequences of typical sequences created after step 1 of the
computation of Ins(G, u, S, N, A, Ay, j,m1) and Ins(G, u, S, N, A, Az, j, mz) respectively.
Moreover, the vertex orderings constructed after step 1 of Ins(G, u, S, N, A, A;, j,m;), i =
1,2, is the same ordering A’ for both. It now remains to prove that A}, < A/ holds after
step 2 as well.

In what remains we will denote A} as AZ(.O), 1= 1,2 and we will use the notation AZ(.h)
for the results of the h-th execution of the loop in step 2 during the computation of
Ins(G,u, S, N, A\, A;, j,m;), i = 1,2. Suppose that A(2h) < A(2h) for any h, 0 < h < ¢. Tt

(&) (&)

remains to prove that Ay’ < Aj>’. Assume that the vertex of NV considered in this step

has rank j¢ in [and £ in X.
16

We examine the case where j: < j (the case where jo > j + 1 is analogous). As

A(f_l) < A(IE_I) we have that

A0, 5: — 1] < A0, je — 1] (19)
A e, i1 < ATV e,) (20)
AT+ 1) < AT 41 (21)

Clearly, (20) is equivalent to the following.
A e 141 < AT e i)+ 1 (22)
Taking into account that

AL = A0, - 1o A e 1+ Do A p+1]i= 1,2,

7 7

we have Agg) < .A(lg) as a consequence of (19), (22), and (21) and the lemma s proved. |

We now give an algorithm that, given a path decomposition X = [X1,..., X,] of the
graph G, for any introduce node X;, 2 < i < r, computes a full set of characteristics

F5(i) for the graph G;, given a full set of characteristics F.S(i —1) for the graph G;_;.
Algorithm Introduce-Node

Input: A full set of characteristics F.S(i — 1) for G;_.
Output: A full set of characteristics F.S(i) for G;.

1: Initialize F.S(i) = § and set p = | X;_1|, {u} = X; — Xi—1, and N = Ng,(u).
2: For any X;_j-characteristic (A, A) € FS(i—1) do
3 for j=0to pdo
4: for m =1 to |A(j)| do.
5 Let (X, A’) = Ins(Gi, u, X;-1, N, A\, A, j, m)
if max(A’) < k, then set FS(i) « FS(7) U {(N,A")}.

ot

: Output FS(7).
6: end.

Now we can prove the correctness of the algorithm for an introduce node in the path

decomposition.

LEMMA 3.7. Given a path decomposition X = [X1,...,X,] of a graph G. If X; is

an introduce node and FS(i — 1) is a full set of characteristics for the graph Gi_1 =
17

GUi<j<i—1X;], then the set FS(i) constructed by the Introduce-Node algorithm is a full
set of characteristics for G; = G[U1<;j<iX;].

Proof. We will prove first that the set FS(7) computed by the algorithm is a set of X;-
characteristics for the graph G;. We will show that for any (A, A’) € FS(i) there exists a
vertex ordering !’ of G; where (X, A’) = Cx, (G;,!'). Clearly, as (X', A’) was constructed
by Algorithm Introduce-Node, there must be a characteristic (A, A) € FS(i— 1) and two
integers 7,0 < j < |A| and m, 1 < m < |A(j)| such that

(N, A") = Ins(Gi—1,u, Xi—1, N, N, A, j,m) (23)

As (A A) € FS(i — 1), it will be a X;_q-characteristic for G;_; and therefore, there
exists a vertex ordering [of G;_1 of cutwidth at most & where (A, A) = Cx,_, (Gi-1,!).
{| such that

From part () in Lemma 3.5 we have that there exists an integer v, 0 < v <
Ins(Gi—la Uu, Xi—la Na)\7 Aa ja m) = Com(lns(Gi—la u, V(Gi—l)a Na la QGl_l,la Y 1)7 Xi—l U {u}) (24)

From Lemma 3.4, we have that Ins(Gi_1,u, V(Gi21), N,, [, Qa,_,1,7, 1) is the V(G;)-
characteristic of { = I(1,v) ® [u] ® I(y + 1, |{|) and therefore,

Com(lns(Gi_l, u, V(Gi_l), N, l, QG1—17l7 Y, 1), Xz) = Com(l', QG’,l’aXi) (25)

Combining now (23), (24), and (25), we have that (A, A’) = Com(!', Qa/ 1, X;) =
Cx, (G, 1.

It remains now to prove that F.S(i) is a full set of characteristics for G;. Let I’ be a

vertex ordering of G; with cutwidth at most k. We will show that there exists a vertex

ordering I/ of G; such that
Cx,(Gi,lL) < Cx,(G;,l') and Cx,(Gy, L) € FS(i).

Set now y = ranky (u) — 1 and let I = I'[1,4] ® 'y + 2, |{|]. From Lemma 3.4, we have
that

Ins(Gi—la U, V(Gi—l)a Na la QGl_l,la Ys 1) = (lla QGl,l’)
and therefore,

Com(lns(Gi_l, u, V(Gi_l), N, l, QGz—hlv Y 1), Xz) = Com(l, QGl,l’,Xi) = CXi (GZ(ZQ)
18

Set now (A, A) = Cx,(G},!). From part (ii) of Lemma 3.5 we have that there are values
Jjand m, 0 < j <|A and 1 < m < |A(j)| such that

Ins(Gi—la U, Xi—la Na)‘a Aaja m) < Com(lns(Gi—la U, V(Gi—l)v Na la QGl—l7l7 Vs 1)7 X1 U {u}) (27)

As FS(i—1) is a full set of characteristics, we have that there exists a vertex ordering

l. of V(G;_1) such that
Cx,_, (Gi—1, L) < Cx,_, (Gi—1,1) and Cx,_, (Gi_1,li) € FS(i — 1).

Let Cx,_,(Gi-1,l) = (A«, AL). From Lemma 3.6 we have that there exists a m. such
that

Ins(Gi—1,u, Xi—1, N, Ay As,j,me) < Ins(Gio1,u, X521, N, A A, j,m) (28)
From part (i) of Lemma 3.5, we have that there exists a 7., 0 < v, < |l.| such that
Com(Ins(Gi—1,u, V(Giz1), Ny Loy Qay_v1a s Y25 1)y Xi) = Ins(Giz1, u, Xij—1, Ny Az, Ay, j,my) (29)
Defining I}, = L1, 7] ® [u] ® L[y« + 1, |l.]] and applying Lemma 3.4 we have that
(1, Qau) = Ins(Gim1,u, V(Gio1), Ny by, QG s Yoy 1)
and therefore,

CX; (GM l;) = Com(lia QG,,I; s Xz) = Com(lns(Gi—la u, V(Gi—l)a Na l*a QGl_l,l* s Vs 1)7 Xl) (30)

From (29) and (30) we have that Cx, (G, %) = Ins(Gi—1,u, X;-1, N, Agk, A, j, my).
Since (Qg,_,, 1) € FS(i—1) algorithm Introduce-Node makes that Cx,(G;,l.) € FS(i).

Moreover, combining relations (26)—-(30) we conclude that Cx,(G;, L) < Cx, (G, l'). |

3.3. A full set for a forget node

We will now consider the case where X; is a forget node. We will provide an algo-
rithm that given a full set of characteristics F.S(i — 1) for X;_1, computes a full set of
characteristics FS(i) for X;. We start by defining a deletion procedure that operates

inversely to procedure Ins.

Procedure Del()\, A, v).

Input: A characteristic (A, A) and a vertex u € V().
19

Output: A characteristic pair (A, A’).

Assume the notations A = [uq,...,u,] and j = rank, (u) = j.

L: XN« ALj=—1)@®A(y+1,p).

2: A’ AlD,j— 2 @ [r(AG — 1) © AG)] ® AL + 1,
3: Output (A, A’).

4: End.

The following lemma is a direct consequence of the definitions of the procedures Com

and Del.

LeEMMaA 3.8. Let (I,R) be a characteristic pair of a given graph G and let V C V(I).
Then, for any v € V the following holds.

Com(l,R,V — {v}) = Del(Com(/,R,V),v)

Observe that Lemma 3.8 can provide an alternative, recursive definition of procedure
Com, based on procedure Del.

The following monotonicity result is a direct consequence of Lemma 2.6

LeMMa 3.9. Let (I;,R;),i = 1,2 be two characteristic pairs of a given graph G. If
({2, R2) < ({1, Ry), then for any v € V(l1), Del(lz, Ry, u) < Del(l1, Ry, u).

Now we can give an algorithm that, given a path decomposition X = [Xy,..., X,] of
the graph G, for any forget node X;, 2 < ¢ < r, computes a full set of characteristics
FS(i) for the graph G;, given a full set of characteristics F.S(i —1) for the graph G;_;.
Algorithm Forget-Node

Input: A full set of characteristics F.S(i — 1) for G;_.
Output: A full set of characteristics F.S(i) for G;.

1: Initialize F.S(i) =) and let u be the forget vertex of Gj.
2: For any (A, A) € FS(i—1) do

3: FS(i) <+ FS(i) U{Del(A\, A,u)}.

4: Output FS(7).

5

: end.

LEMMA 3.10. If FS(i — 1) is a full set of X;_1-characteristics then the set FS(i)

constructed by the above algorithm is a full set of X;-characteristics for Gj.

20

Proof. As G; = G;_1 we will use the notation G for both of them. We will also denote
as u the forget vertex of G;. We will prove first that FS(7) is a set of X;-characteristics

for G. We need to prove that there exists a vertex ordering ! of G where
CXl (l, G) = Com(l, QG,la Xz) = (/\/, AI)

for any (X,A’) € FS(i). As (X, A’) has been constructed by procedure Forget-Node
there must exists a X;_q-characteristic (A, A) € FS(i — 1) such that

(N, A") = Del(\, A, u). (31)
As (A, A) € FS(i — 1), there exists a vertex ordering ! of G such that
(A A) = Com(l,Qa, Xi—1) (32)
and therefore, from (31) and (32) we have
(N, A") = Del(Com(l,Qe,i, Xi—1), u) (33)

and using (33) and Lemma 3.8 we have that Cx,(l, G) = Com(l, Qa,, X;) = (X, A').
We will now prove that FS(7) is a full set of X;-characteristics for G. Let [be a vertex
ordering of G of cutwidth at most k. We will show that there exists a vertex ordering

l, of G such that
Cx,(G,l.) < Cx,(G,]) and Cx,(G,l.) € F5(i).
From Lemma 3.8 we have that
Cx,(G,1) = Com(l, Qg 1, Xi) = Del(Com(l, Qa1, Xi—1), u) (34)

As FS(i — 1) is a full set of characteristics, there exists a vertex ordering [, of V(G)
such that Cx,_, (G,l.) € FS(i — 1) and Cx,_, (G, L) < Cx,_, (G,l) or, equivalently,

Com(ls,Qa,,, Xi—1) < Com(l,Qe,i, Xi—1) (35)
Using now Lemma 3.9 we can rewrite (35) as follows.
Del(Com(L, Qa 1, Xi—1),u) < Del(Com(l, Qq,i, Xi—1),u) (36)
Applying again Lemma 3.8 we have that

CXI(G, l*) == Com(l*, Qgﬁl* s Xz) = Del(Com(l*, QG,l* s Xi—l)a u) (37)
21

Combining now (34), (36), and (37), we have that Cx,(G,l.) < Cx,(G,!). Finally as
CXl_l (G, l*) = Com(l*, QG,l*aXi—l) € FS(Z — 1),

the output of Del(Com(l., Qe 1,, Xi—1), u) will be one of the characteristics included in

FS(i). Therefore, Cx,(G,l.) € FS(i) and this completes the proof of the lemma. |

4. MAKING THE DECISION ALGORITHM CONSTRUCTIVE
Suppose now that, given a path decomposition X = [Xy,..., X,] of G with bounded
width, after running the algorithm described in the previous subsections we know that
a graph G has cutwidth at most k, i.e., the computed set FS(r) is not empty. We
will now describe a way to construct a vertex ordering of G with cutwidth at most k.
By observing the working of the algorithm, it follows that there exist a sequence of

characteristics, (A1, A1), (A2, A2) ..., (Ar, A,), called a witness path, such that

1. (A1, A1) = ([2start), [[0],[0]]) is the unique characteristic of the vertex ordering

consisting of the unique vertex in the starting node X1 = {zstart },
2. (A, A,) is some characteristic in FS(r), and

3.for any h, 1 < h < n —1 (Apy1,Ant1) was constructed after a call of either
Introduce-Node or Forget-Node with input (An, Ap).

Let us show now how to compute a layout with cutwidth < k, in linear time, given a

witness path
()\17 Al)a ()‘27 AZ) ceey (>‘T‘7 AT‘)

Let by 1 < h < r, and I, be a vertex ordering such that Cx, (G, 15) = (An, Ap). Assume
that

Iy =[ovh,... ,uﬁhl] and

— [Ah h . h _ B h,j
Ay =[Ag, ..., Afa,] where A} =[a7”, ... ’alAhl]'

Notice that any element a7 of A} @-- -EBA{LAhl is determined by a pair (j, m) of indices
where 0 < j < |Ap| and 1 < m < |4;]. We denote as Pj, the set containing all these
pairs.

Let £ be the minimum number such that A~ < k£ < r and X, is an introduce node (x

is well defined as X, is an introduce node and h < r = |X|). We set {u"} = X}, — X,
22

and N, = Ng, (u"). Now we define a mapping ¢, : Pp — {0,1,...,|l|}} such that

én(j, m) = v implies that

|nS(Gh, uh, Xh, Nh,)\h, Ah,j, m) = Com(lns(Gh, uh, V(Gh), Nh, lh, QGh,lh777 1), Xh)(38)

Our definition is recursive. We assume that for some h, 1 < h <r— 1,1, and ¢, are
known. We will show that {41, ¢py1 can be defined (and computed in O(1) time).

We first examine the case where (Ap41, Apt1) was computed after a call of Introduce-
Node. This means that x = h + 1 and that {u"} = X441 — X, and N, = Ng, ,, (u").
Clearly, (Any1,Ang1) = Ins(Gh,u”, Xu, Np, An, Ap, j, m) for some choice of j and m
where 0 < j < |Ap| and 1 < m < |A(j)|. From 38 and the proof of Lemma 3.7, we have

that, if v = ¢5(j, m), then constructing /541 so that

Ihar = W [1,7 @ [u"] @ Iy + 1, [1a]]

we have that

Cxnyr (Ghtslhg1) = (Ang1s Apgr).

If we now take in mind the rearrangement of the indices occuring during step 1 of

procedure Ins as it is applied on (Ap, Ap) and (Ih, Qa,,1,) in (38) we have that

Pryr = {(0,1),...,(0,[AG)IU---U{(G = 1,1),..., (G — 1,474} U
(G Dsee s Gem) Y UL+ 1, 1), (G + 1, JA = m 4+ 1)} U

(G425 G+ 2,450 U UL(AR + 1,15 ([AR+ 1, A, D)
and, we can define ¢p41 as

¢n(v:€) ifr<j+1

~v+1 ifv=j+1land £ =1
nt1(v,€) =
on(jm+E—1)+1 ifv=j+land&>1

on(v—1,6) +1 ifo>j+1

and, therefore the required condition holds.

Suppose now that (Ap41, Ap41) was computed after a call of Forget-Node. Assume

A =010 505,00, 0]
23

where v; is the forgotten vertex. Clearly, the new vertex ordering [, is the same as
lp. Taking now in mind the outputs of Del(Ap, Ap,v;) and Del(lp, Qa, 1, v5), the new

index set is

Phy1 = {(07 1)7"' ’ (07 |Ag|)} U---u {(.7 -2, 1)7"' ’ (.7 -2, |A§L—2|)}U
{(.7 -1 1)7 T (.7 -1 |T(Ah(j - 1) EBAh(J))D}

(G0 G AT DY U U{(AR] = 1, 1), . (JAR] = 1 1A, 1))

and the function ¢,41 is obtained by setting

én (v, §) ifr<j—1
bh1(E) = Qon(f — 14 0,¢) ifv=j—1,

v+ 1L,E—1 ifv>j—1

where (o,v%) = 6((An(j — 1), An(4)),€)). Clearly, the function ¢p41 verifies the required
conditions.

If at each time a new characteristic is computed, we set up a pointer to the charac-
teristic it was constructed from, we obviously have a suitable structure for constructing
also a witness path in linear time. We will also maintain a data structure associating
the position (determined by the pair (j, m)) of each number a”/ of a typical sequence
A;? of A} with the value v = ¢4 (a’7), 0 < 4|l,|. Furthermore, from the definitions, {51
and ¢p41 can be computed in O(1) time from I, and ¢,. Therefore, as I = [Zstart] and

#1(0,1) = 0 and ¢1(1,1) = 1, we are able to construct in time linear in |X|, a vertex

ordering | = I, such that Cx_(G,,l,) € FS(r).

4.1. Conclusions on cutwidth

Notice that, because of Lemma 3.2, the algorithms Introduce-Node and Forget-Node
run in O(1) time when k£ and w are fixed. We resume the results of the previous

subsections in the following.

THEOREM 4.1. For all k, w > 1 there exists an algorithm that, given a graph G and a
path decomposition X = [X1,...,X,] of G with width at most w, computes whether the
cutwidth of G is at most k and, if so, constructs a vertex ordering of G with cutwidth

at most k, in O(|V(G)|+ |X]) time.

Lemma 2.2 and Theorem 4.1, along with the results in [6] and [3] give the following:
24

THEOREM 4.2. For all k > 0, there exists an algorithm, that given a graph G, com-
putes whether the cutwidth of G is at most k, and if so, constructs a vertex ordering of

G with minimum cutwidth in O(|V(G)|) time.

5. FINAL REMARKS

It is known (e.g. see [8]) that graphs with maximum degree bounded by A and
pathwidth bounded by w have cutwidth bounded by wA. Therefore, our result implies
a linear time algorithm for computing the cutwidth for graphs where both maximum
degree and pathwidth are assumed to be constants.

Moreover, one can easily observe that, in the more general case where pathwidth(G) <
w and the maximum degree of G is at most < 3-logn for > 0,n = |V(G)|, Lemma 3.2
bounds the number of different characteristics by O(w!(g)w"'lnww(w"'l)). The com-
plexity of Algorithm Introduce-Node is O(w2w!(§)w+1n2'@w(w+1)+1) as step 2 requires
O(w!(%)w‘*‘lnww(w"'l)) repetitions, step 3 requires O(w) repetitions, step 4 requires
O(n) repetitions, and the call of Procedure Ins in step 5 requires O(w) steps. Simi-
larly, the complexity of Algorithm Forget-Node is O(ww!(g)w"'lnw“’(“"*‘l)). Therefore,
we can conclude that for any constant w there exists a polynomial time algorithm (i.e.
O(w?’w!(g)w"'lnw“’(w‘*‘l)‘*‘Zlogn) that outputs a minimum cutwidth linear layout of
any graph G with maximum degree 3 -logn, 3 > 0 and pathwidth < w,w > 0.

We believe that further results can be achieved. In particular, we conjecture that
there exits a polynomial time algorithm that outputs a minimum cutwidth linear layout
of any graph G where the maximum degree and the treewidth are fixed constants. For
an analogous result concerning the computation of pathwidth for graphs with bounded

degree, see Section 7 of [4].

REFERENCES

1. K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and well-quasiordering.
In N. Robertson and P. Seymour, editors, Proceedings of the AMS Summer Workshop on Graph
Minors, Graph Structure Theory, Contemporary Mathematics vol. 147, pages 539-564. American
Mathematical Society, 1993.

2. H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded treewidth. Disc.
Appl. Math., 54:101-115, 1994.

3. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. Siam

Journal on Computing, 25:1305-1317, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. J. Algorithms, 21:358—402, 1996.

. H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings 24th International Col-
logutum on Automata, Languages, and Programming, ICALP’97, pages 627—637. Springer-Verlag,
Lecture Notes in Computer Science, Vol. 1256, 1997.

. H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear time. Technical

Report Technical Report No. UU-CS-1998-05, Dept. of Computer Science, Utrecht University, 1998.

. F. R. K. Chung. On the cutwidth and topological bandwidth of a tree. STAM J. Alg. Disc. Meth.,
6:268—277, 1985.

. F. R. K. Chung and P. D. Seymour. Graphs with small bandwidth and cutwidth. Disc. Math.,
75:113-119, 1989.

. G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation algorithms via
spreading metrics. In Proc. 36th Symp. on Foundations of Computer Science (FOCS), pages 62-71,
1995.

M. R. Fellows and M. A. Langston. On well-partial-order theory and its application to combinatorial
problems of VLSI design. STAM J. Disc. Meth., 5:117-126, 1992.

M. R. Fellows and M. A. Langston. On search, decision and the efficiency of polynomial-time
algorithms. J. Comp. Syst. Sc., 49:769-779, 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York, 1979.

E. Korach and N. Solel. Tree-width, path-width and cutwidth. Disc. Appl. Math., 43:97-101, 1993.

F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological bandwidth. STAM J. Alg.
Disc. Meth., 6:418-444,1985.

F. S. Makedon and 1. H. Sudborough. On minimizing width in linear layouts. Disc. Appl. Math.,
23:243-265, 1989.

B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees. Theor. Comp.
Se., 58:209-229, 1988.

N. Robertson and P. D. Seymour. Graph minors. XXIII. The nash-williams immersion conjecture.

To appear.

N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Comb. Theory
Series B, 63:65-110, 1995.

M. Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM,

32:950-988, 1985.

26

