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Abstract

A λ-coloring of a graph G is an assignment of colors from the integer set {0, . . . , λ}
to the vertices of the graph G such that vertices at distance at most two get different
colors and adjacent vertices get colors which are at least two apart. The problem of
finding λ-coloring with small or optimal λ arises in the context of radio frequency
assignment. We show that the problem of finding the minimum λ for planar graphs,
bipartite graphs, chordal graphs and split graphs are NP-Complete. We then give
approximation algorithms for λ-coloring and compute upper bounds of the best
possible λ for outerplanar graphs, graphs of treewidth k, permutation and split
graphs. With the exception of the split graphs, all the above bounds for λ are
linear in ∆, the maximum degree of the graph. For split graphs, we give a bound
of λ ≤ ∆1.5 + 2∆ + 2 and show that there are split graphs with λ = Ω(∆1.5). We
also give a bound of λ = Ω(∆2) for bipartite graphs. Similar results are also given
for variations of the λ-coloring problem.



1 Introduction

Radio frequency assignment is a widely studied area of research. The task
is to assign radio frequencies to transmitters at different locations without
causing interference. The problem is closely related to graph coloring where
the vertices of a graph represent the transmitters and adjacencies indicate
possible interferences.

In [21], Griggs and Yeh introduced a problem proposed by Roberts which they
call the L(2, 1)-labeling problem. It is the problem of assigning radio frequen-
cies (integers) to transmitters such that transmitters that are close (distance
2 apart) to each other receive different frequencies and transmitters that are
very close together (distance 1 apart) receive frequencies that are at least two
apart. To keep the frequency bandwidth small, they are interested in comput-
ing the difference between the highest and lowest frequencies that have been
assigned to the radio network. They call the minimum range of frequencies,
λ . The problem is then equivalent to assigning an integer from {0, . . . , λ} to
the nodes of the networks satisfying the L(2, 1)-labeling constraint.

Subsequently, different bounds of λ were obtained for various graphs. A com-
mon parameter used is ∆, the maximum degree of a graph. The obvious lower
bound for λ is ∆ + 1, achieved for the tree K1,∆. In [21] it was shown that
for every graph G, λ ≤ ∆2 + 2∆. This upper bound was later improved to
λ ≤ ∆2 + ∆ in [10]. An interesting conjecture of Griggs and Yeh is that for
every graph G, λ ≤ ∆2. This remains an open problem and has been the
motivation of some research since.

For some special classes of graphs, tight bounds are known and can be com-
puted efficiently. These include paths, cycles, wheels and complete k-partite
graphs [21], trees [10,21], cographs [10], k-almost trees [15], cacti, unicycles and
bicycles [24], and grids, hexagonal grids and cellular grids [4]. Other types of
graphs have also been studied, but only approximate bounds are known for
them. These are chordal graphs and unit interval graphs [29], interval graphs
[10], hypercubes [18,19,24], bipartite graphs [31], and outerplanar and planar
graphs [24].

In this paper, we extend the upper bounds of λ to other graphs and also
improve some existing bounds for some classes of graphs. Precisely, new upper
bounds are provided for graphs of treewidth k, permutation graphs and split
graphs. We also improve the bound in [24] for outerplanar graphs. Efficient
algorithms for labeling the graphs achieving these bounds are also given. With
the exception of split graphs, all the above bounds are linear in ∆. For split
graphs, we give a bound of λ ≤ ∆1.5 + 2∆ + 2 and show that there are split
graphs with λ = Ω(∆1.5). This is the first bound for λ that we know of that
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is neither linear in ∆ nor ∆2. For bipartite graphs, we give a lower bound of
Ω(∆2) thus showing that there are graphs with λ = Θ(∆2).

In [21], it was shown that determining λ of a graph is an NP-Complete problem,
even for graphs with diameter two. It was further shown in [15] that it is also
NP-Complete to determine if λ ≤ k for every fixed integer k ≥ 4 (the case
when λ ≤ 3 occurs only when G is a disjoint union of paths of length at
most 3). In this paper, we show that the problem remains NP-Complete when
restricted to planar graphs, bipartite graphs, chordal graphs and split graphs.

The L(2, 1)-labeling problem proposed by Roberts is basically a problem of
avoiding adjacent-band interferences – adjacent bands must have frequencies
sufficiently far apart. There are several variations of the λ-coloring problems
in the context of frequency assignment in multihop radio networks. Two other
common type of collisions (frequencies interference) that have been studied
are: direct and hidden collisions. In direct collisions, a radio station and its
neighbors must have different frequencies, so their signals will not collide (over-
lap). This is just the normal vertex-coloring problem with its associated chro-
matic number X (G). In hidden collisions, a radio station must not receive
signals of the same frequency from any of its adjacent neighbors. Thus, the
only requirement here is that for each station, all its neighbors must have
distinct frequencies (colors), but there is no requirement on what the color of
the station itself should be.

In [3,28], the special case of avoiding hidden collisions in multihop radio net-
works were studied. We call this the L(0, 1)-labeling problem (this notation
was not used in [3,28]). In [2,11,12], the problem is to avoid both direct and
hidden collisions in the radio network. Thus, a station and all of its neighbors
must all have distinct colors. This is called L(1, 1)-labeling in [31]. It is also
known as distance-2 coloring problem and is equivalent to the normal coloring
of the square of a graph, G2, and has also been well-studied. These variations
of λ-coloring are NP-Complete even for planar graphs [3].

Perhaps a more applicative term for all these λ-variations is the one given by
Harary [22]: Radio-Coloring. We apply our algorithms to these variations as
well and obtain similar bounds.

We include a table (Figure 1) summarizing most of the known results.

The paper is organized as follows. We give some definitions of special graphs
and generalizations of the λ-coloring problem in the next section. Then dif-
ferent upper bounds and algorithms for graphs of treewidth k, outerplanar
graphs and permutation graphs are presented in Section 3. Section 4 contains
the approximation for split graphs along with the complexity result for split
graphs and chordal graphs. The complexity results for planar graphs and bi-
partite graphs are given in Section 5. Finally, in the last section we mention
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Type of Graphs Bounds Complexity

Paths λ = 2, 3 or 4 [21] P [21]

Cycles λ = 4 [21] P [21]

Hexagonal Grids λ = 5 [4] P [4]

Bidimensional Grids λ = 6 [4] P [4]

Cellular Grids λ = 8 [4] P [4]

Trees λ = ∆ + 1 or ∆ + 2 [21] P [10]

Outerplanar λ ≤ ∆ + 8 [∗]
HyperCube ∆ + 3 ≤ λ ≤ 2∆ + 1 [30,24]

lim∆→∞ λ/∆ = 1 [30]

Strongly Chordal λ ≤ 2∆ [10]

Permutation λ ≤ 5∆− 2 [∗]
Planar λ ≤ 2∆ + 25 [23] NP-Complete [∗],[16]

Treewidth ≤ k λ ≤ k∆ + 2k [∗]
Split λ = Θ(∆1.5) [∗] NP-Complete [∗]
Chordal λ ≤ 1

4
(∆ + 3)2 [29] NP-Complete [∗]

Bipartite λ = Θ(∆2) [24],[∗] NP-Complete [∗]
Graphs of Diameter 2 λ ≤ ∆2 [21] NP-Complete [21]

General Graphs λ ≤ ∆2 + ∆ [10] NP-Complete [21]

Cographs P [10]

Graphs of Degree ≤ 3 NP-Complete [15]

Degree ≤ 7 & Planar NP-Complete [∗]
∆-regular λ ≤ ∆2 ??

Fig. 1. Summary of Results ([∗] denotes this paper)

some open problems.

A shorter preliminary version of this paper was presented at the 17th Annual
Symposium on Theoretical Aspects of Computer Science STACS 2000 [7].
That report contains an erroneous theorem (on planar graphs) which has been
deleted from this paper.
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2 Preliminaries

2.1 λ-coloring

Let G = (V,E) be a graph with vertex set V and edge set E. The number of
vertices in G is denoted by n and the maximum degree of G by ∆.

Definition 1 Let G be a graph and d1, d2 be two non-negative integers. A
λ-coloring is an assignment of colors from the integer set {0, . . . , λ} to the
vertices of the graph. The λ-coloring satisfies the L(d1, d2)-constraint if each
pair of vertices at distance i, 1 ≤ i ≤ 2, in the graph gets colors that differ by
at least di. If a λ-coloring of G satisfies the L(d1, d2)-constraint, then we say
that G has an L(d1, d2)-labeling. The minimum value λ for which G admits a
λ-coloring satisfying the L(d1, d2)-constraint is denoted by λd1,d2(G), or, when
G is clear from the context, by λd1,d2.

In this paper, we shall focus mainly on particular L(d1, d2)-labelings which
have been studied in the literature: L(2, 1)-labeling ([21]), L(1, 1)-labeling
([2,31]) and L(0, 1)-labeling ([3,28]).

Fact 2 For any graph G, the following lower bounds hold:

(1) λ0,1 ≥ ∆− 1 [3],
(2) λ1,1 ≥ ∆ [31],
(3) λ2,1 ≥ ∆ + 1 [21].

All these bounds are easily obtained by considering the tree K1,∆, which is
contained in any graph of maximum degree ∆.

2.2 Special Graphs

Definition 3 Let k be a positive integer. A k-tree is a graph of n ≥ k + 1
vertices defined recursively as follows. A clique of k + 1 vertices is a k-tree.
A k-tree with n + 1 vertices can be formed from a k-tree with n vertices by
making a new vertex adjacent to exactly all vertices of a k-clique in the k-tree
with n vertices.

Definition 4 A graph is a partial k-tree if it is a subgraph of a k-tree.

Definition 5 The treewidth of a graph is the minimum value k for which the
graph is a subgraph of a k-tree.

A useful way of dealing with the treewidth of a graph is via its tree-decomposition.
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Definition 6 A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )) with {Xi | i ∈ I} a collection of subsets of V , and T = (I, F )
a tree, such that

• ⋃i∈I Xi = V
• for all edges (v, w) ∈ E there is an i ∈ I with v, w ∈ Xi

• for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1.
The treewidth of a graph G = (V,E) is the minimum width over all tree
decompositions of G.

It can be shown that the above definitions of treewidth are equivalent and
that every graph with treewidth ≤ k is a partial k-tree and conversely, that
every partial k-tree has treewidth ≤ k. For more details on treewidth, k-trees
and other equivalent definitions, consult, for example, [6,26].

We now define a few more special graphs. Other definitions and results con-
cerning these special graphs can be found in [9,20].

Definition 7 A graph is chordal or triangulated iff every cycle of length ≥ 4
has a chord (i.e., there is no induced cycle of length ≥ 4).

Definition 8 A vertex of a graph G is simplicial if its neighbors induce a
clique.

Definition 9 A perfect elimination scheme for a graph G is an ordering of
vertices (v1, . . . , vn), such that for each i, 1 ≤ i ≤ n, the vertex vi is a simplicial
vertex in the subgraph induced by (vi+1, . . . , vn).

Fact 10 [14] The following statements are equivalent:

(1) G is chordal.
(2) G has a perfect elimination scheme.
(3) G is an intersection model of subtrees of a tree, i.e. there is a tree T ,

such that for every vertex v ∈ V one can associate a subtree Tv of T with
{v, w} ∈ E ⇐⇒ Tv ∩ Tw 6= ∅, for all v, w ∈ V, v 6= w.

Definition 11 A split graph is a graph G of which the vertex set can be
split into two sets K and S, such that K induces a clique and S induces an
independent set in G.

A permutation graph can be obtained from a permutation π = {π1, . . . , πn}
of integers from 1 to n in the following visual manner. Line up the numbers
1 to n horizontally on a line. On the line below it, line up the corresponding
permutation so that πi is right below i. Now connect each i and πj such that
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πj = i with an edge. Such edges are called matching edges and the resulting
diagram is referred to as a matching diagram. The inversion graph is the graph
Gπ = (V,E) with V = {1, . . . , n} and {i, j} ∈ E iff the matching lines of i and
j in the matching diagram intersect. Formally, one can define a permutation
graph as follows.

Definition 12 Let π = {π1, . . . , πn} be a permutation of integers from 1 to
n. Then the permutation graph determined by π is the graph Gπ = (V,E) with
V = {1, . . . , n} and {i, j} ∈ E iff (i − j)(π−1

i − π−1
j ) < 0, where π−1

i is the
inverse of πi (i.e., the position of the number i in the sequence π). A graph G is
a permutation graph if there exists a permutation π such that G is isomorphic
to the inversion graph Gπ.

3 Bounds and Algorithms

Following [21,24,29,31], we use the following heuristic, or small modifications
of it, to λ-color a graph G. First we find an elimination sequence, an ordering
of the vertices, (v1, . . . , vn), satisfying certain conditions for G. In order to do
this, we rely on the fact that all the graphs considered have the hereditary
property, i.e., when a special vertex is eliminated from a graph considered,
the induced subgraph remains the same type of graph. Then we simply apply
the greedy algorithm to color each vertex in the sequence by using the smallest
available color in {0, . . . , λ}, satisfying the L(d1, d2)-constraint. For each graph
G, we next estimate the total number of vertices at distance two that a vertex
can have among the vertices that have been colored so far. Finally we compute
the upper bound for λ.

3.1 Graphs of treewidth k

For a graph G = (V,E) of treewidth k, we first take a tree-decomposition
({Xi | i ∈ I}, T = (I, F )) with {Xi | i ∈ I} a collection of subsets of V , and
T = (I, F ) a tree. Let d(v, w) be the distance between vertices v and w.

Algorithm 1 Algorithm for Graphs of Treewidth k

1: Add a set of virtual edges E ′:
Here {v, w} ∈ E ′ iff {v, w} 6∈ E and ∃i : v, w ∈ Xi.

2: Find a Perfect Elimination Sequence: {v1, . . . , vn} in G′ = (V,E ∪ E ′).
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3: For i := n to 1
Label vi with the smallest available color, such that for all

already colored vertices w:
If (v, w) ∈ E, then the color of v and w differ by at least 2,
If (v, w) ∈ E ′, then the color of v and w differ by at least 1,
If d(v, w) = 2, then the color of v and w differ by at least 1.

Theorem 13 There is an algorithm for labeling a graph G of treewidth k with
λ2,1 ≤ k∆ + 2k .

PROOF. After all the virtual edges are added in the above algorithm, the
new graph G′ = (V,E∪E ′) is chordal, hence has a perfect elimination sequence
(from Fact 10). Also, G′ has the same tree decomposition as G so has treewidth
at most k.

We proceed by induction. The first vertex vn can simply be colored with
color 0. Suppose we have colored the vertices in the elimination sequence
(vi+1, . . . , vn), i < n. When we are ready to color the vertex vi, it has at most
k colored neighbors because vi with its neighbors forms a clique in G′. Now
by the perfect elimination sequence property, an already colored vertex at
distance two of vi must be adjacent to an already colored neighbor of vi in G′

also. Hence, at most 3k colors are unavailable due to the neighbors of vi since
each of these neighbors can account for at most 3 more colors: if we color one
of these vertices by color c, then colors c − 1 and c + 1 are forbidden for vi.
Now vi has at most (∆−1)k colors unavailable due to the vertices at distance
two. If we have k∆ + 2k+ 1 colors, then a color for vi is always available. The
bound now follows. 2

Corollary 14 There is an algorithm for labeling a k-tree with λ2,1 ≤ k∆ −
k2 + 3k.

PROOF. As a k-tree is always triangulated, there are at most k(∆−1−(k−
1)) = k∆ − k2 distance-2 neighbors of vi. The total number of colors needed
is then k∆− k2 + 3k + 1 or λ2,1 ≤ k∆− k2 + 3k. 2

Theorem 15 For graphs of treewidth k, λ0,1 ≤ k∆− k and λ1,1 ≤ k∆ .

PROOF. We apply the same algorithm as in Algorithm 1 to find an elim-
inating sequence (vn, . . . , v1) and then greedily color each vi in the sequence
with the smallest available color satisfying the L(0, 1)-constraint. As in the
proof of Theorem 13, each vi in the eliminating sequence has at most k∆− k
neighbors at distance two, which must have different colors from vi. Now vi
can have at most k colored neighbors, but they can have the same color as vi.
So we can color vi and its neighbors with only one extra color. The bound for
λ0,1 now follows.
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Similar argument applies for λ1,1. 2

The labeling algorithms given in this section can be implemented in time
O(kn∆), n the number of vertices, assuming that we are given the tree-
decomposition, which can be found in linear time for treewidth of constant
size k [5]. Step 1 of the algorithm can be done as follows: first, just list all pairs
{v, w} such that ∃i : v, w ∈ Xi. Then, radix sort the pairs {v, w} of this type
together with the edges e ∈ E. This can be done in linear time (see e.g. [13],
chapter 9.) Given this sorted sequence, pairs {v, w} such that ∃i : v, w ∈ Xi

and {v, w} ∈ E can easily be filtered out. Step 2 can be done in linear time
with standard methods (G′ is chordal; see e.g. [20].) Step 3 is not hard to im-
plement, such that coloring a vertex can be done in O(k∆) time. Each vertex
maintains the set of colors, given to its neighbors; when a vertex is colored,
these sets of its neighbors are updated. When a vertex must be colored, these
color sets of its neighbors and the colors given to the neighbors are inspected.
One thus gets a multiset of O(k∆) elements in {0, · · · , k∆ − k2 + 3k} and
finding the smallest non-negative integer not in this multiset can easily be
done in O(k∆) time.

Recently, in [32] it has been shown that λ1,1 can be computed in polynomial
time for graphs with constant treewidth k. A similar argument would yield
the result for λ0,1 as well.

3.2 Outerplanar Graphs

We now specialize to outerplanar graphs. As outerplanar graphs are graphs of
treewidth two, we have λ2,1 ≤ 2∆+4, from Theorem 13. Jonas in [24] already
has a slightly better bound of λ2,1 ≤ 2∆ + 2. It turns out we can improve this
bound even further. First we need a technical lemma concerning outerplanar
graphs in general.

Lemma 16 In an outerplanar graph, there exists a vertex of degree at most
two which has a neighbor of degree at most four.

PROOF. If G has at most two vertices, the Lemma trivially holds. We now
assume G has at least three vertices. First, we claim that a biconnected outer-
planar graph G (with at least three vertices) has a vertex of degree two with
a neighbor of degree at most four.

Suppose not. Then letG be a biconnected outerplanar graph with at least three
vertices such that all neighbors of a vertex of degree at most two have degree
five or more. We consider the inner dual G∗ of graph G, formed by taking the
dual of G and then removing the vertex that represents the outer region. It
is easy to see that G∗ is a tree [24]. Note that all leaves in G∗ correspond to
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a face with at least one vertex of degree two in G, as at most one edge of the
face is shared by another inner-face, hence two adjacent edges belong to the
face and the outer region, so that the vertex shared by the edges has degree
two. Consider now the two leaves, u∗ and v∗, of the inner dual with maximum
distance in G∗. Suppose to the contrary that all neighbors of a vertex of degree
≤ 2 have more than four neighbors in G. The face represented by u∗ has a
vertex x of degree two in G, and both neighbors y and z have degree more than
four. See Figure 2. Thus, there are at least four faces adjacent to y, and these
form a path of length at least three starting from u∗ in G∗. Similarly, there is a
different path of length three starting from u∗ in G∗ for the faces that contain
z. One can now observe that there is a path in G∗ of greater length than the
path from u∗ to v∗, say from w∗ or w

′∗, which is a contradiction. Hence G has
a vertex of degree two that has a neighbor of degree at most four.

x
u∗

y

z

w∗

w
′∗

Fig. 2. u∗ cannot be endpoint of a path of maximum distance in G∗.

Finally, every outerplanar graph G = (V,E) is a subgraph of a biconnected
outerplanar graph H = (V, F ) [25]. A vertex v, that has degree at most two
and has a neighbor of degree at most four in H, has degree at most one in G
or has degree two and a neighbor of degree at most four in G. 2

Algorithm 2 Algorithm for Outerplanar Graphs

For i := 1 to n
Find a vertex vi of degree ≤ 2 with a neighbor of degree at most 4
or of degree ≤ 1.
If neighbors of vi are not adjacent

Then add a virtual edge between them
Temporarily remove vi from G.

For i := n to 1
Label vi with the smallest available color in {0, . . . , λ}

satisfying the L(2, 1)-constraint
If neighbors of vi have a virtual edge

Then remove the edge
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In Algorithm 2, we first find an elimination sequence, (v1, . . . , vn), using the
condition in Lemma 16. Note that this can always be done due to the heredi-
tary property of outerplanarity. Then, we use this order to color the vertices
in a greedy manner, making sure that the color of vertex vi differs by at least
two from the colors of its already colored neighbors, and differs by at least one
from the colors already colored vertices at distance two. In this way, we make
sure that the L(2, 1)-constraint is fulfilled. The virtual edge (if there is one)
is there to guarantee that the colors of vi’s two neighbors are different when
they are colored. Note that an operation that removes vi and adds a virtual
edge between its two neighbors does not increase the maximum degree ∆.

We can now compute the value of the maximum color used in Algorithm 2.

Theorem 17 There is an algorithm for finding an L(2, 1)-labeling of an out-
erplanar graph with λ2,1 ≤ ∆ + 8.

PROOF. Again we use induction. We color the first vertex vn in the elim-
ination sequence (vn, . . . , v1) with color 0. and suppose we have colored the
vertices in the elimination sequence (vi+1, . . . , vn), i < n. When we want to
color the vertex vi, it can have at most two colored neighbors. First, suppose vi
has two colored neighbors. As before, each of these two neighbors can account
for at most 3 more colors. Now vi has at most ∆− 1 + 3 vertices at distance
two, which means another ∆ + 2 colors that possibly cannot be used for vi. If
there are at least ∆+9 colors, then there is always at least one color available
for v, i.e., λ2,1 ≤ ∆ + 8. A similar analysis can be used if vi has one colored
neighbor. 2

Corollary 18 There is an algorithm for finding an L(2, 1)-labeling of a tri-
angulated outerplanar graph with λ2,1 ≤ ∆ + 6.

PROOF. In a triangulated graph, there are at most ∆−2+2 = ∆ distance-2
neighbors of vi. The total number of colors needed is then ∆ + 7 or λ2,1 ≤
∆ + 6. 2

This improves the bound of λ2,1 ≤ 2∆ + 2 in [24] for outerplanar graphs, for
sufficiently large ∆.

We can apply our algorithm of outerplanar graphs to the other λ-variants. By
doing a simple count, we easily obtain the following results.

Theorem 19 For outerplanar graphs, there are polynomial time algorithms
for labeling the graphs such that λ0,1 ≤ ∆ + 2 and λ1,1 ≤ ∆ + 4.

It is not hard to see that the algorithms mentioned above can be implemented
to run in time O(n∆), n the number of vertices.
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3.3 Permutation Graphs

Theorem 20 There is a polynomial time algorithm for labeling a permutation
graph with λ2,1 ≤ 5∆− 2 .

PROOF. Suppose the vertices are numbered 1, 2, . . . , n, and we have a per-
mutation π, with (i, j) ∈ E iff (i− j)(π−1

i −π−1
j ) < 0 (i.e., the lines cross). We

color the vertices from 1 to n in order, using the smallest color available satis-
fying the usual L(2, 1)-constraint. To show that the stated bound is sufficient,
we make use of the following two claims.

Suppose we are in the midst of this algorithm, ready to color a vertex v. Let w
be a vertex at distance two from v. Note that v and w can have distance two
via a path across a colored vertex or via a path across an uncolored vertex.

Claim 21 Suppose there is a path (v, y, w) with y a vertex that is not yet
colored. Let x be the neighbor of v such that π−1

x is minimal. Then either w is
a neighbor of v or x, or w is not colored.

PROOF. Suppose w is not a neighbor of v (i.e. {v, w} /∈ E) and w is already
colored. then we have w < v and π−1

w < π−1
v . Informally, the matching edges in

the matching diagram of w and v should not cross, while the matching edges
of v and y, and also the matching edges of w and y both cross. Given the order
of the top endpoints, w < v < y, the situation shown in Figure 3 is the only
one possible. Now, by assumption, π−1

x < π−1
y , i.e. the lower endpoint of the

matching edge of x is to the left of π−1
y , hence if this matching edge crosses

the matching edge of v, it also crosses the corresponding matching edge of w;
thus {x,w} ∈ E.

v yw

π−1
y π−1

w
π−1vπ−1

x

Fig. 3. Matching diagram for vertices in permutation graph in the proof of Claim
21.

Formally, {v, w} ∈ E ⇒ π−1
y < π−1

v . Also y > v > w, so {y, w} is an edge
and π−1

y < π−1
w . By assumption, π−1

x ≤ π−1
y , π−1

x < π−1
v . Now x > v > w, so

π−1
w > π−1

y ≥ π−1
x . Therefore {w, x} is an edge. 2

The proof of the next claim is similar to the proof above.

Claim 22 Suppose there is a path (v, y, w) with y a vertex that is already
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colored. Let x be the neighbor of v having a minimal π−1
x among the neighbors.

Then either w is a neighbor of v or x, or w is not colored.

We now count the total number of colors needed. The vertices x in the above
two claims are adjacent to v, so they both have at most ∆− 1 neighbors that
are at distance two to v. We thus get a total of 3∆ + 2(∆− 1) + 1 = 5∆− 1
colors. 2

Theorem 23 For permutation graphs, there are polynomial time algorithms
for labeling the graphs such that λ0,1 ≤ 2∆− 2 and λ1,1 ≤ 3∆− 2.

All the above algorithms can also be implemented in O(n∆) time.

3.4 Bipartite graphs

Bipartite graphs may require λ = Ω(∆2), as is shown in the following lemma
using a well known technique. Of course, ∆2 + ∆ is also for bipartite graphs
an upper bound on λ.

Theorem 24 For every ∆ ≥ 2, there is a bipartite graph with maximum
degree ∆, with λ0,1 ≥ (b∆/2c+ 1) · d∆/2e ≥ ∆2/4.

PROOF. Let ∆1 = b∆/2c + 1, and ∆2 = d∆/2e. Take a graph G with
vertices {vi,j | 1 ≤ i ≤ ∆1, 1 ≤ j ≤ ∆2} ∪ {wi,j | 1 ≤ i ≤ ∆1, 1 ≤ j ≤ ∆2},
and take edges {vi,j, wi′,j′} for all pairs with i = i′ or j = j ′. Note that the
maximum degree of G is ∆. Also, for every pair of distinct vertices vi,j, vi′,j′ ,
their distance is two, hence all ∆1 · ∆2 vertices of the form vi,j must have a
different color in any λ-coloring of G. 2

Note that the proof also holds when we consider λ1,1-colorings and λ2,1 color-
ings.

4 Split Graphs

So far all the bounds for λ that we have obtained are linear or quadratic in
∆. For split graphs we give a non-linear and non-quadratic bound for λ and
show that there are split graphs that require this bound.

Theorem 25 There is a polynomial time algorithm for labeling a split graph
with λ2,1 ≤ ∆1.5 + 2∆ + 2 .
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PROOF. Let S be the independent set and K the clique that split G. Note
that |K| ≤ ∆ + 1. We use colors 0, 2, . . . , 2∆ to color the vertices in K. For
S, we will use colors from the set {2∆ + 2, 2∆ + 3, . . . ,∆1.5 + 2∆ + 2}. If
|S| ≤ ∆1.5, we just give every vertex in S a distinct color and we are done.
Suppose |S| > ∆1.5. We claim that there is always a vertex v in S with degree
≤ ∆0.5. Suppose we have r, 1 ≤ r ≤ ∆ + 1 vertices in K. Each can have at
most ∆− (r− 1) neighbors in S. Hence, the total number of edges emanating
from S is at most r(∆ − r + 1). The minimum degree vertex in S is thus at
most

r(∆− r + 1)

∆1.5 + 1
≤ (∆+1

2
)2

∆1.5 + 1
≤ ∆0.5.

Now, let v be a vertex in S with degree ≤ ∆0.5. Recursively color the graph
obtained by removing v from G. As v has at most ∆1.5 vertices in S at distance
two, and neighbors of v of distance one are already colored, with the available
∆1.5 + 1 colors to color S, we always have a color left for v. Finally, note that
adding v back cannot decrease the distances between other vertices in G as
the neighborhood of v is a clique. 2

Theorem 26 For split graphs, there are polynomial time algorithms for la-
beling the graphs such that λ0,1 ≤ ∆1.5 and λ1,1 ≤ ∆1.5 + ∆ + 1.

We now show that the above bounds for λ is actually tight (within constant
factor).

Theorem 27 For every ∆, there is a split graph with λ2,1 ≥ λ1,1 ≥ λ0,1 ≥
1
3

√
2
3
∆1.5.

PROOF. Consider the following split graph. We take an independent set of
1
3

√
2
3
∆1.5 vertices. This set is partitioned into

√
2
3
∆ groups, each consisting of

∆/3 vertices. The clique consists of ∆/3 + 1 vertices. Note that we have less

than (
√

2
3
∆)2/2 = ∆/3 distinct pairs of groups. For each such pair of groups,

we take one unique vertex in the clique, and make that vertex adjacent to
each vertex in these two groups. In this way, the maximum degree is exactly
∆: each vertex in the clique is adjacent to ∆/3 vertices in the clique and at
most 2∆/3 vertices in the independent set.

Now, the resulting graph has diameter two, and any pair of vertices in the
independent set have distance exactly two. So, in any L(0, 1)-labeling of the
graph (or L(1, 1)- or L(2, 1)-labeling), all vertices in the independent set must
receive different colors. 2

As split graphs are also chordal graphs [20], the above theorem provides a
non-linear lower bound for the upper bound of 3

4
∆2 in [29] for chordal graphs.

14



We now show the NP-completeness result for split graphs. The proof below is
a modification of that by Griggs and Yeh [21].

Theorem 28 Let G be a class of graphs, such that

(1) If G = (V,E) ∈ G, then the graph obtained by adding a new vertex v and
making it adjacent to every vertex in V also belongs to G.

(2) Hamiltonian Path is NP-complete for graphs whose complement be-
longs to G.

Then, the problem to decide for a given graph G = (V,E) ∈ G whether
λ2,1(G) ≤ |V | is NP-complete.

PROOF. Clearly the problem belongs to NP.

In order to show NP-hardness, we transform from Hamiltonian Path for
graphs in the complement of G. Let a graph G = (V,E) in the complement of
G be given. Assume G′ is the graph obtained by taking the complement of G
and then adding a new vertex v0, and making v0 adjacent to every vertex in
V , i.e., G′ = (V ∪ {v0}, E ∪ {{v0, x} | x ∈ V }). Write n = |V |+ 1.

By the first assumption, G′ ∈ G.

Claim 29 λ2,1(G
′) ≤ n, if and only if G has a Hamiltonian path.

PROOF. Suppose x1, x2, . . . , xn−1 forms a Hamiltonian path in G. Then if
we color v0 with 0 and xi with i+1, 1 ≤ i ≤ n−1, we obtain a lambda-coloring
of G′.

Assume we have a lambda-coloring f : V ∪ {v0} → {0, 1, . . . , n} of G′. As
every vertex is adjacent to v0, we must have that all vertices have a different
color. As colors f(v0) − 1 and f(v0) + 1 cannot be used, we must have that
f(v0) = 0 or f(v0) = n, otherwise we have n− 2 colors left for n− 1 vertices.

Without loss of generality, suppose f(v0) = 0. So, every vertex in V receives a
distinct color from the set {2, 3, . . . , n}. If f(w) = i and f(x) = i+ 1, then w
and x are not adjacent in G′, hence {w, x} ∈ E. So f−1(2), f−1(3), . . . , f−1(n−
1), f−1(n) forms a Hamiltonian path in G. 2

NP-hardness of the lambda-coloring problem for G now follows. 2

Corollary 30 The following problem is NP-Complete:

Instance: A split graph G = (V,E).
Question: Is λ2,1 ≤ |V |?
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PROOF. Hamiltonian path is NP-complete for split graphs, and hence, as
the complement of a split graph is also a split graph, for complements of split
graphs. Also, when one adds a vertex that is adjacent to all vertices to a split
graph, one obtains again a split graph. So Theorem 28 can be applied. 2

As split graphs are chordal, we also have the following NP-Complete problem.

Instance: A chordal graph G = (V,E).
Question: Is λ2,1 ≤ |V |?

Theorem 31 The following problems are NP-Complete:

Instance: A split graph G = (V,E).
Question: Is λ0,1 ≤ 3?

Instance: A split graph G = (V,E) and an integer r.
Question: Is λ1,1 ≤ r?

PROOF. (i) λ0,1: We transform from 3-coloring. Let G = (VG, EG) be an
undirected graph. We take a split graph H as follows. H has three types of
vertices: for each vertex v ∈ VG, we take also a vertex v in H; for each edge
e ∈ EG, we take a vertex e in H, and then we add one additional new vertex x0

to H. We turn EG ∪ {x0} into a clique, and add edges {v, e} to H whenever e
is an edge with v as endpoint in G. Now we claim that λ0,1(H) ≤ 4, if and only
if the chromatic number of G is at most three. Suppose c : VG → {1, 2, 3} is a
3-coloring of G. Then, the function that colors every vertex in EG∪{x0} with
color 0, and every vertex in VG with c(v) is a λ0,1-coloring of H. Conversely,
suppose we have a λ0,1-coloring c of G that uses the colors {0, 1, 2, 3}. Without
loss of generality, suppose c(x) = 0. Then all vertices in VG have color 1, 2, or
3. If {v, w} ∈ EG, then v and w have distance two in H, hence c(v) 6= c(w),
so G is 3-colorable. This shows the result.

(ii) λ1,1: We can use the same construction as in part (i), but without the
vertex x0, and with r = |EG| + 2. If G is 3-colorable, then we can construct
a λ1,1-coloring of H, by using three colors for the vertices in V , and giving
each vertex in E a different color. Conversely, note that in any λ1,1-coloring
of H, all vertices in EG must have a different color, and as every vertex in VG
has distance one or two to each vertex in EG, all vertices in G are differently
colored from the vertices in EG. So, if we have a λ1,1-coloring c of H with
|EG| + 3 colors, then c, restricted to V gives a 3-coloring of G. This proves
part (ii). 2

Again, this also implies NP-completeness of the problems to decide λ0,1 and
λ1,1 for chordal graphs.
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5 Complexity of λ-Coloring Bipartite Planar Graphs

In this section we will show that it is NP-complete to decide whether λ2,1 ≤
8 for a given bipartite planar graph G = (V,E). Independently, an NP-
completeness proof for λ-coloring of planar graphs has been given in [16].

We say a graph G = (V,E) is 3-colorable, if and only if there is a function
c : V → {1, 2, 3} such that for all edges {v, w} ∈ E: c(v) 6= c(w). An edge
4-coloring of a graph G = (V,E) is a function f : E → {1, 2, 3, 4} such that
for all edges e, e′ ∈ E, e 6= e′, if e and e′ share a common endpoint, then
f(e) 6= f(e′).

Theorem 32 (Garey, Johnson, Stockmeyer [17]) The following problem
is NP-Complete.

Instance: A planar graph G = (V,E) of maximal degree four.
Question: Is G 3-colorable?

We first show that the following problem (though somewhat contrived is
needed in a later reduction) is NP-Complete.

[3-Coloring for planar graphs with given 4-edge coloring]
Instance: A planar graph G = (V,E) and a 4-edge coloring f of G.
Question: Is G 3-colorable?

Lemma 33 3-Coloring for planar graphs with given 4-edge col-
oring is NP-complete.

PROOF. Clearly, the problem is in NP. To show NP-hardness, we use a
technique from Garey, Johnson and Stockmeyer [17].

We use a transformation from the 3-coloring problem for planar graphs with
maximum degree four. Suppose we have a planar graph G = (V,E) with
maximum degree four. Now, replace every vertex v ∈ V by a copy of the
subgraph S, shown in Figure 4.

The subgraph S is given together with a 4-edge coloring, which will be used
below. There are four marked vertices (with an *) in this subgraph S. Each
edge to v in G now goes to one of the marked vertices, such that each marked
vertex gets at most one of these edges, and the graph stays planar. This
reduction is almost identical to the reduction used in [17] to show NP-hardness
of 3-coloring of planar graphs with maximum degree four. Let G′ = (V ′, E ′) be
the resulting graph. One can construct a 4-edge coloring of G′ by coloring the
edges in the replacement subgraph S as in Figure 4, and coloring the original
edges of G (the dotted lines in Figure 4) as follows: if e is an edge between two
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Fig. 4. Subgraph S that replaces a vertex.

subgraphs, then note that both endpoints have degree three and one edge is
already colored with 1, hence there is at least one color from {2, 3, 4} left for
the edge. So, G′ with a 4-edge coloring of G′ can be constructed in polynomial
time.

Finally G is 3-colorable, if and only if G′ is 3-colorable. This follows directly
from the proof in [17]. 2

Theorem 34 The following problem in NP-Complete.

Instance: A planar bipartite graph G = (V,E) of maximal degree seven.
Question: Is λ2,1(G) ≤ 8?

PROOF. Again, clearly, the problem is in NP. To show NP-hardness, we
use a transformation from 3-coloring of planar graphs with a given
4-edge coloring.

Suppose we are given a planar graph G = (V,E) with a 4-edge coloring f :
E → {1, 2, 3, 4}.

We now transform G in a number of steps.

First, we subdivide every edge of G. We distinguish five types of vertices:

• original vertices: vertices belonging to V .
• 0-vertices: vertices that resulted from subdividing an edge e with f(e) = 1.
• 1-vertices: vertices that resulted from subdividing an edge e with f(e) = 2.
• 7-vertices: vertices that resulted from subdividing an edge e with f(e) = 3.
• 8-vertices: vertices that resulted from subdividing an edge e with f(e) = 4.

Now, if an original vertex has degree less than four, it receives new neighbors:
if original vertex v has no neighbor that is a 0-vertex, we add one new vertex
that is only adjacent to v. The vertex is called an extra 0-vertex. Similarly,
original vertices that have no neighbor that is a 1-vertex, 7-vertex, or 8-vertex
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get a new neighbor of degree one that is an extra 1-vertex, extra 7-vertex, or
extra 8-vertex.

In the next few steps, additional edges and vertices are added to the graph.

To every 0-vertex and 8-vertex, we add five new neighbors of degree one each,
as in Figure 5.

To every extra 0-vertex and to 8-vertex, we add six new neighbors of degree
one each, as in Figure 6.

0 or 8
originaloriginal

original original

Fig. 5. Replacing an edge by a subdivision with a 0- or 8-vertex

extra 0 or 8
originaloriginal

Fig. 6. Adding an extra 0-vertex or extra 8-vertex

To every 1-vertex and 7-vertex, we add two subtrees of a specific form, as
shown in Figure 7. To every extra 1-vertex and extra 7-vertex we add three of
these subtrees, as in Figure 8.

original original
1 or 7

x

y z

original
original

Fig. 7. Adding a subgraph to 1-vertices and 7-vertices
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original

x

y z

1 or 7 extra

original

Fig. 8. Extra 1-vertices and extra 7-vertices

LetG′ = (V,E) be the resulting graph. AsG′ can be constructed in polynomial
time from G and f , and G is a planar bipartite graph of maximum degree 7,
the NP-completeness result follows from the next lemma.

Lemma 35 G is 3-colorable, if and only if λ2,1(G
′) ≤ 8.

PROOF. First, suppose that G is 3-colorable. Let c : V → {1, 2, 3} be a
3-coloring of G. We will give a lambda-coloring of G′ with colors 0, 1, . . . , 8.

Every original vertex v of G′ is colored with color c(v) + 2. For i ∈ {0, 1, 7, 8},
every i-vertex and every extra i-vertex is colored with color i.

The neighbors of 0-vertices, extra 0-vertices, 8-vertices, and extra 8-vertices
can be colored greedily. E.g., a neighbor of a 0-vertex has one neighbor with
color 0, and six vertices at distance two, so there is always a color available
from {2, 3, 4, 5, 6, 7, 8}.

We now show how to color the subtrees attached to 1-vertices (the other cases
of 7-vertices, extra 1-vertices, or extra 7-vertices are similar.) See Figure 7. The
vertex labeled x is adjacent to one already colored vertex, which is colored with
1, and has at most three already colored vertices at distance two. There is at
least one color in the set {3, 4, 5, 6} not already assigned to a vertex at distance
two of x. Give x this color. Then, color the vertex marked y with 0, and the
vertex marked z with 8. The leaves adjacent to x and y can now be colored
greedily, similar as the vertices, adjacent to 0-vertices and 8-vertices. In this
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way, all subtrees attached to 1-vertices (and 7-vertices, extra 1-vertices, and
extra 7-vertices) can be colored.

A tedious case analysis shows that the resulting coloring indeed is a λ2,1-
coloring.

Now, suppose we have a λ2,1-coloring c of G′. With help of a series of claims,
we show that G is 3-colorable.

Claim 36 If a vertex v has degree 7, then v must be colored with 0 or 8.

PROOF. All neighbors of v must receive a distinct color. If v has a color,
different from 0 and 8, then at most 6 colors are left for its neighbors. 2

Claim 37 0-vertices, 8-vertices, extra 0-vertices, and extra 8-vertices have
color either 0 or 8.

PROOF. These vertices have degree 7. 2

Claim 38 Original vertices have a color from {2, 3, 4, 5, 6}.

PROOF. They are adjacent to two vertices that must contain color 0 or 8.
As these vertices receive a different color, an original vertex is adjacent to a
vertex with color 0, and hence cannot get color 0 or 1, and an original vertex
is adjacent to a vertex with color 8, and hence cannot get color 7 or 8. 2

Claim 39 1-vertices, 7-vertices, extra 1-vertices, and extra 7-vertices are col-
ored with 1 or 7.

PROOF. Suppose v is a 1-vertex, 7-vertex, extra 1-vertex or extra 7-vertex.
As v has an original vertex as a neighbor, and an original vertex has a neigh-
bor colored 0 and a neighbor colored 8, v has vertices with color 0 at dis-
tance two, and vertices with color 8 at distance two, so v has a color from
{1, 2, 3, 4, 5, 6, 7}. Consider the subtrees attached to v. See Figure 7. The ver-
tices y and z have degree 7, hence must be colored with 0 or 8, and the color
of y is different from the color of z. So, x has a neighbor with color 0 and a
neighbor with color 8, so must have a color from the set {2, 3, 4, 5, 6}. Now, v
is adjacent to four vertices that have a color from {2, 3, 4, 5, 6}, and, as these
vertices have mutually distance two, they must be colored differently. It fol-
lows that v cannot be colored with a color from {2, 3, 4, 5, 6}, as this would
leave too few colors available for its neighbors. Hence, the color of v is 1 or
7. 2

Claim 40 An original vertex has color 3, 4, or 5.

PROOF. An original vertex has two neighbors with color 1 or 7, and as these
have different colors, it has a neighbor with color 1 and a neighbor with color
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7. Hence, it must have color 3, 4, or 5. 2

Now, we can make a 3-coloring of G as follows. For every v ∈ V , if the
color given to v in the lambda-coloring is i, then write c(v) = i − 2, where
c : V → {1, 2, 3} is a function, and for all {v, w} ∈ E, we have that the
colors given by the lambda-coloring to v and w are different, as v and w have
distance two in G′, so c(v) 6= c(w), thus c indeed is a 3-coloring of G. This
ends the proof of Lemma 35. 2

By the results above, we now have shown the NP-completeness of λ-coloring
of planar bipartite graphs of maximum degree seven, with nine colors. 2

It is possible to generalize the result somewhat:

Theorem 41 The following problem is NP-Complete. Let r ≥ 8 be an even
integer.

Instance: A planar bipartite graph G = (V,E) of maximal degree r − 1.
Question: Is λ2,1(G) ≤ r?

Basically, this proof goes as follows: every original vertex is adjacent to an i-
vertex or extra i-vertex for all i ∈ {0, 1, . . . , r/2−3, r/2+3, r/2+4, . . . , r−1, r}.
To these i-vertices, trees are attached in a way, similar to the 1-nodes, forcing
them to receive color i or r − i. Then, a structure, similar as in the proof
above, (using in addition inductive arguments) can be used.

It seems that the proof technique used above cannot help to show NP-completeness
for the problem to decide whether a given planar graph G has λ2,1(G) ≤ r for
any odd values of r. We leave this as an open problem.

6 Concluding remarks

We have given upper bounds of λ for some of the well-known graphs. However,
we still lack examples of graphs where these bounds are matched, for exam-
ple those for planar graphs and permutation graphs. It should be possible to
tighten the constant factors in the bounds somewhat. For example, in outer-
planar graphs, the conjecture is that λ2,1 ≤ ∆ + 2 and we have λ2,1 ≤ ∆ + 8.
Similar comments apply to the other graphs studied in this paper as well.

For chordal graphs, in [29] it has been shown that λ2,1 < ∆2. We have shown
for split graphs (a special case of chordal graphs) that λ2,1 = Θ(∆1.5). What
is the best bound for chordal graphs?

For graphs of treewidth k, the L(0, 1)-labeling and L(1, 1)-labeling problems
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are polynomial for constant k [32]. The corresponding problem for L(2, 1)-
labelings appears to be an interesting (but apparently not easy) open problem.
The corresponding problem for interval graphs and outerplanar graphs also
remain open.

It is conjectured in [21] that λ2,1 ≤ ∆2 for any graph. This is true for all the
special graphs that have been studied, but the general problem remains open.
As any graph of degree ∆ can be turned into a ∆-regular graph in polynomial
time by just adding at most ∆ + 2 vertices [8], ∆-regular graphs constitute
the hardest type of graphs for λ-coloring. We already have a lower bound of
∆2

4
for bipartite graphs hence for ∆-regular graphs as well. The question thus

remains if λ2,1 ≤ ∆2 for ∆-regular graphs.
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