Necessary edges in k-chordalizations of graphs

Hans L. Bodlaender*

Abstract

In this note, we look at which edges must always be added to a
given graph G = (V, E), when we want to make it a chordal graph with
maximum clique size at most k by adding edges. 1This problem has a
strong relation to the (algorithmic) theory of the treewidth of graphs.
If {z,y} is an edge in every chordal supergraph of G with maximum
clique size at most k, we call the pair necessary for treewidth k. Some
sufficient, or necessary and sufficient conditions are given for pairs of
vertices to be necessary for treewidth k. For a fixed k, the set of all
edges that always must be added when making the graph chordal with
maximum clique size < k, can be found in linear time. If k is given
as part of the input, then this problem is coNP-hard. A few similar
results are given when interval graphs (and hence pathwidth) are used
instead of chordal graphs and treewidth.

1 Introduction

Graphs with bounded treewidth play an important role in several recent
investigations in algorithmic graph theory. In this note, we look at a specific
problem, dealing with this type of graphs. We ask ourselves the question:
which edges may we add to a given graph G = (V| F), such that every tree
decomposition of G of width at most k, still is a tree decomposition of the
graph obtained by adding these edges to G? An equivalent way to state this
problem is the following: which edges must be added always, when we want
to make G a chordal graph with maximum clique size at most k+1 by adding
edges?

This notion generalizes two algorithmic ideas, used in earlier papers on
graphs with bounded treewidth. In [3] a subset of the set of all necessary
edges is identified, and then added to GG, and then as an intermediate step

*Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands. Email: hansb@cs.uu.nl

in a linear time algorithm to recognize graphs with treewidth at most k, for
fixed k. The first step of the algorithm in [7], (for determining whether a
given 3-colored graph is contained in a properly colored chordal graph) is to
find all necessary edges for treewidth 2.

The original motivation for this research was for the design of algorithms
for the problems to determine whether a given colored graph is contained
in a properly colored chordal or interval graph, for small number of colors,
larger than three. While the complexity of these problems is now more or
less well understood (see e.g., [11, 6, 5]), the result of this paper may be
perhaps useful as a step for solving special cases.

2 Definitions

The graphs in this paper are considered to be simple and undirected. We say
that a set S separates vertices z and y in a graph G, if every path from z to
y in G uses a vertex in S. The subgraph of G = (V| E) induced by vertex set
W C V is denoted by G[W| = (W, {{v,w} € E | v,w € W}). For a graph
G = (V,E)and aset S CV, we denote G— S5 = G[V — 5], and G+ clique(S)
as the graph, obtained from G by making all vertices in S adjacent.

The notion of treewidth has been introduced by Robertson and Seymour
[12].

Definition 1 A tree decomposition of a graph G = (V, E) is a pair ({X; | i €
IV, T=(I,F)) with {X; | i € I} a collection of subsets of V., and T = (I, F)
a tree, such that

¢ Uier Xi =V
e for all edges {v,w} € E there is ani € I with v,w € X;
o foralli,j k€ I: ifjisonthe path fromi tok inT, then X;NX; C X;.

The width of a tree decomposition ({X; |i € I},T = (I, F)) is max;es | X;|—1.
The treewidth of a graph G = (V, E) is the minimum width over all tree
decompositions of G.

A tree decomposition ({X; | i € I},T = (I, F)) is called a path decom-
position, if T"is a path. The pathwidth of a graph G is the minimum width
over all path decompositions of G.

The problems, whether a given graph G has treewidth or pathwidth at
most a given integer k are NP-complete [1].

A graph G = (V, E) is a chordal graph, if it does not contain an induced
cycle of length at least four. We say a graph H is a chordalization of graph
G, it H contains GG as a subgraph, and H is chordal. H is said to be a k-
chordalization of GG, if H is a chordalization of GG, and the maximum clique
size in H is at most k. The following results are well known. (See e.g., [4].)

Lemma 1 (i) For every chordal graph G = (V| E), there exists a tree de-
composition ({X; | i € I},T = (I, F)) of G, such that every set X; forms a
clique in G, and for every mazimal cligue W C V', there exists an i € I with
W =X;.

(ii) For every interval graph G = (V, E), there exists a path decomposition
{X;|iel},T=(I,F)) of G, such that every set X; forms a clique in G,
and for every maximal clique W C V', there exists an i € I with W = X;.
(111) Let ({X; | i € I},T = (I, F)) be a tree decomposition of G of width at
most k. The graph H = (V,EUE'), with E' = {{v,w} | Ji € [:v,w € X;},
obtained by making every set X; a clique, is chordal, and has maximum clique
size at most k + 1.

() Let ({X; | i€ I}, T = (I,F)) be a path decomposition of G of width at
most k. The graph H = (V,EUFE'), with E' = {{v,w} | Ji € [:v,w € X;},
obtained by making every set X; a clique, is an interval graph, and has maz-
imum clique size at most k + 1.

(v) Let {X; |i € I},T = (I,F)) be a tree decomposition of G, and let
W CV form a clique in G. Then there exists an i € I with W C X;.

(vi) [9] Let ({X; | i€ I},T = (I,F)) be a tree decomposition of G. Sup-
pose Wy, Wy induce a complete bipartite subgraph in G, i.e. for all v € Wy,
w € Wy {v,w} € E. Then there exists an i € I with (W; C X; and
WonNX; #0) or (Wo CX; and WiNX; #0).

Definition 2 Let G = (V, E) be a graph.

(i) We say a pair {x,y} is a necessary edge for treewidth (pathwidth) k of G,
if for every tree decomposition (path decomposition) ({X; |i € I}, T = (I, F))
of width at most k, there is ani € I with x,y € X;. (ii) We say a pair {z,y}
s a necessary edge for a k-chordalization of G, if for every k-chordalization
H=(V.E) of G, {z,y} € £

For (vertex disjoint) graphs G; = (Vi, Ey), Go = (Va, E»), we define the
product of G and Gy as G1 x Gy = (VU V,, By U E;U{{v,w} |v e Vi, w €
Va}).

Lemma 2 [9] Let G, = (Vi, E1), Go = (Va, Es) be graphs. (i) treewidth(G1 X
G2) = min(treewidth(Gy) + V2|, treewidth(G2) + |V4|).

(1) pathwidth(G1 x Go) = min(pathwidth(G1) + |Va|, pathwidth(Gs) + |V4]).
(111) If treewidth(G) + |Va|) = k < treewidth(Gs) + |Vi|, then for all v,w €
Vo o {v,w} is necessary for treewidth k of G X Gs.

(iv) If treewidth(G1) + |Va|) = k < treewidth(Gs) + |Vi|, then for all v,w €
Vi {v,w} is necessary for treewidth k of G1 x Ga, if and only if {v,w} is
necessary for treewidth treewidth(G,) of Gy.

(v) If pathwidth(G) + |Va|) = k < pathwidth(Gs) + |Vi|, then for all v,w €
Vo o {v,w} is necessary for pathwidth k of Gy x Gs.

(vi) If pathwidth(G1) + |Va|) = k < pathwidth(G3) + |V4|, then for all v,w €
Vi {v,w} is necessary for pathwidth k of G1 x G, if and only if {v,w} is
necessary for pathwidth pathwidth(G,) of Gy.

Proof: This result follows directly from Lemma 3.4 from [9] and its proof.
g

3 Graph-theoretic results

The following two lemmas can be easily derived.

Lemma 3 Let G = (V, E) be a graph, x,y € V. The following two state-
ments are equivalent:

1. {z,y} is a necessary edge for treewidth k of G.
2. FEvery k-chordalization of G contains the edge {z,y}.

Lemma 4 Let G = (V, E) be a graph, x,y € V. The following two state-
ments are equivalent:

1. {z,y} is a necessary edge for pathwidth k of G.

2. For every interval graph H = (V, F') that contains G as a subgraph and
has maximum clique size k + 1, {x,y} € F.

In [3], it has been shown, that every pair {z,y} such that x and y have
k 4+ 1 common neighbors is necessary for treewidth k. In [7], it has been
shown that every pair {z,y}, such that x and y have three vertex disjoint
paths between them, is necessary for treewidth 2. The following lemma
generalizes this result.

Lemma 5 Let G = (V, E) be a graph, z,y € V. Suppose that there are k+ 1
vertex disjoint paths from x to y in G. Then the edge {x,y} is necessary for
treewidth k of G.

Proof: If {z,y} € E, then clearly, {z,y} is necessary. Suppose {z,y} & E.
Let (X,T) = ({X;| i€ I},T = (I,F)) be a tree decomposition of G of
width at most k. For each of the k41 vertex disjoint paths, identify all inner
vertices of that path, both in G, and in the tree decomposition (X, 7T"). The
resulting tree decomposition (X', 7") is a tree decomposition of the resulting
graph G’ of width at most k. Note G’ contains a 2 by k+ 1 complete bipartite
subgraph: each of the vertices representing the inner vertices of one of the
paths between x and y is adjacent to x and y. Let W be the set of these
vertices, representing the paths. If there exists an i € I with {z,y} C X,
then we are done. Otherwise, by Lemma 1(vi), there exists an i € I, with
W C X, and {z,y} N X; # 0. But now | X;| > k + 2, contradiction. O

It is also possible to state a necessary and sufficient condition that states
that an edge is necessary.

Lemma 6 Let G = (V, E) be a graph of treewidth at most k, and let x,y € V
be non-adjacent vertices. Then {x,y} is a necessary edge, if and only if there
does not exist a set S C V with |S| < k+1, {x,y} NS =0, S separates
x and y in G, and for every connected component W of G — S, the graph
GIW U S| + clique(S) has treewidth at most k.

Proof: First, suppose we have a set S fulfilling the conditions of the lemma.
We now can build a tree decomposition of G in the following way: build
for each connected component W of G — S a tree decomposition of width
at most k of G[W U S| + clique(S). Then, take the disjoint union of these
tree decompositions, add one additional node iy with X;, = .5, and for each
component W, take a node iy from its tree decomposition with S C X;,,
(such a node must exist by Lemma 1(v)) and make it adjacent to io. We
now have a tree decomposition of G of width at most &, and there is no set
i with z,y € X, i.e., {x,y} is not necessary. (This construction is the same
as the one, used in the algorithm of Arnborg, Corneil, and Proskurowski to
recognize graphs of treewidth & [1].)

Now, suppose {z, y} is not necessary. Take a tree decomposition ({X; |i €
I}, T = (I,F) of G of width at most k, with no set ¢ with z,y € X;. Suppose
r € X,,, y € X;,. Let i3 be the last node on the path from 7 to ¢; in 7" with
x € X,,, and let 73 be the next node on this path. Note that x ¢ X,,, and
y & X;,. Let S =X, N X;,. We have {z,y} NS = (). Moreover, S separates
x and y, by the properties of tree decompositions.

We can make a new tree decomposition of GG, by subdividing the edge
in 7" between 75 and 3. Let i4 be the new node, and take X;, = S. This
is a tree decomposition of G + clique(S) of width at most k. Every graph

G[W US|+ clique(S) is a subgraph of G + clique(S), hence has treewidth at
most k. O

4 On finding necessary edges

In this section, we consider the problem, given a graph G = (V, E) and an
integer k, to find the set of necessary edges. First, we show, that if %k is
variable, then this problem is coNP-hard.

Theorem 7 (i) The following problem is coNP-complete: Given an integer
k, a graph G = (V, E) of treewidth at most k, and two non-adjacent vertices
xz,y €V, is {x,y} a necessary edge for treewidth k of G?¢

(i) The following problem is coNP-complete: Given an integer k, a graph
G = (V, E) of pathwidth at most k, and two non-adjacent vertices x,y € V,
is {x,y} a necessary edge for pathwidth k of G ¢

Proof: (i) It is easy to see that this problem is in coNP: try to guess a
k-chordalization of G which does not use edge {z,y} (the maximum clique
size of a chordal graph can be computed in polynomial time.) To prove
coNP-hardness, we transform from TREEWIDTH. Let a graph G = (V, E) be
given, and an integer k < |V|. Write n = |V|. Let G' = ({v1,...,vn-x},0)
be a graph with n — k vertices and no edges, vertex disjoint from G. Let
H = G x G. One easily observes that the treewidth (and the pathwidth) of
H is at most n.

Now we claim that the edge {vq, vy} is necessary for treewidth n of H,
if and only if the treewidth of G is larger than k. If the treewidth of G is
at most k, then the edge {v1,v2} is not necessary for treewidth n: note that
the treewidth of G’ is 0 and {v;,v2} is not necessary for treewidth 0 of G’,
so by Lemma 2(iv), {vy,v2} is not necessary for treewidth n of H. If the
treewidth of G is larger than k, then by Lemma 2(iii), {vy, v} is necessary
for treewidth n of H.

So we have a polynomial time transformation from the complement of
treewidth to the problem, stated in the theorem. Hence, the latter is coNP-
hard.

(ii) Similar to (i). Use the NP-completeness of the PATHWIDTH problem.

O

For fixed k, one can find the set of all necessary edges for treewidth k or
pathwidth £ in linear time. There are two different ways to show the result
in the case of treewidth. One is to exploit the fact that the condition from

Lemma 6 can be expressed in Monadic Second Order Logic, and use general
results on the solvability of such problems on graphs of bounded treewidth
(see e.g., [2, 10]). We do not give the details of this approach, but instead
discuss how linear time algorithms for building path or tree decompositions
of bounded width can be modified for this problem. The presentation of this
result is here not self-contained. Instead, we rely on results and techniques
from the (lengthy) paper [8].

The first step of the algorithm is to make a tree decomposition ({X; | i €
I}, T = (I,F)) of the input graph G = (V, E) of treewidth < k. This can be
done in linear time [3]. (If the treewidth of G is larger than k, then we can
stop directly.) We may assume that this tree decomposition is nice, in the
sense of [§].

Clearly, all edges in E are necessary. A necessary condition for a pair
{z,y} to be necessary for treewidth k of G is that there exists an i € I, with
z,y € X;.

The algorithm from [8] uses dynamic programming to compute for every
node a table - this table represents a finite set of characterizations of possible
tree decompositions of width at most k of a subgraph associated with the
node. The table of the root represents such characterizations of tree decom-
positions of width at most k£ of G. Now, it is straightforward to see from
the algorithm from [8], that when we have the table of the root node r of T,
then we can check directly (in O(1) time) for every pair z,y € X, if {z,y}
is necessary.

Thus, checking which pairs are necessary can be done quickly when we
would have for every node ¢ € I the table that that node would have, when
it would have been the root of T'. Call this set the full root set of i.

We can compute the full root sets of all nodes i € I in linear time. This
can be done as follows. First, we run the standard algorithm from [§8]: every
node 7 has its full set. (This set basically can be associated with the subtree
with root ¢, when T is viewed as a rooted tree with root r.)

Then, for each edge {7, j} in T', let I; ; be the set of nodes in 7", whose path
in T" to i passes through j. (If i is the father of j, then I; ; is the set containing
j and all descendants of j.) Write Vi ; = Uyey, , Xi, and G = G[Vi].

For each edge {i,j} in T, with i the father of j, we now want to compute
the characteristic rooted at ¢, when we make j the father of 2. In other words,
the graph to which this full set corresponds is the graph G ;; in the previous
round of the algorithm, we already have computed the full set corresponding
to G, ;. Computing these full sets can be done with similar procedures as in
[7], but now we process nodes in a top-down order. When we have all these
full sets, then we can compute for each node i € I, the full root set of 7. (It
can be computed, by using the full sets of for the (at most 3) edges, adjacent

7

to i.)

To test whether an edge {z,y} is necessary, look at one node ¢ with
x,y € X;. If there is a characteristic in the root full set of 7, where x and y
are non-adjacent in the trunk and do not have overlapping intervals in the
interval models, then {z,y} is not necessary; otherwise, {x,y} is necessary
for treewidth k& of G. (See [8].) The total time of this computation is linear.

The same type of computation can be used to compute all necessary edges
for pathwidth k.

Theorem 8 (i) For all k, there exists a linear time algorithm, that, when
given a graph G = (V| E), finds all necessary edges for trecwidth k of G.

(ii) For all k, there exists a linear time algorithm, that, when given a graph
G = (V,E), finds all necessary edges for pathwidth k of G.

5 Conclusions

The original motivation for this research was in the problem in chordalizing or
intervalizing colored graphs. In these problems, we have a colored graph, and
ask whether it is a subgraph of a properly colored chordal graph (TRIANGU-
LATING COLORED GRAPHS) or interval graph (INTERVALIZING COLORED
GRAPHS). The treewidth of yes-instances of these problems is necessarily
bounded by the number of colors used minus 1. Perhaps algorithms that
find necessary edges for treewidth k or pathwidth k£ can be of use for algo-
rithms that solve TRIANGULATING COLORED GRAPHS or INTERVALIZING
COLORED GRAPHS faster in some special cases. Unfortunately, the linear
time algorithms that are presented here have large constant factors, making
them impractical in their stated form.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. J. Algorithms, 12:308-340, 1991.

3] H. L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 25:1305-1317,
1996.

[4]

[10]

[11]

[12]

H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theor. Comp. Sc., 209:1-45, 1998.

H. L. Bodlaender and B. de Fluiter. On intervalizing k-colored graphs
for DNA physical mapping. Disc. Appl. Math., 71:55-77, 1996.

H. L. Bodlaender, M. R. Fellows, M. T. Hallett, H. T. Wareham, and
T. J. Warnow. The hardness of perfect phylogeny, feasible register as-

signment and other problems on thin colored graphs. Theor. Comp. Sc.,
244:167-188, 2000.

H. L. Bodlaender and T. Kloks. A simple linear time algorithm for
triangulating three-colored graphs. J. Algorithms, 15:160-172, 1993.

H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms
for the pathwidth and treewidth of graphs. J. Algorithms, 21:358-402,
1996.

H. L. Bodlaender and R. H. Mohring. The pathwidth and treewidth of
cographs. SIAM J. Disc. Math., 6:181-188, 1993.

B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comp. Sc., 109:49-82, 1993.

H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized
completion problems on chordal and interval graphs. Found. Comput.
Ser., pages 780 — 791, 1994.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. Algorithms, 7:309-322, 1986.

