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Summary

Stratego is a domain-specific language for the specification of program transfor-
mation systems. The design of Stratego is based on the paradigm of rewriting
strategies: user-definable programs in a little language of strategy operators
determine where and in what order transformation rules are (automatically)
applied to a program. The separation of rules and strategies supports modular-
ity of specifications. Stratego also provides generic features for specification of
program traversals.

In this paper we present a case study of Stratego as applied to a non-trivial
problem in program transformation. We demonstrate the use of Stratego in
eliminating intermediate data structures from (also known as deforesting) func-
tional programs via the warm fusion algorithm of Launchbury and Sheard.
This algorithm has been specified in Stratego and embedded in a fully auto-
matic transformation system for kernel Haskell. The entire system consists of
about 2600 lines of specification code, which breaks down into 1850 lines for a
general framework for Haskell transformation and 750 lines devoted to a highly
modular, easily extensible specification of the warm fusion transformer itself.
Its successful design and construction provides further evidence that programs
generated from Stratego specifications are suitable for integration into real sys-
tems, and that rewriting strategies are a good paradigm for the implementation
of such systems.

This report contains the complete Stratego specification of the transforma-
tion. The first chapter, which will appear as a selfcontained publication, explains
the ideas of the transformation, gives an overview of the specification and dis-
cusses several techniques used in the specification. The subsequent chapters
present the specification of syntax of the language, basic operations, typecheck-
ing, simplification and the actual transformation. In addition to the abstract
syntax, a concrete syntax definition in SDF2 is given as an example of connec-
tion of a parser frontend to transformation systems built with Stratego.
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Chapter 1

Warm Fusion in Stratego

Stratego is a domain-specific language for the specification of program transfor-
mation systems. The design of Stratego is based on the paradigm of rewriting
strategies: user-definable programs in a little language of strategy operators
determine where and in what order transformation rules are (automatically)
applied to a program. The separation of rules and strategies supports modular-
ity of specifications. Stratego also provides generic features for specification of
program traversals.

In this paper we present a case study of Stratego as applied to a non-trivial
problem in program transformation. We demonstrate the use of Stratego in
eliminating intermediate data structures from (also known as deforesting) func-
tional programs via the warm fusion algorithm of Launchbury and Sheard.
This algorithm has been specified in Stratego and embedded in a fully auto-
matic transformation system for kernel Haskell. The entire system consists of
about 2600 lines of specification code, which breaks down into 1850 lines for a
general framework for Haskell transformation and 750 lines devoted to a highly
modular, easily extensible specification of the warm fusion transformer itself.
Its successful design and construction provides further evidence that programs
generated from Stratego specifications are suitable for integration into real sys-
tems, and that rewriting strategies are a good paradigm for the implementation
of such systems.

1.1 Introduction

Automatic program transformation is applied in many branches of software
engineering — including application generation and compiler construction — to
translate high-level, but inefficient, specification code to lower-level and more
efficient implementation code. It plays a particularly important role in compilers
for functional programming languages [9, 3, 10, 25, 28].

1.1.1 Transforming Programs with Rewriting Strategies

An important paradigm for the description of program transformation systems
is that of rewrite rules. Ad-hoc implementation of transformation systems based
on rewrite rules can be difficult, however, because the rules must be embedded in



algorithms that determine strategies for applying them. Stratego [17, 35, 36, 32]
is a domain-specific language for the specification of program transformation
systems. Its design is based on the paradigm of rewriting strategies. Rewriting
strategies combine user-definable rewriting-based programs with a little lan-
guage of independent strategy operators that can be used to specify where and
in what order transformation rules are applied to a program.

Stratego’s separation of rewrite rules from the strategies which control their
application facilitates modular specification of program transformations: trans-
formation rules are specified independently of the application strategy and can
be reused in more than one strategy. Stratego also offers both fine and coarse
grain control over the application of transformation rules. This control makes it
possible to specify the exact forms that programs can assume at various stages
of processing. It also allows the programmer to govern the interactions between
individual transformation rules. The Stratego compiler translates specifications
to C programs that transform abstract syntax trees to abstract syntax trees.

In [36] it is shown how rewriting strategies can be used to modularly specify
and implement optimizers for functional programs. A set of transformation
rules is combined into a code simplification algorithm by means of a strategy
that traverses programs and applies rules where appropriate. The emphasis in
[36] is on rules that are independently applicable. As demonstrated there, it
is particularly easy to combine transformation rules into different simplification
strategies by adding or omitting rules. But in many settings the construction of
interrelated transformation rules from several more primitive rules is necessary.

1.1.2 Applying Strategies in Deforesting Functional Pro-
grams

In this paper we present a case study illustrating the use of rewriting strategies
to eliminate intermediate data structures from (deforest) functional programs.
Deforestation algorithms typically perform a number of smaller transformations
before determining whether or not the deforestation is considered successful.
Combining primitive rules into complex program transformations often requires
the exchange of more information between their rules than is contained in the in-
dividual program fragments they transform. The parameterization of strategies
supported by Stratego provides a means of specifying and implementing rules
which pass such information between them. In the case study presented here
information exchanged between transformations takes the form, for example,
of assumptions about bindings, dynamic rewrite rules that recognize recursive
function calls, and terms generated by splitting functions to facilitate program
transformation. Parameterized strategies have not been used extensively in pre-
vious Stratego specifications.

We have specified the warm fusion algorithm of Launchbury and Sheard [16]
in Stratego. This technique combines the cheap deforestation based on foldr-
build fusion of Gill et al. [11, 10] with the fold promotion of Sheard and Fegaras
[26] and a generalization of the technique of Peyton Jones and Launchbury [24]
for splitting a function into a worker and a wrapper. The foldr-build fusion,
which has been implemented in the Glasgow Haskell Compiler (GHC), requires
the manual transformation of functions to build-foldr form and is only defined
for lists. The warm fusion algorithm generalizes cheap deforestation to arbitrary
regular data types and automatically derives more general build-cata forms.



As a case study, the warm fusion algorithm is an interesting example of a
non-trivial program transformation, and its specification provides evidence of
the feasibility of implementing such transformations in Stratego. The case study
supplies experience with the design and implementation of a complete transfor-
mation system, including interfaces with a parsing and typechecking front-end
and a pretty-printing back-end for Haskell. The application to Haskell provides
an environment in which to assess the effectiveness of warm fusion for deforesting
more realistic programs than would otherwise be possible. The case study also
demonstrates Stratego’s support for the construction of transformation rules
that combine basic transformation steps in various ways, the description and
checking of intermediate representation formats, language independent defini-
tion of substitution and the renaming of bound variables, and the discovery of
new programming idioms resulting from the strategy-induced shift away from a
purely functional implementation style.

Warm fusion is also an interesting problem in its own right. The first fully
automatic implementation of warm fusion was hand-coded in Haskell in 1997
[14]. The algorithm had previously been implemented only as ‘a toolbox of
operations’ [16]. This is perhaps because the description of warm fusion in [16]
elides much of the detail required to turn the theory into practice. The type-
driven nature of the algorithm, in particular, is fundamental to its automation,
as well as to its extension to non-list data structures. The critical dependence
of warm fusion on type information is reflected in its Stratego specification.

The product of our case study is a fully automatic implementation of the
warm fusion algorithm. This implementation could be an important step toward
the use of warm fusion in compilers or as a preprocessor for (library) programs.
It can also serve as a basis for further experimentation with extensions of cheap
deforestation; Stratego makes it easy, for example, to modify the set of program
transformation rules and to experiment with a variety of application orders.
Experience with a working system often gives rise to a deeper understanding of
its underlying algorithm. It was such experience that led, for instance to our
“double splitting” wrapper-worker technique for recognizing certain variables
as static parameters of programs undergoing warm fusion. (This step happens
“automagically” in [16]). This technique has since been incorporated into the
Haskell implementation of warm fusion detailed in [14].

1.1.3 Outline

In the next section we briefly review some background on deforestation, discuss
the principles of cata-build fusion, and illustrate the warm fusion transforma-
tion technique by means of an example. In Section 1.3 we give an overview of
the operators of System S, a calculus for the definition of tree transformations,
as well as of the syntactic abstractions built on System S that form Stratego.
In Section 1.4 we present the overall architecture of the warm fusion transfor-
mation tool built with Stratego. In Sections 1.5, 1.6, and 1.7 we discuss several
highlights from the specification, focusing particularly on some of the new pro-
gramming idioms that have emerged during the process of specifying the warm
fusion algorithm in Stratego. The full text of the specification can be found in
the next chapters.



data Bool = True | False;
data List a = Nil | Cons a (List a);
map :: (a -> b) -> List a -> List b;
map = \f 1 ->
case 1 of {
Nil -> Nil;
Cons x xs -> Cons(f x) (map f xs)};
foldr :: b -> (a -> b -> b) -> List a -> b;
foldr = \n ¢c xs —>
case xs of {
Nil -> n;
Cons y ys => c y (foldr n c ys)};
upto :: Int -> Int -> List Int;
upto = \low high ->
case low > high of {
True -> Nil;
False -> Cons low (upto(low + 1)(high))};
sum :: List Int -> Int;
sum = foldr 0 (+);
sos :: Int -> Int -> Int;
sos = \lo hi -> sum(map(square) (upto lo hi))

Figure 1.1: Recursive functions on lists

1.2 Warm Fusion

Modularity in functional programming is achieved by dividing programs into
small, generally applicable functions that communicate via data structures.
Such functions are commonly defined as recursive operations that construct
and deconstruct data structures. The definitions in Figure 1.1 are common ex-
amples of such functions; sum and foldr consume lists, upto produces lists, and
map does both. Using these functions we can, for instance, define the sum of
the squares of the numbers 1o to hi as

sos :: Int -> Int -> Int
sos = \lo hi -> sum(map(square) (upto lo hi))

where the function square is defined as

square :: Int -> Int
square = \x -> (x * x)

This implementation of the sum-of-squares function is straightforward and
modular. Its disadvantage is that it constructs, traverses, and deconstructs two
intermediate lists — even though both the input and output of the computation
are integers. This is computationally expensive, both slowing execution time
and increasing heap space requirements.

It is often possible to avoid manipulating intermediate data structures by
using a more elaborate style of programming in which parts from component
functions are intermingled. In this monolithic style of programming the sum-
of-squares function is defined as

sos’ :: Int -> Int -> Int

10



sos’ = \lo hi ->
let {sos’’ :: Int -> Int;
sos’? = \i -> case i > hi of {
True -> 0;
False -> square(i) + sos’’(i + 1)}}
in sos’’(lo)

Note that no intermediate data structures at all are processed by sos’. In this
case, eliminating the manipulation of intermediate lists results in an order of
magnitude gain in program performance.

Experienced programmers writing a square summing function would instinc-
tively produce sos’ rather than sos; small functions like sos are easily opti-
mized at the keyboard. But when programs are either very large or very com-
plex, even experienced programmers may find that eliminating intermediate
data structures by hand is not a very attractive alternative to the modular style
of programming. In such situations a tool for automatically eliminating them
is needed.

1.2.1 Deforestation

Automatic elimination of intermediate data structures by transformation com-
bines the clarity and maintainability of the modular style of programming with
the efficiency of the monolithic style. The process of eliminating intermediate
data structures from programs is often called deforestation after an early trans-
formation technique of Wadler [37] which removes tree-like data structures from
first-order programs.

In Wadler’s deforestation, compositions of treeless expressions (a syntactic
restriction of normal expressions that allows no intermediate data structures)
are transformed into new treeless expressions. The technique uses function un-
folding to expose consumption of constructors by case selections. Subsequent
folding creates new recursive functions. To prevent non-termination of unfold-
ing, global program patterns must be monitored. Because this is computation-
ally expensive, Wadler’s deforestation has not been incorporated into functional
language compilers.

Gill et al. [10, 11] introduce a less general, but cheaper, variant of de-
forestation for list-producing and -consuming functions. The key observation
underlying their short cut to deforestation is that many list-manipulating func-
tions can be written in terms of the uniform list-consuming function foldr and
the uniform list-producing function build. Since foldr is another name for the
standard catamorphism for lists, we denote it by cata-1list in this paper. And
since the build function of Gill et al. is the instantiation to lists of a more
general build function applying to arbitrary regular data types, we denote it
by build-1list below.

Operationally, cata-1list takes as input types a and b, a replacement func-
tionfl :: a -> b -> bfor Cons[al, areplacement function £2 :: bforNil[a],
and a list 1s of type List a. (The list constructors Cons and Nil have the poly-
morphic types forall a. a -> List a -> List a and forall a. List a,
respectively, and so must be instantiated for each particular list type; the no-
tation e[t] instantiates the polymorphic expression e to type t.) It replaces
by £1 and £2, respectively, all occurrences of Cons[a] and Nil[a] in 1s which

11



map :: (a -> b) -> List a -> List b;
map = \f 1 ->
build[List bJ{(/\t > \(n :: t) (c :: (b ->1t > t)) >
cata[List al[tl(n, \(y :: B) -> c(f y)) 1);

foldr :: b -> (a -> b -> b) -> List a -> b;
foldr = \n ¢ -> catalList al[b]l(n, c);

upto :: Int -> Int -> List Int;
upto = \lo hi —>
build[List Int]
(/\t > \(n :: t) (c :: int -> t -> t) ->
let {upto’:: Int -> t;
upto’ = \i -> case i > hi of {
True -> n;
False -> c(i) (upto’(i + 1))}}
in upto’(lo));

sum :: List Int -> Int;
sum = catal[List Int] [Int] (0, (+))

Figure 1.2: Functions in build-cata form

actually contribute to the result of the computation. The result is a value of
type b. The function build-1ist, on the other hand, takes as input a function
g providing a type-independent template for constructing lists and instantiates
its “abstract” list constructors with appropriate instances of the “concrete” list
constructors Cons and Nil. In other words, if g is any function with polymorphic
type forall b . b => (a => b -> b) -> b, then

build-list[a]l(g) = glList a] (Nil[a]) (Comns[a])

Compositions of list-consuming and -producing functions defined in terms
of cata-list and build-1list can be simplified (deforested) by means of the
short cut fusion rule for lists:

cata-list[a] [t] (£f1, £2) (build-list[al(g)) = glt] f1 f2

The short cut describes one precise way in which compilers can take advantage
of uniformity in the production and consumption of lists to optimize programs
which manipulate them. It makes sense intuitively: the result of a computation
is the same regardless of whether the function g is first applied to Cons and Nil
and occurrences of Cons and Nil in the resulting list are then replaced by f1
and £2, respectively, or the abstract constructors in g are replaced by £1 and
£2, respectively, directly. The fact that g is polymorphic in its result type t
ensures the correctness of this fusion rule.

1.2.2 An Example of Cata-Build Fusion

Figure 1.2 shows the build-cata forms of the functions in Figure 1.1. The nota-
tion /\a -> e denotes the abstraction of type variable a from the expression e.
Such an expression has type forall a . t, where t is the type of e. Type ab-
straction is normally implicit in definitions in Haskell because it only occurs at

12



the top of a definition, i.e., a Haskell definition £ = \x -> e that is polymorphic
in type variable a abbreviates the definition £ = /\a -> \x -> e.

The deforested function sos’ can be derived from sos by inlining the defini-
tions in Figure 1.2 and applying the short cut in conjunction with the standard
program simplification rules in Section 1.7. Inlining the (type-instantiated)
function definitions for sum, map and square gives

sos = \lo hi -> sum(map(square) (upto lo hi))
\lo hi ->
cata[List Int][Int](0, (+))
((\f 1 -> build[List Int]
(/\t >\ :: t) (c:: Int ->t ->t) ->
cata[List Int][t](n, \(y :: Int) -> c(f y)) 1))
(\x -> x * x) (upto lo hi))

Simplifying the application of map to square and upto lo hi produces

= \lo hi ->
cata[List Int][Int](0, (+))
(build[List Int]
(/\t >\ :: t) (c :: Int >t -> t) ->
cata[List Int][t]l(n, \(y :: Int) -> c(y*y)) (upto lo hi))

Applying the short cut rule to the cata-build pair and simplifying yields

= \lo hi ->
cata[List Int][Int] (0, \(y :: Int) -> (+) (y*y)) (upto lo hi)

Inlining the definition for upto gives

= \lo hi ->
cata[List Int][Int] (0, \(y :: Int) -> (+) (y*y))
(build[List Int]
(/\t >\ (@ :: t) (c :: Int >t -> t) ->
let {upto’::Int -> t;
upto’ = \i -> case i > hi of {
True -> n;
False -> c(i)(upto’ (i+1))}}
in upto’(10)))

Using the short cut and simplifying once more gives

sos = \lo hi ->
let {upto’::Int -> Int;
upto’ = \i -> case i > hi of {
True -> 0;
False -> (i*i) + (upto’(i+1))}}
in upto’ (lo)

Up to renaming and inlining of square in the local function, this is precisely the
definition of sos’.

13



1.2.3 Warm Fusion: Automatically Deriving Cata-Build
Forms

The short cut fusion rule calculates program improvement based on a program’s
explicit local structure. To do this, it requires that functions be written in the
highly stylized build-cata form, rather than using explicit recursion. But this is
often not the most natural way to develop programs. Moreover, because build
does not have a Hindley-Milner type — and so can only be used in certain well-
defined ways — providing it for programmers’ direct use is problematic. The
warm fusion algorithm of Launchbury and Sheard [16] was designed to automate
the safe introduction of build into recursive list-processing functions, as well as
the transformation of the resulting functions into equivalent ones in build-cata
form.

The existence of a catamorphism and a build function for each regular data
type makes it possible to generalize the warm fusion method to arbitrary regular
data types. If F is a functor defining a regular data type, then the catamorphism
catalF al...an][t](f1,...,fn) replaces the constructors of a data structure
of type F al...an with the functions fi. The result of the catamorphism
has type t. The data structure-producing function build[F al...an], on the
other hand, takes as input a polymorphic function g which constructs the kind
of data structures associated with the functor F. It replaces the abstract data
constructors of g by the concrete data constructors ci to produce the data
structure of type F a whose description g embodies. That is,

build[F al...an](g) = g[F al...an] c1 ... cn.

Note that cata-list[a][t] is just cata[List a][t] and build-list[a] is
precisely build[List a], where List is the functor associated with the list
data type. The short cut fusion rule for cata-list and build-1list generalizes
to:

cata[F al...an][t](f1,...,fn) (build[F al...an]l(g)) = glt] f1...fn

1.2.4 Warm Fusion by Example

To illustrate the process of warm fusion we will examine the transformation of
the consumer-producer map. We refer the reader to [16] for theoretical justifica-
tion of the method. In the following examples we will omit the type declarations
for variables and constructors when these are clear from the context or from pre-
vious declarations.

Abstracting from Constructors The goal of the preprocessing step of warm
fusion is to transform a recursive definition into a definition in build-cata form:

f=/\al ... an->\x ... -
build[F al...an](/\t -> \cl...cn —>
catalF al...an][t](hl,...,hm) x)

The functional argument of build is a catamorphism that consumes the input
data structure x and builds up a structure that is constructed with the abstract
constructors ci. This transformation shifts the recursion boundary of the func-
tion from the site of construction of the result data structure to the site of
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consumption of the input data structure. All recursion in build-cata forms is
expressed via catamorphisms.

The first phase of the transformation abstracts away from the concrete con-
structors in the body of the function. This cannot be done simply by replacing
all constructors in the body by variables, however, because not all occurrences
of constructors necessarily contribute to the result of the computation. By
applying catal[F al...an][t](cl,...,cn) to the body of the function, the
result-producing constructors are transformed into the corresponding abstract
constructors ci.

The identity

x = build[F bl..bn](/\ t -> \c1 ... cn —>
cata[F bl..bn][t](cl, ..., cn) x)

is used to introduce this catamorphism to the body. For map this becomes

map = /\a b -> \f 1 ->
build[List b]J(/\t => \(mn :: t) (c :: b >t ->t) >
catal[List b][t](n, c)(
case 1 of {
Nil -> Nil;
Cons x xs -> Cons(f x)(map[al[b] £ xs)))}

Distribution of the catamorphism over the case expression gives

map = /\a b => \f 1 -> build[List b](/\t -> \n ¢ ->
case 1 of {
Nil -> cata[List b][t](n, c) Nil;
Cons x xs -> cata[List b][t](n, c)(Cons(f x)(map[al[b]l f xs)))}

Specialization of the catamorphism to the constructors that it is applied to
produces:

map = /\a b -> \f 1 -> build[List b](/\t -> \n ¢ ->
case 1 of {
Nil -> n;
Cons x xs -> c(f x)(catal[lList b][t](n, c)(maplallb]l f xs)))}

Note that the catamorphism is applied to the recursive second argument of the
abstract replacement function for Cons.

Splitting off the Recursive Consumer We have now abstracted away from
the result-producing constructors of map and written it in the form of an ab-
stracted call to build. Next we derive a catamorphism to replace the case
analysis in map’s body. This is accomplished according to the steps outlined in
the remainder of this section.

First the function body is split into two new definitions. For map we get the
‘wrapper’ map and the ‘worker’ map# (a generally applicable idea first presented
in [24]):

map = /\a b > \f 1 ->
build[List b](/\t -> \n ¢ -> map# 1 [t] n )
map# = \1 -> /\t -> \n ¢ >
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case 1 of {
Nil -> n;
Cons x xs => c(f x)(cata[List b][t](n, c)(map[a][b] £ xs))}

The splitting has the effect of isolating a recursive definition not involving build.

Note that the function £ and the type variables a and b are not passed to
map#. From the definition of map before splitting it is clear that these arguments
are passed unchanged to the recursive call of map. That is, they are static
parameters of map. Since we do not abstract over them, the static parameters of
a function remain free in the definition of its worker. This means that £, a, and
b remain free in map#. When, at the end of the transformation, the transformed
version of the function’s worker is folded back into the definition of its wrapper,
its static parameters will become bound again.

By unfolding the wrapper in the worker we obtain a recursive definition of
the worker. For map we get

map# = \1 -> /\t -> \n ¢ >
case 1 of {
Nil -> n;
Cons x xs —->
c(f x) (cata[List bl [t](n, <)
((/\a’ b> => \f’ 1’ ->
build[List bl (/\t’ -> \n’ ¢’ -> map# 1’ [t’] n’ c’))
[al[b] f xs))}

Beta-reduction and short cut fusion reduces this to

map# = \1 -> /\t -> \n ¢ >
case 1 of {
Nil -> n;
Cons x xs => c(f x) (map# xs [t] n c)}

Observe now that all arguments except for 1 are static parameters of map#. By
repeating the splitting and unfolding procedure once more we get

map# \1 -> /\t => \n ¢ -> map## 1
map## = \1 -> case 1 of {
Nil -> n;
Cons x xs -> c(f x) (map## xs)}

The parameters t, n, and c of map# are now also recognized as static in map##.
The free variable £ in map## is inherited from map. In [16], mechanical recogni-
tion of the abstracted constructors as static parameters (when they are), hap-
pens magically.

Recursion to Catamorphism Finally, the recursive definition of map## is
turned into a catamorphism by means of fold promotion. Fold promotion is
based on a generic promotion theorem introduced by Malcolm [18]. The promo-
tion theorem, which has its origins in a categorical description of programming
[12], describes conditions under which the composition of an arbitrary (strict)
function and a catamorphism over a regular data type may be fused to arrive
at a new catamorphism equivalent to the original composition. For map## the
promotion theorem takes the form
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map## Nil = hi,

map##(Cons(yl, y2)) = h2(yl, map## y2)

map##(cata[List a] [List a] (Nil, Cons) xs)
= cata[List a][t](hl, h2) xs

This means that we can find h1 and h2 by applying map## to Nil and Cons y1 y2,
respectively, and abstracting from the recursive call to map##. For Nil this sim-
ply produces the abstracted constructor n. For Cons we get

h2 = \y1 y2 -> (\1 -> case 1 of {
Nil -> n;
Cons x xs -> c(f x) (map## xs)})
(Cons z1 z2)

where the zi are special constants. This reduces to
\yl y2 -> c(f z1) (map## z2)

Now we use special rewrite rules generated from the type of the constructor
to rewrite the dummy variables zi to the real variables yi. This makes it
possible to discover the recursive invocation of the map## function and replace it
by the induction variable. For the Cons constructor the rewrite rules z1 -> y1
and map## z2 -> y2 are generated. The first corresponds to an occurrence
of the type parameter a and the second to a recursive occurrence of the type
List a.

By application of the rewrite rules z1 —> y1 and map## z2 -> y2 the re-
cursive call is recognized and we get

h2 = \y1 y2 -> c(f y1)(32)
Putting this together gives the non-recursive definition

map## = \1 -> catal[List al[t]l(n, \yl y2 > c(f y1)(y2)) 1

Folding By unfolding the worker functions map## and map# back into their
subsequent wrappers we obtain the build-cata form of map:

map = /\a b -> \f 1 -> build[List b](/\t -> \n ¢ ->
cata[List al[t]1(n, \y1 y2 -> c(f y1)(y2)) 1)

Transforming Programs The transformation procedure illustrated above is
attempted (it may fail) for all functions. Compositions of functions in build-
cata form can be deforested by unfolding their definitions and applying short
cut fusion as part of standard simplification (see Section 1.7). The unfolding can
be done without risk of non-termination because the functions are not explicitly
recursive.

The build-cata forms in Figure 1.2 are all obtained using this transformation.
Note that not all of these functions do both produce and consume a list; foldr
only consumes a list and upto only produces a list. Their cata-and-or-build
forms are obtained using variants of the transformation process described above.
These variants are discussed in Section 1.7 below.
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We have specified the warm fusion transformation algorithm in Stratego.
In the remainder of this paper we will give an overview of the specification. In
particular, we will discuss the basic steps of the transformation such as splitting,
unfolding, folding and deriving a catamorphism and how these can be used in
various combinations and orders to obtain different results. First we give an
overview of Stratego itself.

1.3 Stratego

In this section we briefly introduce System S, a calculus for the definition of
tree transformations, and Stratego, a specification language providing syntactic
abstractions for System S expressions. For a detailed description of Stratego,
its operational semantics, and additional examples of its use we refer the reader
to [1, 17, 35, 36, 32, 34]. Figure 1.3 shows a Stratego module defining several
generic transformation operators. Other example specifications that use these
operators will be discussed in the rest of the paper.

1.3.1 System S

System S is a hierarchy of operators for expressing term transformations. The
first level provides control constructs for sequential non-deterministic program-
ming, the second level introduces combinators for term traversal and the third
level defines operators for binding variables and for matching and building terms.

Transformations in System S are applied to first-order terms, which are
expressions over the grammar

t :=x | C(t1,...,tn) | [t1,...,tn] | (t1,...,tn)

where x ranges over variables and C over constructors. The notation [t1,...,tn]
abbreviates the list Cons(t1,...,Cons(tn,Nil)). In addition, the notation
[t1,..,tn | t] denotes Cons(tl,...,Cons(tn,t)).

Level 1: Sequential Non-deterministic Programming Strategies are
programs that attempt to transform terms into terms, at which they may suc-
ceed or fail. In case of success the result of such an attempt is a transformed
term. In case of failure there is no result of the transformation. Strategies can be
combined into new strategies by means of the following operators. The identity
strategy id leaves the subject term unchanged and always succeeds. The failure
strategy fail always fails. The sequential composition s1 ; s2 of strategies
s1 and s2 first attempts to apply s1 to the subject term and, if that succeeds,
applies s2 to the result. The non-deterministic choice s1 + s2 of strategies s1
and s2 attempts to apply either s1 or s2. It succeeds if either succeeds and
it fails if both fail; the order in which s1 and s2 are tried is unspecified. The
deterministic choice s1 <+ s2 of strategies s1 and s2 attempts to apply either
sl or s2, in that order. The recursive closure rec x(s) of the strategy s at-
tempts to apply s to the entire subject term and the strategy rec x(s) to each
occurrence of the variable x in s. The test strategy test(s) tries to apply the
strategy s. It succeeds if s succeeds, and reverts the subject term to the original
term. It also fails if s fails. The negation not(s) succeeds (with the identity
transformation) if s fails and fails if s succeeds. Two examples of strategies
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module traversals
imports lists
strategies
try(s) = s <+ id
repeat (s) = rec x(try(s; x))
map(s) = rec x(Nil + Cons(s, x))
filter(s) = rec x(Nil + Cons(s, x) <+ T1; x)
topdown(s) = rec x(s; all(x))
bottomup (s) = rec x(all(x); s)
downup (s) = rec x(s; all(x); s)
downup2(sl, s2) = rec x(sl; all(x); s2)
alltd(s) = rec x(s <+ all(x))
oncetd(s) = rec x(s <+ one(x))
sometd(s) = rec x(s <+ some(x))
manytd(s) = rec x(s; all(try(x)) <+ some(x))
onebu(s) = rec x(one(x) <+ s)
somebu (s) = rec x(some(x) <+ s)

Figure 1.3: Specification of several generic term traversal strategies.

that can be defined with these operators are the try and repeat strategies in
Figure 1.3.

Level 2: Term Traversal The combinators discussed above combine strate-
gies that apply transformations to the root of a term. In order to apply trans-
formations throughout a term it is necessary to traverse it. For this purpose,
System S provides a congruence operator C(s1, . . .,sn) for each n-ary construc-
tor C. It applies to terms of the form C(t1,...,tn) and applies si to ti. An
example of the use of congruences is the operator map(s) defined in Figure 1.3
that applies a strategy s to each element of a list.

Congruences can be used to define traversals over specific data structures.
Specification of generic traversals (e.g., pre- or post-order over arbitrary struc-
tures) requires more generic operators. The operator all(s) applies s to all
children of a constructor application C(t1,...,tn). In particular, al1(s) is the
identity on constants (constructor applications without children). The strategy
one(s) applies s to one child of a constructor application C(t1,...,tn); it is
precisely the failure strategy on constants. The strategy some (s) applies s to
some of the children of a constructor application C(t1,...,tn),i.e., to at least
one and as many as possible. Like one(s), some(s) fails on constants.

Figure 1.3 defines various traversals based on these operators. For instance,
oncetd(s) tries to find one application of s somewhere in the term starting at
the root working its way down; s <+ one(x) first attempts to apply s, if that
fails an application of s is (recursively) attempted at one of the children of the
subject term. If no application is found the traversal fails. Compare this to the
traversal alltd(s), which finds all outermost applications of s and never fails.

Level 3: Match, Build and Variable Binding The operators we have
introduced thus far are useful for repeatedly applying transformation rules
throughout a term. Actual transformation rules are constructed by means of
pattern matching and building of pattern instantiations.
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A match 7t succeeds if the subject term matches with the term t. As a side-
effect, any variables in t are bound to the corresponding subterms of the subject
term. If a variable was already bound before the match, then the binding only
succeeds if the terms are the same. This enables non-linear pattern matching,
so that a match such as ?F(x, x) succeeds only if the two arguments of F in
the subject term are equal. This non-linear behavior can also arise across other
operations. For example, the two consecutive matches ?7F(x, y); 7F(y, x)
succeed exactly when the two arguments of F are equal. Once a variable is
bound it cannot be unbound.

A build 't replaces the subject term with the instantiation of the pattern t
using the current bindings of terms to variables in t. A scope {x1,...,xn: s}
makes the variables xi local to the strategy s. This means that bindings to
these variables outside the scope are undone when entering the scope and are
restored after leaving it. The operation where(s) applies the strategy s to the
subject term. If successful, it restores the original subject term, keeping only
the newly obtained bindings to variables.

Built-in Data types There are two predefined sorts with an infinite number
of constructors: integers and strings. Several operators provide standard oper-
ations on these data types. Of particular importance for our purposes is the
operator new that builds a new string that does not occur anywhere in the term
being transformed.

1.3.2 Specifications

The specification language Stratego provides syntactic abstractions for System S
expressions. A specification consists of a collection of modules that define sig-
natures, transformation rules, and strategy definitions.

A signature declares the sorts and operations (constructors) that make up
the structure of the language(s) being transformed. An example signature is
shown in Figure 1.4. A strategy definition f(x1,...,xn) = s introduces a
new strategy operator f parameterized with strategies x1 through xn and with
body s. Such definitions cannot be recursive, i.e., they cannot refer (directly
or indirectly) to the operator being defined. All recursion must be expressed
explicitly by means of the recursion operator rec. Labeled transformation rules
are abbreviations of a particular form of strategy definitions. A conditional rule
L : 1 -> r where s with label L, left-hand side 1, right-hand side r, and con-
dition s denotes a strategy definition L = {x1,...,xn: 71; where(s); !r}.
Here, the body of the rule first matches the left-hand side 1 against the sub-
ject term, and then attempts to satisfy the condition s. If that succeeds, it
builds the right-hand side r. The rule is enclosed in a scope that makes all term
variables xi occurring freely in 1, s and r local to the rule. If more than one
definition is provided with the same name, e.g., f(xs) = s1 and f(xs) = s2,
this is equivalent to a single definition with the sum of the original bodies as
body, i.e., f(xs) = sl + s2.

Strategy operators can only have strategies as arguments. Data can be
passed to strategy operators by wrapping them in build expressions. For in-
stance, the strategy map (!A) will replace every element of a list by the constant
term A. Parameterized strategies have not often been used in previous Strat-
ego specifications. They are nevertheless critical in specifying the warm fusion
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module AHaskell

signature
sorts Decl Constr Type Exp Alt
operations

Program : List(Decl) ->
Data : Type * List(Constr) * Deriving ->
ConstrDecl : Option(Forall) * Option(Context)

* String * List(Type) ->
SignDecl : Vars * Type ->
Valdef : Exp * Exp ->
TCon : String ->
TVar : String ->
TApp : Type * List(Type) ->
TFun : List(Type) * Type ->
Forall : List(String) * Type ->
Typed : Exp * Type ->
Var : String ->
Constr : String ->
Lit : Literal ->
Abs : List(Exp) * Option(Type) * Exp ->
App : Exp * List(Exp) ->
Let : List(Decl) * Exp ->
Case : Exp * List(Alt) ->
Alt : Exp * Option(Type) * Exp ->
TAbs : List(String) * Exp ->
TInst : Exp * List(Type) ->
Build : Type * Exp ->
Cata : Type * Type * List(Exp) ->

Program
Decl
Constr

Decl
Decl

Type
Type
Type
Type
Type

Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Alt
Exp
Exp

Exp
Exp

Figure 1.4: Signature for kernel Haskell.
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transformer and in other situations in which information must be passed be-
tween strategies.

The following definitions provide a useful shorthand. The notation <s> t
denotes !t; s, i.e., the strategy which builds the term t and then applies s to
it. The notation s => t denotes s; 7t, i.e., the strategy which applies s to
the current subject term and then matches the result against t. The combined
notation <s> t => t’ thus denotes !t; s; 7t’. The <s> t notation can also
be used inside a term in a build expression. For example, the strategy expression
IF(<s> t, t’) corresponds to {x: <s> t => x; !F(x,t’)}, where x is a new
variable.

1.3.3 Derived Idioms

Stratego’s syntactic abstractions give rise to a number of useful programming
idioms. Foremost among these are recursive patterns and distributed patterns.

Recursive patterns are strategy expressions that describe term formats by
means of congruences and recursion. Nested congruences in Stratego are sim-
ilar to pattern matching in functional languages, and Stratego’s recursive pat-
terns involving nested patterns are akin to recursive functions which verify the
structure of terms. Like pattern matching in functional languages, Stratego’s
recursive patterns are completely general. For example, the following recursive
pattern describes the subset of Haskell expressions that corresponds to untyped
A-calculus terms:

lambda-exp =
rec x(Var(id) + App(x, x) + Abs([Var(id)], Nome, x))

Their use is further demonstrated in the term format checking in Section 1.5.
They can also be used to characterize more complicated formats such as normal
forms or expressions in a core language. More generally, recursive patterns
can be used whenever expressions in a sublanguage of a larger representation
language must be recognized or manipulated.

Distributed patterns combine the pattern matching of recursive patterns
with the traversal capabilities of strategy operators. They serve as “pattern
templates” that can be used to match against expressions containing specified
subexpressions at variable depths within them. For example, the warm fusion
transformer uses the distributed pattern underabstr to determine whether or
not a term in the expression language of Figure 1.4 contains an application
whose argument term is an abstraction in which the variable (determined by
the strategy) s appears:

underabstr(s) = oncetd(App(id, Abs(id,id,oncetd(Var(s)))))

Note that the argument term to the abstraction need not actually be the variable
determined by s; all that is required is that the variable appear somewhere
within the argument term. More general distributed patterns are constructed
with the same ease.

1.3.4 Implementation

The Stratego compiler translates a specification to a C program that reads a
term and applies the specified transformation to it. The compiler first translates
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a specification to a System S expression, which is then translated to a list of
abstract machine instructions. The instructions are implemented in C. The run-
time system is based on the ATerm library [4], which supports complete sharing
of subterms (hash-consing). ATerms are also used for exchange of data between
components of a transformation systems. The compiler is bootstrapped, i.e.,
implemented in Stratego itself. The Stratego library [33] provides a large of
number generic, language independent rules and strategies.

1.4 Architecture

The architecture of the warm fusion program transformation system is depicted
in Figure 1.5. The system consists of four main components: a parser, type-
checker, the actual warm fusion transformer, and a pretty-printer. The system
could have been defined as a single component, but dividing it into separate
components encourages separation of concerns during development and makes
future application of the transformation tool in another setting — e.g., connec-
tion to a compiler front-end — easier.

The parser is generated from a specification of the full' Haskell98 syntax
[23] in the syntax definition formalism SDF2 [31]. Although the parser supports
the full syntax, currently only the kernel subset of Haskell is supported by the
subsequent components. A Haskell desugaring component can be added in the
future to extend the transformer to full Haskell.

Note that SDF2 based parsers are not required for Stratego. Parsing front-
ends can also be written using YACC or any other parser generator, as long as
the generated parsers output abstract syntax trees in the ATerm format. The
SDF2 parser that we use actually outputs parse trees. These are transformed
to abstract syntax trees by a generic — i.e., grammar independent — tool
(implode-asfix) written in Stratego.

The current typechecker is basically a preprocessor that distributes type in-
formation from signature declarations to variable uses. This could be enhanced
to a tool that does full type inference, but for the purposes of our case study this
was not necessary; types of variables are declared explicitly in input programs.
Note that this is not too much of a restriction. In Haskell it is customary to
declare the types of functions anyway.

The intermediate data structures that are exchanged between components
are represented in the generic ATerm format [4]. Furthermore, each component
consumes and produces a different subset of the general abstract syntax of the
language. These formats are also described in Stratego by means of strategies
that check the structure of a term. These strategies can be used by components
to verify their input.

The warm fusion transformer processes each of the function definitions in a
program and tries to transform it into build-cata form. It also inlines previously
transformed functions in the definitions it is processing to achieve deforestation
by the short cut.

The pretty-printer is a formatter that translates abstract syntax to strings.
A Stratego specification (PP-Haskell) defines the translation from abstract syn-
tax to Box terms. These are translated to formatted text by a generic Box
formatter [5, 15].

IThe syntax definition is complete up to layout.
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pgen Haskell-
text . Syntax.sdf
_-&uses>
_osc implode-
asfix.r
hs-input (= -- I HS-Input.r
¢o S Typecheck.r
hs-typed (= -- I HS-Typed.r
-5 __] WF-Main.r
hs-output |= -- A HS-output.r
. sc
pretty-print e - - - - - - PP-Haskell.r
RN Luses>>
text )

Figure 1.5: Architecture of the warm fusion transformation tool. Boxes repre-
sent data, ellipses represent components. Dashed arrows represent generation of
components from specifications via the Stratego compiler (sc), the SDF2 parser
generator (pgen) and a C compiler (gce). The intermediate data-formats are
also described in Stratego and format checkers are generated from their specifi-
cations.
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In the next sections we will discuss various aspects of the specification of the
warm fusion transformation system. In Section 1.5 we discuss the specification
of the abstract syntax, checking subsets of an abstract syntax, and the spec-
ification of bound variable renaming and substitution by instantiating generic
language independent algorithms. In Section 1.6 we present the overall struc-
ture of the transformer. In Section 1.7 we discuss the details of some of the
transformations.

1.5 Abstract Syntax

The warm fusion transformation is performed on the abstract syntax of kernel
Haskell, or AHaskell. The signature of the language is shown in Figure 1.4.
It is a standard functional language with abstraction, application, data type
deconstruction by means of case expressions, and a recursive let binding. The
language is explicitly typed, which entails that types of variables in bindings can
be declared, and that atomic expressions (variables, constructors and constants)
can be annotated with their types. Polymorphic expressions are constructed by
means of type abstraction and instantiated by means of type application. A
program consists of a list of type and function definitions.

1.5.1 Format Checking

In the course of the transformation we encounter three intermediate formats that
are subsets of AHaskell (Figure 1.4). The input format hs-input allows atomic
expressions without type annotations because requiring annotations would clut-
ter the source code. It also allows infix operators as syntactic sugar for prefix
application. In the intermediate format hs-typed all atomic expressions are
annotated with their types and are type correct. In addition, all operators are
in prefix form. Like hs-typed, the output format hs-output requires fully an-
notated atoms, but it also allows expressions constructed using the Build and
Cata operators. The latter are not allowed in the input to the transformation.

These three expression formats could be described by introducing three sep-
arate signatures with different constructors. This would, however, require three
sets of names for the same constructs and trivial translations from one set to
the next. Instead, we use one signature and the recursive patterns of Section 1.3
to characterize the three restrictions. These recursive patterns document the
formats and can be used to check the inputs to the transformation components.

We now consider in turn the forms of expressions in each of the three sub-
formats of AHaskell. Atomic expressions in the hs-typed format consist of
a variable, constructor or literal and a type annotation as described by the
patterns

AExp = Var(id) + Comstr(id) + Lit(id)
atom(t) = Typed(AExp, t)

TypedVar = Typed(Var(id),Type)
TypedAtom = atom(Type)

where Type is a recursive pattern which describes the structure of AHaskell’s
types. Type annotations are represented by means of the constructor Typed,
which represents the e::t notation in Haskell. Note that these patterns are
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parameterized with the format for types t. The basic shape of a hs-typed
expression is described by the patterns

exp(e, t, pat, var) =
Abs(1list(var), option(t), e) +
Case(e, list(alt(e, t, pat))) +
Let(list(decl(e, t)), e) +
App(e, list(e)) +
TAbs (1ist(TVar(id)), e) +
TInst(e, list(t))

alt(e, t, pat) =
Alt(pat, option(t), e)

simple-pattern(var) =
Constr(id) +
App(Constr(id), list(var))

TypedPat =
simple-pattern(TypedVar)

and a typed expression is characterized by the recursive pattern

TypedExp =
rec e(TypedAtom + exp(e, Type, TypedPat, TypedVar))

In the hs-input format, atomic expressions (variables, constructors and
literals) can be untyped. Furthermore, infix operator applications in addition
to prefix application and binary in addition to n-ary application are allowed.
This is described by

PreVar =
Var(id) +
Typed(Var(id) , PreType)

PrePat =
simple-pattern(PreVar)
+ rec x(AppBin(x, PreVar) + Constr(id))

pre-exp(e) =
OpApp(e, id, e) +
AppBin(e, e) +
Negation(e) +
If(e, e, e)

PreExp =
rec e(AExp + atom(PreType) + pre-exp(e) +
exp(e, PreType, PrePat, PreVar))

The typechecker normalizes infix and binary applications to n-ary applications
and annotates all atomic expressions with their types.

Finally, the expressions in the output format hs-output are typed expres-
sions extended with Build and Cata operators:
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ext-exp(e, t) =
Cata(t, t, list(e)) +
Build(t, e)

ExtExp =
rec e(TypedAtom + exp(e, Type, TypedPat, TypedVar) +
ext-exp(e, Type))

1.5.2 Variable Renaming and Substitution

AHaskell has variable binding constructs. The Stratego library defines (using
standard Stratego) the generic, language independent strategies rename for re-
naming bound variables, substitute for parallel substitution of expressions for
variables, and free-vars for the extraction of the free variables from an ex-
pression. These operations are instantiated by declaring the shape of variables,
indicating the binding constructs, and identifying the binding positions. We
illustrate their instantiation for AHaskell. The implementation of the generic
algorithms is presented in [34].
The following rules are used to describe the shape of variables.

IsVar(s) : Var(x) -> Var(<s> Var(x))

ExpVar : Typed(Var(x),_) -> Var(x)
ExpVar : Var(x) -> Var(x)
ExpVars : Var(x) -> [Var(x)]

The binding constructs of expressions are lambda abstraction, case alternatives,
and let binding. The rules ExpBnd define the projection from these constructs
to the list of variables that they bind.

ExpBnd : Abs(xs, _, _) -> <map(ExpVar)> xs

ExpBnd : Alt(App(c, xs), t, e) —-> <map(ExpVar)> xs
ExpBnd : Let(decls, e) -> <filter(DeclVar)> decls
DeclVar : Valdef(Var(x), e) -> Var(x)

Using the rules above the instantiations of free-vars, substitute, and rename
for expressions are

expvars = free-vars(ExpVars, ExpBnd)
exprename = rename(IsVar, ExpBnd)
expsubst substitute(Typed(Var(id),id) + Var(id), etrename)

Proper substitution entails that bound type variables in expressions that are
substituted for term variables are also renamed, and so an exercise similar to that
above must be carried out for type variables. This gives rise to the corresponding
operators tpvars, tpsubst, and tprename for types. The strategy etrename is
the sequential composition of exprename and tprename.

1.6 Transformer: Big Picture
In this section we discuss the specification of the top-level of the warm fusion

transformer. The reader is directed to the next chapters, from which the fol-
lowing code is excerpted, for a complete code listing.

27



1.6.1 Transforming a Program

The main strategy takes a program, i.e., a list of type and function declarations,
and transforms each in turn. This is achieved by a transition step for each
declaration:

Main = etrename;
where(collect-data-defs);
InitWF;
repeat (TransformDecl <+ NormD) ;
ExitWF

Note that all bound variables in the entire program are first renamed to establish
the unique variable invariant. Furthermore, the strategy collect-data-defs
finds the data type definitions in the program and stores them in a symbol table
for later reference. The initial configuration is created from a list of declarations
and the final configuration derives a transformed list of declarations:

InitWF :
ds -> ([1, [, ds)
ExitWF :
(ds1, ds2, [1) -> <reverse> ds2

The first accumulator list stores the functions that have been transformed to
build-cata form. These are used for inlining in other functions. The second
accumulator list stores all functions, including the non-transformed ones.

A definition is transformed by first inlining functions that were transformed
earlier (in the list ds1) and then applying the warm fusion transformation to it.

TransformDecl :
(ds1, ds2, [d | ds3]) —> ([d’ | ds1], [d’ | ds2], ds3)
where <ior(inline(!dsl1), Tramnsform)> d => 4’

Inlining and transformation can fail. If at least one succeeds then the result
is considered to be transformed and is added to both accumulator lists. (The
rule ior computes the inclusive or of two strategies, i.e., ior(s1,s2) applies
s1, s2 or both.) If both fail then the function is added only to the list of
non-transformed functions using the rule

NormD :
(ds1, ds2, [d] ds3]) -> (ds1, [d] ds2], ds3)

Inlining is achieved by replacing calls to functions in a given list of declara-
tions by (renamings of) their bodies and then simplifying the resulting expres-
sions using the rules of Section 1.7. Inlining replaces as many calls as possible,
but at least one call must be replaced in order for it to succeed:

inline(mkenv) = manytd(Inline(mkenv)); simplify

The function to be inlined is looked up in the list of declarations passed to the
rule Inline. The strategy <not (in)> checks for recursion in the definition of
the function. Recursive functions are not inlined.

Inline (mkenv)
Typed(Var(x), t) -> <tpsubst; etrename> (sbs, e)
where mkenv; fetch(?Valdef(Var(x), e)); <not(in)> (Var(x), e);
<tpunify> [(<type> e, t)] => sbs
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1.6.2 Transforming a Definition

The basic algorithm for transforming a recursive definition to build-cata form
— as defined in [16] and illustrated in Section 1.2 — is the following:

Transform =
IntroBuildCata;
simplify;
SplitBodyCP;
Unfoldlin2;

[id, simplify;

MakeCataBody] ;
Unfold2ini;
simplify

This strategy introduces the build-cata identity, splits the body into a wrapper
and a worker, unfolds the wrapper in the worker, transforms the worker into
a catamorphism, and unfolds the worker back in the wrapper. In between it
simplifies the definitions.

As we remarked in Section 1.2 this procedure applies only to functions that
both consume and produce data structures. To accommodate functions that
either only consume or only produce data structures we refine the algorithm
using the same building blocks to the following:

Transform =
((IntroBuildCata;
simplify;
(ConsumerProducer
<+ Producer
<+ NonRecursiveProducer))
<+ Consumer) ;
simplify

The strategies ConsumerProducer, Consumer, Producer, and NonRecursive-
Producer represent the different possible ways of transforming a function. The
strategy Consumer is applied when introduction of the outer build and cata
fails. In this case the output type of the function is not a data type and so
the function does not produce a data structure. It may, however, still be a
consumer. If, on the other hand, the introduction of the outer build and cata
succeeds, then ConsumerProducer splits the body of the function into a wrapper
and a worker and tries to derive a catamorphism for the worker. If deriving a
catamorphism from the worker fails, then the function is only a producer.

Although it is not apparent at this level of abstraction, the introduction
of the outer build and cata is governed by the input and output types of the
function being transformed. We consider the details of the above transformation
in Section 1.7.

The derivation of a catamorphism for the worker and unfolding it back in
the wrapper is defined in the strategy BodyToCata:

BodyToCata =
Unfoldlin2;
[id, simplify;
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SplitBodyP;
Unfoldlin2;
[id, simplify;
MakeCataBody] ;
Unfold2ini];
Unfold2ini

Unlike Transform, this strategy splits and unfolds the worker twice in order to
recognize the abstracted constructors as static parameters.

1.7 Transformer: Details

In this section we go into the details of some of the transformations mentioned
above.

1.7.1 Simplification

The simplifier consists of a number of standard simplification rules for functional
programs such as beta reduction:

BetalOne :
App(Abs([x|xs], t, e), [alas]) —>
App(Abs(xs, t, <expsubst> ([x], [al, e)), as)
where <value> a + <linear> (x, e)

Here, value and linear are strategies that prevent duplication of work during
reduction. An expression is a value if it represents either a function or a data
object; a variable v appears linearly in the expression b if reduction of b can
never cause duplication of any term substituted for v. Terms which do not en-
code computation are literally copied regardless of whether or not the variables
they instantiate occur linearly in their host terms.

The beta reduction rule BetaOne reduces an application of a function to its
first argument. The following rule reduces such an application as far as possible,
either exhausting all formal or all actual parameters.

Beta :
App(Abs(xs, t, e), as) —->
App(Abs(ys, t, <expsubst> (sbs, e)), bs)
where <rest-zip(id)> (xs, as) => (ys, bs, sbs);
(<1zip((id,value) + (Fst,id); linear)> (sbs, e))

Other simplification rules include elimination of dead let bindings, inlining
of let bindings, case specialization, distribution of application over cases, un-
currying of expression and type applications; see the definition of basic-rules
below. A particularly important rule for the warm fusion transformation is, of
course, cata-build fusion:

CataBuild :
App(Cata(tl, t2, fs), [Build(tl, g)1) ->
App(TInst(g, [t21), fs)
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Here t1 is the input type for the catamorphism and t2 is its return type. Sim-
ilarly, t1 is the type of build’s output.

These basic rules can be combined in various ways to build simplifiers, de-
pending on the desired effect. We use the following configuration in the warm
fusion transformer.

basic_rules =
Beta + Eta + (Inl; Dead) + TEta + TBeta +
CaseConstr + CaseDistL + CaseDistR + Uncurry

basic-cata = CataConstr + CataBuild + basic_rules

simplify = innermost(basic-cata)
The strategy innermost is defined by
innermost(s) = rec x(all(x); (s; x <+ id))

Although the definition of simplify here uses innermost reduction, Stratego’s
separation of logic from control make it particularly convenient to change the
term reduction strategy used in the simplifier.

1.7.2 Build-Cata Introduction

The initial build-cata identity is introduced into the body of the function
definition under its leading abstractions:

IntroBuildCata = Valdef(id, under-abs(MkBuildCata))

where the notion ‘under its leading abstractions’ can be expressed by the recur-
sive pattern

under-abs(s) = rec x((Abs(id, id, x) + TAbs(id, x)) <+ s)
In concrete syntax the build-cata identity has the form
build[t1] (/\t2 -> \fs :: t2 -> (catal[t1][t2] (fs) e))

where t1 is the type of the expression e, t2 is a new type variable and the fs are
the abstract constructors corresponding to the constructors of the data type.
Generation of this form is defined by the following rule:

MkBuildCata :
e -> Build(t1l, TAbs([t2], Abs(fs, Some(t2),
App(Cata(tl, t2, fs), [el))))
where new-tvar => t2; <type> e => tl;
<get-constructors> tl => cdecls;
<lzip(AbsConstr)> (cdecls, (t1, t2)) => fs

Type information plays a crucial role in build-cata introduction and subse-
quent processing. It is used not only to determine which instances of the Cata
and Build functions to introduce, but also to generate arguments of the appro-
priate types for these instances. The strategy type derives the type from an
expression. The strategy get-constructors obtains the constructor declara-
tions corresponding to the type of e. For each constructor of the data type an
abstract constructor (variable) with the appropriate type is constructed by rule
AbsConstr:
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AbsConstr :
(ConstrDecl(_, _, c, ts), (t1, t2)) ->
Typed(Var(£), TFun(ts’, t2))
where new => f; <map(try(?7t1;!t2))> ts => ts’

The rule creates a variable expression with new variable £ and its type. The
function has the same number of arguments as the original constructor. The
output of the function is of type t2. Where the constructor has a recursive
argument, indicated by the recursion type t1, the output type t2 is instantiated.
The other arguments remain the same type.

1.7.3 Splitting Function Definitions

Splitting a function into a wrapper and a worker involves determining where in
the body the split is performed, which variables the worker is abstracted over,
creating the definition of the worker and replacing the expression in the wrapper
body by a call to the worker. There are several ways to do this. We discuss one
of them.

The strategy SplitBodyP first computes the non-static parameters vs of the
function definition and then splits the body. This is achieved by instantiating
SplitBody with a strategy for splitting expressions:

SplitBodyP =
where (NonStaticParams => vs);
SplitBody(SplitExpr(!vs))

NonstaticParams extracts the nonstatic parameters from a function definition;
the function’s case selector must be the head of the list of nonstatic parameters
in order to satisfy the strictness requirement of the promotion theorem. Given
any list xs of value and type variables, the rule SplitExpr creates a definition for
a function with a new name f that has the expression as its body and abstracts
over xs. It also creates a call to £ with xs as arguments. The definition of
SplitExpr assumes that the type parameters to a function are always static.

SplitExpr (mkxs)
e -> (App(Typed(Var(f), t), xs), Valdef(Var(f), body))
where mkxs => xs; new => f;
<etrename> Abs(xs, Some(<type> e), e) => body;
<type> body => t

Given a strategy split for splitting an expression, rule SplitBody splits
the body of a function definition by creeping under its leading abstractions and
splitting the expression it encounters there.

SplitBody(split) :
Valdef (Var(x), body) -> [Valdef (Var(x), body’), def]
where <under-abs-build(split => (e, def); !e)> body => body’

The split results in an expression (the call) and a new definition. The expression
split => (e, def); !e matches the result of splitting against the pattern
(e, def) and then replaces it by just the expression. The binding to def is
used in the right-hand side of the rule, where a list of two definitions is created.

Since we want to split off the worker under the build expression, if present,
we use a variant of the under-abs pattern that we saw before.
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under-abs-build(split) =
rec x((Abs(id,id,x) + TAbs(id,x) + Build(id,split)) <+ split)

Similar patterns can be used to describe other contexts in which a transforma-
tion has to take place.

Parameterizing over under-abs-build as well as split would make Split-
Body a completely generic splitting strategy. However, even as defined here,
SplitBody is a general strategy for splitting under any type and term abstrac-
tions and any builds in a function definition. Our splitting mechanism there-
fore generalizes that from [24] upon which the wrapper-worker decomposition
in [16] is based. The extra generality is useful: splitting a function defini-
tion into a wrapper and a worker sometimes requires splitting under a func-
tion’s leading build, while at other times no builds are present. The strategy
under-abs-build given here is general enough to accommodate both situations.

1.7.4 TUnfolding

Unfolding is defined by the following contextual rules [36] that replace all oc-
curences of atoms with the name of the function being unfolded by its body.

Unfoldlin2 :
[Valdef (Var(x) ,bodyl), Valdef (Var(y) ,body2[Typed(Var(x),_)1)]
-> [Valdef (Var(x) ,bodyl), Valdef(Var(y),body2[body1’](alltd))]
where <exprename> bodyl => bodyl’

Unfold2inl :

[Valdef (Var(x) ,bodyl[Typed(Var(y),_)]1), Valdef (Var(y) ,body2)]
-> Valdef (Var(x) ,bodyl[body2’] (alltd))

where <not(in)> (Var(y), body2); <exprename> body2 => body2’

1.7.5 Cata Promotion

In Section 1.2 we discussed how a catamorphism can be derived from a recur-
sive definition using the promotion theorem. The core of the promotion is the
creation of a function

h=\z1 ... zn => e(c(yl)...(yn))

for each constructor ¢ with n arguments. The function e is then unfolded
exactly once, and the result is simplified using the standard rules, together with
a dynamically generated set of rules that rewrite recursive applications involving
the yis to the appropriate variables zi. The abstract syntax of the initial form
of the function h is

Abs(zs, App(e, [App(Typed(Constr(c), TFun(ts, t)), ys)]))

The rule DynRules creates for a specific constructor, the lists of y and z variables
and the corresponding dynamic rewrite rules. The strategy dsimplify extends
the normal simplification with the application of these dynamic rules.

dsimplify(mkrls) = innermost(AppDynRule(mkrls) <+ basic_rules)

Putting this together the rule MkH creates the replacement function correspond-
ing to a constructor of the original function’s input data type.
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MkH :
(ConstrDecl(_, _, c, ts), (g, e, t)) -> h
where
<DynRules> (t, g, c) => (ys, zs, rls);
!Typed (Constr(c), TFun(ts, t)) => ct;
<dsimplify(!rls)>
Abs(zs, None, App(<etrename> e, [App(ct, ys)])) => h;
<not(oncetd({y : ?Var(y);
where (<fetch(Typed(Var(?y),id))> ys)}))> h

Note that the bound variables in expression e are renamed to maintain the
unique variable invariant.

These replacement functions are then used by MakeCataBody to construct
the catamorphic version of that function’s worker. Unfolding the worker in the
wrapper yields the build-cata form of the function definition being transformed.

MakeCataBody :
Valdef (Var(g), e) -> Valdef(Var(g), Cata(tl, t2, hs))
where <type> e => tg;
<split(dom, range)> tg => (t1, t2);
<get-constructors> tl => cdecls;
<1zip(MkH)> (cdecls, (Typed(Var(g), tg), e, tl)) => hs

This concludes our sample of the specification. The complete text of the
specification can be found in the next chapters.

1.8 Related Work

The first ideas for rewriting strategy operators with general traversal opera-
tors are described in [17]. In [36] these ideas are formalized by means of an
operational semantics and are extended to the full set of System S operators
by splitting simple rewrite rules into match, build and scope. This allows easy
expression of contextual rules. An application to the specifiation of optimizers
is discussed. In [35] it is shown how System S can be used to describe various
features and evaluation strategies of traditional conditional rewriting systems.
In [32] three programming idioms for strategic pattern matching are studied: re-
cursive patterns, contextual rules, and overlays. The implementation of generic
algorithms such as used for variable renaming and substitution is discussed in
[34]. For a discussion of related work on rewriting strategies see [35]. The
relation to other systems for program transformation is discussed in [36].

Techniques for program fusion can be classified into two broad categories:
search-based and calculation-based. The earliest techniques for program fusion
[6, 29, 37, 7] were search-based. These rely on analyses of the fold-unfold trans-
formation process of Burstall and Darlington to fuse compositions of recursive
functions. In search-based fusion it is necessary to keep track at each step of
the transformation process of all function calls that have been made. New func-
tion definitions to be used in unfolding must then be introduced. Search-based
fusion is systematic, but relies on clever control mechanisms to avoid the possi-
bility of infinite sequences of transformations by repeated unfolding of function
definitions. As a result, good implementations of search-based fusion techniques
have been somewhat difficult to achieve.
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The warm fusion method and the short cut to deforestation which it facil-
itates are in the more recent tradition of calculation-based fusion [26, 11, 27,
16, 13]. In calculation-based fusion the recursive structure of each component
participating in the fusion is made explicit. This enables fusion by direct appli-
cation of simple transformation laws like the cata-build rule and the acid rain
theorem [27]. The theoretical basis for calculation-based fusion lies in the study
of constructive algorithmics [8, 19, 20].

1.9 Future Work

The implementation of program fusion algorithms offers many additional oppor-
tunities for investigation. Among the issues pertaining directly to the Stratego
implementation and meriting attention are: experimenting with various orders
and strategies for applying the simplification transformations; experimenting
with more unfolding of function definitions when converting recursion to cata-
morphisms via fold promotion so that fusion is not unnecessarily blocked; mak-
ing inlining more context sensitive, so that build-cata forms are inlined only
when there is the possibility of fusion via the short cut; and extending the
transformations with Gill’s augment. Benchmarking to determine the sense(s)
in which deforested programs are “better” than their monolithic counterparts is
also appropriate for the current warm fusion implementation. So is comparison
of the Stratego specification with other implementations of warm fusion.

Other lines of inquiry involve the integration of automatic fusion tools into
existing systems. Candidate systems include the optimizer of the RML compiler
discussed in [28, 36], as well as state-of-the-art functional language compilers.
Nemeth [21] has recently implemented warm fusion in the Glasgow Haskell Com-
piler and reported benchmarks on programs from the nofib suite [22].

Finally, rather than using Stratego as a tool to help deepen our under-
standing of program fusion techniques, we can turn the relationship between
strategy-based languages and program fusion on its head and ask about pos-
sible applications of fusion to strategy-based languages. Can we formalize our
intuition that certain combinations of strategies should themselves be amenable
to suitable forms of strategy fusion? Is it possible, for example, to make precise
the observation that

1C(t1,...,tn); ?7C(t1’,...,tn’) = 't1;7t1’;...;!'tn;7tn’

assuming that the term that is built is not used again?

1.10 Conclusion

We have presented a case study of the application of Stratego to build a com-
plete, non-trivial program transformation system. Table 1.1 shows the sizes of
the main components of the transformation system in number of modules, lines
of code (text including comments), number of rules and number of strategies.
Note that these figures do not include the signature and the pretty-printing
modules. Distributed over time, it took us about 30 days to develop the entire
transformation tool from scratch including a syntax definition for full Haskell.
The development time included finding out how to program in Stratego and
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language | component | mod [ LOC | cons | rules | strat |

| SDF | Haskell.sdf | | 650 ] | 300 | - |
Stratego | Warm Fusion 11 739 0 60 31
Stratego | Format checking 1 202 1 1 32
Stratego | Haskell Library 4 246 0 32 21
Stratego | Haskell Normalize 1 75 0 17 3
Stratego | Haskell Typecheck 1 120 1 13 6
Stratego | Subtotal Specification 18 | 1382 2| 123 93
Stratego | Signature 28 | 544 | 103 0 0
Stratego | Pretty-Printer 28 | 671 0 90 7
Stratego | Total Specification 74 | 2597 | 105 | 213 | 100

| Stratego | Stratego Library | 483634 65| 131] 317 |

Table 1.1: Size metrics of main components of the specification. Measuring
number of modules (mod), lines of code (LOC) including documentation, num-
ber of constructors (cons), rules and strategies (strat).

developing programming idioms. That is, when undertaking this case study,
Stratego was a new language, even for its author, and discovering idioms of
use beyond the basic paradigm takes time. The development was aided by the
wealth of generic, language independent rules and strategies in the Stratego
library [33].

This case study strengthens our view that rewriting strategies are a good
paradigm for the implementation of program transformation systems. The spec-
ification is highly modular at all levels and can easily be modified or extended
with new transformations. It will serve as the basic infrastructure for further
experimentation with transformations on full Haskell. The specification also
provides examples of several Stratego idioms that can be used in the implemen-
tion of transformation systems for other languages. In particular the specifica-
tion shows the use of compound rules, recursive patterns, distributed patterns,
exchange of information between transformation rules through parameterized
strategies and the compact specification of variable renaming, substitution, and
free variable projection.

Acknowledgements The authors would like to thank various anonymous
referees for their comments on earlier versions of this paper.
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Chapter 2

Examples

This chapter presents the verbatim input and output of the warm fusion trans-
formation tool for several small programs. The output is given in two versions.
In the first the type annotations have been stripped of expressions to provide a
readable program. The second is the result of the transformation with all type
annotation present.

2.1 Lists

2.1.1 Input
module SOS where {

-- Booleans

data Bool = False | True;

-- Integers

(x) :: Int -> Int -> Int;
(+) :: Int -> Int -> Int;
(>) :: Int -> Int -> Bool;
(==) :: Int -> Int -> Bool;
square :: Int -> Int;

square = \x -> (x * x);
-- Lists

data List a = Nil | Cons a (List a);

map :: (a => b) -> List a -> List b;
map = \f 1 ->

case 1 of

{ Nil -> Nil

; Cons x xs -> Cons(f x) (map f xs)
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};

foldr :: b -> (a => b -> b) -> List a -> b;
foldr = \n ¢ xs ->

case xs of

{ Nil ->n
; Cons y ys -> ¢ y (foldr n c ys)
};

upto :: Int -> Int -> List Int;

upto = \low high ->
case low > high of
{ False -> Cons low (upto(low + 1) (high))
; True -> Nil

};
sum :: List Int -> Int;
sum = foldr 0 (+);
sos :: Int -> Int -> Int;
sos = \lo hi ->
sum (map (square) (upto lo hi))
}

2.1.2 Output

module SOS where {

data Bool = False
| True;

(*) :: (Int) -> (Int) -> Int;
(+) :: (Int) -> (Int) -> Int;
(>) :: (Int) -> (Int) -> Bool;
(==) :: (Int) -> (Int) -> Bool;
square :: (Int) -> Int;

square = (\c_0 ->
(c_0 * c_0));

data List a = Nil
| Cons (a) (List a);

map :: ((a) -> b) -> (List a) -> List b;
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map = (\d_0 e_0 ->
build(List b_0,
/\f_1 >
N\e_2 f_2 —>
cata[List a_0][f_1]1(e_2, (\g_2 h_2 ->
£_2(d_0(g_2))(h_2)))(e_0))));

foldr :: (b) —> ((a) -> (b) -> b) -> (List a) -> b;

foldr = (\j_0 k.0 1.0 —>
cata[List g_0][h_0](j_0, k_0)(1_0));

upto :: (Int) -> (Int) -> List Int;

upto = (\o_0 p_0 >
build(List Int,

/\n_4 ->

(\i_4 j_4 -

let { kx_ 4= (\1_4 —>
case (1_4 > p_0) of
{ False -> j_4(1_4)(k_4((1_4 + 1))
; True -> i_4
P}

in k_4(0_0))));

sum :: (List Int) -> Int;

sum = catal[List Int][Int](0, (+));

sos :: (Int) -> (Int) -> Int;

sos = (\q_0 r_0 >

let { 9.5 = (\r_5 ->

case (r_5 > r_0) of
{ False -> (square(r_5) + q_5((r_5 + 1)))
; True -> 0

P}
in q_5(q_0))

2.1.3 Output (Fully Typed)

module SOS where {

data Bool = False
| True;

(¥) :: (Int) -> (Int) -> Int;
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(+) :: (Int) -> (Int) -> Int;

(>) :: (Int) -> (Int) —> Bool;

(==) :: (Int) -> (Int) -> Bool;
square :: (Int) -> Int;
square = (\(c_0 :: Int) :: Int ->

((x) :: (Int) -> (Int) -> Int)((c_0 :: Int))((c_0 :: Int)));

data List a = Nil
| Cons (a) (List a);

map :: ((a) -> b) -> (List a) -> List b;

map = (\(d_0 :: (a_0) -> b_0) (e_0 :: List a_0) :: List b_0 ->
build(List b_0,
/\f_1 ->
(\(e_2 :: £_1) (£_2 :: (b_0) -> (£f_1) -> £_1) :: £_1 ->
cata[List a_0] [f_1]
((e_2 :: £_1),
N\(g.2 :: a_0) (h_2 :: £_1) ->
(f_2 :: (_0) -> (f_1) -> f_1)
((d_0 :: (a_0) —> b_0)((g_2 :: a_0)))
((h_2 :: £_1))))((e_0 :: List a_0)))));

foldr :: (b) -> ((a) -> (b) -> b) -> (List a) -> b;

foldr = (\(j_0 :: h_0) (k_0 :: (g_0) -> (h_0) -> h_0) (1.0 :: List g_0) :: h 0 ->
cata[List g_0]J[h_0]((j_0 :: h_0), (k_0 :: (g_0) -> (h_0) -> h_0))
((1_0 :: List g_0)));

upto :: (Int) -> (Int) -> List Int;

upto = (\(o_0 :: Int) (p_O :: Int) :: List Int ->
build(List Int,
/\n_4 ->
(\(i_4 :: n_4) (j_4 :: (Int) -> (n_4) ->n_4) :: n_4 ->
let { k.4 = (\(Q_4 :: Int) :: n_4 —>
case ((>) :: (Int) -> (Int) -> Bool)
((1_4 :: Int))
((p_0 :: Imnt)) of
{ False :: Bool
=> (j_4 :: (Int) -> (n_4) -> n_4)
((1_4 :: Int))
((x_4 :: (Int) -> n_4)
(((+) :: (Int) -> (Int) -> Int)
((1_4 :: Imnt))
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((1 :: Int))))
; True :: Bool -> (i_4 :: n_4)
» 3
in (k_4 :: (Int) -> n_4)
((0_0 :: Int)))));

sum :: (List Int) -> Int;

sum = cata[List Int][Int]((0 :: Int), ((+) :: (Int) -> (Int) -> Int));
sos :: (Int) -> (Int) -> Int;

sos = (\(gq_0 :: Int) (r_0 :: Int) :: Int ->

let { 9.5 = (\(r_5 :: Int) :: Int ->
case ((>) :: (Int) -> (Int) -> Bool)
((r_5 :: Int))
((r_0 :: Int)) of
{ False :: Bool -> ((+) :: (Int) -> (Int) -> Int)
((square :: (Int) -> Int)
((r_5 :: Int)))
((gq_5 :: (Int) -> Int)
(((+) :: (Int) -> (Int) -> Int)
((r_5 :: Imnt))
((1 :: Int))))
; True :: Bool -> (0 :: Int)
»?
in (q_5 :: (Int) -> Int)
((gq_0 :: Imnt)))

2.2 Pairs

2.2.1 Input

module Pairs where {
(+) :: Int -> Int -> Int;
data Pair a b = Pair a b;

id :: a -> a;
id = \ x > x;

inc :: Int -> Int;
inc =\ x > (x + 1);

swap :: Pair a b -> Pair b a;
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swap = \ p -> case p of { Pair x y -> Pair y x };

cross :: (a => ¢c) => (b => d) -> Pair a b -> Pair c d;
cross = \ f g p -> case p of { Pair x y -> Pair (f x) (g y) };

split :: (a => b) -> (a -> ¢) -> a -> Pair b c;
split = \ f g x -> Pair (f x) (g x);

add :: Pair Int Int -> Int;
add = \ p -> case p of { Pair i j -> i + j };

swapadd :: Pair Int Int -> Int;
swapadd = \ p -> add(swap(p));

testl :: Int -> Int;
testl = \ x -> add(swap(split inc inc x));

}

2.2.2 Output

module Pairs where {

(+) :: (Int) -> (Int) -> Int;
data Pair a b = Pair (a) (b);
id :: (@) -> a;

id = (\d_0 ->
a_0);

inc :: (Int) -> Int;

inc = (\e_0 ->
(e 0 + 1));

swap :: (Pair a b) -> Pair b a;
swap = (\j_0 —>
build(Pair b_0 c_0,
/\q_1 ->
(\k_2 ->
cata[Pair c_0 b_0][q_11((\1_2 m_2 ->
k_2(m_2)(1.2)))(j_01)));

cross :: ((a) -> c) -> ((b) -> d) -> (Pair a b) -> Pair c d;

cross = (\p_0 q_0 r_0 ->
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build(Pair h_0 i_0,
/\x_2 ->
(\t_3 ->
cata[Pair £_0 g_0][x_2]((\u_3 v_3 ->
t_3(p_0(u_3)) (q_0(v_3))))(r_0))));
split :: ((&) -> b) -> ((a) -> ¢) -> (a) -> Pair b c;
split = (\u_0 v_0 w_0 ->
build(Pair m_0 n_o0,
/\w_3 ->
\x_3 —>
x_3(u_0(w_0)) (v_0(w_0)))));
add :: (Pair Int Int) -> Int;
add = cata[Pair Int Int][Int]((+));

swapadd :: (Pair Int Int) -> Int;

swapadd = cata[Pair Int Int][Int]((\f_5 g_5 ->
(g_5 + £.5)));

testl :: (Int) -> Int;

testl = (\b_1 —>
(inc(b_1) + inc(b_1)))

2.2.3 Output (Fully Typed)

module Pairs where {

(+) :: (Int) -> (Int) -> Int;
data Pair a b = Pair (a) (b);
id :: (a) > a;

id = (\(d_0 :: a_0) :: a_0 —>
(d_0 :: a_0));

inc :: (Int) -> Int;

inc = (\(e_0 :: Int) :: Int ->
((+) :: (Int) -> (Int) -> Int)((e_0 :: Int))((1l :: Int)));

swap :: (Pair a b) -> Pair b a;
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swap = (\(j_O :: Pair c¢_0 b_0) :: Pair b_0 c_0 ->
build(Pair b_0 c_0,
/\q_1 ->
Ak_2 :: (b_0) -> (c_0) -> gq_1) :: q_1 —>
cata[Pair c_0 b_0]J[q_11((\(1_2 :: c_0) (m_2 :: b_0) —>
(k_2 :: (b_0) -> (c_0) -> q_1)
((@m_2 :: b_0))
(A_2 :: c_0)))
((3_0 :: Pair c_0 b_0)))));

cross :: ((a) -> ¢) => ((b) -> d) -> (Pair a b) -> Pair c d;

cross = (\(p_0 :: (£_0) -> h_0) (q_0 :: (g_0) -> i_0) (r_0 :: Pair £_ 0 g_0) :: Pair h_ 0 i_0 -
build(Pair h_0 i_0,
/\x_2 ->
A3 :: (h_0) => (i_0) => x_.2) :: x_2 =>
cata[Pair £_0 g_0] [x_2]
((\(u_3 :: £.0) (v_.3 :: g_0) >
(t_3 :: (h_0) -> (i_0) —> x_2)
((p_0 :: (£_0) => h_0)((u_3 :: £_0)))
((q0 :: (g_.0) > i_0)((v_3 :: g_. )N
((r_0 :: Pair £_0 g_0)))));

split :: ((a) -> b) -> ((a) -> ¢) -> (a) -> Pair b c;

split = (\(u_0 :: (1_0) ->m_0) (v_0 :: (1_.0) ->n_0) (w_0 :: 1.0) :: Pair m_ O n_0 —>
build(Pair m_0 n_o0,
/\w_3 ->
(.3 :: (m_0) => (0_0) -> w_3) :: w.3 ->
(x_3 :: (m_0) -> (n_0) -> w_3)
((u_0 :: (1_0) > m_0)((w_0 :: 1_0)))
((w_0 :: (A_0) > n_0)((w_0 =: 1_00)))));

add :: (Pair Int Int) -> Int;

add = catal[Pair Int Int][Int](((+) :: (Int) -> (Int) -> Int));

swapadd :: (Pair Int Int) -> Int;

swapadd = cata[Pair Int Int][Int]((\(f_5 :: Int) (g_5 :: Int) ->

((+) :: (Int) -> (Int) -> Int)

((g_5 :: Int))
((£_5 :: Int))));

testl :: (Int) -> Int;

testl = (\(b_1 :: Int) :: Int >

((+) :: (Int) -> (Int) -> Int)
((inc :: (Int) -> Int)((b_1 :: Int)))
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((inc :: (Int) -> Int)((b_1 :: Int))))
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Chapter 3

Concrete Syntax

3.1 Syntax Definition in SDF2

This chapter presents a definition of the syntax of a subset of the functional
programming language Haskell in SDF2, a formalism for syntax definition [31].
From the syntax definition a generalized-LR parser is generated by the pgen
program [30]. The parser produces parse trees in the AsFix format, which is
represented using ATerms. Parse trees are transformed into abstract syntax
trees by means of the generic implode-asfix program. This program uses the
constructor annotations cons("...") in the grammar productions to translate
parse tree nodes into abstract syntax tree nodes. For more information about
SDF2 see [2].

3.2 Haskell in SDF2

The subset that is covered by the grammar can be characterized as Core Haskell
with types. All details of the lexical syntax are defined according to the standard
[23]. Some syntactic sugar (e.g., if) is supported, but most is not. Not included
in the subset are import-export declarations, list comprehensions, monad nota-
tion, type classes, records, and where clauses. The syntax definition presented
here is part of a larger definition that covers the entire definition in the Haskell
standard. Since those parts are not used in the subsequent transformation they
are not included. One notable difference with the standard is that the offset
rule is not supported. This entails that all semicolons and curly braces have to
be supplied in the program.

module Main
imports Haskell-Kernel
exports

sorts Module

module Haskell-Kernel

imports Haskell-Layout
Haskell-Identifiers
Haskell-Keywords
Haskell-Identifier-Sorts
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Haskell-Numbers
Haskell-Strings
Haskell-Literals
Haskell-Modules
Haskell-Types
Haskell-Type-Declarations
Haskell-Signature-Declarations
Haskell-Expressions
Haskell-Case-Alternatives
Haskell-Value-Definitions
Haskell-Infix
ExtraSepListsl
ExtraSepLists
ExtraSepLists0

3.3 Lists with Separators

Haskell allows at several points redundant separators in lists. Such lists are
generically defined in the following parameterized modules.

module ExtraSepLists [Elt Sep List]

exports
context-free syntax
Elt -> List {cons("Ins")}
List Sep Elt -> List {cons("Snoc")}
List Sep -> List

module ExtraSepListsO [Elt Sep List]

exports
context-free syntax
Elt -> List {cons("Ins")}
List Sep Elt -> List {cons("Snoc")}
List Sep -> List

-> List {cons("Nil")}

3.4 Lexical Syntax

module Haskell-Layout

exports
lexical syntax
WhiteChar -> LAYOUT
Comment -> LAYOUT
NComment -> LAYOUT
[\ \t\n] -> WhiteChar

n_—n ~[\nl* [\n] -> Comment
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"{-" {L-Char* NCommentl}* "-}" -> NComment

“I\N-\{] -> L-Char
Hyphen -> L-Char
CurlyOpen -> L-Char
[\-1] -> Hyphen
N\l -> CurlyOpen

lexical restrictions
Hyphen -/- [\}Y]
CurlyOpen -/- [\-]

context-free restrictions

LAYOUT? -/- [\ \t\nl | [\-1.0\-1 | [\{1.[\-]

module Haskell-Identifiers

exports
lexical syntax
[a-z] [A-Za-z0-9\’\_]* -> VARID
[A-Z] [A-Za-z0-9\’\_]* -> CONID

%% Question: underscore in identifiers according to standard???

AVACATAVATALACAVAVA
/' INA=\>A\G\\\"\ [ \-\"] -> Symbol
Symbol (Symbol | [\:1)* -> VARSYM

[\:1 (Symbol | [\:1)* -> CONSYM
ReservedOp -> VARSYM {reject}
ReservedOp -> CONSYM {reject}

lexical restrictions
CONID VARID -/- [A-Za-z0-9]

VARSYM =/= DININNSAZANEGN AN \/T N/ D\N<\=\>\7\@\\\ "\ [\-\"]
context-free syntax

Modid "." VARID -> QVARID {cons("QVarId")}

Modid "." CONID -> QCONID Hcons("QConId")}

Modid "." VARSYM -> QVARSYM {cons("QVarSym")}

Modid "." CONSYM -> QCONSYM {cons("QConSym")}

module Haskell-Keywords
exports
lexical syntax

"case" | "class" | "data" |
"default" | "deriving" | "do" |
naglse" I nifn | "import" |
"in" | "infix" | "infix1"
"infixr" | "instance" | "let" |
"module" | "newtype" | "of"
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"then" I "type" | "where" |

n_on -> Reservedld
"as" | "hiding" | "qualified" |

"export" | "label" | "dynamic" -> ReservedId0
"forall" -> ReservedId2
n .. n | n : n I n ] n | n=mn | |l\\|l | n I n I |l<_|l |

|I_>|I | Il@‘l I "n~n | I|=>|l |

u/\\u | n{n | u}u | u[u |
n]n | n(n | u)u | u(#u | n#)n | u;u | u’u | nen o s Reservede

module Haskell-Identifier-Sorts

exports
lexical syntax
VARID
ReservedId

VARID
ReservedId
ReservedId2

context-free syntax
Vars "," Var

Qvar

context-free syntax

ll(ll II)H

II[H II] "

II(H Il,||+ |I)|l
Qcon

context-free syntax

-> Varid

-> Varid {reject}

-> Tyvar

-> Varid {reject}
-> Varid {reject}

-> Vars
-> Vars

-> Gcon
-> Gcon
-> Gcon
-> Gcon

%% variable identifiers

Varid
Qvarid
Varid
QVARID

-> Var
-> Qvar

{cons("Snoc")}
{cons("Ins")}

{cons("Unit")}
{cons ("EmptyList")}
{cons ("Product")}

{cons("VarId")}

-> Qvarid
-> Qvarid

%% constructor identifiers

Conid
Qconid
Conid
QCONID
CONID

%% The following portion

-> Con
-> Qcon

{cons("ConId")}

-> Qconid
-> Qconid
-> Conid

can be put into module Haskell-Infix
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%% in order to factor out infix operators from the kernel language
context-free syntax
%% infix operators

Varop -> 0p {cons("0p")}
Conop -> 0p {cons("ConOp")}

%% variable operators

Varsym -> Varop

Qvarsym -> Qvarop

Qvarsymm -> Qvaropm
Varsym -> Qvarsym
Qvarsyml -> Qvarsym
Varsymm -> Qvarsymm
Qvarsyml -> Qvarsymm

%% constructor operators

Consym -> Qconsym
QCONSYM -> Qconsym
CONSYM -> Consym
Consym -> Conop
Qconsym -> Qconop
Qvarop -> Qop
Qconop -> Qop
Qvaropm -> Qopm
Qconop -> Qopm

%% make prefix symbols from infix symbols

"(" Varsym ")" -> Var {cons("Bin0Op")}
"(" Qvarsym ")" -> Qvar {cons("Bin0Op")}
"(" Consym ")" -> Con {cons("BinCon")}
"(" Qconsym ")" -> Qcon {cons("BinCon")}

%% make infix symbols from prefix symbols

"en yYarid "¢ -> Varop {cons ("Pref0p")}
"én Quarid " -> Qvarop {cons("Pref0p")}
"en Quarid "M -> Qvaropm {cons("Pref0Op")}
"én Conid "¢ -> Comnop {cons("PrefCon")}
""" Qconid "¢" -> Qconop {cons("PrefCon")}

context-free syntax
VARSYM -> Varsym
n-n -> Varsym {cons("Subtraction")}
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" -> Varsym
"o -> Varsym

VARSYM -> Varsymm
"n -> Varsymm
" -> Varsymm

QVARSYM -> Qvarsyml

context-free syntax

CONID -> Modid
CONID -> Tycon
Tycon -> Qtycon
QCONID -> Qtycon
Qtycon -> Qtycls

module Haskell-Numbers

exports
lexical syntax

[0-9] -> Digit

[0-7] -> Octit
[0-9A-Fa-f] -> Hexit
Digit+ -> Decimal
Octit+ -> QOctal
Hexit+ -> Hexadecimal
Decimal -> INTEGER

[0] [0o] Octal -> INTEGER

[0] [Xx] Hexadecimal -> INTEGER
lexical restrictions
INTEGER -/- [0-9]

lexical syntax

Decimal "." Decimal ([eE] [\-\+]? Decimal) -> RATIONAL
lexical restrictions

RATIONAL -/- [0-9]

lexical syntax
[1 -> PRIMCHAR
[1 -> PRIMSTRING
[1 -> PRIMINTEGER
[1 -> PRIMFLOAT
[1 -> PRIMDOUBLE

[ -> CLITLIT
[ -> UNKNOWN

module Haskell-Strings
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exports
lexical syntax

nn CharChar non

II\HII StringChar* |l\"||

“INO-\31\"\\]

-> CHAR

-> STRING

-> StringChar

Escape -> StringChar
Gap -> StringChar
[\N\T [\ \t\nl+ [\\] -> Gap
[\\] (CharEsc | ASCII
| Decimal
| ([o] Octal)
| [x] Hexadecimal) -> Escape
[abfnrtv\\\"\’\&] -> CharEsc
lexical syntax
e TA-ZN@N [\NI\NN\"\_] -> ASCII
"NUL" | "SOH" | ngTxX" | "ETX" | "EQT" |
"ENQ" | "ACK" | IIBEL" | IIBS" | "HT" |
"LF" | "VTII | IIFF" | IICR" | "SO" |
IISI" | "DLE" | "DC1" | "DC2" | "Dc3|l |
"DC4" | "NAK" | "SYN" | "ETB" | "CAN" |
IIEM" | "SUB" | "ESC" | "FS" | "GS" |
nRg" | nyggn | ngpn | "DEL" -> ASCCI
module Haskell-Literals
exports
context-free syntax
INTEGER -> Literal {cons("Int")}
CHAR -> Literal {cons("Char")}
RATIONAL -> Literal {cons("Float")}
STRING -> Literal {cons("String")}
PRIMINTEGER -> Literal {cons("PrimInt")}
PRIMCHAR -> Literal {cons("PrimChar")}
PRIMSTRING -> Literal {cons("PrimString")}
PRIMFLOAT -> Literal {cons("PrimFloat")}
PRIMDOUBLE -> Literal {cons("PrimDouble")}
CLITLIT -> Literal {cons("CLitLit")}
3.5 Modules
module Haskell-Modules
imports ExtraSepLists[Topdecl ";" Topdecls]
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exports
context-free syntax
"module" Modid Exports?

"where" Body -> Module {cons("Module")}
Body -> Module {cons("Program")}
n{n TOP n}u -> Body
Topdecls -> Top {cons ("TopDecls")}
Decl -> Topdecl

3.6 Declarations

module Haskell-Types

exports
context-free syntax
("::" Type)? -> OptSig

context-free syntax
Qtycon -> Gtycon
n (H ll_>|| |I) n -> thcon {ConS(HTArrowll)}

context-free syntax

{Type ","}+ -> Types

Type "," {Type ","}+ -> Types2 {cons("Cons")}
"forall" Tyvarx "." -> Forall

Type "=>" -> Context

context-free syntax

Gtycon -> Type {cons("TCon")}

Tyvar -> Type {cons("TVar")}

Type Type -> Type {cons("TAppBin"),left}
Type "->" Type -> Type {cons ("TFunBin") ,right}
Forall Type -> Type {cons("Forall")}

Forall Context Type -> Type {cons("ForallContext")}
""" Type ")" -> Type {bracket}

context-free priorities

Type Type -> Type
> Type "->" Type -> Type
> {Forall Type -> Type

Forall Context Type -> Type}

%% The following productions are syntactic sugar for
%% [1 Type and (,,,) Type ... Type

context-free syntax

"[" Type "1" -> Type {cons("TList")}
"(" Types2 ")" -> Type {cons("TProd")}
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n(n mynm -> Gtycon
nn nyn -> Gtycon
w(nom ong wym -> Gtycon

module Haskell-Type-Declarations

{cons("TUnit")}
{cons("TList")}
{cons ("TProduct")}

exports
context-free syntax
"type" Tycon Tyvar* "=" Type -> Topdecl {cons("TypeDecl")}
"data" Type "=" Constrs Deriving -> Topdecl {cons("Data")}
"newtype" Type "=" Newconstr Deriving -> Topdecl {cons("NewTypeDecl")}

context-free syntax
"deriving" Qtycls
"deriving" n(n n)n
"deriving" "(" {Qtycls ","}+ ")"

context-free syntax
{Constr "|"}+

Forall? Context? Conid Satype*

-> Deriving
-> Deriving
-> Deriving
-> Deriving {cons("NoDeriving")}

-> Constrs

-> Constr {cons("ConstrDecl")}

Forall? Context? Sbtype Conop Sbtype -> Constr {cons("InfixConstr")}

Conid Type -> Newconstr
Conid "{" Var "::" Type "1}" -> Newconstr
Type -> Satype
"t Type -> Satype
Type -> Sbtype
"t Type -> Sbtype
context-free priorities
Type -> Satype
> Type Type -> Type
module Haskell-Signature-Declarations
exports
context-free syntax
Signdecl -> Decl
Vars "::" Type -> Signdecl {cons("SignDecl")}
3.7 Expressions
module Haskell-Expressions
exports
context-free syntax
Exp -> AnyExp
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hh
hh
hh
hh
hh
hh

Cc

V V V V V V V vV

>

Qvar -> Exp {cons("Var")}
Gcon -> Exp {cons("Constr")}
Literal -> Exp {cons("Lit")}
n"n -> Exp {cons("Wildcard")}
"(" Exps2 ")" -> Exp {cons ("Product")}
"(#" Exps "#)" -> Exp {cons ("Unboxed?")}
"(" Exp ")" -> Exp {bracket}
{Exp ","}+ -> Exps
Exp "," {Exp ","}+ -> Exps2 {cons("Cons")}
Aexp+ -> Fargs
ontext-free priorities
"n Exp -> Exp {cons ("TILDE?")}
Qvar "@" Exp -> Exp {cons ("AT?")}
Exp -> Aexpl
Exp "{" Fbinds "1}" -> Exp {cons("Labeled")}
Exp -> Aexp
Exp Exp -> Exp {cons ("AppBin"),left}
Exp -> Infixexp
Exp "::" Type -> Exp {cons ("Typed")}
{"\\" Fargs OptSig "->" Exp -> Exp {cons("Abs")}
"let" Declbinds "in" Exp -> Exp {cons("Let")}
"if" AnyExp "then" AnyExp "else" Exp -> Exp {cons("If")}
"case" AnyExp "of" Altslist -> Exp {cons("Case")}
}
Exp -> Exp10
Notes:
AnyExp is used to prevent priorities from forbidding expressions

where the do not cause ambiguities.

Fargs is used instead of Aexp+ because of a bug in the SDF2
normalizer; regular expression expansion does not take into
account symbols used only in priority rules.

module Haskell-Case-Alternatives

imports ExtraSepListsO[Alt ";" Alts]
exports
context-free syntax

n{" Alts "}" -> Altslist
Infixexp OptSig "->" Exp -> Alt  {cons("Alt")}
Infixexp OptSig "->" Exp Where -> Alt  {cons("AltW")}
Infixexp OptSig Gdpat+ Where? -> Alt  {cons("GdAlt")}
"|" Quals "->" Exp -> Gdpat {cons("GdPat")}

module Haskell-Infix
exports
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context-free syntax

"infix" -> Infix {cons("Infix")}
"infix1" -> Infix {cons("InfixL")}
"infixr" -> Infix {cons("InfixR")}
INTEGER? -> Prec
{0p ","}+ -> Ops
Infix Prec Ops -> Fixdecl {cons("FixDecl")}
Fixdecl -> Decl
"(" Infixexp Qop ")" -> Exp {cons("LSection")}
"(" Qopm Infixexp ")" -> Exp {cons("RSection")}
context-free priorities
"-" Exp -> Exp {cons("Negation")}
> "7" Exp -> Exp
, Exp -> Expl10
> Exp Qop Exp -> Exp {cons("OpApp"),left}

module Haskell-Value-Definitions

imports ExtraSepListsO[Decl ";" Decls]
exports
context-free syntax
Valdef -> Decl
Infixexp "=" Exp -> Valdef {cons("Valdef")}
Infixexp "=" Exp Where -> Valdef {cons("ValdefW")}

Infixexp Gdrh+ Where? -> Valdef {cons("GdValdef")}

"[" Quals "=" Exp -> Gdrh {cons("Guarded")}
"where" Decllist -> Where {cons("Where")}
Decllist -> Declbinds

"{" Decls "}" -> Decllist
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Chapter 4

Abstract Syntax

4.1 Summary

This chapter presents the abstract syntax of Haskell programs used in the trans-
formations. The constructors of abstract syntax trees are declared by means of
algebraic signatures. Module AHaskell gives a summary of the constructors
most used in the transformations.

module AHaskell

signature
sorts Decl Constr Type Exp Alt
(* subsorts TVar < Type *)

constructors
Program : List(Decl) -> Program
Data : Type * List(Constr) * Deriving -> Decl
ConstrDecl : Option(Forall) * Option(Context)
* String * List(Type) -> Constr

SignDecl : Vars * Type -> Decl
Valdef : Exp * Exp —> Decl
TVar : String -> TVar
TCon : String -> Type
TApp : Type * List(Type) -> Type
TFun : List(Type) * Type -> Type
Forall : List(String) * Type -> Type
Typed : Exp * Type -> Exp
Var : String -> Exp
Constr : String -> Exp
Lit : Literal -> Exp
Abs : List(Exp) * Option(Type) * Exp -> Exp
App : Exp * List(Exp) -> Exp
Let : List(Decl) * Exp -> Exp
Case : Exp * List(Alt) -> Exp
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Alt : Exp * Option(Type) * Exp

TAbs : List(TVar) * Exp

TInst : Exp * List(Type)

Build : Type * Exp

Cata : Type * Type * List(Exp)

4.2 Haskell Signature

4.2.1 Haskell-Kernel

module Haskell-Kernel

imports Haskell-Identifiers
Haskell-Identifier-Sorts
Haskell-Literals
Haskell-Modules
Haskell-Types
Haskell-Type-Declarations
Haskell-Signature-Declarations
Haskell-Expressions
Haskell-Case-Alternatives
Haskell-Value-Definitions
Haskell-Infix
Haskell-Build-Cata

4.3 Literals

4.3.1 Haskell-Identifier-Sorts

module Haskell-Identifier-Sorts

signature
constructors
BinOp : a -> a

PrefOp : a -> a

4.3.2 Haskell-Identifiers

module Haskell-Identifiers

signature
constructors
QVarId : Modid * VARID -> QVARID
QConId : Modid * CONID -> QCONID
QVarSym : Modid * VARSYM -> QVARSYM
QConSym : Modid * CONSYM -> QCONSYM
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4.3.3 Haskell-Literals

module Haskell-Literals

signature
constructors
Int : String -> Literal
Char : String -> Literal
Float : String -> Literal
String : String -> Literal
PrimInt : String -> Literal
PrimChar : String -> Literal
PrimString : String -> Literal
PrimFloat : String -> Literal
PrimDouble : String -> Literal
CLitLit : String -> Literal

4.4 Modules

4.4.1 Haskell-Modules

module Haskell-Modules

signature
constructors
Program : List(Decl) -> Program
Module : Modid * Opt(Export) * List(Decl) -> Module
Body : List(Decl) -> Module
TopDecls : List(Decl) -> Module

4.5 Declarations

4.5.1 Haskell-Types

module Haskell-Types
signature

sorts TVar Type

(* subsorts TVar < Type *)

constructors
TArrow : Gtycon
TUnit : Gtycon
TList : Gtycon
TProduct : Gtycon
TVar : String -> TVar
TCon : String -> Type
TApp : Type * List(Type) -> Type
TFun : List(Type) * Type -> Type
Forall : List(TVar) * Type -> Type

ForallContext : List(TVar) * Context * Type -> Type
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TList : Type -> Type

TProd : List(Type) -> Type
TAppBin : Type * Type -> Type
TFunBin : Type * Type -> Type

4.5.2 Haskell-Type-Declarations

module Haskell-Type-Declarations
signature
constructors
Data : Type * List(Constr) * Deriving -> Decl

ConstrDecl : Option(Forall) * Option(Context)

* Conid * List(Type) -> Constr
TypeDecl : Tycon * List(Tyvar) * Type -> Decl
NewTypeDecl : Type * Newconstr * Deriving -> Decl
NoDeriving : Deriving

InfixConstr : Option(Forall) * Option(Context)
* Type * Conop * Type —-> Constr

4.5.3 Haskell-Signature-Declarations

module Haskell-Signature-Declarations
signature
constructors
SignDecl : Vars * Type -> Topdecl

4.5.4 Haskell-Value-Definitions

module Haskell-Value-Definitions

signature
constructors
Valdef : Exp * Exp -> Decl
ValdefW : Exp * Exp * Where -> Decl
GdValdef : Exp * List(Gdrh) * Where -> Decl
Guarded : Quals * Exp -> Gdrh
Where : List(Decl) -> Where

4.6 Expressions

4.6.1 Haskell-Expressions

module Haskell-Expressions

signature
constructors
Typed : Exp * Type -> Exp
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Var
Constr :
Lit

Abs
App
Let
Case

TAbs
TInst

(* sugar

Product:
AppBin :
If

Wildcard:
Unboxed:
TILDE
AT :
Labeled:

4.6.2 Haskell-Case-Alternatives

: String

String

: Literal

: List(TVar) * Exp
: Exp * List(Type)

*)

List (Exp)
Exp * Exp

: Exp * Exp * Exp

List (Exp)

: Exp
: Qvar * Exp

Exp * Fbinds

module Haskell-Case-Alternatives

signature
constructors
Alt  : Exp * Option(Type) * Exp

: List(Exp) * Option(Type) * Exp ->
: Exp * List(Exp)
: List(Decl) * Exp
: Exp * List(Alt)

Exp
Exp
Exp

Exp
Exp
Exp
Exp

Exp
Exp

Exp
Exp
Exp

Exp
Exp
Exp
Exp
Exp

-> Alt

A1tWw : Exp * Option(Type) * Exp * Where
GdAlt : Exp * Option(Type) * List(Gdpat) * Option(Where) -> Alt
GdPat : Quals * Exp

4.6.3 Haskell-Infix
module Haskell-Infix

signature
constructors
Infix : Infix
InfixL : Infix
InfixR : Infix
FixDecl : Infix * Prec * Ops ->
LSection : Infixexp * Qop ->
RSection : Qopm * Infixexp ->
Negation : Exp ->
OpApp : Exp * Qop * Exp ->
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Exp
Exp
Exp
Exp

-> Alt

-> Gdpat



4.6.4 Haskell-Build-Cata

module Haskell-Build-Cata
imports Haskell-Kernel
signature
constructors
Build : Type * Exp
Cata : Type * Type * List(Exp)
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-> Exp



Chapter 5

Pretty-Printing

5.1 Pretty-Printing Haskell

This chapter presents the specification of a pretty-printer for the abstract syntax
of Haskell. The pretty-printer is a mapping from the abstract syntax trees to
Box expressions, a language independent format for pretty-printing [15]. Box
expressions can be formatted for a variety of presentation targets including text,
HTML and ATEX.

5.1.1 PP-Haskell-Kernel

module PP-Haskell-Kernel

imports 1lib abox-ext
PP-Haskell-Identifiers
PP-Haskell-Identifier-Sorts
PP-Haskell-Literals
PP-Haskell-Modules
PP-Haskell-Types
PP-Haskell-Type-Declarations
PP-Haskell-Signature-Declarations
PP-Haskell-Expressions
PP-Haskell-Case-Alternatives
PP-Haskell-Value-Definitions
PP-Haskell-Infix
PP-Haskell-Qualifiers

strategies

main = iowrap(pp-haskell)
pp-haskell = topdown(repeat(PP-HSe <+ PP-HS))
rules

PP-HS : None -> EmptyBox()
PP-HS : Some(x) -> x
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5.2 Literals

5.2.1 PP-Haskell-Identifier-Sorts

module PP-Haskell-Identifier-Sorts
imports Haskell-Identifier-Sorts
rules

PP-HS : BinOp(x) -> Parens(S(x))

PP-HS : PrefOp(x) -> HOC[S("‘"), S(x), S("*™I1)

5.2.2 PP-Haskell-Identifiers

module PP-Haskell-Identifiers
imports abox Haskell-Identifiers
rules

PP-HS : QVarId(m, v) -> H([SOpt(HS,0)]1,[m, S("."), v])
PP-HS : QConId(m, v) -> H([SOpt(HS,0)]1,[m, S("."), v])
PP-HS : QVarSym(m, v) -> H([SOpt(HS,0)], [m, S("."), v])
PP-HS : QConSym(m, v) -> H([SOpt(HS,0)],[m, S("."), v])

5.2.3 PP-Haskell-Literals

module PP-Haskell-Literals
imports Haskell-Literals

rules
PP-HS : Int(x) -> S(x)
PP-HS : Char(x) -> S(x)
PP-HS : Float(x) -> S(x)
PP-HS : String(x) -> S(x)
PP-HS : PrimInt(x) -> S(x)

PP-HS : PrimChar (x) -> S(x)
PP-HS : PrimString(x) -> S(x)
PP-HS : PrimFloat(x) -> S(x)
PP-HS : PrimDouble(x) -> S(x)
PP-HS : CLitLit(x) -> S(x)

5.3 Modules

5.3.1 PP-Haskell-Modules

module PP-Haskell-Modules
imports Haskell-Modules
rules

PP-HS : Module(x, None, body) ->
V1([H1([S("module"), S(x), S("where"), S("{™)1),
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PP-HS :

PP-HS :
PP-HS :

body,
S

Program(body) ->
Vi([s("{"), body, S("}")])

Body (ds) -> Vi(<hpost-sep-list(id,!S(";"))> ds)
TopDecls(ds) -> Vi(<hpost-sep-list(id,!S(";"))> ds)

5.4 Declarations

5.4.1

PP-Haskell-Signature-Declarations

module PP-Haskell-Signature-Declarations
imports Haskell-Signature-Declarations

rules

PP-HS

5.4.2

: SignDecl(xs, tp) ->

H1([H1(<sep-list(PP-HS <+ MkS,!",")> xs), S("::"), tpl)

PP-Haskell-Type-Declarations

module PP-Haskell-Type-Declarations

imports Haskell-Type-Declarations abox

rules

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

5.4.3

Type(tycon, tyvars, t) ->
H1([Keyword(S("type")), tycon, Hi(tyvars), S("="), tl)

Data(t, cs, der) —>
H1([Keyword(S("data")), t,
VO([VO(<prebars(!S("="))> cs), der])])

NewType(tp, nconstr, der) ->
H1([Keyword(S("newtype")), tp, S("="), nconstr, der])

NoDeriving() -> EmptyBox()

ConstrDecl(forall, context, conid, tps) ->
Hi([forall, context, S(conid), H1(<map(MkParens)>tps)])

InfixConstr(forall, context, tp, conop, tp) ->
Hi([forall, context, tp, S(comop), tpl)

PP-Haskell-Types

module PP-Haskell-Types
imports Haskell-Types abox

rules
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PP-HS : TArrow -> S("(->)")
PP-HS : TUnit -> S("O")
PP-HS : TList -> S("[I")

PP-HS : TProduct -> S("(*** product type **x)")
// Note: depends on context

PP-HS : TCon(x) —> S(x)

PP-HS : TVar(x) —> S(x)

PP-HS : TAppBin(x, y) -> H1([x, y1)

PP-HS : TFunBin(x, y) -> Hi([Parens(x), S("->"), yl)

PP-HS : TApp(t, ts) ->
H1([t, H1(ts)])

PP-HS : TFun(ts, t) ->
H1([H1(<sep-list(MkParens,!"->")> ts), S("->"), t])

PP-HS : Forall(as, t) ->
H1([S("forall"), Hl(<commas> as), S("."), t])

PP-HS : ForallContext(as, t, t’) ->
H1([S("forall"), Hl(<commas> as), S("."), t, S("=>"), t’])

PP-HS : TList(t) -> H1([S("["),t,S("1"M1)
PP-HS : TProd(ts) -> Parens(H1l(<commas>ts))

5.4.4 PP-Haskell-Value-Definitions

module PP-Haskell-Value-Definitions
imports Haskell-Value-Definitions
rules
PP-HS : Valdef(el, e2) ->

Hi([el, S("="), e2])

PP-HS : ValdefW(el, e2, wr) —>
Hi([el, S("="), VO([e2, wr]l)])

PP-HS : GdValdef(e, gs, wr) ->
Hi([e, VO([gs, wrl)])

PP-HS : Guarded(gs, e) ->
H1([S("|"), Hi(<sep-list(id,!",")>qgs), el)

PP-HS : Where([]) —>
EmptyBox ()
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PP-HS :

Where(ds) ->
H1([S("where"), S("{"), VO(<semicolomns> ds), S("}")])
where <not([])> ds

5.5 Expressions

5.5.1 PP-Haskell-Case—-Alternatives

module PP-Haskell-Case-Alternatives
imports Haskell-Case-Alternatives

rules

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-SIG :
PP-SIG :

Alt(e, sig, e2) ->
ALT(H1([H1([e, <PP-SIG> sigl), H1([S("->"), e21)1),
VO([H1([e, <PP-SIG> sigl), H1([S("->"), e21)1))

AltW(e, sig, e2, wr) ->
VO([H1([e, <PP-SIG> sig]), VO([HL(L[S("->"), e2]), wr]l)]1)

GdAlt (e, sig, pats, wr) —>
VO([H1([e, <PP-SIG> sig, VO(pats)]), wrl)

GdPat (quals, e) ->
H1([S("|"), <sep-list(id,!",")> quals, S("->"), el)

None -> Nome
Some(sig) -> H1([S("::"), sigl)

5.5.2 PP-Haskell-Expressions

module PP-Haskell-Expressions
imports Haskell-Expressions Haskell-Build-Cata

rules

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

Var(x) -> S(x)
where <is-string> x

Var(x) -> x
where <not(is-string)> x

Constr(x) —> S(x)
where <is-string> x

Constr(x) -> x
where <not(is-string)> x

Lit(x) -> S(x)
where <is-string> x
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PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS

Lit(x) -> x
where <not(is-string)> x

Wildcard -> S("_")

Product(es) ->
HOC[S("("), Hi(<commas> es), S(")")1)

Unboxed(es) ->
HOC[S("(#"), Hi(<commas> es), S("#)")])

TILDE(e) -> HOC[S("~"), el)

AT(x, e) -> HO([x, s("e"), el)

: Labeled(e, fbnds) ->

HO([e, S("{"), Hi(<commas> fbnds), S("}")]1)

PP-HS: AppBin(el, e2) ->

PP-HSe:

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

HO([el, Parens(e2)])

App(Var(BinOp(op)), [el, e2]) ->
ALT (Parens(H1([el, S(op), e2])),
ALT(HO([Var (BinOp(op)), <map(MkParens)>[el, e2]]),
VO([Var(BinOp(op)),
Indent (VO (<map (MkParens)>[el, €2]))]1)))

App(e, es) ->
ALT(HO([e, <map(MkParens)>es]),
VO([e, Indent(VO(<map(MkParens)>es))]))

Typed(e, t) —->
Parens(H1([e, S("::"), t1))

Abs(args, sig, e) ->
Parens (VO ([H1([HO(LS("\\\\"), Hi(args)]),
<PP-SIG> sig, S("->M1),
el))

TAbs(ts, e) —>
VOC[HLI([HOCLSC"/\\\\"), H1(ts)1), S("->")1), el)

Let(decls, e) —>
VO([H1([S("1et"), S("{"),
VO(<semicolons> decls),
S,
H1([S(" in"), e1)1)

If(el, e2, e3) —>
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PP-HS :

PP-HS :

PP-HS :

PP-HS :

VO([H1([S("if"), el, S("then")]),
Indent(e2), S("else"), Indent(e3)])

Case(e, alts) —>

VO([H1([S("case"), e, S("of™) 1),
VO(<presemicolons(!S("{"))> alts),
S

TInst(e, t) ->
H1([e, HOC[S("[™), t, SC"IMDD

Build(t, e) ->
HO([S("build"), Parens(VO([HO([t, S(",")1), el))1)

Cata(tl, t2, es) —>
ALT(HO([S("cata"), S("["), tl, S("]"), s(u[u), t2, S("]"),
Parens (H1(<post-commas> es))]),
VO([HO([S("cata"), S("["), tl, S("]"), S("["), t2, S("]")]),
Indent (Parens (VO (<post-commas> es)))]))

5.5.3 PP-Haskell-Infix

module PP-Haskell-Infix
imports Haskell-Infix

rules

PP-HS

PP-HS :

PP-HS :

PP-HS :

PP-HS :

PP-HS :

: Infix -> S("infix")
PP-HS :
PP-HS :

InfixL -> S("infix1")
InfixR -> S("infixr")

FixDecl(i, p, ops) ->
H1([i, p, Hl(<sep-list(id,!",")> ops)])

LSection(e, op) ->
Parens(H1([e, S(op)1))

RSection(op, e) ->
Parens(H1([S(op), el))

Negation(e) ->
HO([S("-"), el)

OpApp(el, op, e2) —->
Parens(H1([el, S(op), e2]))
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Chapter 6

Intermediate Formats

6.1 HS-Check

The transformation components defined in this paper all work on Haskell pro-
grams in abstract syntax form. However, most components accept only a subset
of the entire language. In this module these subsets are characterized by means
of recursive patterns [32]. These strategies can be used to check conformance of
intermediate results to one of the subsets.

module HS-Check
imports Haskell-Kernel 1ib

The patterns are extended to report violations of the format. The constructor
Error tags a subterm as erroneous, with a string indicating the type of the
error. The rule MkError tags a term with this constructor and also prints a
message to stderr.

signature
constructors
Error : String * a -> a
rules

MkError(s) : x -> Error(<s>(), x) where <debug(s)> x

6.1.1 Fully Typed Programs

Type expressions consist of type variables, type constructors (functors), function
types (n-ary), type quantification, and type application. A type constructor
(TyCon) is used in data type declarations.

strategies

type(t) =
TVar(id) +
TCon(id) +
TFun(list(t), t) +
Forall(list(TVar(id)), t) +
TApp(t, list(t))
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TyCon =
TCon(id) + TApp(TCon(id), list(TVar(id)))

Type = rec t(type(t) <+ MkError(!"Not a type:"))

A fully typed expression is a typed atom, an abstraction over variables (not
patterns), a case expression with alternatives ranging over simple patterns (not
nested), let bindings or n-ary application, type abstraction, or type instantia-
tion.

AExp = Var(id) + Comstr(id) + Lit(id)
atom(t) = Typed(AExp, t)

TypedVar = Typed(Var(id),Type)
TypedAtom = atom(Type)

simple-pattern(var) =
Constr(id) +
App(Constr(id), list(var))

TypedPat =
simple-pattern(TypedVar)
<+ MkError(!"Not a TypedPat: ")

alt(e, t, pat) =
Alt(pat, option(t), e)
<+ MkError(!"Not amn alt: ")

exp(e, t, pat, var) =
Abs(1list(var), option(t), e) +
Case(e, list(alt(e, t, pat))) +
Let(list(decl(e, t)), e) +
App(e, list(e)) +
TAbs (list(TVar(id)), e) +
TInst(e, list(t))

TypedExp =
rec e((TypedAtom + exp(e, Type, TypedPat, TypedVar))
<+ MkError (!"Not a TypedExp: "))

A program consists of a list of top-declarations, which are data type definitions,
signature declarations or value definitions.

decl(e, t) =
Valdef (Var(id), e) +
SignDecl(1list(id), t)

topdecl(e, t) =
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decl(e, t) +
Data(TyCon, list(ConstrDecl(None,None,id,list(t))), id)

topdecls(td) =
TopDecls(list (td <+ MkError(!"Not a topdecl: ")))

hs-program(tds) =
Module(id, id, tds) +
Program(tds)

hs-typed = hs-program(topdecls(topdecl(TypedExp, Type)))

6.1.2 Partially Typed Programs

Input programs do not have to be fully typed, i.e., atomic expressions (variables,
constructors and literals) and variable declarations in abstractions and case
alternatives can occur without type annotation. In addition, input programs
can contain the binary versions of some n-ary constructors (AppBin, TFunBin,
TAppBin), can contain infix operator applications (OpApp), and some syntactic
sugar (If).

pre-type(t) =
TFunBin(t, t) +
TAppBin(t, t)

PreType =
rec t((type(t) + pre-type(t))
<+ MkError(!"Not a PreType: "))

PreVar =
Var(id) +
Typed(Var(id) , PreType)

PrePat =
simple-pattern(PreVar)
+ rec x(AppBin(x, PreVar) + Constr(id))
<+ MkError(!"Not a PrePat: ")

pre-exp(e) =
OpApp(e, id, e) +
AppBin(e, e) +
Negation(e) +
If(e, e, e)

PreExp =
rec e((AExp + atom(PreType) + pre-exp(e) +
exp(e, PreType, PrePat, PreVar))
<+ MkError(!"Not a PreExp:"))

PreTycon =

72



TyCon +
rec x(TAppBin(x, TVar(id)) + TCon(id))

pre-topdecl(e, t) =
Data(PreTycon, list(ConstrDecl(None,None,id,list(t))), id) <+
topdecl(e, t)

hs-input =
hs-program(topdecls(pre-topdecl(PreExp, PreType)))

6.1.3 Output Language

The output of the warm fusion transformation is again a fully typed program,
but can in addition contain applications of Build and Cata.

ext-exp(e, t) =
Cata(t, t, list(e)) +
Build(t, e)
ExtExp =
rec e((TypedAtom + exp(e, Type, TypedPat, TypedVar) +

ext-exp(e, Type))
<+ MkError(!"Not an ExtExp: "))

hs-output =
hs-program(topdecls(pre-topdecl (ExtExp, Type)))

6.1.4 Components

The format checkers for the three subsets are defined as follows:
hs-input-component = iowrap(hs-input)
hs-typed-component = iowrap(hs-typed)

hs-output-component = iowrap(hs-output)
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Chapter 7

Basic Transformation
Utilities

7.1 Haskell-Lib

The Haskell-Lib is a collection of utilities for transforming Haskell programs
not specific for warm fusion. Module Haskell-Variables defines strategies for
manipulating variables in expressions (bound variable renaming, free variable
extraction, substitution, unification). Module Haskell-Type-Projection de-
fines strategies for deriving types from fully typed expressions and for stripping
type annotations from typed programs. Module Haskell-Data-Definitions
defines strategies for storing data type declarations in and retrieving them from
a symbol table.

module Haskell-Lib

imports Haskell-Variables
Haskell-Type-Projection
Haskell-Data-Definitions

7.2 Haskell-Variables

This module defines strategies for manipulating expressions with (bound) vari-
ables by instantiating several generic strategies from the Stratego library. (See
[34]for an introduction into these strategies). The *vars strategies extract the
free variables from an expression. The *rename strategies rename all bound vari-
ables in an expression to new unique names. The *subst strategies substitute
expressions for variables in an expression given a list of pairs of variables and
expressions. The strategy tpunify tries to unify two type expression, produc-
ing a substitution if successful. The generic strategies are parameterized with
strategies identifying sub-terms representing variables and binding constructs.
These parameter strategies are defined using rules.

module Haskell-Variables
imports Haskell-Kernel 1ib substitution unification
rules
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IsVar(s) : Var(x) -> Var(<s> Var(x))

ExpVar : Typed(Var(x),_) -> Var(x)

ExpVar : Var(x) -> Var(x)

ExpVars : Var(x) -> [Var(x)]

ExpBnd : Abs(xs, _, _) -> <map(ExpVar)> xs

ExpBnd : Alt(App(c, xs), t, e) -> <map(ExpVar)> xs
ExpBnd : Let(decls, e) -> <filter(DeclVar)> decls
DeclVar : Valdef(Var(x), e) -> Var(x)

IsTVar(s) : TVar(x) -> TVar(<s> TVar(x))

TpVar : TVar(x) -> TVar(x)

TpVars : TVar(x) -> [TVar(x)]

TpBnd : Forall(as, t) -> as

TpBnd : TAbs(as, e) -> as
strategies

VarName = ExpVar; \ Var(x) -> x \

expvars = free-vars(ExpVars, ExpBnd)
tpvars = free-vars(TpVars, TpBnd)

exprename = rename(IsVar, ExpBnd)
tprename = rename(IsTVar, TpBnd)
etrename = exprename; tprename

expsubst = substitute(Typed(Var(id),id) + Var(id), etrename)
tpsubst substitute(TVar(id), tprename)

tpsubst’’ = substitute(TVar(id))

expsubst’ (1st) = split(lst, id); expsubst

tpsubst’ (1lst) = split(lst, id); tpsubst

tpunify = unify(TVar(id))

hs-rename-component = iowrap(etrename)

7.3 Haskell-Type-Projection
module Haskell-Type-Projection

imports Haskell-Kernel Haskell-Variables
Haskell-Normalize WF-Rules 1lib
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7.3.1 Type Extraction

The type strategy maps a fully typed expression to its type. Since only atoms
(variables, constructors and literals) are annoted with types, a little type ma-
nipulation is needed to compute the right type.

strategies
type = rec x(GetType(x))

rules
GetType(s) : Typed(x, t) -> t
GetType(s) : Abs(xs, t, e) -> TFun(<map(s)> xs, <s> e)
GetType(s) : App(e, es) -> <try(Uncurry)> TFun(tsl, tO0)

where <s> e => TFun(ts0, t0);
<zip-tail>(<map(s)>es, ts0) => tsl

GetType(s) : Case(el, [Alt(e2, t, e3) | as]) -> <s> e3

GetType(s) : Let(decls, e) -> <s> e

GetType(s) : TAbs(as, e) -> Forall(as, <s> e)
GetType(s) : TInst(e, ts) -> <try(TBeta)> TApp(<s> e, ts)

GetType(s) : Cata(tl, t2, es) -> TFun([t1], t2)
GetType(s) : Build(t, e) -> t

7.3.2 Type Stripping

Fully typed programs can be turned into untyped programs by stripping off types
from all atoms and variable declarations in abstractions. Also the type results
in abstractions and case alternatives should be thrown away. The following
transformation achieves this.

strategies
strip-types = bottomup(try(StripTl + StripT2 + StripT3))
strip-types-component = iowrap(strip-types)
rules
StripTl : Typed(x, t) -> x
StripT2 : Abs(xs, t, e) -> Abs(xs, None, e)

StripT3 : Alt(el, t, e2) -> Alt(el, None, e2)
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7.3.3 Type Manipulation

The domain of a function is its first argument (dom) and the range of a function
is the rest of its argument and the result type (range).

rules

dom : TFun([t1 | ts], t3) -> t1
range : TFun([t1], t2) -> t2
range : TFun([t1l, t2 | ts], t3) -> TFun([t2 | ts], t3)

A type is generalized by quantifying over all its free type variables. A polymor-
phic type is instantiated by renaming it (to create new unique variable names)
and then leaving off its outer quantifier.

rules
Generalize : t -> Forall(as, t) where <tpvars> t => as
strategies

instantiate = tprename; try( \ Forall(_,t) -> t \ )

7.4 Haskell-Data-Definitions

Several of the transformations in the warm fusion algorithm generate expressions
based on type information. In order to access the data type definitions at
arbitrary places, these are stored in a symbol table.

module Haskell-Data-Definitions
imports Haskell-Kernel

7.4.1 Storing Data Type Definitions

The strategy collect-data-defs stores each data definition in the program in
the tycon table. The table maps the name of the data type to the pair of formal
type parameters and the constructor declarations.

strategies

collect-data-defs =
where (<create-table> "tycon");
map (try(StoreDataDef)) ;
where (<table-keys> "tycon")

StoreDataDef =
?Data(TCon(x), cs, _);
<table-put> ("tycon", x, ([1, cs))

StoreDataDef =

?Data(TApp(TCon(x), as), cs, _);
<table-put> ("tycon", x, (as, cs))
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7.4.2 Retrieving Constructor Declarations

Given a type constructor (possibly applied to a list of actual type parameters)
the strategy get-constructors produces a list of constructor declarations (in-
stantiated to the actual parameters).

rules

get-constructors :
TCon(c) -> cs
where <table-get>("tycon", c) => ([], cs)

get-constructors :
TApp(TCon(c), ts) -> <tpsubst> (as, ts, cs)

where <table-get> ("tycon", c) => (as, cs)

Given the name of a constructor and its data type produce the list of argument
types of the constructor.

strategies

get-constructor-arg-types =
(id, get-comnstructors); get-constructor

rules
get-constructor :

(c, arms) -> ts
where <fetch(ConstrDecl(id,id,?c,?ts))> arms
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Chapter 8

Normalization

8.1 Haskell-Normalize

The syntax definition of Haskell defines many operations as binary (curried)
operations. For the purpose of transformation an n-ary representation is more
convenient. In this chapter a normalization of binary to m-ary representation
is specified. This normalization is achieved in two phases. In the first phase
binary operations are mapped to their n-ary counterparts. In the second phase,
curried applications of such n-ary applications are uncurried, i.e., the argument
lists are collapsed.

module Haskell-Normalize
imports 1lib Haskell-Kernel
strategies
normalize =
topdown (try(SubtractionHack <+ U2N + B2N + If2Case));
uncurry
rules
B2N : AppBin(el, e2) -> App(el, [e2])
B2N : TAppBin(el, e2) -> TApp(el, [e2])
B2N : TFunBin(t1, t2) -> TFun([t1], t2)

B2N : OpApp(el, op, e2) -> App(Var(BinOp(op)), [el, e2])

SubtractionHack :
AppBin(el, Negation(e2)) -> App(Var(BinOp("-")), [el, e2])

U2N : Negation(e) -> App(Var("-"), [el)

If2Case :
If(el, e2, e3) —>
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Case(el,[Alt(Constr("True") ,None,e2),
Alt(Constr("False") ,None,e3)])

Normalizing nested applications of n-ary constructors

strategies

uncurry = topdown(repeat (Uncurry))
rules

Uncurry : TFun([], t) > t

Uncurry : TApp(t, [1) >t

Uncurry : App(e, [1) -> e

Uncurry : Abs([], t, e) > e

Uncurry : Abs(xs, tl, Abs(ys, t2, e)) ->
Abs(<conc> (xs, ys), tl, e)

Uncurry : TFun(tsl, TFun(ts2, t)) -> TFun(<conc>(tsl, ts2), t)
Uncurry : App(App(f, argsl), args2) -> App(f, <conc>(argsl, args2))
Uncurry : TApp(TApp(f, argsl), args2) -> TApp(f, <conc>(argsl, args2))
Uncurry’: TFun(ts, t) -> TApp(TArrow, <conc>(ts, [t]))
Uncurry : TApp(TArrow, ts) -> TFun(<init> ts, <last> ts)

strategies

hs-normalize-component = iowrap(normalize)
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Chapter 9

Typechecking

9.1 Haskell-Typecheck

For the purpose of the warm fusion transformation, programs are required to
be fully typed, i.e., for every subexpression it should be possible to infer its
type without reference to declarations in the context. Since writing fully typed
programs is untractable for humans, a typechecker is defined that turns a par-
tially typed program (in the hs-input format) into a fully typed program (in
the hs—-typed format).

module Haskell-Typecheck
imports Haskell-Kernel Haskell-Lib 1ib

strategies
main = iowrap(tc-module)

tc-module = Module(id, id, TopDecls(typecheck))

tc-module = Program(TopDecls (typecheck))

typecheck =
where(collect-data-defs);
where(collect-signatures => env);
map (try(annotate-def (!env)))

Top-level signatures

strategies
collect-signatures =
filter (get-signature) ;
concat

rules

get-signature :
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SignDecl(fs, t) -> <map(\ £ -> (£, t’)\ )> fs
where <Generalize> t => t’

get-signature :
Data(t, cs, _) ->
<map ({c, ts: ?ConstrDecl(_,_,c,ts);
'(c, <(<Nil>ts;!t <+ !TFun(ts, t)); Generalize> ())})> cs

Distributing types over bodies of value definitions

signature
constructors
Tenv : Exp * List(Prod([String, Typel)) -> Exp

strategies

tc-exp = rec x(tc(x) <+ debug; RmTenv <+ debug)
rules

RmTenv : Tenv(e, env) -> e

annotate-def (env)
Valdef (Var(f), e) —>
Valdef (Var(f), <tc-exp> Tenv(Typed(e, t), <env>()))
where <lookup; instantiate>(f, <env>()) => t

tc(s) : Tenv(Typed(Typed(e, t), None), env) -> Tenv(Typed(e, t), env)

tc(s) : Tenv(Typed(Var(x), t0), env) ->
<tpsubst> (sbs, Typed(Var(x), t1))
where <lookup; instantiate>(x, env) => t1;
<[(id,None)]; !'[] <+ tpunify> [(t1, t0)] => sbs

tc(s) : Tenv(Typed(Constr(x), t0), env) ->
<tpsubst> (sbs, Typed(Constr(x), t1))
where <lookup; instantiate>(x, env) => t1;
<[(id,None)]; !'[] <+ tpunify> [(t1, t0)] => sbs

tc(s) : Tenv(Typed(Lit(Int(x)), _), env) ->
Typed(Lit (Int(x)), TCon("Int"))

tc(s) : Tenv(Typed(App(e, es), t), env) —->

<tpsubst> (sbs, App(e’, es’))

where
<s> Tenv(Typed(e, None), env) => e’;
<type> e’ => TFun(ts, t’);
<map(\x -> <s>Tenv(Typed(x,None),env)\ )> es => es’;
<map(type)> es’ => ts’;
<zipr(id); (tpunify <+ debug(!"types do not match: "); FAIL)>
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tc(s)

tc(s)

tc(s)

tc(s)

(ts, ts’) => sbs

: Tenv(Typed(Abs(xs, t, e), TFun(ts, t’)), env) ->

Abs(ys, Some(t’), <s> Tenv(Typed(e, t’), <conc>(env’, env)))
where <zip(\ (x,t) -> Typed(x,t)\ )>(xs, ts) => ys;
<map (split(VarName, type))> ys => env’

: Tenv(Typed(Case(e, alts), t), env) ->

Case(e’, alts’)
where <s> Tenv(Typed(e, None), env) => e’;
<type> e’ => t’;
<map(\alt -> <s> Tenv(Typed(alt, TFun([t’], t)), env) \ )>
alts => alts’

: Tenv(Typed(Alt(Constr(c), t0, e), TFun([t1], t2)), env) ->

A1t (Constr(c), Some(tl), <s> Tenv(Typed(e, t2), env))

: Tenv(Typed(Alt (App(Constr(c), xs), t0, e),

TFun([t1], t2)), env) ->
A1t (App(Constr(c), ys), Some(tl),
<s> Tenv(Typed(e, t2), <conc> (env’, env)))
where <get-constructor-arg-types> (c, tl) => ts;
<zip(\ (x,t) -> Typed(x,t)\ )>(xs, ts) => ys;
<map (split(VarName, type))> ys => env’
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Chapter 10

Simplification

10.1 WF-Auxiliary

module WF-Auxiliary
imports Haskell-Kernel

rules

MkTFun : (x, y) =-> TFun(x, y)

MkTFunl : (x, y) -> TFun([x], y)
MkApp : (£, es) -> App(f, es)
MkAppl : (£, e) -> App(f, [el)

new-tvar :
x -> TVar(a) where new => a

new-typed-var :
t -> Typed(Var(x), t) where new => x

Comp :
(f, g) —> Abs(x, t, App(f, App(g, x)))
where <type; Dom> g => t; new => x

Identity :
t -> Abs([Typed(Var(x), t)], Some(t), Typed(Var(x), t))
where new => x

strategies

value =
rec x(Typed(Var(id) +
Lit(id) +
Constr(id), id) +
Abs(id, id, id))
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linear =
7(x, t);
<atmostonce(?Var(x))> t;
<not (underabs(?7x))> t

underabs(s) = oncetd(App(id, Abs(id, id, oncetd(Var(s)))))

10.2 WF-Rules: Reduction Rules

module WF-Rules
imports Haskell-Lib WF-MapGen WF-Auxiliary

10.2.1 Abstraction and Application

Beta reduction. Rule BetaOne defines the application of a function to its first
argument. Rule Beta reduces an application for as many arguments as possible,
taking account of the fact that there may be fewer formal than actual param-
eters, or the other way around. The strategy rest-zip matches formal with
actual parameters and produces the rest lists of formal parameters ys (empty in
case of saturation), actual parameters bs, and a substitution sbs mapping for-
mal to actual parameters. The rules only apply if for each argument either the
actual parameter is a value or the formal parameter is linear in the body. Note
that any empty abstraction or application will be cleaned up by the Uncurry
rules.

rules

BetalOne :
App(Abs([x|xs], t, e), [alas]) —>
App(Abs(xs, t, <expsubst> ([x], [al, e)), as)
where <value> a + <linear> (x, e)

Beta :
App(Abs(xs, t, e), as) ->
App(Abs(ys, t, <expsubst> (sbs, e)), bs)
where <rest-zip(id)> (xs, as) => (ys, bs, sbs);
(<1zip((id,value) + (Fst,id); linear)> (sbs, e))

Extensionality

Eta :
Abs(xs, t, App(e, xs)) -> e
where <1lzip(not(in))> (xs, e)

Inlining

Inl :
Let([Valdef (Var(x), e1)], e2[Typed(Var(x),t)]) ->
Let([Valdef (Var(x), el)], e2[<etrename> el])

Dead code elimination
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Dead :
Let([Valdef (Var(x), el1)], e2) -> e2
where <not(in)> (Var(x), e2)

10.2.2 Type Abstraction and Type Application
TBeta :
TInst(TAbs(as, e), ts) -> <tpsubst> (as, ts, e)

TEta :
TAbs(as, TInst(e, as)) -> e
where <1lzip(not(in))> (as, e)

TBeta :
TApp(Forall(as, t), ts) -> <tpsubst> (as, ts, t)

10.2.3 Case

Case specialization

CaseConstr :
Case(Typed(Constr(c), t), as) -> e
where <fetch(?Alt(Constr(c), _, e))> as
CaseConstr :

Case (App(Typed(Constr(c), ct), es), as) —->

<expsubst> (xs, es, e)

where <fetch(7Alt (App(Constr(c), xs), t, e))> as;
(<list(value)> es + <lzip(linear)> (xs, e))

Application distributes over case

CaseDistL :
App(Case(e, as), es) -> Case(e, as’)
where <1zip(ArmAppL)> (as, es) => as’

ArmAppL :
(Alt(c, t, e), es) -> Alt(c, t, App(e, es))

CaseDistR ::
App(?7f, split-fetch(7Case(e, as)); 7(esl, es2)) -->
1Case(e, <1zip(AltAppR)> (as, (f, esl, es2)))
AltAppR :

(Alt(c, t, e), (f, esl, es2)) —>
Alt(c, t, App(f, <concat> [esl,[e],es2]))

10.2.4 Cata and Build

cata-build fusion
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CataBuild :
App(Cata(tl, t2, fs), [Build(tl, g)1) ->
App(TInst(g, [t2]), fs)

specialization of a cata applied to a constructor

CataConstr :
App(Cata(tl, t2, fs), [Typed(Comnstr(c), t’)]) -> £
where
<(get-constructors, id);
zipFetch(?(ConstrDecl(_,_,c,_), £))> (t1, £fs)

CataConstr :
App(Cata(tl, t2, fs), [App(Typed(Constr(c), t’), es)]) ->
App(f, <zip(MkApp1)> (fs’, es))
where

<(get-constructors, id); zipFetch(?(ConstrDecl(_,_,c,_), f))
>(t1, fs);
<Ec> (t1, Cata(tl, t2, fs), c) => fs’

10.3 WF-Simplify

module WF-Simplify
imports WF-Rules Haskell-Normalize fixpoint-traversal

Simplification of expressions using the basic rules of the calculus.
strategies
basic_rules =
Beta + Eta + (Inl; Dead) + TEta + TBeta +
CaseConstr + CaseDistL + CaseDistR + Uncurry
basic-cata = CataConstr + CataBuild + basic_rules
basic-tycon = basic_rules

simplify = innermost(basic-cata)

simplify’ = innermost(basic-tycon)
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Chapter 11

The Warm Fusion
Transformation

11.1 WF-Main: Transforming all Definitions

module WF-Main
imports WF-Trans

strategies
main = iowrap(topwrap(Main))
topwrap(s) = Module(id, id, TopDecls(s)) + Program(TopDecls(s))

Main = etrename;
where(collect-data-defs);

InitWF;
repeat (TransformDecl <+ NormD) ;
ExitWF
rules
InitWF :

ds -> ([1, [, ds)

ExitWF :
(ds1, ds2, [1) -> <reverse> ds2

TransformDecl :
(ds1, ds2, [d @ Valdef(Var(name),e) | ds3]) ->
([d° | ds1], [d’ | ds2], ds3)

where
<debug(!"transforming: ")> name;
<ior(inline(!ds1); say(!" inlined"),
Transform; say(!" transformed"))> d => 4’
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NormD :
(ds1, ds2, [d| ds3]) -> (ds1, [d]| ds2], ds3)

strategies
inline(mkenv) = manytd(Inline(mkenv)); simplify
rules

Inline (mkenv)
Typed(Var(x), t) -> <tpsubst; etrename> (sbs, e)
where mkenv; fetch(?Valdef(Var(x), e)); <not(in)> (Var(x), e);
<tpunify> [(<type> e, t)] => sbs

11.2 WF-Trans: Transforming one Definition

module WF-Trans
imports WF-Rules WF-DynamicRules WF-Catalntro
WF-Split WF-Simplify WF-Unfold

Strategy Transform’ embodies the basic idea of the warm fusion transforma-
tion. First introduce the build-cata identity in the body of the function defini-
tion. Then split the body into a wrapper and a worker. Unfold the wrapper
in the worker to obtain a worker that is recursive with respect to itself. Derive
a catamorphism from the definition of the worker. Finally, unfold the trans-
formed worker back in body of the wrapper. The intermediate results of this
transformation are cleaned up by simplifying them.

strategies

Transform’ =
IntroBuildCata;
simplify;
SplitBodyCP;
Unfoldlin2;

[id, simplify;

MakeCataBody] ;
Unfold2ini;
simplify

The transformation rule above succeeds if the function definition it is applied to
is a function that consumes a data structure and produces a new one. The result
will be a function definition of the form Abs(...,Build(...Cata(...)...)).
The basic transformations that we have defined can also deal with functions that
either consume or produce a data structure. A consumer will be transformed
to a Cata and a producer to a Build. The definitions below factor out the basic
transformations from the pipeline above into transformations that achieve the
three kinds of transformation.

89



The transformation Transform tries all three transformations. First it tries to
introduce a build and cata wrapping the body of the function. If that succeeds
the function is at least a producer of a data structure and possibly a consumer
as well. Otherwise it might only be a consumer.

Transform =
((IntroBuildCata;
simplify;
(ConsumerProducer
<+ Producer
<+ NonRecursiveProducer))
<+ Consumer) ;
simplify

A consumer /producer can be turned into Cata form by first splitting the body at
the case expression and then transforming the split off definition with BodyToCata.

ConsumerProducer =
SplitBodyCP;
BodyToCata

The strategy BodyToCata takes the definitions of the wrapper and worker func-
tions. It unfolds the wrapper in the worker, simplifies the result and then tries
to fuse the worker with the copy function (Cata(cl,...,cn)). The result is
unfolded in the wrapper to obtain the new definition of the function.

BodyToCata =

Unfold1in2;

[id, simplify;
SplitBodyPall;
Unfoldlin2;

[id, simplify;
MakeCataBody] ;
Unfold2ini];
Unfold2inl

The body of a producer cannot be turned into a Cata. Therefore workers are
split off to catch the static parameters of the function.

Producer =

SplitBodyP;

Unfold1lin2;

[id, simplify;
SplitBodyP;
Unfoldlin2;
[id, simplify];
LetUnfold2ini];

LetUnfold2inil

In case of a producer that is not recursive there is nothing to do after introducing
the build-cata and simplifying.

NonRecursiveProducer =
id
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In the case of a consumer, i.e., a function that consumes a datastructure, but
does not produce a new one, the build-cata introduction fails, but the rest of
the transformation is the same as in the case of a consumer-producer.

Consumer = ConsumerProducer

11.3 WF-CataIntro: Introducing Catamorphisms

module WF-CataIntro
imports Haskell-Build-Cata Haskell-Lib
rules

MkBuildCata :
e -> Build(t1l, TAbs([t2], Abs(fs, Some(t2),
App(Cata(tl, t2, fs), [el))))
where new-tvar => t2; <type> e => tl;
<get-constructors> tl => cdecls;
<lzip(AbsConstr)> (cdecls, (t1, t2)) => fs

AbsConstr :
(ConstrDecl(_, _, c, ts), (tl, t2)) -> Typed(Var(f), TFun(ts’, t2))
where new => f; <map(try(?7t1;!t2))> ts => ts’
strategies

IntroBuildCata = Valdef(id, under-abs(MkBuildCata))

under-abs(s) = rec x((Abs(id, id, x) + TAbs(id, x)) <+ s)

11.4 WF-Split: Abstracting Expressions

module WF-Split
imports Haskell-Build-Cata Haskell-Lib

11.4.1 Function Parameters

The rule AllParams transforms a function definition into the list of formal
parameters of the function.

rules

AllParams : Valdef(Var(f), Abs(xs, t, e)) -> xs

The rule call-args recognizes a call site of a function f and transforms it to
the list of arguments of the function.

call-args(mkf) : App(Typed(Var(f), t), es) -> es where mkf => f
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11.4.2 Non-static Function Parameters

The rule NonStaticParams derives the list of non-static parameters of a func-
tion by taking the list of all parameters and eliminating those that are passed
verbatim to recursive calls of the function.

rules

NonStaticParams :
Valdef (Var(f), Abs(xs, t, e)) -> xs’
where <collect(call-args(!f))> e => argss;
<non-static> ([], xs, argss) => xs’

strategies

non-static = repeat(NonStaticl <+ NonStatic2 <+ NonStatic3)
rules

NonStaticl : (ys, [, _) -> <reverse> ys

NonStatic2 : (ys, [xt @ Typed(Var(x), t) | xs], argss) ->
(ys, xs, <map(T1l)> argss)
where <map(?7[xt | _])> argss

NonStatic3 : (ys, [x | xs], argss) ->
([x | ysl, xs, <map(try(Tl))> argss)

11.4.3 Abstraction of Expression

The rule SplitExpr split an expression e in a new function definition with e as
body and a call to that function to replace the expression, i.e.,

e > (f xs, £ =\xs -> e)
The function abstracts over the variables in mkxs.

rules

SplitExpr (mkxs)
e -> (App(Typed(Var(f), t), xs), Valdef(Var(f), body))
where mkxs => xs; new => f;
<etrename> Abs(xs, Some(<type> e), e) => body;
<type> body => t

11.4.4 Split Wrapper

Given a strategy for splitting an expression in a call and a definition, the rule
SplitBody splits the expression in the body of a function definition that sits in
the argument of the Build expression under its leading value and type abstrac-
tions.
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rules

SplitBody(split) :
Valdef (Var(x), body) -> [Valdef (Var(x), body’), def]
where <under-abs-build(split => (e, def); !e)> body => body’

strategies

under-abs-build(split) =
rec x((Abs(id, id, x) + TAbs(id, x) + Build(id, split)) <+ split)

11.4.5 Reordering the Arguments

The rule SplitCaseExpr splits an expression just like SplitExpr, but puts the
argument that is inspected by the case statement in the expression first in the
list of variables that is abstracted over.

rules

SplitCaseExpr (mkxs) :
e —> <SplitExpr(!xs)> e
where <ReorderArgs> (e, <mkxs>()) => xs

ReorderArgs :
(e, x8) > [q | xs’]
where <casevar> e => q; <diff> (xs, [q]) => xs’

strategies
casevar = oncetd(?Case(q @ Typed(Var(_),_),_)); !q

11.4.6 Split Combinations

The building blocks for splitting functions can be combined in various ways; CP
stands for Consumer/Producer, P stands for Producer.

strategies

SplitBodyCP =
where (NonStaticParams => vs);
SplitBody(SplitCaseExpr(!vs))

SplitBodyCPall =
where(Al1Params => vs);
SplitBody(SplitCaseExpr(!vs))

SplitBodyP =

where (NonStaticParams => vs);
SplitBody(SplitExpr(!vs))
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SplitBodyPall =
where(Al1lParams => vs);
SplitBody(SplitExpr(!vs))

11.5 WF-DynamicRules: Implementing the Promo-
tion Theorem

module WF-DynamicRules
imports Haskell-Lib

11.5.1 Generation of Dynamic Rules

rules

DynRules :
(t, g, ¢) -> (ys, zs, rls)
where
<Ec> (t, g, c) => es;
<map (type; split(dom; new-typed-var, range; new-typed-var));
unzip> es => (ys, zs);
<zip(id)> (<zip(MkAppl; simplify)> (es, ys), zs) => rls

11.5.2 Application of Dynamic Rules

rules

AppDynRule (mkrls) :
App(f, y) > z
where <AppDynRule’ (mkrls)> App(f, y) => z

AppDynRule (mkrls) :
Typed(y, t) -> z
where <AppDynRule’ (mkrls)> Typed(y, t) => z

AppDynRule’ (mkrls) : e -> e’
where <lzipFetch(IsRule; 7e’)> (<mkrls>(), e)

IsRule :
((1’ I'), t) ->r
where <equal( \ Typed(e, _) -> e \ )> [(1,t)]

strategies

dsimplify(mkrls) = innermost(AppDynRule(mkrls) <+ basic_rules)
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11.5.3 Construction of Function for Constructor

rules

MkH :
(ConstrDecl(_, _, c, ts), (g, e, t)) -> h
where
<DynRules> (t, g, c) => (ys, zs, rls);
!Typed (Constr(c), TFun(ts, t)) => ct;
<dsimplify(!rls)>
Abs(zs, None, App(<etrename> e, [App(ct, ys)])) => h;

// checking that all ys have been rewritten
<not (oncetd({y : ?Var(y);
where(<fetch(Typed(Var(?7y),id))> ys)});
debug(!"MkH failed: "))> h

11.5.4 Construction of Catamorphism

Construct cata by composition of body of worker with copy cata function

rules

MakeCataBody :
Valdef (Var(g), e) -> Valdef (Var(g), Cata(tl, t2, hs))
where <type> e => tg;
<split(dom, range)> tg => (t1, t2);
<get-constructors> tl => cdecls;
<1zip(MkH)> (cdecls, (Typed(Var(g), tg), e, tl)) => hs

11.6 WF-MapGen: Generation of Maps from Data
Types

module WF-MapGen
imports Haskell-Lib

Given the datatype constructor T, the strategy E generates the map function
over T. E is applied to a pair (env, t) of an environment env and a type t.
The environment maps types to functions to be applied to that type.

strategies

E = rec x(E0 <+ E1 <+ E2(x))

rules
EO : (env, t) > g
where <lookup> (t, env) => g
E1l : (env, TVar(a)) -> <Identity> TVar(a)
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E1 : (env, TCon(a)) -> <Identity> TCon(a)

E1l : (env, TApp(tcon, ts)) -> <Identity> TApp(tcon, ts)
where <not(lzipFetch(lookup))> (ts, env)

E2(s) : (env, TApp(tcon, ts)) ->
App (<MkMapBody> (TApp(tcon, ts), rs), fs)
where <lzipFetch(lookup)> (ts, env);
// this might miss deeper embedded recursion?
<rzip(s)> (env, ts) => fs;
<map(type; range)> fs => rs

rules

Ec : (t, g, c) —>
<(id, get-constructor-arg-types); rzip(E)> ([(t, g)1, (c, t))

11.6.1 Generating Map Functions

The rule MkMapBody generates the implementation of a map function, mapping
a d as value to a d bs value. The implementation is in terms of build and cata.

(d as, bs) —>
\(f1 :: a1 ->bl) ... (fn :: an -> bn) :: (d as -> d bs) —>
build[d bs](/\ a -> \cl ... cn -> catal[d as][al(gl,...,gn))

The gi are functions that apply the parameter functions f in the appropriate
way. For lists we get

(List b, b’) ->
\(f :: b ->Db’) :: (List b => List b’) ->
build[List b’](/\ a -> \cl c2 ->
cata[List b][a]l(cl, \ x xs => c2(f x)(xs)))

rules

MkMapBody :
(TApp(tcon, ts), ts’) —->
Abs(fs, Some(TFun([TApp(tcon, ts)], TApp(tcon, ts?’))),
Build(TApp(tcon, ts’),
TAbs(a, Abs(cs, Some(a), Cata(TApp(tcon, ts), a, gs)))))

where
new-tvar => a;
<zip (MkTFunl; new-typed-var)> (ts, ts’) => fs;
<zip(id)> (ts, fs) => env0;
! [(TApp(tcon, ts), <Identity> a) | env0] => env;
<get-constructors> TApp(tcon, ts) => cdecls;
<1zip(MkG); unzip> (cdecls, (env, a)) => (cs, gs)

MkG :
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(ConstrDecl(_, _, c, ts), (env, res)) ->

(f, Abs(xs, Some(res), App(f, <zip(MkAppl)> (hs, xs))))

where <rzip(E)> (env, ts) => hs;
<map(type; split(dom, range)); unzip> hs => (doms, rans);
<map (new-typed-var)> doms => xs;
<new-typed-var> TFun(rans, res) => f
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