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Abstract

Building and using probabilistic models to perform stochastic optimization in the case
of continuous random variables, has so far been limited to the use of factorizations as the
structure of probabilistic models. Furthermore, the only probability density function (pdf)
that has been successfully tested on a multiple of problems, is the normal pdf. The normal pdf
however strongly generalizes the data and cannot cope with non-linear interactions among
the samples. In this paper, we show how clustering algorithms can be used to overcome this
problem. We also show how the normal mixture pdf can be used in the case of a general
factorization instead of the normal pdf. We formalize the notion of a probabilistic model and
propose to use two practical instances for the model structure, which are the factorization
and the mixture of factorizations. We propose to use metrics to find good factorizations
and thereby eliminate a complexity parameter x that was required in previous continuous
approaches in the case of a general factorization. We also show the background of the metrics
through general model selection on the basis of likelihood maximization, which demonstrates
their connection with previously used factorization selection algorithms. We use the IDEA
framework for iterated density estimation evolutionary algorithms to construct new continuous
evolutionary optimization algorithms based on the described techniques. Their performance
is evaluated on a set of well known epistatic continuous optimization problems.

1 Introduction

The Tterated Density Estimation Evolutionary Algorithm (IDEA) framework has been used to
apply probabilistic models to continuous stochastic optimization [8, 10, 11, 12, 13]. Algorithms
within the IDEA framework, build a probabilistic model from a selection of samples and subse-
quently draw more samples from the probability distribution imposed by the probabilistic model.
These samples are then incorporated among the currently available samples, after which selection
takes place again. As this process is iterated, the algorithm is intented to converge to a good
solution. Estimating and sampling from a probability distribution each iteration can be seen as a
combination of the recombination and mutation steps in evolutionary algorithms. Since a selection
of the available samples is used to create more solutions, the IDEA framework can be seen as an
evolutionary algorithm with an explicit use of statistics.

In previous work [8, 12], the normal pdf and and the normal kernels pdf have been used
as elementary probability density functions (pdfs). Using these pdfs, the estimated probability
distribution over the complete domain of problem variables is constructed. The normal pdf has
proven to be computationally effective and to result in acceptable optimization performance as
well [10, 11]. The normal kernels pdf on the other hand has proven to be promising in optimization
performance, but also to be very hard to handle [10]. Furthermore, its computational requirements
are quite large. It seems that the use of a normal mixture pdf is a good trade—off between the
normal pdf and the normal kernels pdf. The computational requirements of the normal mixture
pdf are smaller than those of the normal kernels pdf. Furthermore, its parameters can be estimated
using the EM algorithm, which eliminates the need for finetuning certain parameters by hand. In
this paper, we show how the normal mixture pdf can be used within the IDEA framework.



The normal pdf itself is unable to describe non-linear interactions in a sample set. The normal
mixture pdf can be used to overcome this problem. Another approach is to cluster the samples in a
preprocessing phase and to use the normal pdf in each cluster. Assuming that the clustering phase
effectively breaks up the non-linear interactions between the variables, this should result in an
effective estimation of the selected samples. In a pilot study by Pelikan and Goldberg, clustering
has been applied to optimization algorithms that use probabilistic models [25]. Here, we formalize
the notion of clustering as part of the model selection process and investigate what clustering
algorithms are effective in both computational running time as well as clustering performance.

In previous optimization algorithms that use continuous probabilistic models, only little atten-
tion has been paid to search metrics that guide the search for a good probabilistic model. In this
paper, we propose to use metrics that effectively prefer simpler models if they can describe the
samples in a similar manner as can more complex models. We are also show its correspondence
with significance testing using statistical hypotheses and the notion of likelihood as a description
of the goodness of an estimation.

We show how to use a higher level of modeling in the case of continuous probabilistic mod-
els using mixtures of distributions. Furthermore, we also provide useful search metrics to find
continuous probabilistic models within iterated density estimation evolutionary algorithms. The
combination of the proposed techniques leads to new algorithms. In this paper, we evaluate their
performance using a set of test functions.

The remainder of this paper is organized as follows. In section 2 we formalize the notion of a
probabilistic model. We also show how previous approaches have used a special instance for the
probabilistic model structure, which is called the factorization. In section 3, we go into model
selection. First, we discuss two approaches to model selection in general. Subsequently, we show
how these approaches can be used to find a good factorization. Finally, we investigate the use of
clustering algorithms to use a new higher order instance of probabilistic models in IDEAs, which
is a mixture of factorizations. In section 4, we show how the normal pdf and the normal mixture
pdf can be fit to any factorization and how we can draw samples from them. Subsequently, in
section 5, we go over the IDEA framework and show the difference between previous approaches
and the new approaches described in this paper. We also elaborate on the difference of the IDEA
approach and Evolution Strategies. In section 6, we test the new algorithms on a set of well known
test functions. In section 7, we discuss some topics of importance and possible future research.
Finally, this paper is concluded in section 8.

2 Probabilistic models

Given a vector of samples from a space defined by a cost function that without loss of generality we
seek to minimize, our aim is to build and use a probabilistic model that describes these samples.
The construction of this model should be effective in computation time requirements. Furthermore,
the model itself should be effective in descriptive power. Once a model has been built, more samples
are acquired using the probabilistic model. Subsequently, a new vector of samples is selected from
all of the available samples, after which again a probabilistic model is built. As this process is
iterated, the requirement that the computation time for model building should be reasonable, is
clear as this is the main ingredient of our non—deterministic inductive search. On the other hand,
the probabilistic model should efficiently describe the vector of selected samples in order for the
algorithm to sample from the promising regions of the search space. If the model is not effective
in its description, the regions may not be separated properly and the search does not propagate
effectively over most of the regions. Instead, only a single region could for instance be explored
and the algorithm is more likely to be mislead.

Before we can discuss how to effectively find a good probabilistic model, we have to define
exactly what such a model consists of. In section 2.1 we therefore formally define our concept of
probabilistic models that we shall use in our algorithms. One of the most fundamental concepts
is the factorization. We elaborate on the use of this basic concept in section 2.2. Finally, in
section 2.3 we give an overview of the use of probabilistic models in previous work. Also, we



indicate how we shall expand this use to more complex probabilistic models and present a general
overview that classifies previous work and the current work on the basis of the probabilistic model.

2.1 Inside a probabilistic model

We write @ = (ag,a1,...,a|q)—1) for a vector a of length |a|. Furthermore, we introduce the
notation a{c) = (@cy,acy,-- -, _,), meaning that (a{c)); = ac,,i € (0,1,...,|c| —1). We
assume that the dimensionality of our source is [ and write £ = (0,1,...,/—1). Given a vector of
I-dimensional data points S = (y°,y*,...,y!5I71), y® = y{(L) = (¥}, 4i,.-.,y}_,), we identify
! continuous random variables Yy, Y7, ..., ¥;_1. The probabilistic model that we define in this
section, describes a probability distribution over Y = (Yp, Yi, ..., ¥j—1). The contents of the
probabilistic model determines the complexity of the probability distribution.

As the probabilistic model describes a probability distribution, the iterated density estimation
approach is to find a probabilistic model and to draw new samples from the probability distribution.
To this end, we note that any probability distribution over continuous random variables consists
of probability density functions. The probability density function (pdf) is the most fundamental
part of a probability distribution and therefore of a probabilistic model. Let @ C £, meaning that
a contains only elements of £. As a basis, we first state the definition of the multivariate joint
pdf. Let dy({a) = Hlal ' dya,. The multivariate joint pdf f,(y(a)) over random variables Y (a)
can be written as:

/ / Faly(a))dy(a) = P(Y(a) € 4) 1)
|a\ 1
la]—1
such that [ [...[ faly(aDdy(a) =1, fu() 20, and 4= { ]] e | C B
=0

We write P(Y(a))(y{a)) for fq(y{(a)), making P(Y{a)) a pdf. In this way, we can use the
common probability notation P(Y {a)) over random variables Y (a) instead of writing fa(y(a))
for a density function. Furthermore, the use of this notation allows us to catch the properties of
probability distributions in both the elementary case of a single pdf as well as higher order cases in
which the distribution is factorized. One such a definition is that of conditional probability, which
will prove to be one of the most important. We let b C £ and define a LIb to be the splicing of the
two vectors so that the elements of b are placed behind the elements of a, giving |aUb| = |a|+|b|.
Using the definition of multivariate probability, we can write conditional probability as:

Py (b)) = T o) @

Combining the multivariate joint pdf from equation 1 with the multivariate joint probability
from equation 2, we can construct a probability distribution over Y. This can be done by specifying
a single multivariate joint pdf, but this can also be done by constructing a factorization. Since the
product of two pdfs is again a pdf, the probability distribution over Y can be factored such that
it becomes a product of multivariate pdfs (either joint or conditional). Actually, we can restrict
any factorization to use only multivariate conditional pdfs from equation 2, since we have that:

la|—1

=[] P(Va.lY.
=0

Yﬂi+27"'aYa\a|_1) (3)

a;t1)

When it is more beneficial to model the samples with a joint pdf P(Y{(a U b)) than with a
product of two joint pdfs P(Y (a))P(Y (b)), there is a dependency between variables Y(a) and
Y (b). In this case, we speak of an unconditional dependency. For any pair of variables Y; and Yj,
we have that it is either beneficial to use P(Y;|Y;) instead of P(Y;) or it is not. If it is more beneficial
to use the conditional probability, we have a conditional dependency between variables Y; and Y;.



The most notable difference between the two dependencies is that conditional dependencies are
directed, whereas unconditional dependencies are not.

Even though we can express any multivariate joint pdf with multivariate conditional pdfs, it
can still be beneficial to use only multivariate joint pdfs in a factorization. The reason for this is
that conditional pdfs can be analytically and computationally more difficult to handle.

To find a good probabilistic model, we can thus for instance attempt to find a good factorization
of the probability distribution and then fit a pdf over each multivariate joint or multivariate
conditional pdf in the factorization. We have however refrained so far from giving the actual
definition of a factorization. In section 2.2 we go into the details of factorizations and formalize
them. Here, we shall restrict ourselves to an example of a factorization and subsequently use it in
the definition of a probabilistic model.

We denote a factorization by f. An example of a factorization is P5(Yp, Y1,Ys) = P(Yp)P(Y1,Y2).
Again, this is a pdf, but as we use a product of elementary pdfs, we refer to it as a probability
distribution. On the other hand, the probability distribution that is factorized into a single factor
Py(Yy,Y1,Y2) = P(Yy,Y1,Y2) is equal to the unfactorized probability distribution and is equal to
an elementary pdf. Still, we assume for each element in the factorization that we fit a pdf over it.
We call the resulting probability distribution a factorized probability distribution.

With the exception of the work by Pelikan [25], the approaches in the field of building and
using probabilistic models have so far used a factorization as the structure of the probabilistic
model. The usefulness of a factorization becomes apparent when we increase the dimensionality of
the problem. For instance in the case of discrete variables, we estimate the full joint probabilities
by counting the amount of times some combination occurs in the sample vector and divide it by
the total amount of samples. One of these combinations does not have to be computed as it is
one minus the sum over the probabilities of the other combinations. For | dimensions and binary
random variables, this means that we have to estimate 2! — 1 parameters. However, if we bound
the amount of variables that are allowed to interact in a joint probability distribution by &, we get
2% —1 parameters. If k is fixed, this amount becomes a constant. This exponential scaling behavior
is the most important reason why a factorization can be useful. If the interactions between the
problem variables can be effectively caught in a bounded complexity order probabilistic model, the
optimization process is efficient. However, if the amount of parameters that has to be computed to
fit the pdf is computationally expensive, such as exponential, optimization by using probabilistic
models is inherently a non—scalable approach. Note that whether or not this is possible, depends
both on the algorithm that searches for a factorization as well as the optimization problem.

A factorization of a probability distribution along with the parameters for the pdfs to fit over
the factors, could thus serve as the definition of a probabilistic model. Even though this definition
has been used in most approaches so far, it does not allow for modeling at a higher level, being a
mixture of factorizations. Such a mixture allows to apply a clustering strategy first, after which
a factorization can be found in each cluster separately. This way, non-linearity and symmetry in
the sample vector can effectively be tackled and processed.

Even though a mixture of factorizations is a very general structure that allows for many
probabilistic models, we use a more general notation that allows for any type of structure. In this
paper, the instances of the structure in the probabilistic model so defined, will be the factorization
and the mixture of factorizations. In general, we define a probabilistic model to have some sort of
structure ¢ and a vector of parameters @ for the pdfs as implied by ¢. We call ¢ the probabilistic
model structure and @ the probabilistic model parameters. As noted before, ¢ is likely to be
constrained as using a maximum complexity structure does not scale up. Therefore, if ¢ is a
factorization, it is usually constrained to bounded order interactions between variables. We denote
the space of all ¢ that are allowed within such constraints by €.. Usually, such constraints are
not placed on the parameters 6, but we denote the constrained space for the parameters by Cg.
Formally, a probabilistic model M can thus be defined as a tuple just as can be done for its
complete constrained space € of allowed models:

M=(s,0) € €=(C,C) (4)
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Figure 1: An empty factorization containing only the variables.

In the case that we use a single factorization for ¢, we have ¢ = f. We shall also make use of
a mixture of factorizations. We denote the amount of components in the mixture by k and let
K=(0,1,...,k—1) be a vector of k¥ numbers. The probabilistic model structure in the case of a
mixture of factorizations is a vector of such factorizations ¢ = f = (fo, f1,.-.,fr—1) = F{IKC).

With any probabilistic model M, a probability distribution is associated. This probability
distribution is a composition of pdfs. The composition as well as the parameters themselves can
defined by the model. As our goal is to use the probabilistic model in optimization, we have to
approximate the probability distribution of the given sample vector S. The resulting probability
distribution that is based on the model that we find, is an approximation to the true probability
distribution. Therefore, we write the probability distribution implied by model M as Pr(Y),
which is an approximation to the true underlying probability distribution P(Y) over S.

The amount of parameters |#| depends on the choice of the pdfs to use as well as on the
structure ¢. However, the pdf to fit over every factor implied by ¢ is chosen on beforehand. The
way in which the parameters 0 are fit, is also predefined on beforehand. We denote the parameter
vector that is obtained in this manner by 6 <“*¢. The amount of parameters |@| is thus completely
determined by the structure . Therefore, we will write P,() instead of Pr((Y) to indicate that
the model is based on the structure ¢ and that the parameters 6 <*-¢ that are implied by the
structure given preselected pdfs to use, are fit using a predefined method.

Now that we have formally defined the contents of a probabilistic model, we can define al-
gorithms that construct such a probabilistic model and sample from the resulting probability
distribution to achieve an iterated search procedure. However, we have already remarked that we
shall restrict our attention to the use of factorizations and combinations thereof. To be able to
build factorizations, we first elaborate on them in the next section.

2.2 Factorizations and their graphs

A factorization implies a product of pdfs. If such a product is a function of variables y{a), it is
a valid probabilistic model structure over random variables Y(a). The product itself is closely
related to the dependencies between the variables. We can start by noting that two variables
are either unconditionally dependent or they are not. Furthermore, we may state that variable
Y; is either conditionally dependent on variables Y(a) with ¢ € a or it is not. These relations
constitute a factorization. This structure can be modeled using graphs. If we identify a vertex for
every random variable Y; and introduce an arc (Y;,Y;) if and only if Y; is conditionally dependent
on Y;, we get the conditional factorization graph. In the case of unconditional dependence, a
connected component in the graph implies that all variables in the connected component are
jointly dependent. As such, a connected component models a multivariate joint pdf.

A conditional dependence arc imposes a conditional probability in the probability distribution
over Y. For example, figure 1 shows an empty factorization over 5 variables. The underlying
factorization can be specified as P(Y) = P(Yy)P(Y1)P(Y2)P(Y3)P(Yy). Using only uncondi-
tional dependencies, figure 2 is an example of an unconditional factorization graph that models
P(Y) = P(Y,Y2)P(Y1,Y3,Y,). As a final example, figure 3 shows a factorization graph using
conditional dependencies that models P(Y) = P(Yp|Y2)P(Y1|Y2Y3Y,)P(Ya|Ys5Y,) P(Ys|Yy)P(Yy) =
P(Yy|Y2)P(Y1,Y>,Y3,Y,). The latter inequality holds because of equation 3.
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Figure 2: A non—-empty unconditional factorization representing only joint dependencies.
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Figure 3: A non—empty conditional factorization representing conditional dependencies.

It follows from equation 3 that using unconditional factorizations that imply joint probabilities,
is a special case of using conditional factorizations. Using these conditional factorizations, we can
specify any factorization. Note that a factorization is valid if and only if its factorization graph is
acyclic. This can be formalized [8] by introducing a function m(-) that returns a vector of parent
variable indices 7 (i) = (7(i)o, 7(é)1,- ., 7(1)|x(s)|—1)- The vector m(i) denotes the indices of the
variables that Y; is conditionally dependent on. Furthermore, we introduce a vector of ordering
variable indices w = w(L). Using (7,w), constraints can be specified to enforce that the factor-
ization graph is acyclic. Furthermore, scanning the variables in the order Y,, ,,Y,, ,,..., Yy,
ensures that the parent variables that some variable is conditioned on, will already have been
regarded. A conditional factorization can be uniquely specified by a pair (7, w) as follows:

-1
Pr) ) = [ P(Ver [Y (7 (wi))) (5)
i=0
such that Vicc(w; € £ AVper_giy(wi # wi))

Viec(Vher(w)(k € {wit1,Wit2, -, wi—1}))

Using this definition, the factorization in figure 3 can be specified as wg = 0,w; = l,ws =
2,ws = 3,wys =4 and 7(0) = (2), (1) = (2,3,4), 7(2) = (3,4), 7(3) = (4) and 7(4) = ().

If we use a product of multivariate joint pdfs, the factorization becomes a marginal product
model. We define the node vector v to be a vector of vectors of connected component indices
vi = (Wio, Wi1,---, Wi),—1). We write v; = (1,14, .. .,I/‘iui‘), so (v); = VJ’ The vector v;
denotes the indices of variables that are jointly dependent. Any unconditional factorization can
be uniquely specified using v:

lv|—1

P,y =[] Py (6)
=0

such that vOSis‘ﬂ,l(U,’ E LA VOSjS\V|71,j-75i<V‘i Il I/j = ()))

[v[-1

|_| V; = L
=0



The above constraints enforce that the vector of available random variables Y is partitioned
into |v| disjoint subvectors. Over each of these subvectors, a single multivariate joint pdf is fit to
obtain the factorized probability distribution. Using this definition, the factorization in figure 2
can be specified as vo = (0,2),v; =(1,3,4),|v| = 2.

We conclude this section by noting that we have formalized two general types of factorizations.
One is defined using multivariate conditional probabilities whereas the other is defined using
multivariate joint probabilities. These are the two factorizations that we use:

fe{(m,w),v} (7)

2.3 An overview of things that were and of things to come

In previous work on continuous models [8, 10, 11, 12, 13, 22, 18, 30, 31], a factorization f was used
as the structure ¢ of the probabilistic model M. In some cases, constraints in addition to the
general acyclic graph constraints have been applied. Furthermore, with the exception of the work
by Bosman and Thierens [12] and Gallagher, Fream and Downs [18], a single multivariate normal
pdf was used. In the work by Bosman and Thierens [12], the normal kernels pdf is proposed.
However, the normal kernels pdf is very hard to handle and has therefore not been put to practice
as much as has been done for the normal pdf. Gallagher, Fream and Downs [18] propose the use of
the flexible multivariate normal mixture pdf, but only with the univariate factorization in which
every variable is regarded independent of the others. In this paper, we show how the multivariate
normal mixture pdf can be used in the case of a general factorization.

Roughly, we can say that the research on the use of probabilistic models in continuous domains
has been limited to models where the structure is a factorization and the parameters are those of
a normal pdf (at least in the general factorization case). If we denote the normal pdf by far, we
can indicate this by writing ¢ = f and @ < far. In this paper, we show how the normal mixture
pdf can be used in the general factorization case, giving 0 < fu,,,.

By using the normal mixture pdf, we can apply a powerful density estimator in our optimization
procedure. However, this does not necessarily allow for the breaking of symmetry or the fitting
of non-linearity in the optimization problem. To achieve this, we propose to use a mixture
of factorizations. To this end, we cluster the sample vector into subvectors and apply density
estimation to each subvector. We thereby change the structure of the model to ¢ = {(KC).

Figure 4 graphically depicts the previous work and the work that we describe in this paper.
The approaches in the top row make use of a single factorization §. This is what has been done so
far for continuous optimization problems. In the case of a general factorization, the approaches
have been limited to the use of a single normal pdf, which is the top left entry in the table in
figure 4. The approaches in the right column make use of the normal mixture pdf. The approaches
in the bottom row use a mixture of factorizations. In this paper, we use clustering algorithms
to partition the sample vector into subvectors. A factorization is found for each so constructed
subvector, thereby achieving the mixture of factorizations. Concluding, in the general case, the
approaches so far for continuous optimization problems have used the top left entry in the table
in figure 4. In this paper, we show how the remaining three entries in the table of figure 2.3 can
be established in search of an improvement over the approaches for continuous domains so far.

3 Model selection

Given a vector S of data points, it very valuable to be able to infer from what probability distri-
bution these data points were sampled. Given such information, we can draw conclusions on the
source of these data points and make predictions for future data coming from similar sources. In
some applications we are not concerned with finding the full probability distribution, but certain
aspects of it under certain conditions. The use of linear regression to find out whether variables or
events are correlated, is an example of such an approach. Analysis of this sort is applied whenever
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Figure 4: An overview of the algorithms that build and use probabilistic models. The top left
entry represents the current algorithms in the case of a general factorization. The other entries
represent algorithms that are proposed in this paper.



induction is to be performed, given certain observations. Real life examples are for instance ob-
servations of hospitalized patients and the question of whether one symptom is caused by another
or whether a certain disease is always accompanied by high fever, so that this can be taken into
account whenever a new patient with this disease arrives.

The least restrictive of these inductional questions, which is the desire to know the underlying
probability distribution, is called model selection. The data points in vector & are the result of
sampling from some model. It is this model that we set out to find or approximate. To be more
precise, we utilize this inferred model information in order to perform global optimization.

We start out in section 3.1 by going over two general model selection techniques. In section 3.2,
we formulate an algorithm that systematically and incrementally finds a factorization given a vec-
tor of samples. Subsequently, in section 3.3, we go into the selection of a mixture of factorizations
using clustering techniques.

3.1 General techniques

In order to decide what model we wish to use to represent the data with, many automated
approaches can be used. Depending on the choice of the pdf, specialized statistical tests can
be derived to find a factorization for example. In this section however, we wish to refrain from
selecting any instances or additional constraints for the model. Instead, we give two general
approaches to selecting an appropriate model based upon the data.

In this paper, we see model selection as an iterative process. In any iteration, we have some
candidate models that may possibly replace the current model. In section 3.2 we show how such
an iterative algorithm can be formalized in order to select a model with ¢ = §. Here, we concern
ourselves with a single iteration of such an algorithm.

From a set of candidate models, we wish to select the most promising one to replace the current
model. If no candidate model seems to be promising, the iterative algorithm halts and the current
model is taken to be the result of model selection. We assume that a set of candidate models for
some given model is available. In section 3.2 we shall show how such a set can be obtained in the
case where we want to find a suitable factorization. In the iterative process, we denote the current
model by M°. In order to select the best model from the set of candidates, we go over each of
the candidate models and compare them to M°. In the remainder of this section, we focus on one
such comparison and denote the candidate model by M?.

In order to compare M! to M°, we distinguish two approaches. One approach is to test
whether the use of M! is a significant improvement over M° in representing S. To this end,
statistical hypothesis tests can be used. A gentle introduction to statistical hypothesis testing is
given in appendix B. We define the general statistical hypothesis test for the comparison of the
models as follows:

Model Selection Test Hypothesis (MSTH)
Probabilistic model M* cannot better describe the given samples than can probabilistic
model M°.

We can use statistical techniques to test the MSTH. Such a test returns whether or not the hy-
pothesis should be accepted. A certain statistic is shown to follow some distribution. A hypothesis
is tested by using so called critical values for the statistic, given a certain significance threshold.
The MSTH is accepted if the statistic is for instance below a critical value associated with the
threshold or rejected if it is above the critical value. In such a case we speak of a right—sided test.

Statistical hypothesis tests can be used to select a replacement model from the candidate set.
As the test returns whether M! is a better descriptive model than is MY for the given samples,
we can go over the candidates and take the first model from the candidate set to replace MO that
results in rejecting the MSTH. However, the set of candidates will be generated in an automated
fashion. To prevent going over the candidates in the same manner every time so that possibly a
certain type of candidate model is always tested before some other type of candidate model, the
candidates should be accessed in a random order. In section 3.1.1 we show how a general instance
for the MSTH can be formalized based on the likelihood of a probabilistic model.



The second approach to comparing M with MO is to use some metric. If we have a metric that
informs us of how well some model represents &, we can search amongst the candidate models
to find the model that results in the largest increase or decrease of the metric, depending on
whether we have to respectively maximize or minimize it. If the metric can no longer be improved
upon since every candidate leads to a degradation of the metric, the iterative model selection
procedure can be halted. This approach has become a very popular one, especially within the
field of Bayesian statistics. In section 3.1.2 we discuss a general, transparent and useful metric
that has a clear correspondence with the MSTH instance in section 3.1.1.

Before moving to describe both a general MSTH as well as a metric, we note that an MSTH can
actually also serve as a metric. Assuming such a statistic ¢, a critical value ¢, and a right—sided
test, a statistical hypothesis test returns true if and only if ¢ > (,. However, the amount that
¢ is larger (or smaller, depending on the type of test) than (, can be seen as a measure of how
strongly the MSTH is rejected. This can be used in some sort of a metric for which we may find
the maximum over all candidate models. The metric to maximize is then equal to { — (,.

3.1.1 Negative log—likelihood statistical hypothesis testing

In this section, we focus on finding a general statistical hypothesis test so as to perform model
selection by testing the MSTH. In appendix B more details are presented on statistical hypothesis
testing in general. Also an example is given of how unconditional dependencies can be tested
using well known statistical measures. Here however, we focus on a hypothesis test that is directly
based on the goodness of two fits.

Assuming that the samples were drawn independently from the underlying distribution, the
likelihood of the samples, given the estimated probability distribution Py (), is defined as:

|S|-1

SSIPu) = [ Pu (@) (8)
=0

It is common practise to use the negative logarithm of the likelihood measure as it is often
computationally more convenient. The resulting expression is called the negative log—likehood:

|S|-1

—In(&(S|Pm(I))) = —Z In(Pum(Y)(y)) (9)

Momentarily disregarding generalization, in order to find the maximum likelihood probabilistic
model M, we have to mazimize £(S|Py(Y)) or, equivalently, to minimize —In(£(S|Prp(Y)))-
The simplest probabilistic model that best fits the equations, can be defined using a single multi-
variate joint pdf over a full joint factorization for f = ¢:

bo b1 pbioy STz as, bs
/ / Prm(Y)(L))dycy = %

Clearly, the pdf so constructed is too specific with respect to the sample vector and is therefore
said to owerfit the data. This is a very important aspect of density estimation and is termed
generalization. Overfitting tends to occur not only in such specific cases as in equation 10 but also
often in cases where a combination of many pdfs is used, such as a kernel method. If overfitting
takes place, the optimization algorithm that samples more points from the pdf will tend to converge
rapidly into a fixed form and give poor results [10]. Therefore, a parametric model with little
parameters such as the normal pdf, is usually preferred as it cannot easily overfit a set of samples.

Given a parametric model and thus a set of parameters for the involved pdfs, a general iterative
method can be derived to estimate the set of pdf parameters so as to minimize the negative log—
likelihood and get a maximum likelihood fit of the estimated probability distribution. Such a
method is given by the EM-algorithm, which we discuss in more detail in section 4.3.2. In the
EM-algorithm however, the model structure is fixed on beforehand. In order to find the model
structure, we can test whether some candidate model M! has a lower negative log-likelihood value

(10)
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than the current model M. If this is the case, M! is a better description than is M°. Therefore,
M should replace MP. In order to perform the negative log-likelihood test, the involved pdfs
first have to be computed. To test whether the likelihood of the probability distribution implied
by model M! is larger than that of the probability distribution implied by model M°, we observe:

|S]—1 |S|—1
D In(Prp (P)(@H) = In(Pro(P)(y?)) (11)
=0 =0

If we are given maximum likelihood estimates and if the parameters of model M! are a superset
of those of model M?, we have that the negative log-likelihood difference as stated in equation 11 is
always larger than or equal to 0. This implies that if we incrementally build a model by increasing
its complexity, we will always prefer the more complex model if we are able to fit the data with a
maximum likelihood. This is however not desirable. If the negative log-likelihood difference is only
very small, the more complex model does indeed fit the data slightly better, but this comes at the
expense of a larger running time since the model is more complex. By selecting the more complex
model, we require a lot more time to perhaps gain a hardly noticeable difference in goodness of
fit. This poses a well known trade off between running time and expressional power.

What we require, is to be able to test whether some negative log—likelihood difference is signif-
icant. If it is, this implies that we should select the more complex model as it would significantly
improve the resulting fit. We have then justified the selection of the more complex model. To this
end, we use a statistical hypothesis test. If we have some random variable R along with N values

To,T1,--.,7N_1 for it, its sample mean R and its unbiased sample standard deviation 35 are:
1 N1 ] N
= ZO i BR=a Z@ (ri — R)? (12)

Because of the central limit theorem, the sample mean is approximately normally distributed.
If we now assume to have two of such random variables R® and R! along with an hypothesized
value h for the difference of the means, we observe:

V(R - - )

\15%0 + g%l

It can be shown that the T statistic (see for instance [14]) is distributed according to Student’s
T distribution (see appendix B) with § = 2(N — 1) — |8°| — |#*| degrees of freedom, where 6%
i € {0,1} is the vector of parameters in model M? that have to be estimated.

Now let R’ stand for the negative log-likelihood of the samples under probability distribution
Py, j € {0,1}. We then thus have that:

T =

(13)

rl = —In(Pp (P) (%)) (14)

We can now use the T statistic to test whether the average value of the negative log-likelihood
difference is significantly larger than 0. If this is so, candidate model M! is preferred over model
MO, To do this, we set h = 0 and perform a right-sided test. This means that we are testing
whether the expected value of R® — R! is greater than 0. Since %x >0 z > 0, we are thus
testing whether the difference in equation 11 is significantly larger than 0.

Placing this this test in an iterative algorithm gives us a model selection approach in which each
step towards a more complex model is justifyable. However, in all previous continuous approaches
that use factorizations of a higher order than the univariate factorization as the model structure,
such justification has not been used directly. Instead, the Kullback-Leibler (KL) divergence from
the approximated factorization to the full joint approximated factorization is used. By doing
so0, it can be shown [13] that the the differential entropy over the approximated factorization
is minimized. Given maximum likelihood estimates, it can furthermore be shown [13] that the
differential entropy difference is the same as the negative log-likelihood difference from equation 11.
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The equality of the KL divergence and the negative log—likelihood difference under the assump-
tion of a maximum likelihood estimate, implies that the previous approaches can be seen to have
used the negative log-likelihood without justifying any model selection decisions. However, unless
strong restrictions are imposed on the probabilistic model, using this metric will unnecessarily
increase the complexity since any more complex model will always result in a fit with a lower
negative log—likelihood. We can therefore conclude that justification is truly required in order for
the resulting optimization algorithm to be scalable on decomposable problems.

If we do not use any justification, we can refrain from using the average negative log—likelihood
but use the differential entropy instead. Computing the average negative log-likelihood is a time
consuming task as it requires |S| evaluations. However, for the normal pdf, the differential entropy
over variables Y (a) can be shown (see for instance [15]) to be 1 (|a| +In((27)!2!(det S(a)))), where
S(a) is the sample covariance matrix. However, in this section we do require justification. In such
a case, we cannot suffice by only computing the average negative log-likelihood, since we also
require the variance over the negative log—likelihood to compute the test statistic T. Still, we shall
see in section 3.2.3 that this remark can yet be of practical concern.

For more involved pdfs such as the normal mixture model, we cannot efficiently compute the
differential entropy. Furthermore, neither can we guarantee a maximum likelihood estimate using
the EM algorithm. To compute the negative log-likelihood difference, we thus have to evaluate
the implied probability distribution for each sample.

3.1.2 Complexity penalization

In the previous section, we have seen that we can minimize the error of the fit and justify each min-
imization based upon a large enough increase in the negative log—likelihood difference. However,
even though one fit may indeed be better than the other, this does not mean that we are interested
in using it from either a generalization or a computational effectiveness point of view. To enforce
this, a penalty term that increasingly penalizes more complex models can be introduced. The
metric M that should be minimized can then be formalized as follows:

M(Pum(P)|S) = Error(Pp(¥)|S) + Complexity(Pa(P)|S) (15)

The use of a complexity term is often termed regularization in data modeling fields. Regu-
larization is used to prevent the model from overfitting the data. Classicly, the regularization
equation has a regularization parameter X as a factor times the regularization term. Setting A =0
then reduces the metric to an unconstrained one with respect to error minimization. Here, we
have used a general complexity term that could be of such a form. However, we leave the actual
contents completely unspecified, which gives no restrictions on the complexity term. Furthermore,
the metric from equation 15 is thereby completely transparent from the start.

To derive a metric of the form as we have in equation 15, we note that we are interested in
the probability of a probability distribution implied by a model M, given a sample vector §. The
model that implies a probability distribution with the largest probability, is the most preferable
one if we disregard complexity and generalization at the moment. The probability that we are
interested in, can be written as follows using Bayes’ Rule:

P(Pm(Y))P(S|Pm (D))
P(S)

As the sample vector § is fixed and thus P(S) = 1, we can discard P(S) from equation 16.
The probability of S given some probability distribution Py()) implied by a model M, can be
seen as the likelihood as defined in equation 8, meaning P(S|Py(Y)) = £(S|Pr(Y)). In order
to add a preference for simpler models, we want to set the probability at a probability distribution
P(Pr(Y)) implied by a model M in such a way that it gets smaller if its complexity increases.
The complexity of PM()?) is given by the amount of parameters @ that is required to define every
pdf in the model M. We can define the probability of some probability distribution P(Pr()))
implied by M = (g, 8) by using a function 9(-), ¥(-) > 0, of the amount of parameters |@|:

P(Pu(Y)|S) =

(16)
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PUEMO) = 550

If we for instance take each probabilistic model to be equally likely, we set ¥(-) = 1 and get:

(17)

IS|-1

=& I v (18)
<l =0

P(Pp(Y)) = —

In order to compare one model to another, the normalization factor }° ., ¥(0" <*-¢') in
equation 17 may be discarded since this factor is the same for every M. As a result however, we
no longer have a probability distribution but a metric. Using the metric, we note that under the
assumption that 9¥(-) = 1, equation 18 becomes just the likelihood from equation 8.

Alternatively, we can let the probability at some probability distribution P(Px,(Y)) implied
by a model M decrease exponentially with its complexity by setting 9(0) = e~|®/. Denoting the
resulting metric by A(Pr(Y)|S), we get:

|§|—1
APuD)S) = ] Pu)(?) (19)
=0

The objective is to maximize the metric. Alternatively, we can take the negative logarithm of
the metric and minimize it. Just as is the case for the likelihood, using the negative logarithm
is computationally more convenient. This can directly be seen from the definition of the metric,
since the exponentials disappear and the product of a large amount of values in [0, 1] becomes a
sum. By doing so, we get an instance of the general metric expression in equation 15:

“n@Pu(Y)IS) = —In(L(SIPu(Y) + Jol
M (P (P)|S) Error(Pp(Y)|S) Complexity(Pr(Y)|S)

In the metric that we have arrived at, the negative log—likelihood is the error to minimize and
the complexity term is the amount of parameters in the probabilistic model. The resulting metric
is similar to the Akaike Information Criterion (AIC) [1]. The AIC equals 2 times the expression in
equation 20. This constant factor does not influence the result when computing the difference and
checking whether it is larger than 0. So basically, we have arrived at the AIC metric. The AIC
metric elegantly favors simpler models. If two probability distributions have the same likelihood,
the one with the least amount of parameters is favored.

At this point, we turn back to our note on regularization theory. Even though the AIC metric
favors simpler models by increasingly penalizing more complex ones, the amount of penalization
is fixed. By using a regularization parameter A times the AIC metric, the regularization could be
increased. However, this would only be by a constant factor, assuming that \ is a free parameter
A € R Other than by increasing some regularization parameter, we can also use a different
metric that penalizes the complexity differently. The above derivation is a very general one. To
demonstrate its transparent use, we propose to set ¥(8) = e~ An(8DI8l We have now introduced
a parameter A that has the same semantics as the regularization parameter. The resulting metric
that we arrive at, can be written as follows:

“In(BPMD)IS) = —n(ESIPMD)) + (S8
— ~~ —_— (21)
M(Pu(D)|S) Error(Pu(P)|S)  Complexity(Pu()|S)

The metric in equation 21 is commonly known as the Bayesian Information Criterion (BIC) [29].
This metric has been proposed before in iterated density estimation approaches [24, 19, 27]. The
BIC metric has empirically been observed to give good results. It penalizes more complex models
more heavily than does the AIC metric, but in such a way that the most important structural
building blocks are found. The AIC metric is less efficient because it tends to let such building
blocks be merged as well, which gives an unnecessarily complex model structure.
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Before we conclude this section, we note that there is a correspondence between the metrics
in equations 20 and 21 and the general hypothesis test in the previous section. In both cases,
the negative log-likelihood has to be computed. In the case of the hypothesis test, the average
negative log-likelihood difference is compared to a critical value. In the case of the penalization
metrics, the negative log-likelihood difference is compared to a value as well. In this case, the
value is based on the difference in amount of parameters. The two approaches thus result in a
similar test for candidacy that can be written as:

In(&(S|Prr ())) = In(&(S]Paes () > A (22)

For the metrics, A is equal to the parameter difference in the case of the AIC metric, or
Aln(|S]) times the parameter difference in the case of the BIC metric. For the general statistical
hypothesis test, A is equal to the critical value times the amount of samples |S|. This is an
important difference between the two approaches. Beyond a certain size of the sample vector,
the hypothesis test does no longer depend on |S] since the negative log-likelihood is divided by
it before testing it against the critical value and the critical value doesn’t change significantly
anymore above a certain size of |S|. However, the size of the sample vector is not factored out of
the equation for the penalization metric. This means that if the average negative log—likelihood
difference is some value € > 0, then the difference itself becomes |S|e. This expression can grow to
any value, given a large enough sample vector. For the BIC metric, A also grows as the size of the
sample vector increases, but logarithmically. Empirically, this has been observed to be effective in
practice. The setting of A in the case of the metrics is done in a desirable way that is not the case
for the hypothesis test. Given enough samples, more complex models are allowed. The amount of
parameters that a more complex model conveys is thereby thus in some way justified as there are
enough samples to estimate the parameters properly.

3.2 Factorization selection

In section 2.2, we observed that in order to obtain a valid factorization, we have to make sure
that we do not introduce any cycles into the factorization graph. This is the most general and
only necessary condition on the graph, both in the unconditional and the conditional case. In
addition, other constraints can be imposed such as that the graph must be a chain, a tree or that
it may have no interactions of an order above . Such additional constrains are especially useful if
the decisions that regard introducing dependencies are not primarily based on the intrinsic data.
In such a case, overly complex models are easily introduced if these additional constraints are
absent. To be able to use a general graph search algorithm effectively, we either have to justify
the introduction of more complex models or we have to penalize them. In this way, we avoid
introducing unrequired complex models that take up a lot of computation time.

The idea of such a general graph search algorithm is to maintain a set of edges or arcs that may
still be added to the factorization graph without introducing cycles. From this set, the next edge or
arc is selected according to certain criteria and the set is filtered again until either the set is empty
or no edge or arc meets the criteria of being added anymore. If a scoring metric can be assigned to
the factorization graph, we can add the arc or edge that increases the metric the most. When the
set of addable edges or arcs is empty or no edge or arc can be added anymore so that the scoring
metric is further increased, the algorithm terminates. This becomes more attractive if the metric
is decomposable so that the metric increase can be computed based upon the involved variables
only instead of upon the entire graph. This approach was first used in evolutionary optimization
by Pelikan, Goldberg and Canti—Paz [26] and subsequently by Miihlenbein and Mahnig [24] as
well as Bosman and Thierens [8, 10, 11], all using different scoring metrics.

In the general case, we leave the presence of such a metric to specific implementation details.
This brings us to define the general incremental factorization search algorithm. As the notion
of conditional dependence and unconditional dependence are intrinsically different, as are the
corresponding graph types, we will specify the general algorithm for both cases separately. Even
though the unconditional case can be written as a special version of the conditional case, the
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importance of specifying different algorithms can also be seen from the fact that computing the
conditional pdf can be very difficult in contrast to the multivariate joint pdf.

3.2.1 An incremental general factorization search algorithm

We start with the unconditional version of the general graph search. In this case, there is at most
one edge between every pair of nodes. Initially this means that a triangle (eg. lower or upper)
of the edge adjacency matrix without the diagonal is set to true. If an edge is set to true, it
means that it may still be added to the graph as it does not introduce any cycles. Subsequently,
the edge selection process is iterated. Each iteration, a single edge is selected to be added to the
graph. This edge is to be chosen from the set of allowed edges {(i,7) | a[i, ] A (i,5) € £2}. If no
selection can be made at some point, the iterated edge selection process is halted. If an edge is
selected however, it is added to the graph and the set of edges that are still allowed to be added
is updated. This is done by traversing the connected components belonging to the nodes that are
incident to the edge that is to be added. Each edge between vertices of these opposite connected
components is marked as false. If there are no more edges addable, the iterated selection stops.
The actual factorization is determined afterwards. In the case of conditional dependencies, we
can directly make use of the definition in equation 5. In the case of unconditional dependencies,
we can do this indirectly by using equation 3. However, we will end up with the requirement of
specifying a conditional pdf for each element of the so defined factorization. Therefore, we note
that in theory we may very well write unconditional dependencies using (7, w), but in practice we
shall use a different structure.

The result of the general factorization search algorithm in the unconditional case is the node
vector v. This is also the case in the ECGA by Harik [19]. The resulting factorization in this
case corresponds to the vertices in the connected components of the factorization graph. If we
now leave the edge selection procedure to be defined exterior to the general factorization search
algorithm and write separate functions for adding an edge to the graph and finding the vertices
in the connected components, we have a general factorization search algorithm for the case of
unconditional dependencies. However, the algorithm in this case can be simplified. To see this,
let v and v; be two connected components in the graph. If we only observe the variables within
these components, the probability distribution is given by the factorized distribution P({Y,|v €
vo})P({Yy|v € v1}). Any edge (u,v) with u € vo Av € v1 will now result in testing the factorized
distribution P({Y,|v € (voUwr1)}) against the former factorized distribution. Hence, if the decision
is made that the edge should be added to the graph, all other edges between vy and v; become
unallowed. Moreover, if the decision is made that the edge should not be added to the graph,
all other edges between vy and v; do not have to be tested anymore. In other words, the edges
that connect a connected component are not important, as the vertices inside a single connected
component make up a joint pdf in the resulting factorization. A graphical impression of this
is depicted in figure 5. This implies that we can simplify the general algorithm in the case of
unconditional dependencies by first placing every variable in a singleton vector. Subsequently, we
find 2 vectors that are to be spliced. If no such combination of vectors can be found, the algorithm
terminates. Otherwise, the splice operation is executed and the process is iterated. As each splice
operation reduces the amount of available vectors by 1, the amount of splice operations in this
algorithm is clearly bounded by I — 1. This iterated splicing operation in using marginal product
models was first proposed by Harik [19]. Concluding, we thus arrive at the following efficient
general graph search algorithm for the case of unconditional dependencies:
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Figure 5: Simplifying the general case of unconditional dependencies.

UNCONDITIONALFACTORIZATIONGRAPHSEARCH()
1 v + new vector of (vector of integer)

2 v«
3 fori+0tol—-1do
3.1 l/i(—(i)

4 while |v| > 1do
4.1 (cg,c1) + FINDNODEVECTORS(V)
4.2 if co <0 then
4.2.1 breakwhile
43 fori<« 0to|v.|do
4.3.1 (I/Co)|,,c0| «— (Vc1)i
4.4 Ve, Vi
45 v+ |v| -1
5 return(v)

The general factorization search algorithm in the conditional case is essentially the same as
the unsimplified algorithm in the unconditional case. Initially however, for every candidate arc
(z,7) we also have an arc (j,) in the graph now. The amount of arcs initially is therefore twice as
large as the amount of edges in the unsimplified unconditional case. The algorithm that finds an
arc to add from the set of allowed arcs, is named FINDARC. Furthermore, we now require a cycle
detection algorithm, which we specify as ADDARC. This algorithm returns the amount of arcs
that have become unallowed because of the addition of an arc. In order to define this algorithm,
we require the vector of predecessor nodes vP and the vector of successor nodes v®. Algorithm
ADDARC is given in appendix D. The resulting factorization can now be specified using (, w).
The parent variable indices in the vector function 7 can directly be computed from the graph. As
the graph contains no cycles, computing a topological sort gives the required ordering w:
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CONDITIONALFACTORIZATIONG RAPHSEARCH()
1 a <+ new array of boolean in 2 dimensions with size [ x [
2 vPv® + 2 new arrays of (vector of integer) with size [
3 fori+0tol—1do
31 forj«<O0tol—1do
3.1.1  afi,j] « true
3.2 ali,i] « false
4 vy 121
5 while v>0do
5.1 (vo,v1) < FINDARC(a, v?,v?)
5.2 1f vy <0 then
5.2.1 breakwhile
53 v« v — ApDARC(k, vg, v1, a, VP, v¥)
6 return(TOPOLOGICALSORT(vP))

We now have a detailed outline of an incremental general factorization search algorithm for
both the conditional and the unconditional case. In order to complete the search algorithms, we
require to specify how to find two vectors to splice or how to find an arc to add to the graph.
A general algorithm for this is dependent on the type of information we wish to guide model
selection by. If we have a statistical hypothesis test through which we can decide whether or not
two vectors should be spliced or an arc should be added to the graph, we can randomly order the
possible splices or arcs to still be added to the graph and test them in this order until an object is
found for which the test evaluates to true. If every test fails, the resulting graph has been found.
We can formalize this algorithm for the unconditional case as follows:

FINDNODEVECTORSBYTESTING( v )
1 splices < new array of (integer, integer) with size {|v|(lv| — 1)
2 k<0
3 fori+O0to|v|—1do
31 forj+i+1to|v|—1do
3.1.1  splices[k] « (i,5)
312 k+k+1
4 fori« 0to [5k] do
4.1 r; + RANDOMNUMBER(k)
4.2 ry + RANDOMNUMBER(k)
4.3  (vo,v1) + splices[r1]
4.4  splices[r1] < splices[rs]
4.5 splices[ra] + (vo,v1)
5 fori+0tok—1do
5.1 4if PERFORMSPLICEVECTORSTEST(splices[i],v) then
5.1.1 return(splices[i])
6 return((—1,-1))

In order to derive the conditional variant of the above algorithm, we require only slight changes.
These changes involve using the predecessor nodes vector vP and successor nodes vector v*® instead
of the node vector v as well as making the for loops regard variables 0 up to and including [ — 1:
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FINDARCBYTESTING( a, vP, v® )
1 arcs + new array of (integer, integer) with size 1> — |
2 k+0
3 fori+0tol—1do
31 forj«<O0tol—1do
3.1.1 if afi,j] then
3.1.1.1  arcs[k] « (4,))
3112 k+«k+1
4 for i« 0to [Lk] do
4.1 r; + RANDOMNUMBER(k)
4.2 71y + RANDOMNUMBER(k)
4.3  (vg,v1) < arcsri]
4.4  arcs[ri] < arcs[rs]
4.5 arcs[ra] < (vo,v1)
5 fori+—0tok—1do
5.1 4f PERFORMADDARCTEST(arcs[i],v?,v®) then
5.1.1 return(arcs[i])
6 return((—1,—1))

If instead of a statistical hypothesis test we have a metric for how well a factorization fits as
a model, we can try to optimize this metric in a greedy fashion by performing the splice or by
adding the arc that increases this metric the most. If there is no such possible splice or arc left,
the resulting graph has been found. This approach is derived from the Bayesian approach we
mentioned earlier. We can formalize the unconditional variant of the algorithm as follows:

FINDNODEVECTORSBYMETRIC( v )
1 dmax <0

2 imax + —1
3 Jmax ¢ —1
4 fori+Oto|v|—1do

41 forj«i+1lto|v|—1do
4.1.1 6« COMPUTEMETRICSPLICEVECTORS(%, j, )
412 if § > dmax then
4121 Smax < 0
4.1.2.2 imax & i
4123  jmax < J
5 return((imax, jmax))

The conditional variant of the above algorithm is quite the same. Instead of the the node
vector v, the predecessor nodes vector vP and successor nodes vector v° are required. The for
loops go over every combination of two variables (4, 7) and only compute the metric change if the
arc (4,7) is still allowed to be added to the graph. This results in the following algorithm:
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FINDARCBYMETRIC( a, vP, v° )

1 Omax <0

2 dmax ¢« —1

3 Jmax ¢ —1

4 fori+0tol—1do

41 forj+0tol—1do
4.1.1 4if a[i,j] then
41.1.1 6« COMPUTEMETRICADDARC(%, 7, vP, v®)
41.1.2 if § > dmax then
4.1.1.21 bpax <90
4.1.1.2.1 dmax < ¢
41.1.21  jmax ¢ j
5 return((imax, jmax))

The only ingredient missing from our general factorization search algorithms, is either a metric
or a test. In most previous approaches [5, 7, 8, 12, 19, 24, 26], a metric was used in combination
with a search algorithm. In a selection of these cases, a general factorization search algorithm was
used [8, 12, 24, 26]. The use of a test to find a factorization has been used in a single case using
discrete random variables [28] and in previous work on continuous random variables [13].

3.2.2 Negative log-likelihood statistical hypothesis testing

Let fo be the current factorization and f; be the factorization that results when the arc is added to
the graph or when the two vectors are spliced. Given these two factorizations, we want to have a
test that tells us which of these two factorizations significantly better fits the given sample points.
To this end, we specify the following hypothesis that is derived from the MSTH:

Factorization Selection Test Hypothesis (FSTH)
A probability distribution based on factorization §f* cannot better describe the given
samples than can a probability distribution based on factorization f°.

If the FSTH is rejected, the test returns that the arc (vp,v;) should be added to the graph or
that the two node vectors v, and v., should be spliced. A statistical hypothesis testing metric for
selecting a factorization is readily available since in section 3.1.1 a general statistical hypothesis
test on the basis of the negative log—likelihood difference was given for any probabilistic model.
Combining this test with the factorization search algorithms from section 3.2.1, we now have a
factorization selection method based on statistical hypothesis tests.

Regarding efficiency, we note that computing the negative log—likelihood is decomposable over
the factorization. This means that if we test to alter the model over some arc or by merging some
sets, we only have to compute the negative log—likelihood difference for the involved variables. In
the case of undirected dependencies, the negative log—likelihood can be written as:

I§]-1 [v[-1 |S|-1|v|-1
“In(ESIB,P)) ==Y | [[ POwN@ @) | == > WmPOw)(yw;))
i=0 Jj=0 i=0 j=0

(23)
Now we assume that /0 is the node vector for the base model and that ! is the node vector
for the new model. Furthermore, we assume that they differ only in vectors ¢® and ¢! such that

0 —(c% ') = v! — (c® U et). The negative log-likelihood difference then becomes:
In(£(8|B,1(¥))) — In(L(S|Poo(Y))) = (24)
sl-1 sl-1
> (B (Y{a) (v (@) =) In(P,0(Y(a)(y'(a))) =
=0 =0
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i=0 cevt —(cPuet)
|8§]—1 . R .
Do (PN W) + PN+ Y WPy | =
=0 cer®—(c0,ct)
|S|—1

Z In(P(Y(e® U eh) (e’ ueh))) — (PP () (%) — In(PY(e)) ("))

This implies that we only have to compute the sum over the variables that are involved in
a splice operation. In the case of conditional probabilities, assume we add arc (vg,v1) to the
graph, meaning that Y,, is made conditionally dependent on Y,,,. In an analogous way, we find
that given conditional factorizations (7%, w?) and (7!, w?) such that 7!(v;) = (vo) Uw%(v1), the

negative log-likelihood difference becomes:

ln(£(3|p(7r1,w1)(y))) - 1n(£(5|15(7r0,u0)(3’))) = (25)
51

Zln (Yo, (! (1)) (5 {(01) L' (01)))) = In(P(Yo, [P (1)) (" {(01) L 7 (1))

Agaln, we only have to compute a part of the entire sum of the negative log—likelihood because
the parts in the factorization that do not change, cancel out in the difference.

3.2.3 Complexity penalization

We noted at the end of the previous subsection that the negative log-likelihood is decomposable
over a factorization. This fact can be used to efficiently compute the AIC and BIC metrics as
introduced in section 3.1.2. We only have to compute the results over the variables for which the
dependencies are different in one factorization as compared to another. In the unconditional case,
each element in the node vector is mutually exclusive with respect to any other element in the
node vector. This implies that for each element in the unconditional factorization, the amount of
parameters is just the sum of the amount of parameters over all elements in the factorization:

lv|-1

o vl = 3 16 v (26)

Therefore, in a similar manner as in equation 24, we find for the AIC metric that:

(@B (P)IS)) = n(A(Pre ()]S)) = (27)
|S|—-1
S In(B(V{eo U ex))(yi{eo U er))) — (B {eo) (v o)) — In(P(Plex)) (y'(er)) +
=0

|0 (‘fiC()|+|0 (‘&Cl|—|0 (‘&Cgucﬂ

In the conditional case however, we do not have that the amount of parameters |8 <% (7, w)|
can be computed in a decomposable manner over the factorziation. Assume for instance that we
use a multivariate normal pdf for each element in the factorization. If we add an arc Y3 — Y)
to the factorization that underlies the probability distribution P(Y5|Y1Y2)P(Y1)P(Y2)P(Y3), the
first factor in the probability distribution becomes P(Y5|Y1Y2Y3). If computing the amount of
parameters would be decomposable, we would be able to compute the increase in amount of
parameters by computing the difference in amount of implied parameters of P(Y|Y1Y2Y3) and
P(Y,|Y1Y2). Since each conditional pdf uses a multivariate joint pdf over all the involved variables,
the difference would be 5. However, the parameters in the factor P(Yp|Y1Y>2Y3) are now not only
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present in this factor. The factors themselves overlap, which is not the case for the unconditional
dependencies. Because of this overlap, for instance the full covariance matrix index (3, 3) is already
required, regardless of the fact that Y3 is added as a conditional to the first factor. Therefore, the
amount of additional parameters is not equal to 5, but less. However, the amount of additional
computational resources that are required, do increase similarly as in the unconditional case with
respect to joint pdfs. The reason for this is that the covariance matrix will have to be inverted.
Furthermore, if we do not take a normal pdf, but a normal mixture pdf, we estimate the parameters
anew using the EM algorithm anyway since we cannot suffice with a single [ x[ covariance matrix in
which the required entries are stored. Also, since applying the EM algorithm is a computationally
resourcefull task and its performance degrades with increasing dimension, we do not want to
apply it directly to the full joint distribution to find all involved parameters, but apply it anew
as the factorization is built during the search algorithm. Concluding, decomposing the amount of
parameters over the conditional factorization is a rational operation as it penalizes the additional
computational resources. The resulting metric difference can be written as:

(ALt 1) (P)IS)) = In(A(Liro ) (V)1S)) = (28)
|§]—1
Y W(P(Ye, [P (o)) (y((or) U (01)))) = In(P(Yo, [P0 (01))) (5" ((01) U 70 (01)))) +
i=0

|6 <= (7% (1), ()] = 10 = (7 (1), (v0)]

Thus, adding a penalty term in the way proposed, results in an efficiently computable de-
composable metric. If we can derive the differential entropy analytically to find an efficiently
computable expression, we can use the entropy over the estimated model instead of the negative
log-likelihood. This is for instance the case for the normal pdf. As a result, the computations for
model selection based on minimizing the metric can be done efficiently when using a normal pdf.

3.3 Factorization mixture selection

So far, we have discussed finding relations between variables based on a sample vector and using
a factorization to build a useful probabilistic model. However, the structure of the sample vector
may be highly non-linear. This non-linearity can force us to use probabilistic models of a high
complexity to retain some of this non-linearity. However, especially using relatively simple pdfs
such as the normal pdf, the non-linear interactions cannot be captured even with higher order
models. For instance, a two dimensional sample vector in which the samples are aligned in a V
shape cannot be fit adequately by a product of one dimensional normal pdfs, nor by a single two
dimensional normal pdf. However, if we would identify each line in the V' shape as a single cluster,
we could adequately model the sample vector using a sum of two dimensional normal pdfs.

The key issue is the notion of clusters, which are possibly overlapping subvectors of the original
sample vector and are optionally augmented with additional data. When we do not allow the
subsets to overlap, we classify each point in the sample vector to be explicitly part of some
cluster or class. This instance of clustering is called partitioning. The use of clusters allows us to
efficiently break up non-linear interactions so that we can use simple models to get an adequate
representation of the sample vector. Furthermore, computationally efficient clustering algorithms
exist that provide useful results.

There are exact algorithms for partitioning [20], but the running times for these algorithms
are of no practical use in our case. What we require, is a fast approximate assessment of clusters
that we can fit well using some pdf. Within these clusters, we can infer what factorization is best
and get a probability distribution over the cluster. As all of this is part of the larger algorithm
that attempts to infer the structure of the search space and use it in optimization, the clustering
should be effective in representation as well as in computation time requirements.

Each cluster is processed separately in order to have a probability distribution fit over it.
As such, we have a mizture of probability distributions. By assigning each of these probability
distributions a weight in [0, 1] and letting the sum over all these weights equal 1, the result is again
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a probability distribution. We write these weights as ;. These weights are commonly known as
mizing coefficients. We write & = (&2, &1,..., &I181=1) for the vector of clusters. Each cluster
contains a variable amount of sample vectors, which we denote so that 8¢ = (Rf], Rj, - ,ﬁli &= 1).
Furthermore we have for each j that &% € S, so & = ((&%)o, (&:)1,...,(&%)i—1). In our
modeling, we assume that each probability distribution in the mixture is factorized as discussed
in section 2.2. We assume to have k clusters, so |[R| = k and let K = (0,1,...,k—1). We can now

write the resulting probability distribution as:

[8]-1

Pey@) = 3 BiB() (29)

The reason why we require to have an ¢ in the superscript in Pf’ (¥), is to be able to indicate
that the i—th probability distribution is based upon the i-th cluster of samples. To determine
the 3; and the Pf’;, (YY) in equation 29, two approaches can be taken. If we cluster the sample
vector into possibly overlapping subvectors, we can for instance determine the mixing coefficients
as the proportional subvector size. If we do not explicitly cluster the sample vector, but allow
for each sample a probability of assigning it to a certain cluster, we can mathematically derive a
way of finding the maximum expectation of this probability over all samples. By doing so, the
clusters can be seen as copies of the original sample vector augmented with likelihood values for
each sample that indicate the probability that the sample belongs to a certain cluster. As such,
the resulting clusters can be seen as fuzzy clusters since there is no clear border between the
clusters as is the case in partitioning. In practical applications, the first approach leads to the
use of partitioning algorithms and the second approach leads to expectation maximization (EM)
algorithms. If we use such an EM algorithm however, we do not get any clusters to which we
can apply our factorization selection procedures for constructing the final probability distribution.
Furthermore, we have noted that we only use the normal pdf. If we identify a single cluster
equal to the entire sample vector and fit a normal mixture model to the cluster, we also have
to use the EM algorithm as we shall see in section 4.3.2. This gives an approach that is similar
to identifying fuzzy clusters using the EM algorithm and subsequently using the result as the
probability distribution. Therefore, we only focus on partitioning algorithms so as to be able to
apply factorization selection to the identified partitions.

3.3.1 Partitioning algorithms

One of the most fundamental aspects in partioning, is the distance function. The distance of
a point to a cluster determines to which cluster the point will actually be assigned. Often, the
FEuclidean distance is used. However, if we are to cluster two variables that lie on a different scale,
the Euclidean distance might not be the best choice. Optically, if we would present the sample
vector in a rectangular graph where the axes are rescaled to fit within the rectangle, the clusters we
would observe are not the clusters as they appear in the data based upon the Euclidean distance.
These clusters will be found if both axes are of the same scale. One axis might become a lot
longer in this case and clusters that might have been obvious in the rectangular graph, may not
be so obvious at all anymore. Using the Euclidean distance is in this case still useful, but after
the sample data has been rescaled in every dimension. Rescaling on the other hand is sensitive to
outliers. For two |a| dimensional points y*{a) and y/(a), the Euclidean distance dg(y*(a),y’(a))
between them is given by:

la|-1

dp(y*(a),y’(a)) = \/ (yi(a) -y (@) (yi(a) — yi (@) = || D (Wi, — ¥ha)? (30)

k=0

Scaling can be introduced into the Euclidean distance metric by computing the sample variance
in each dimension separately:
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drs(y(a), 7 (@) = \/(yila) — (@) T (V (@) "L (yila) —yita)) = || D2 P Tl (g
k=0 ar
sz, 0 0
0 sz, 0
where V(a) = :
0 0 2

If we have a cluster, we can use its centroid as a reference point. The distance between a point
and the cluster is then the scaled Euclidean distance between the cluster centroid and the point. A
problem with this approach is that the distance to a cluster has ellipsoid shaped isolines that are
aligned along with the axes. Therefore, even samples with linear interaction through correlation
will likely be broken up into multiple axes—aligned ellipsoid shaped clusters. To overcome this
problem, the Mahalanobis distance metric [23] can be used. Whereas the Euclidean distance
metric can be seen as the result of fitting a normal pdf with zero covariances, the Mahalanobis
distance metric can be seen as the result of fitting a normal pdf with a full covariance matrix.
The clusters can therefore potentially be shaped better to the form of the data. Let & (a) be the
centroid of cluster 4 and let S(8&%, a) be the sample covariance matrix of the points in cluster i
over the features selected by a:

_ p
Ri{a) = Y ,Z:% Ly (32)
. 1 falke A A
S(&a) = o Z (8] — A(a))(]] - K{a)” (33)
j=0

The Mahalanobis distance between a point y*(a) and cluster j can now be written as:

du(y*(a), j) = \/(y"<a) — f9(a))"(S(R*,a))~" (y¥(a) — K/ (a)) (34)
It can be shown that the isolines of the Mahalanobis distance are ellipsoids that are centered
about the cluster centroid and can be aligned along any direction. In the special case where
the samples are uncorrelated, these ellipsoids are aligned along the axes and the Mahalanobis
distance becomes equivalent to the Euclidean distance. The Mahalanobis distance overcomes
two limitations of the scaled Euclidean distance. On the one hand, it corrects for correlation
between the different features. On the other hand, it can provide curved as well as linear decision
boundaries. The disadvantage of the Mahalanobis distance is that the covariance matrices have to
be determined, which becomes less reliable if the amount of samples in a cluster becomes smaller.
Furthermore, the memory and computation time requirements are O(I?) instead of O(1).
The mixture coefficients 8; can be determined in different ways. One of the two most common
ways, is to use a probabilistic approach and set §; to the ratio of the size of the i—th cluster to the
total size of all clusters:

zEKJ <,Bz = Eﬁll‘ﬁil|ﬁ‘1|> (35)

As selection will drive the optimization process toward the more promising regions of the
search space, the clusters will be concentrated on different peaks in the cost landscape. Such
niches will however not remain stable using equation 35 if the peaks are not equally high in case
of maximization, since selection will prefer the larger peak. In the case of equal peaks, the search
may still converge to concentrate on a single peak because of finite statistical instability. To this
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end, the other common way to determine the mixing coefficients can be used. In this case, the
mixing coefficients are determined as the average cost of the niche divided by the sum of the
average costs over every niche:

o Dol %
Viex <,81-= 7 20 C(R) > (36)

Yl T O(%3)

q=0

Clustering for niching in stochastic optimization was first introduced in the field of genetic
algorithms [33]. Clustering and the mixing coefficients in equations 35 and 36 were later used in the
first approach [25] that applied clustering to iterated density estimation evolutionary algorithms.
However, the formula in equation 36 doesn’t work if the objective is to minimize and the values
are below zero. Therefore, it is reasonable to assume that the optimum value will be far from
the initial sample cost average. If we compute the average fitness for niching with respect to this
initial sample cost average C; and take the absolute value to account for maximization as well as
minimization, we get:

1 I8 -1 i _
Viex { i = |k B 0 - (37)
AN IR 1 EIR‘\*l C(Ri) - Ty
j=0 |]Rd| £~q=0 q I

Before we continue on the actual clustering algorithms, we place a final note on the use of
distance measures. In general, clusters should unite sample points that constitute promising
regions in the search space. These regions do not necessarily have to correspond to the Euclidean
space in which they are coded. This coding space is called the genotypic space. The decoded space
in which parameters have their true meaning and directly contribute to the cost function, is called
the phenotypic space. It should be noted that clustering in phenotypic space is in general more
desirable as it is more likely to cluster the samples the most effective way. For most continuous
problems, the two spaces are identical. We now focus on the partioning algorithms themselves.

The leader algorithm

The leader algorithm is one of the fastest clustering algorithms. The use of it can thus be beneficial
if the amount of overhead that is introduced by factorization mixture selection methods is desired
to remain small. Furthermore, there is no need to specify in advance how many clusters there
should be. The first sample to make a new cluster is appointed to be its leader. The leader
algorithm goes over the sample vector exactly once. For each sample it encounters, it finds the
first cluster that has a leader being closer to the sample than a given threshold ¥4. If no such
cluster can be found, a new cluster is created containing only this single sample.

Unless the order in which the clusters are inspected is randomized, the first clusters are always
quite a lot larger than the later ones. However, the asymptotic running time for finding the first
cluster with a leader closer than ¥, is the same as going over all clusters and finding the one with
the smallest distance. Therefore, we prefer to find the nearest cluster based on the leader of the
cluster. If it is closer than ¥4, we assign the sample to the cluster. Another problem that arises is
that if we have two clusters to which all samples are equally close, one cluster will be assigned all
samples if we go over the clusters in a deterministic order. To overcome this problem, the order
in which the clusters are scanned should be randomized as well.

One of the major drawbacks of the algorithm is that it is not invariant given the sequence
of the input samples. Most clustering algorithms have this property, but not as strongly as does
the leader algorithm. Therefore, to be sure that the ordering of the sample vector is not subject
to large repeating sequences of samples, which results in undesired fixed density estimations, we
propose to randomize the ordering of the samples as input to the leader algorithm. This can be
done by allocating an array of indices that is randomly accessed in the algorithm. In order to use
the scaled Euclidean distance measure, we first have to compute the sample variance s; in each
dimension. The resulting algorithm can be formalized as follows:
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EUcCLIDEANLEADERCLUSTERING(%})

1 L« new array of (vector of real) with size |S]|
2 R+

3 0%,0° + 2 new arrays of integer with size |S|
4 fori+O0tol—1do

_ Is/-1j
41 Y; « L’T‘gl vi
P O
4.2 s8; + O\fl
5 fori«+O0to|S|—1do
51 O°[i] +i

6 fori+0tol|S|—1do
6.1 ¢° + RaNDOM(|S| —1)
6.2 forj+ 0to|R|—1do
6.2.1 0°[j] + j
6.3 dmin ¢+ %4
6.4 for j+ 0to|R|—1do
6.4.1 ¢°<« RANDOM(|R|—j)
6.42 if dps(y°’la’l L[O%[¢°]]) < dmin then
6421  dmin + dps(y©'19], L[O°[¢°]))
6.4.2.2  cpin + O°[¢°]
6.4.3 O°q¢°] + O°[|R| —j — 1]
6.5 if dpin < %4 then
6.5.1 Rjgin,, «yol]
6.6 else then
6.6.1 L[|R]] « y©9°la’]
662 SN« (yO'la’])
6.7 O°%[¢°] « O?[|S| —i —1]
7 return(K)

In order to allow for more flexible clusters, we may want to use the Mahalanobis distance
measure. This can however not be achieved by substituting the Mahalanobis distance measure
for the Euclidean distance measure in the above algorithm. The reason for this is that in order
to evaluate the Mahalanobis distance, we require to know the sample covariance matrix of the
samples that belong to a cluster as well as their sample mean. For the Euclidean measure, it
suffices to have a single point serving as a centroid.

To use the Mahalanobis distance, we can determine the required parameters as the clustering
algorithm progresses through the samples. As a point is added to a cluster, its sample covariance
matrix and its sample mean are updated. However, the covariance matrix can only be computed
and used in the Mahalanobis distance if we have at least two samples. Furthermore, based on
only a few samples, the Mahalanobis distance may give unstable results, leading to unnatural
clusters. Therefore, we propose that a cluster must first grow to some minimum size ¥, before
the Mahalanobis distance can be used for it.

The leader aspect in the Euclidean variant of the algorithm lies within the fact that the first
sample to define a new cluster is taken to be the leader of the cluster. It serves as a centroid for
the Euclidean distance. In the variant that results when we use the Mahalanobis distance, the
sample mean takes the role of the leader for some cluster as soon as the size of that cluster has
reached ¥;. The sample mean of a cluster changes whenever a sample is added to that cluster.
Therefore, the term leader is somewhat misleading in the resulting algorithm:
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MAHALANOBISLEADERCLUSTERING(%4, Ts)

1 L+ new array of (vector of real) with size |S]|
2 A8«

3 0°,0° + 2 new arrays of integer with size |S|
4 fori+0tol—1do

_ I81-1,4
41 Y + LT& %
12 e B
5 fori+0to|S|—1do
51 O°%[i] +i

6 fori<0tol|S|—1do
6.1 ¢° «+ RanpoM(|S| —1i)
6.2 forj<+0to|R|—1do
6.2.1 Oc[j] —J
6.3 dmin Y
6.4 for j+ 0to|R|—1do
6.4.1 ¢°+ RANDOM(|K|-j)
6.42 if |RO°W]| > T, then
6.4.2.1 d+ du(y°'l9] 0°[¢°])
6.4.3 else
6.4.3.1 d <« dps(y°'l9’l, L[0°[¢]))
6.44 if d < dmin then
6.4.4.1 dpp < d
6.4.4.2  cmin « O°[q°]
6.4.5 O°[¢°] « O°[|R] - j — 1]
6.5 if dnin < %4 then
651 forj+Otol—1do
6.5.1.1 forg«+ jtol—1do
6.5.1.1.1  S(Remin, £)(j,q) ¢ S(Romi=, £)(j,q) + (Remin); (Romin),
|f¢min|S(@°min, £)(j,q)+y |1 1yQ"[4°]
[Remin[+1

6.5.1.1.2  S(8in, £)(j,q)

6.5.2 Romn ¢ T A g0 0]
6.5.3 forj+0tol—1do
6.5.3.1 forgq+jtol—1do
65.3.1.1  S(Rn, £)(j,q) (K, £)(j,q) — (Fomm); (o),
6.5.3.1.2  §(&=, L)(q,)) « S(R=, L)(5,9)
6.54 Rz |yl
6.6 else then
6.6.1 RIS yO°la"]
6.6.2 forj« 0to|S|—1do
6.6.21 for g« 0to|S|—1do
6.6.2.1.1 S(8%l £)(j,q) « 0
6.6.3 L[R[] « y©la"]
6.6.4 RI8  (yO'la’])
6.7 O°%[¢°] « O°[|S| —i —1]
7 return(f)

The k—means algorithm

An algorithm that is invariant of the permutation of the sample vector, is the joining algorithm.
This algorithm initially generates a cluster for each sample and then iteratively joins clusters until
no clusters are close to each other enough anymore. The algorithm is however not really suitable
for large sample vectors, since |S|? distances must be computed and examined.
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A faster algorithm that is less subject to the input ordering as is the leader algorithm but
not independent as is the joining algorithm, is the k—means clustering algorithm. This algorithm
constructs exactly k clusters. As we a priori mostly have little notion of how many clusters are
appropriate to fit to the data, the adaptive k—means algorithm is usually preferred. Based on
distance thresholds, the number of clusters k is determined by the algorithm itself, just as is done
by the leader algorithm. The amount of clusters influences the running time of the subsequent
distribution estimation, so a bound on k£ might be preferred. We restrict ourselves to the non—
adaptive version of the clustering algorithm and elaborate on the value of k in section 3.3.2.

The k—means algorithm computes k clusters. A difference with respect to the leader algorithm,
is that it uses the cluster centroids. The general procedure is as follows. First, k clusters are picked
at random. This can be done by partioning the sample vector at random into k subvectors. The
resulting centroids are however expected to lie close to each other. Therefore, the initial clusters
are usually taken to consist of a single sample, which is chosen at random from the sample vector.
Subsequently, the algorithm iterates until the means do not change to within a significance of
€ anymore. One iteration consists of assigning each point to the nearest cluster based on the
distance to the cluster centroid. If multiple clusters are equally likely to be chosen, one of them is
picked at random. To ensure this, the clusters are scanned in a random order for each new sample
point. Once all of the points have been assigned, the means of the clusters are recomputed.

An advantage over the leader algorithm, is that the result of the k—means algorithm is less
dependent on the input ordering. A disadvantage is that the algorithm takes N times as long as
the leader algorithm where Ny is the amount of iterations in the k—-means clustering algorithm.
To avoid spending large computation efforts, a maximum of ¥; iterations is allowed:

EucLIDEANKMEANSCLUSTERING (%, €, T;)
1 O + new array of integer with size k

2 R+ ()
3 fori+0tol—1do
— ylslety
31 Y =g
2o wi-Yo?
3.2 s ¢ =gt

4 fori+O0tok—1do
41 ¢+ RanpoM(|S|)

42 R+ y9
43 R+ ()
44 O[] «i

first «+ true
ready + false
t<+<0
while —ready do
81 fori+Otok—1do
8.1.1 K« ()
82 fori+0to|S|—1do
8.2.1 ¢+ RanpoM(k)
8.2.2 dmin + dps(yt, 8Old)
8.2.3  ¢min « O[q]
824 Olg] + O[k —1]
825 forj«<O0tok-2do
8.2.5.1 ¢+ RanpoMm(k—j—1)
8.2.5.2 if d(y*, ROl)) < dp;, then
8.2.5.2.1  dmin « d(y*, 8Old)
8.2.5.2.2  ¢pin + O[q]
8.2.5.3 Olq] & Ok —j—2
8.2.6 (ﬁc“"i“)‘ﬁcmin| — yi

0~ O Ot
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9

EucLIDEANKMEANSCLUSTERING(k, €, T;)

8.3 ready + true
84 fori+0tok—1do
1£51-1 &i
841 ae ==
8.4.2 if |a— Ri| > ¢ then
8.44 ready + false
843 Ri+a
8.5 if first then
8.5.1 first + false
8.5.2 ready + false
86 t+t+1
8.7 ift=%; then
8.7.1 ready « true
return(fK)

Just as for the leader algorithm, we can alter the k—means clustering algorithm to make use of
the Mahalanobis distance measure. If a cluster has grown to some minimum size, the Mahalanobis
distance may be used. Otherwise, the Euclidean distance is used. In subsequent generations, the
Mahalanobis distance is always used as the covariance values are then kept fixed in any single
loop. Again, the maximum amount of iterations that the algorithm is allowed, is given by ¥;. The

resulting algorithm can be formalized as follows:

T W N =

O © 0o

a < new vector of real with size [
B + new matrix of real with size [ x [
O + new array of integer with size k
£+ ()
fori+—0tol—1do

5.1
5.2

ZL:lo_l yf
E;‘:O_l(y,]'_li)2
S; — - 18

fori+0tok—1do

6.1
6.2
6.3

6.4
6.5

g + RaNDOM(|S))

/iyl

for j+0to|S|-1do

6.3.1 forqg«0to|S|—1do

MAHALANOBISKMEANSCLUSTERING(k, €, T5, T;)

6.3.1.1 S(8 L)(j,q) « 0

K+ ()
Oli] « i

first < true
ready < false
t+<0

while —ready do

10.1

fori+—0tok—1do
10.1.1 8« ()
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MAHALANOBISKMEANSCLUSTERING(k, €, T5, T;)
10.2 fori+ 0to|S|—1do

11

10.3
10.4

10.5

10.6
10.7

10.2.1 ¢+ Ranpowm(k)
10.2.2  if —firstVv |R°l| > T, then
10.2.2.1  dpin < du(yt, O[q))
10.2.3 else
10.2.3.1  dpin < dps(y?, 8Old)
10.2.4  cpin < Olq]
1025 O[q) ¢ O[k — 1]
10.2.6 for j+ O0tok—2do
10.2.6.1 ¢+ Ranpom(k—j—1)
10.2.6.2 if —firstV || > %, then
10.2.6.2.1 d + dy (3%, O[q])
10.2.6.3 else
10.2.6.3.1 d « dgs(y*, ROldl)
10.2.6.4 1f d < dmin then
10.2.6.2.1  dpin < d
10.2.6.2.2  cmin « O[q]
10.2.6.5 Olg) ¢ Ok — j — 2]
10.2.7 &g |« y*

“min

10.2.8 if first A |Rmin| = %, then
10.2.8.1 for j« O0tol—1do
10.2.8.1.1 for g+ jtol—1do
10.2.8.1.1.1 S(Kemin L)(j,q) < S(K™in L) (j,q)+

(Remin) j (Remin) g

10.2.8.1.1.2 S(&°min £)(j,q) + .
|REmin | §(RKmin L) (j,q)+y; y;
[RSmin[4+1

10.2.8.2 Komin ¢ SmATmRS
10.2.8.3 for j«<0tol—1do
10.2.8.3.1 forqg+ jtol—1do
10.2.8.3.1.1 S(&°min, £)(j,q) + S(Ke==, £)(j, q)—
(Romn) (o),
10.2.8.3.1.2 S(Ke=in L)(q,j) + S(KRi= L)(],q)
ready < true
fori+<0tok—1do

KE—1 L
1041 a+ Lj‘;;‘i
104.2  if Jjeclla; — (R);] > ¢) then
10.4.2.1 ready + false
1043 Ri+a
E'-ii'_l
10.44 B+ == G
1045 if 3, pec2(BU,0) — (S(&,£)(1,0)| > €) then
10.4.5.1 ready + false
1046 S(R' L)+ B
tf first then
10.5.1  first < false
10.5.2 ready < false
t+—t+1
if t=%; then
10.7.1 ready + true

(8E—g7) (/i —8)7

return(fK)
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3.3.2 Setting parameters

On the one hand, we now have clustering algorithms on the basis of which we can define a mixture
of factorizations. However, on the other hand, we have introduced new parameters that determine
the amount of mixtures that will be introduced. For the k-means clustering algorithms, this
amount equals exactly k. For the leader algorithms, this amount depends on the value for the
distance threshold ¥;. In order to perform factorization mixture selection, we clearly have to
determine what value to use for these parameters.

Setting the parameters requires some experience. To automate this, we can apply the general
approaches for the detection of dependence between variables from section 3.2. If we for instance
take the k parameter for the k—means clustering algorithms, we can increment the value of k£ and
compute the negative log—likelihood value. If based on this value the probability distribution is
significantly better than for a smaller value of k, this value is accepted and the search continues.
Alternatively, a scoring metric can be increasingly penalized as the amount of clusters increases.
A similar scheme can be used for the distance threshold .

It should be noted that using such methods requires a vast amount of computation time.
Factorization selection for a single cluster can already take up a significant amount of computation
time. Over k clusters, we thus require k times as much computation time. It therefore seems by
far the most efficient choice to fix k or ¥4 on beforehand.

3.3.3 Examples

In this section, we present some examples of the partioning algorithms that are described in the
previous sections. We apply each of the the clustering algorithms from section 3.3 to a set of sample
vectors and observe the results. We use sample vectors that can be displayed graphically to gain
better insights into the workings of the algorithms. Sample vectors of a higher dimensionality than
3 cannot be visualized in an intuitive manner. Such sample vectors will appear when we apply
the iterated density estimation to continuous optimization in section 6. We go over the sample
vectors and apply the four clustering algorithms that we discussed in section 3.3.

We use 8 sample vectors. The first 7 of these are two dimensional and consist of various
structures. The first sample vector is sampled from the uniform distribution. The second sample
vector is sampled from a multiple of local uniform distributions, creating clusters. The third
sample vector is a filled circle with a higher concentration of samples in the center and can be
seen to have been sampled from a cone. The fourth sample vector is an outlined circle, which
is difficult for most approaches. Even though the space can be described by a single parameter
that is the angle around the center, this structure is hardly ever detected by any probability
density estimation procedure. The fifth sample vector is a line that exemplifies full correlation
between the two variables. The sixth and seventh sample vectors are sample vectors that express
dependency, but in such a way that it usually cannot be accounted for by a single factorization.
The last sample vector shows different behavior in different regions of the plane. In one region,
the density is uniform, whereas in the other it is fully correlated. For any probabilistic model to
efficiently describe this sample vector, it should be clustered into at least two sample vectors that
are processed individually.

We have applied the four clustering algorithms from section 3.3 to each sample vector. For the
k—means clustering algorithms, we used k = 10. The results are shown in figures 6 through to 13.
Each figure shows, from left to right, the result of Euclidean leader clustering, Mahalanobis leader
clustering, Euclidean k—means clustering and Mahalanobis k-means clustering. The distance
threshold for the Euclidean leader clustering algorithm was ¥4 = 1.0. For the Mahalanobis leader
clustering algorithm, the distance threshold was ¥4 = 2.5 and the minimum cluster size threshold
was T5 = 10. For both k—means clustering algorithms, we used k = 10, = 0.001,%; = 10. All of
the settings were chosen so that a visually intuitive amount of clusters was obtained.

If we compare the leader results to the k—means results, it is clear that the cluster boundaries
of the k—means results are strict in the sense that there is no overlap between the different clusters.
Our randomized approach to the leader algorithm proves to be effective in the sense that there
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Cluster results for sample vector 0.

Figure 6

Cluster results for sample vector 1.

Figure 7

Cluster results for sample vector 2.

Figure 8

Cluster results for sample vector 3.
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Figure 13: Cluster results for sample vector 7.
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are no extremely large clusters in any of its results and that the boundaries are not disturbingly
overlapping. This means that the resulting densities that are estimated on both of the clustering
results, will not differ much. Especially for our application in which a correct density estimation
is not as important as is a good approximation, the results of the leader algorithm seem at least
as promising as those of the k—means clustering algorithm. Since the running time of the leader
algorithm is smaller than that of the k—means algorithm, the leader algorithm seems preferable.

If we compare the results between the use of the Euclidean distance measure and the Maha-
lanobis distance measure, it is not directly clear which of these approaches leads to more desirable
results. One of the main drawbacks of using the Mahalanobis distance measure, is that small
clusters are more likely to appear. Such clusters can for instance lie completely inside another
cluster since the normal pdf that is based upon it, is sharply peaked. It seems that the k—means
algorithm in this case leads to somewhat better formed clusters with less overlap. The true advan-
tage of the Mahalanobis distance in that it can better describe linear relations, is unfortunately
not exploited in a useful way using the described clustering algorithms as becomes clear from
figure 12 for instance. In this figure, the horizontal bars of sample points are not separated by
the clusters even though this is possible by using the Mahalanobis distance. This means that the
resulting estimated density will not be effective. As the Mahalanobis distance measure takes more
computational effort, it seems that the Fuclidean distance measure is preferable.

Given the computational speed of the leader algorithm and its acceptable two—dimensional
results we have seen so far, this algorithm seems the most promising to use to use for factorization
mixture selection based on clustering. The experiments in section 6 will bring the use of clustering
within the IDEA framework into practice, which will indicate the actual computational usefulness
of the proposed clustering algorithms.

4 Model fitting and sampling

Once a factorization has been selected, a pdf has to be fit for each element in the factorization. If
we have used statistical hypothesis tests directly through for instance the correlation coefficient,
we yet have to find such a fit. Then again, in the case of using the Kullback—Leibler divergence,
the required parameters have been observed to already have been computed [8]. In general, we
assume that our model structure has been selected but that the pdf information is not available
yet. In this section, we concentrate on computing the pdf information. In general, whereas finding
a model structure, is called model selection, estimating a pdf for each element in the structure as
we do in this section, is called model fitting.

4.1 Observing pdf characteristics

In this article, we have described algorithms that use conditional densities and unconditional
densities. We have also shown that the conditional densities are a more general case than are the
unconditional densities as the latter can be written as a special case of the former.

From equation 3 we have that we only require unconditional densities. However, simplifying
the actual conditional density can lead to expressions that can be computed more efficiently. We
shall give the conditional density for each pdf that we discuss. First however, we discuss some
pdfs in general. From these, we select the pdfs to actually work with. In subsequent sections we
go into more detail on the selected pdfs.

We restrict ourselves to the use of the normal pdf and variants thereof. One of the main
reasons for this, is that the normal pdf has relatively simple analytical properties. Furthermore,
the central limit theorem tells us that given enough samples, the approximation to the normal pdf
is often quite good for several components that represent some source.

Based on the normal pdf, we distinguish three different pdfs. These are the single multivariate
normal pdf, the normal kernels pdf and the normal mixture pdf. Both the multivariate normal
pdf as well as the normal kernels pdf have been proposed previously in the IDEA framework [8,
10, 11, 12]. The single multivariate normal pdf is defined as follows:
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Figure 14: Fitting sample vectors 0 (left) and 1 (right) with a joint normal pdf.
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For sample vectors 0 and 1 that are given in section 3.3.3, we have fitted a maximum likelihood
estimate of the multivariate normal pdf. The results can be seen in figure 14.

The normal kernels pdf is obtained by placing a multivariate normal pdf over each sample
point. The covariance matrices of these normal kernels are fixed to have non—zero entries on the
diagonal and zero entries off the diagonal. The entries on the diagonal are the individual variances
of the normal pdf in each dimension. We denote such a variance in dimension j by s;. The so
constructed matrix implies that the normal kernels can be scaled in each dimension separately,
but that each multivariate normal pdf cannot be aligned to any other axes than the standard axes.
We denote the resulting matrix over variables Y (a) by &S(a):

s2 0 ... 0
0 s2 ... 0
Sla) = | . Do : (39)
0 0 ... s,

As a result, the multivariate normal kernels pdf can be formalized as follows:

|s[-1

I (0(a), 8, 6(a)) = % S fnlyia),vi(a), S(a) (40)
=0

In the definition of the normal kernels pdf, the standard deviation values s; are determined
externally. Previously [12], a linear scaling of the standard deviations with respect to the range
was proposed. One interesting property of the normal kernels pdf, is that by increasing the
standard deviation values s;, we allow for less detail in the final density estimation. Furthermore,
an advantage over the use of the normal pdf, is that we have a better way of modeling clusters.
A resulting fit over the two sample vectors can be seen in figure 15.

If we take M normal pdfs instead of |S| and fit them to the sample data as well as possible
while allowing for full covariance matrices, we have a normal mixture pdf. Note that we are fitting
such a mixture over a subset of the variables instead of over all variables as we did in section 3.3.
It may be clear that fitting such a normal mixture pdf over a subset of the available variables,
can be done in the same way as described earlier in section 3.3, namely through the use of the
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Figure 15: Fitting sample vectors 0 (left) and 1 (right) with a joint normal kernels pdf with
50 =561 = 10

EM algorithm or the adaptive EM algorithm. An advantage of the normal mixture pdf over the
normal pdf and the normal kernels pdf, is that it is not as global and cluster insensitive as is
the normal pdf and neither over—sensitive to clusters as is the normal kernels pdf. Therefore, the
normal mixture pdf can be seen as a trade—off. The normal mixture pdf requires a vector of vectors
of means as well as a vector of covariance matrices since we have multiple multivariate normal
pdfs. We assume to have w such normal components in the mixture and let W = (0,1,...,w—1).
The vector of vectors of means is p(a){W) and the vector of covariance matrices is X(a){W).
We define p’(a) to be the mean vector of the i-th component ui(a) = (u(a)(W)); and Xi(a)
to be the covariance matrix of the i-th component ¥*(a) = (X(a){W));. The normal mixture
distribution can be formalized as in equation 41. A resulting fit over the two sample vectors can
be seen in figure 16.

w—1
In (@), a(W), w(@)(W), S(a)(W)) = Y aifw(y(a), n'(a), ¥ (a)) (41)
i=0

In equation 41, a(W) is a vector of mizing coefficients. The same condition on the o mixing
coefficients holds as in the case of the 8 mixing coefficients for the factorization mixture as discussed
in section 3.3, namely that Z;”:_Ol a;=land a; > 0for 0 <4 < w.

The normal pdf has been used successfully on a variety of test functions [10, 11]. The normal
pdf however strongly generalizes the data. This aspect becomes clear from figure 14 where clearly
the clustered set is underfit. The normal kernels pdf overcomes this aspect. However, the costs
for this are quite high. Firstly, evaluating the function takes |S| times more time than the single
normal pdf. This scales with the amount of available samples. However, getting more samples
should imply that we get a better description of the source from which the samples were drawn
and not that we necessarily get a much more costly pdf. Sampling from the distribution takes
much more time as well. In order to solve higher dimensional problems, we require increasingly
more samples. As the complexity of the normal kernels pdf increases with this amount and since
the pdf is used very often throughout the optimization algorithm, the normal kernels pdf is not
a very efficient way of reducing the strong generalization of the normal pdf. Secondly, it is not
straightforward what values to use for the variances of each kernel. It has been observed [10] that
the performance of the resulting algorithm strongly depends on the variances. This renders the
normal kernels pdf hard to handle, even though it has been observed [10] that better results can
be obtained with it on epistatic problems than with the normal pdf.

We point out that in terms of modeling, the normal mixture pdf generalizes both the normal
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Figure 16: Fitting sample vectors 0 (left) and 1 (right) with a joint normal mixture pdf using the
EM algorithm with 10 components and ¢ = 1073.

kernels pdf as well as the single normal pdf. If we have w = 1, we have a single normal pdf. On
the other hand, if we have w = |S| and X%(a) = &(a), we get the normal kernels pdf.

We conclude that for simplicity and efficiency, it is beneficial to continue to use the single
normal pdf. We refrain from using the normal kernels pdf any further since it is very sensitive
to parameter settings and a good fit is hard to find. On the other hand, for the normal mixture
pdf, the EM algorithm gives us an automated procedure to obtain a fit. Therefore, we continue to
regard only the normal pdf and the normal mixture pdf. In the next subsections, we present some
important derivations of the pdfs in order for them to be used in the IDEA framework. For each
pdf, we first present its multivariate conditional version in which a single variable is conditioned
on a multiple of others and show how we can sample from it as well as from the multivariate joint
pdf. Subsequently, we show how the parameters @ for the pdf can be estimated.

4.2 The normal pdf

The definition of the multivariate normal joint pdf, given a vector of variables y{(a), a mean vector
u{a) and a covariance matrix X(a), is given in equation 38. Using this definition, we can directly
account for unconditional dependencies as these result in multivariate joint pdfs. Therefore, we
can evaluate a sample in a marginal product model that is fit with normal pdfs. However, in the
case of conditional dependencies, we must be able to evaluate the multivariate normal conditional
pdf. Furthermore, to complete the resulting algorithms, we need to be able to sample from the
multivariate normal joint pdf as well as from the multivariate normal conditional pdf. In this
section, we first show how to perform the actual sampling. Once this is known, we know how to
sample from both the special case multivariate conditional normal pdf as well as the multivariate
joint normal pdf. However, given a model structure, we still have to estimate the parameters of
the normal pdfs, which is the actual model fitting. How to best estimate the parameters, is what
we show second in this section.

4.2.1 Sampling

We first want to know how to sample from the special case multivariate conditional normal pdf.
Usually, only sampling from a one dimensional normal pdf is available. However, it was pointed
out in earlier work [8] that the multivariate normal conditional pdf in which a single variable yaq,
is conditioned on |a| — 1 other variables y(a — ag), is exactly a one dimensional normal pdf and
can be written as follows:
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fN((ya0|y<a - aO))a M(a)a 2(0,)) = f./\f(yaoa/]/a 62) (42)
o’ = W

~_ papZ(@) 710,00 -3  (ya; —pay) (@) 71 (3,0)
ro= %(a)-1(0,0)

where

If we use a factorization based on conditional dependencies, we can directly use the pdf in
equation 42 to draw more samples from the resulting probability distribution. In the case of
unconditional dependencies however, we have to draw samples from a product of multivariate
joint normal pdfs. We have assumed that only sampling from a one dimensional normal pdf is
available. Therefore, if we have to sample from a multivariate normal pdf, we use equation 3 to
write the multivariate pdf as a product of multivariate conditional pdfs for which we know that
they can be written as one dimensional normal pdfs using equation 42. This procedure is known
as sampling by simulation.

The multivariate differential entropy for the multivariate joint normal pdf can be derived
analytically. It can be shown (see for instance [15]) that it equals:

Min (y(a), pla), Z(a))) = %(Ial + In((2m)!*/(det £(a)))) (43)

4.2.2 Parameter estimation

From equations 38 and 42 it follows that we have to estimate the values for p(a) and ¥(a). It can
be shown that a maximum likelihood fit of the normal pdf is found by using the sample average
Y{a) and sample covariance matrix S(a) for them respectively:

_ 1 st
Y(a) = S ; ya) (44)
1 [S]-1 . . . .
S(a) = G ; (y'(a) = Y{(a))(y'(a) - Y{a))" (45)

4.3 The normal mixture pdf

The definition of a multivariate normal mixture pdf is given in equation 41. Just as in the case
of a single normal pdf, we can thereby directly account for unconditional dependencies. In this
section, we firstly derive an expression for the multivariate conditional normal mixture pdf and
subsequently note how to sample from it. Also, we show how to sample from the multivariate
joint normal mixture pdf. Secondly, we show how the EM algorithm can be used to estimate the
parameters of a multivariate normal mixture pdf.

4.3.1 Sampling

To sample from a model that incorporates conditional dependencies, we must first derive the
multivariate conditional normal mixture pdf in which a single variable yq, is conditioned on
multiple others y(a — ag). To this end, we note that any expression that contains only the
variables y(a — ag) is a constant, since these variables are given in the conditional expression.
Using equation 2, we have:

Ina ((Waoly(a — ao)), (W), ula)(W), E(a)(W)) (46)
_ fnu (@), a{W), (@) (W), 5(a)(W))
fnu (y(a — ao), (W), pla — ao)(W), E(a — ao)(W))
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The expression in the denominator of equation 46 depends only on variables y{a — ag). As
the values for these variables are given, we define a constant c¢o = fa,, (y{a — ag), (W), u{a —
ao)(W), X (a—ag){W)). Using equation 2 on the nominator of equation 46, we continue to write:

= L3 auflyla) we), Z(a) (47)
=0
= L5 it (au@ — ao)), i ta), Z(a)) f vl — aoh, i — ao), e - ao)
=0

At this point, another constant appears as the last factor in equation 47 again only depends
on variables y(a — ag). This time however, the constant is additionally dependent on i. Therefore,
we cannot move this factor outside the summation. The same is the case for the «; factors. We
introduce a “constant” that is a function of i by ¢1(i) = a; fx (y{a — ao), p*{a — ao), X (a — ap)).
If we additionally use equation 42 on the multivariate conditional normal pdf factor that has
appeared, we get the result for the special case multivariate conditional normal mixture pdf:

C1 (l)

Co

w

-5

-1
=0

N ((Ya, (@ — ao)), #'(a), =¥(a)) (48)

- aifn(y{a — ao), 1 (a — ao), T (a — ao)) Vi (512
= 2 T 0(a - ao),alW), ufa — ao) (W), 5(a - agy ) Voo )
@) = s

~ paTH@) T (0,0) -2 (ya; —pl, )T (@) 71 (00)
= =*(a)=1(0,0)

where

The resulting expression is thus a weighted sum of one dimensional normal pdfs. Therefore, in
order to sample from the multivariate conditional normal mixture pdf, we first have to compute the
weights ¢1(7)/co. We then select the i—th normal pdf with probability ¢1(7)/co. Since the complete
expression is a pdf and each element in the sum is a weight times a normal pdf, the weights have to
sum to 1. As the nominator is a component of the mixture in the denominator, ¢y = ZZ.”:_OI c1 (1),
this can be seen to be the case. This implies that ¢g does not have to be computed separately, but
that only the ¢ (7) have to be computed.

Next to being able to sample from the required multivariate conditional normal mixture pdf, we
also have to be able to sample from the multivariate joint normal mixture pdf. This is quite simple
compared to the conditional case. The joint pdf in equation 41 is a sum of weighted multivariate
joint normal pdfs. Given the constraint that the «; have to sum to 1 and may not be negative, we
can select the i—th multivariate normal pdf to sample from with probability a;. How to sample
from a single multivariate normal pdf has already been discussed in section 4.2.

4.3.2 Parameter estimation

Estimating the parameters of each multivariate joint normal pdf, given w, is not straightforward.
To this end, the EM algorithm has been proposed [16]. This algorithm does not guarantee a
maximum likelihood fit, but at least it is a general approach to finding an approximation.

Even though we get an approximation by using the EM algorithm, the choice of w still has to
be made. This is somewhat of a similar choice as in the case of selecting the amount of clusters
in factorization mixture selection. An adaptive version of the EM algorithm can be constructed
so as to prevent the user from having to specify the amount of normal pdfs to use in a fit over
the data. Instead, the user must provide a threshold value in the same fashion as for the leader
algorithms. Just as we did in the case of the k—means clustering algorithms however, we restrict
ourselves to the non—adaptive algorithm.
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The EM algorithm is an iterative parameter estimation procedure. Given a certain instance
for the parameters, which is termed the old parameters, a single iteration consists of finding new
estimates for these parameters. This recomputation of the parameters is iteratively repeated until
no changes occur anymore within a certain precision or until a maximum of iterations has been
reached. In appendix C, the update equations for a single iteration of the EM algorithm for a
multivariate normal mixture model are derived given a vector of indices a. The resulting equations
concern the mixing coefficients a;, the mean vectors y/(a) and the covariance matrices X (a) for
each component 7 € VWV in the mixture:

e 1 |8|-1 a?ld{pj (y(a))(yi<a>)}old
TSI ; (P(Y(a))(y'(a))}od (49)

E|s|71 a?ld{ﬁj(Y(ﬂ))(y"(ﬂ))}ddyz’<a)

(67

j =0 {P(Y(a))(yi(a))}d
7 new _ g
{u'(a)} |S|—1 05" {Pi(Y(a))(yi(a))} (50)
=0 {P(Y (a))(yi(a))}old
_1 o5 P (Y(a)(y @)yt ; ; ;
. o T e W (@) — {1 (@)} (v (@) — {u (@)} o) T
{Z(a))"" = : (51)

Is|-1 a;-"d{f’fj (Y{a))(y(a))}d
=0 {Py(Y (a))(yi(a))}o1d

Even though the EM algorithm is derived so as to obtain a maximum likelihood estimate, the
resulting estimation may not be one of maximum likelihood. The minimization problem contains
many local minima and the algorithm may get stuck in one of them. Since the EM algorithm is
essentially a gradient algorithm, this can easily happen if the problem has many local optima. To
tackle this issue, an evolutionary algorithm could for instance be applied. However, this yields a
chicken and egg problem since within the evolutionary algorithms that learn structure, tools such
as the EM algorithm are used again.

We close this section by presenting pseudo—code for the EM algorithm for a normal mixture
with full covariance matrices. The algorithm is based upon the update equations given above as
derived in appendix C. The algorithm is defined with respect to an indices vector a. These indices
define the variables for which a multivariate joint normal mixture pdf must be estimated. Just as
was the case for the k—-means algorithm, we require an a priori specified amount of components k.
We also use a convergence significance level € as well as a maximum amount of iterations ¥;:

NORMALMIXTUREEMALGORITHM(K, €, ¥;, @)
a®,a™ < 2 new arrays of real with size k
m°,m" + 2 new arrays of (vector of real with size |a|) with size k
S5°,8™ « 2 new arrays of (matrix of real with size |a| x |a|) with size k
p + new array of real in 2 dimensions with size k x |S|
p™" + new array of real with size |S|
d + new array of real with size k
r,min < new array of real with size |a|
fori«<0tolal—1do
8.1 min[i] + min{y,, | y € S}
8.2 max + max{y., |y € S}
8.3 r[i] + maz — min]i]
9 fork+«Otok—1do
9.1 a°lk] « &
92 fori<+O0tola|l—1do
9.3 m°[k]; + RaNDOMOL() - r[{] + min[i]
93 forj+0tola|—1do
9.3.1 So[k]z'j +~0
9.4 So[k]ii < %7‘[2]

0 ~JO Ut WK
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10
11
12

13

ready < false
t<+<0

whitle —ready do
fori+0to|S|—-1do

121

12.2

12.3
12.4

12.5
12.6

12.1.1
12.1.2

pi] 0

fork+0tok—1do

12.1.2.1  plk,i] < fa(yi{a), m°[k], S°[K])
12.1.2.2  p™[i] « p™[i] + a°[k]p[k, ]

fork+0tok—1do

12.2.1
12.2.2

12.2.3
12.2.4

12.2.5

12.2.6
12.2.7

12.2.8

12.2.9

dlk] « 0
fori+—0to|S|—1do
12.2.2.1  d[k] « d[k] + = g“ip[%m]

n dlk
a"[k] « 4]
fori«—O0tola|—1do

12241 m"[k]; <0
for i<+ 0to|S|—1do '
12251 m"[k] + mn[k] + CElelds (@)
m"[k] _";[,gfl
fori«0to|a|—1do

12.2.71 for j+ Oto|a|—1do

12.2.7.1.1  S™[k]i; 0O

fori+0to|S|—-1do

12281 S"k] « S"[k] + LRI @ 1D (4 @) (1)

P

n S™[k
Snlk) « St

ready < true
fork+0tok—1do

1241 if |a™[k] — a°[k]| > € then
12.4.1.1 ready + false
12.4.2  a°lk] + a™[k]
1243 fori+ Oto|a|—1do
12.4.3.1 if |m™[k]; — m°[k];| > € then
12.4.3.1.1 ready + false
12.4.3.2 mo[k],- «— m"[k],
1244 fori+ Oto|a|—1do
12441 for j<« Otola|—1do
124.4.1.1 Zf |Sn[k‘]z] — So[k‘]z’j| Z € then
12.4.4.1.1.1 ready < false
12.4.4.1.2 So[k]i]‘ «— S"[k]”
t—1t+1
tf t =%; then
12.6.1 ready + true

fork+«0tok—1do
ay + a"[k]
p*(a) < m"[k]
13.3 Xk(a) « S"[k]

131
13.2
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5 IDEAs

Our aim is to apply the use of probabilistic models to continuous optimization. So far, we have for-
malized useful techniques and algorithms to find such models. However, we have not yet elaborated
on how these probabilistic models can be used. In this section, we present the IDEA framework
for Iterated Density Estimation Evolutionary Algorithms. In this framework, probabilistic models
are built and used in optimization with an evolutionary algorithm. In section 5.1 we first go
over the framework itself. Second, in section 5.2 we elaborate on the algorithmic instances of the
framework that were used in earlier work. Third and finally, we summarize what techniques we
will apply for the first time to get new algorithmic instances of the IDEA framework.

5.1 The IDEA framework

We write the cost function of our continuous optimization problem as C'(y{L)) and without loss
of generality, we assume that we want to minimize C(y(L)). For every problem variable y;, we
introduce a continuous random variable Y; and get Y = Y(£). Without any prior information on
C(y{L)), we might as well assume a uniform distribution over Y. Therefore, we generate an initial
(population) vector of n samples at random. Now we let P?()) be a probability distribution that
is uniform over all vectors y(L) with C(y(£)) < 6. Sampling from P?() gives more samples that
evaluate to a value below 6. Moreover, if we know 6* = min,¢,{C(y(£))}, a single sample gives
an optimal solution. To use this in an iterated algorithm, we select |7n| samples in each iteration
t and let 6; be the worst selected sample cost. We then estimate the distribution of the selected
samples and thereby find Pft (¥) as an approximation to the true distribution P% (). New
samples can then be drawn from Pgat () and be used to replace some of the current samples. This
rationale has led to the definition of the IDEA framework [8]. The largest difference between other
similar approaches and the IDEA, is that the IDEA has mostly been used to focus on continuous
optimization problems [8, 10, 11, 12, 13]. The definition of the IDEA framework is the following:

IDEA (n, 7,m, sel(), rep(), ter(), sea(), est(), sam())
Initialize an empty vector of samples P+ ()
Add and evaluate n random samples fori+—0ton—1do
P «+ P LUNEWRANDOMVECTOR()
c[Pi] < C(Pi)
Initialize the iteration counter t+0
Iterate until termination while —ter() do
Select |7n] samples (LY, y (L), ..., ylT (L)) « sel()
Set 6, to the worst selected cost 8; « c[y*{L)] such that
View’, (el (£)] < el (L))
Search for a structure ¢ ¢ + sea()
Estimate the parameters 8 <% ¢ 0 « est()
Create an empty vector of new samples O« ()
Sample m new samples from P,()) fori+—0tom—1do
O « O Usam()
Replace a part of P with a part of O rep()
Evaluate the new samples in P for each unevaluated P; do
c[Pi] < C(Pi)
Update the iteration counter t+—t+1
Denote the required iterations by teng tend < t

In the IDEA framework, we have that M. = (0,1,...,|mn]—1), T € [%, 1], sel() is the selection
operator, rep() replaces a subset of P with a subset of O, ter() is the termination condition, sea()
is a model structure search algorithm, est() estimates the model parameters and sam/() generates
a single sample using the estimated pdfs. The evolutionary algorithm characteristic of the IDEA
lies in the fact that a population of individuals is used from which individuals are selected to
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generate new offspring with. Using these offspring along with the parent individuals and the
current population, a new population is constructed.

If we set m to (n — |7n]), sel() to selection by taking the best |7n| vectors and rep() to
replacing the worst (n — [Tn]) vectors by the new samples, we have that 6;1; = 6; — ¢ with
€ > 0. This assures that the search for §* is conveyed through a monotonically decreasing series
bo > 61> ...>6;, . Wecall an IDEA with m, sel() and rep() so chosen, a monotonic IDEA.

5.2 Previous IDEAs

All of the prior algorithms that use continuous probabilistic models, have used a single factor-
ization for the probabilistic model structure ¢. The first few approaches all used the univariate
factorization [18, 30, 31]. Simultaneously, the IDEA framework was introduced [8] alongside the
work of Larrafiaga, Etxeberria, Lozano and Pefia [22]. Both of the works propose to use the
Kullback-Leibler divergence between the estimated distribution and the full joint estimated dis-
tribution which leads to minimizing the entropy over all possible factorizations. This approach is
inspired by the MIMIC algorithm [7], in which only a certain constrained class of factorizations
is allowed. In addition, in the work by Larranaga et al., edge exclusions tests and a continuous
version of the Bayesian Dirichlet metric for Gaussian networks (BGe) are used to learn a factor-
ization that is not constrained. On the other hand, in the work by Bosman and Thierens [8], a
general factorization is allowed in which each variable is allowed to interact with a maximum of
k other variables. The work by Bosman and Thierens has been tested and has proven to be an
effective approach [10, 11].

Apart from the recent work by Larrafiaga et al. and by Bosman and Thierens, there have
been no attempts to use higher order probabilistic model structures for continuous optimization.
Most of the approaches so far have solely used the normal pdf as the building blocks of the
probability distribution over Y. The only exception to this, has been the work by Gallagher,
Fream and Downs [18], in which a normal mixture model is used. However, the model structure
is fixed to the univariate factorization. Bosman and Thierens have described the use of the
normal kernels pdf [12]. This approach has however proven to be hard to handle [10]. On the
other hand, using the normal kernels pdf has given results on certain highly epistatic problems
that could not be obtained by using only a single normal pdf. Therefore, a normal mixture pdf
was suggested for future research. Finally, Bosman and Thierens also investigated the use of a
histogram distribution [8]. Using this pdf however does not scale up [10] and has therefore been
abandoned.

5.3 New IDEASs

The novelty of the algorithms that we propose in this paper, lies in the complexity of the proba-
bilistic models. First of all, for the first time, we use a mixture of factorizations instead of a single
factorization by finding a factorization for each cluster that we construct first. By effectively
removing non-linear interactions between the problem variables in this way, previously shown to
be effective techniques regarding the normal pdf and the learning of factorizations can be used to
obtain effective probability distribution estimations.

The learning of factorizations is different as well. We no longer need additional constraints on
the factorization as we use the metrics to penalize more complex models. Therefore, we no longer
have a variety of factorization search algorithms with different constraints.

Finally, we have shown for the first time how the normal mixture pdf can be used given any
factorization and thus in an IDEA instance in which any factorization is allowed. As the normal
mixture pdf can account for additional non-linearities that may still remain within the clusters,
the new algorithms are thus more flexible and effectively use more complex probabilistic models.

The required techniques to get the new optimization algorithms, have been described in pre-
vious sections in this paper. Using those techniques, we are now ready to apply our new IDEAs
to continuous optimization problems, which is done in section 6.
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5.4 Methodological comparison with Evolution Strategies

Approaches such as the IDEA that build and use probabilistic models in evolutionary optimization
were first proposed as an improvement over GAs [4, 7]. The IDEA framework itself has been used
to focus on continuous models for problems with real valued variables. This has resulted in a new
line of continuous evolutionary algorithms. However, for continuous optimization, evolutionary
algorithms have been proposed almost as long ago as the original simple binary GA [2]. Currently,
we can identify two variants of this continuous evolutionary algorithm, namely Evolutionary Pro-
gramming (EP) and Evolution Strategies (ES). Generally, we can state that these algorithms also
make use of normal pdfs. One might therefore say that there already exist algorithms that operate
in a similar fashion as the IDEA. For this reason, it is important to question the relevance of a
new approach such as the IDEA instances presented so far.

In this section, we describe how ES differs from IDEA and point out that there are indeed fun-
damental differences that markedly distinguish the approaches from one another. To this end, we
first give a brief algorithmical introduction to Evolution Strategies in section 5.4.1. Subsequently,
we describe the actual differences with our IDEA approach in section 5.4.2.

5.4.1 Brief introduction to Evolution Strategies

In this section, we give a birdseye overview of Evolution Strategies. Our goal is not to go give a
detailed description of these approaches. For a detailed introduction, the interested reader is for
instance referred to the work by Béck and Schwefel [3].

At a top level, we can distinguish two ES variants based on the selection scheme that is used.
These variants are commonly referred to as the (u, \)-ES and the (u + A)-ES. In both cases, u
denotes the amount of parents and A the amount of offspring that is produced by recombination
and mutation. In the case of the (i, A\)-ES, the u parents are selected from the X offspring (A > p).
In the case of the (u + A)-ES, the p parents are selected from both the parents of the previous
generation as well as the X offspring (A > 1).

In ES, the parents are recombined and subsequently mutated as is the case for the simple GAs.
However, the mutation operator has always been the most important one for ES. This operator
samples from normal pdfs and makes the ES appear similar to the IDEA with normal pdfs.

With each variable, a normal pdf is associated. Each normal pdf can either be allowed to have
identical standard deviations in each dimension, to be aligned with the axes of the search space
without necessarily identical standard deviations or can allowed to be any arbitrary /-dimensional
normal pdf. This comes down to a covariance matrix with respectively either similar entries on
the diagonal and zero entries off the diagonal, non—similar entries on the diagonal and zero entries
off the diagonal or an arbitrary symmetric covariance matrix. The variables that code the matrix
are incorporated into the genome and are subject to mutation and recombination themselves.

The mutation of the entries in the covariance matrix is performed by multiplication with an
exponential normally distributed value. After the values in the covariances matrix have been
updated, they are used to mutate the values for the problem variables. These values are updated
by adding a normally distributed /-dimensional variable to the current sample.

An ES individual contains real values for the ! dimensions of the problem. These values
represent the mean of a normal pdf that is used to sample offspring from after recombination.
The covariance matrix is also stored in the genome (in either restricted or unrestricted form).
These real values are mutated according to a fixed strategy. For a covariance matrix with zero
entries off the diagonal, the ES genome can be specified by:

(yoayla"'7yl7170-070-17---70-171) (52)

Mutation can then be specified by using a normally distributed general control parameter s
that is sampled for each sample to be mutated anew (note that the other two normally distributed
variables are sampled anew for each dimension):
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Figure 17: Operational sketch of IDEA for normal pdf (left) and normal mixture pdf (right).

s = eN(OaT)

ol = 0;eN O (53)
Y = vi + N(0,0})

For 7 and 7', the usual rule of thumb is to set 7 = 1/4/2y/n and 7' = 1/+/2n. Recombination
in ES is generally done in one of two possible ways, being discrete and intermediate crossover.
By using discrete crossover, the values themselves are swapped without being altered. By using
intermediate crossover, the values of the parents are averaged. Recombination is applied both to
the problem values as well as the covariance matrix values.

5.4.2 ES and IDEA: Similarities and differences

One top level aspect that becomes clear is that a monotonic IDEA can be seen as a (u + A) algo-
rithm. In evolutionary computation, such algorithms are said to be elitist. Since many algorithms
in the field of EAs share such a selection strategy, this is not the most important thing to note
about the two continuous evolutionary approaches.

In figure 17, a landscape is plotted in which we desire to locate the unique minimum. We
assume that we have a set of samples available as indicated by crosses in the image. The IDEA
approach is then to fit a probability distribution over these samples as well as possible to get a
good representation of the samples. In figure 17 this is shown for a normal pdf and a normal
mixture pdf. Once such a probability distribution has been estimated, A offspring are generated
by sampling from the probability distribution. As selection favors better solutions, the probability
distribution is meant to model the promising regions of the search space. Note that this is a global
approach to optimization as it attempts to globally capture the structure of the landscape and
refines the model as the process is iterated.

We now turn our attention to the ES approach. In figure 18, a sketch is given of the mutation
operation. If we set u = 1, we have only a single solution to recombine and mutate. By doing so,
we are modeling a normal pdf just as is the case for the IDEA approach. However, its use is now
different. If we only focus on sampling new solutions, we indeed get the same result as with the
IDEA, since the A offspring will be sampled from the normal pdf that is modeled. However, the
way in which the normal pdf is found in the next generation is different. In the IDEA approach,
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Figure 18: Operational sketch of mutation-based ES for (1, ) (left) and (u, A) (right).

the best |7n]| samples are selected. Based on these samples, a maximum likelihood normal pdf
is fit. For the ES approach however, the single parent is selected from either the offspring or the
offspring and the single parent of the previous generation. The result is a single point in the search
space, since selection is based upon the function value only. This means that we can regard the
ES approach with g = 1 as moving the normal pdf in some direction. The direction as well as
the length of the step in which we move the normal pdf is subject to evolution itself. In other
words, the ES in this case can be seen as evolving to find local gradient information on how to
best traverse the search space.

In the case of p > 1 for ES, we get the representation as depicted on the righthandside
of figure 18. Regarding only mutation for the moment again, generating the offspring involves
sampling from the normal pdfs that lie centered around the p parent samples. Therefore, this
can be seen as the equivalent of the normal mixture pdf or a clustered normal pdf in the IDEA
approach. However, the way in which the y parents make up the mixture distribution by evolution
of the covariance matrices, is similar to the case in which g = 1. Again, we can therefore see the
movement of the u parent samples as moving the normal pdfs in a certain direction with a certain
stepsize. Finding this direction and stepsize is subject to evolution. ES mutation can therefore
also be taken as a more local based approach to finding and using the structure of the landscape.

Recombination in ES quite drastically changes the view on its operational semantics. If we
for instance regard intermediate crossover, we are drawing lines between the p parent samples
in the [-dimensional space and place the new samples in the middle of these lines. It becomes
clear that by doing so, the search is directed more to use the global structure of the search space
to find promising regions of the search space. This strongly aids the ES to efficiently tackle a
great amount of continuous optimization problems. Recombination allows for global exploration
of the search space, while mutation attempts to use more local landscape information. Moreover,
it should be noted that the initial span of the normal pdfs in ES is usually taken to be quite large.
This improves the initial global exploration of the landscape further.

The IDEA approach is a global procedure that attempts to use the structure of the problem
landscape to explore the most promising regions. On the other hand, mutation based ES ap-
proaches are local procedures that use evolution to explore the inside of promising regions. By
adding recombination, additional means of globally searching the landscape are introduced, but
it is not as evident as for the IDEA to what extent this helps to use global structure.
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Concluding, the two approaches are fundamentally different. This becomes clear for instance
on problems in which local information is important, such as Rosenbrock’s function, which has a
narrow valley. The bottom of this valley has a unique minimum. However, the gradient along the
bottom of the valley is very small. This means that an IDEA based approach will quite easily find
the valley itself, but will by no means be able to traverse the valley to find the global minimum
unless points were sampled near the global minimum. The reason for this is that density estimation
converges on a certain part of the valley since samples are only available in that part of the search
space. On the other hand, once the ES is inside the valley, it can adapt its mutation direction and
stepsize to follow the valley to its minimum in a gradient descent fashion. Even though this is a
time consuming process, the ES is not as likely to prematurely converge on such a problem as is
the IDEA approach.

6 Experiments

The continuous function optimization problems we used for testing are the following:

| Name | Definition | Domain |
Griewank | s YiZp(si — 100)* — [Ty cos (229) +1 | [-5,5]
Michalewicz — Y478 sin(y;)sin? (@) [0, 7]t
Rosenbrock SI2100(yi0 —v2)? + (1 —y,)? [—5.12,5.12]"

All of the above test functions should be minimized. We tested a large variety of IDEA variants
for [ = 5. In sections 6.1, 6.2 and 6.3 we go over the results for the individual functions. In all our
testing, we used a monotonic IDEA. We used the rule of thumb by Miihlenbein and Mahnig [24]
for FDA and set 7 to 0.3. Furthermore, for variants that use clustering, we let n increase from
250 to 5000 in steps of 250. For variants that do not use clustering, we increase the population
size in steps of 25. The reason for this is that by introducing clusters, we also need to increase
the population size by a larger amount to allow a significant change in cluster size. We allowed
each run a maximum of 1 - 107 evaluations for all non—clustered approaches. Because of time
restrictions, we only allowed 2% - 108 evaluations for the clustered approaches, with the exception
of the Euclidean leader algorithms on Griewank’s function. If all of the solutions differed by less
than 5- 1077, termination was enforced also. Note that this implies a maximum precision of 6
decimal digits. All results were averaged over 10 runs.

We tested both the normal pdf as well as the normal mixture pdf. For the normal pdf, we
searched for both unconditional as well as conditional factorizations with both the AIC metric as
well as the BIC metric. For the normal mixture pdf, it was empirically observed that inference
with respect to finding a factorization is extremely computationally expensive. Therefore, we
have fixed the factorization structure to the univariate one for the normal mixture pdf. However,
we did test various amounts of mixtures in the normal mixture pdf, namely w € {2,5,10}. We
applied clustering using both the leader algorithm as well as the k—means clustering algorithm.
In the case of the leader algorithm, we applied both the scaled Euclidean distance as well as the
Mahalanobis distance. For the k—means clustering algorithm, we only used the scaled Euclidean
distance. We used k € {2,5,10} for the k-means clustering algorithm and T, € {33,5} for
the variants of the leader algorithm. This gives on average 7 and 2 clusters respectively for the
scaled Euclidean distance and 11 and 3 clusters respectively for the Mahalanobis distance. The
factorization mixture coefficients §; are determined by using equation 35.

We present the best obtained average best results over the 10 independent runs and sort all
of the IDEA instances by this index primarily. We also show the population size n for the best
obtained result, the average amount of evaluations and the Relative Run Time RT. Let FT(x) be
the time to perform z random function evaluations and TRT be the Total Run Time on the same
processing system. Then, RT(z) = TRT/FT(z). We determined RT as RT(10%). The RT index
is a processing system independent fair comparison metric of the total required time. We sort the

46



results by this index secondarily instead of the amount of function evaluations, as it truely reflects
the required amount of time.

6.1 Griewank’s function

In figure 19, a summary of the results on Griewank’s function is given. The unique minimum is
0, which is found by quite a few of the tested approaches within the allowed precision.

Quite a lot of approaches without clustering are able to find the unique minimum. This gives
us the impression that Griewank’s function is not extremely epistatic or non-linear. On the other
hand, the amount of required function evaluations is very large when compared to clustering
approaches or normal mixture approaches. The non—clustered normal mixture pdf with w = 10
for instance, requires only 51832 evaluations on average to minimize the function, whereas the
approaches that only use a single normal pdf require at least 945971 evaluations on average.
However, the RT index points out an important fact. It can be seen from the table that the
running time that is required for the normal mixture pdf, is quite a lot larger. Even though the
single normal pdf requires 20 times more evaluations, it runs 2 to 3 times as fast as the normal
mixture pdf in which only the univariate factorization is used. We should note at this point that
if the evaluation time for a single solution would have been significantly larger, then the normal
mixture pdf would have been preferable.

It we take a look at the different clustering approaches, we first note that the successful entries
in the table use the normal mixture pdf. It seems that we should mostly contribute the success of
these approaches to the use of the normal mixture pdf instead of the use of clustering. If we take a
look at clustering approaches in combination with only a normal pdf, it seems that the Mahalanobis
distance results in no superior useful clustering algorithms within the IDEA framework. What is
very interesting however, is that the k—means clustering approaches seem to perform significantly
worse than the leader approach, unless clustering is combined with the normal mixture pdf. The
main reason for this is the difference in allowed amount of function evaluations. Otherwise, there
does not seem to be a large difference between the two approaches. The only reason why they differ
in their outcome, is that the amount of clusters differs. If we then regard the Euclidean leader
algorithm with the BIC metric, ¥4 = 3% and unconditional dependencies as well as the k—means
algorithm with £ = 5, we see that the running time of the leader algorithm is only slightly larger
than that of the k—means algorithm, even though the population size is equal and the amount of
evaluations is 3 times as large. This makes the leader algorithm preferable here.

It is hard to say whether conditional or unconditional dependencies are to be preferred on the
basis of the presented results. The same holds for the search metric. The reason for this is that
the amount of dimensions [ is very small. The choice of the metric and the type of dependencies
becomes truely significant if [ goes up. Still, it seems that for expressional power, the conditional
dependencies should be preferred.

6.2 Michalewicz’s function

Observing the results on the highly epistatic Michalewicz function in figure 20, it becomes clear
immediately that clustering is required. The non—clustering approaches only work well if the
normal mixture pdf is used, which is in a way comparable to using clustering approaches. There
is no significant difference between conditional and unconditional dependencies, but in the case of
conditional dependencies, the required amount of function evaluations is often lower.

There seems to be a slight preference for the Mahalanobis distance, but the Euclidean distance
seems to work quite well. A more significant difference is present between the leader clustering
approach and the k—means clustering approach. The k—means approaches all seem to be inferior
to the leader approaches. The only explanation for this can be the adaptiveness of the leader
algorithm because of the threshold T4. This adaptiveness allows the leader algorithm to be flexible
in the amount of required clusters, which in turn results in a better performance.

We note that the normal mixture pdf requires on average quite a lot less evaluations than does
any other approach using only the normal pdf. However, the computation time that is required
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| Clustering Distance | § | Metric | pdf | n | C | evals RT
— — (7, w) AIC normal | 175 | 0.000000 | 945971 2.21
— — v AIC normal | 175 | 0.000000 | 1039070 2.55
— — (7, w) BIC normal | 150 | 0.000000 | 1403463 3.19
— — v BIC normal | 200 | 0.000000 | 1492826 3.48
— — univ. — mix 10 | 1100 | 0.000000 51832 6.61
k—means 2 Euclidean univ. — mix 10 | 1750 | 0.000000 72552 8.86
Leader 3% Mahalanobis | wuniv. — mix 5 | 3250 | 0.000000 | 156311 9.97
Leader 3% Mahalanobis | wuniv. — mix 10 | 2250 | 0.000000 89718 10.30
k—means 5 Euclidean univ. — mix 10 | 2500 | 0.000000 98805 11.43
Leader 5 Euclidean (m, w) AIC normal | 250 | 0.000000 | 4522165 | 11.65
k—means b Euclidean univ. — mix 5 | 3250 | 0.000000 | 172812 11.81
— — univ. — mix 5 | 1600 | 0.000000 | 163024 13.01
Leader 5 Euclidean univ. — mix 10 | 2250 | 0.000000 | 106660 13.65
Leader 5 Mahalanobis | wuniv. — mix 10 | 2250 | 0.000000 | 110206 14.40
Leader 5 Euclidean univ. — mix 5 2500 | 0.000000 | 226102 16.42
k—means 2 Euclidean univ. — mix 5 | 3000 | 0.000000 | 228857 16.75
k—means 10 Euclidean univ. — mix 10 | 3750 | 0.000000 | 156386 17.58
Leader 3% Euclidean univ. — mix 10 | 4750 | 0.000000 | 199321 23.74
Leader 5 Mahalanobis | univ. — mix 5 | 3250 | 0.000000 | 353185 26.94
Leader 3% Euclidean univ. — mix 5 | 4750 | 0.000047 | 360632 22.05
k—means 10 Euclidean univ. — mix 5 5000 | 0.000072 | 274139 17.00
Leader 5 Euclidean v AIC normal | 500 | 0.000636 | 7477291 18.96
Leader 5 Euclidean v BIC normal | 250 | 0.000905 | 3706986 10.29
Leader 5 Euclidean univ. — mix 2 | 4000 | 0.001232 | 3239155 | 106.93
Leader 5 Euclidean (m, w) BIC normal | 250 | 0.001278 | 6631367 | 16.59
Leader 3% Mahalanobis | univ. — mix 2 | 4750 | 0.004618 | 698637 23.12
— — univ. — mix 2 2750 | 0.005451 | 4818328 | 123.82
Leader 3% Euclidean v BIC normal | 1000 | 0.005755 | 6620613 | 18.40
Leader 5 Mahalanobis v BIC normal | 250 | 0.005956 | 1628976 7.51
k—means 5 Euclidean univ. — mix 2 3000 | 0.006179 | 653522 24.00
Leader 31 Euclidean (7, w) BIC normal | 750 | 0.006705 | 7268071 | 19.47
Leader 5 Mahalanobis | univ. — mix 2 | 2000 | 0.007339 | 1826277 | 54.79
Leader 3% Euclidean v AIC normal | 1000 | 0.007477 | 2775053 | 18.38
Leader 33 Euclidean (7, w) AIC normal | 1250 | 0.007640 | 8992514 | 25.56
k—means 2 Euclidean univ. — mix 2 | 1750 | 0.007930 | 979638 25.97
Leader 5 Mahalanobis v AIC normal | 250 | 0.009353 | 1338268 5.81
Leader 5 Mahalanobis | (,w) BIC normal | 250 | 0.009428 | 2499626 | 10.28
Leader 37 | Mahalanobis | (m,w) AIC normal | 750 | 0.010497 | 2127631 | 10.52
Leader 3% Euclidean univ. — mix 2 | 5000 | 0.011837 | 751763 21.90
Leader 3% Mahalanobis v BIC normal | 750 | 0.011987 | 2007309 9.70
k—means 2 Euclidean v AIC normal | 250 | 0.012384 | 736524 2.48
k-means 2 Euclidean (m,w) BIC normal | 500 | 0.012742 | 2381377 | 9.06
Leader 5 Mahalanobis | (,w) AIC normal | 250 | 0.012981 | 1793646 | 7.61
Leader 31 | Mahalanobis | (m,w) BIC normal | 500 | 0.013007 | 877386 4.11
k—means 2 Euclidean (7, w) AIC normal | 250 | 0.013202 | 1172454 3.89
k—means 10 Euclidean univ. — mix 2 | 4750 | 0.013400 | 958065 31.46
k-means 2 Euclidean v BIC normal | 250 | 0.013514 | 793724 2.79
k—means 10 Euclidean (7, w) AIC normal | 2500 | 0.013601 | 1718042 | 19.35
Leader 3% Mahalanobis v AIC normal | 750 | 0.014672 | 2296346 | 11.27
k—means 10 Euclidean v BIC normal | 2250 | 0.015987 | 703016 17.55
k—means 10 Euclidean v AIC normal | 5000 | 0.015921 | 1662724 18.00
k-means 10 Euclidean (7, w) BIC normal | 2500 | 0.016360 | 2054672 | 23.03
k—means 5 Euclidean v AIC normal | 1000 | 0.016410 | 1094122 6.40
k-means 5 Euclidean v BIC normal | 1000 | 0.019069 | 2361092 | 17.05
k-means 5 Euclidean (m, w) BIC normal | 1000 | 0.020145 | 2236489 | 14.47
k-means 5 Euclidean (m,w) AIC normal | 250 | 0.101171 | 1725182 | 6.63

Figure 19: Results on Griewank’s Function, sorted on C (primary) and RT (secondary).
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to estimate the parameters of the normal mixture, significantly increases the running time.
The main thing to note is that whereas for Griewank’s function we were still able to get good
results even with only the normal pdf, clustering becomes much more important here.

6.3 Rosenbrock’s function

Rosenbrock’s function has proven to be a real challenge for any continuous optimization algorithm.
It has a valley along which the quality of solutions is much better than that of the solutions in
its neighborhood. Furthermore, this valley has a unique minimum of 0 itself. The gradient along
the bottom of the valley is only very slight. Any gradient approach is therefore doomed to follow
the long road along the bottom of the valley. For a density estimation algorithm, capturing the
valley in a probabilistic model is difficult, even if all of the points within the valley are known.
The reason for this is that the valley is non—linear in the coding space. Therefore, we expect that
to get any reasonable results, we require to use clustering.

In figure 21, the results on Rosenbrock’s function for [ = 5 are given. It is clear from this table
that any approach that does not use clustering, does not give useful results. Using 10 clusters
allows us to effectively process the non-linearity of the valley and optimize the problem using only
very few evaluations. We note that using a mixture of normal pdfs in this case does not help the
optimization process at all. It even results in more evaluations than when using a single normal
pdf in some cases. The main important thing is the non-linearity of the valley and its slight
gradient. Because of the fact that only the univariate factorization is used for the normal mixture
pdf, the non-linearity cannot be captured effectively. The problem with density estimation in
this continuous search space is that it doesn’t use the gradient information that can be extremely
useful to find the minimum. Given the continuity of the search spaces, it is even unwise not to
exploit this information in some way, which is demonstrated by the results in figure 21. Quite a
large amount of clusters is namely required to effectively optimize the problem.

Note that the amount of dimensions is only very small. If the amount of dimensions goes up,
the amount of clusters will have to increase accordingly. However, by doing so, the amount of
samples will have to increase as well to ensure a large enough cluster size. Therefore, the sole use
of density estimation on search spaces such as the one defined by Rosenbrock’s function, is not
effective enough to compete with gradient approaches. However, a hybrid combination of both
approaches will most likely result in very effective continuous optimization techniques.

We close this section by noting that the k-means clustering algorithm now outperforms the
leader algorithm. The main reason for this is that clustering is extremely important for this
function. With k = 10, we have the largest amount of clusters that we tested. If we would have
used a threshold lower than T; = 3%, we would most likely have gotten better results with the
leader algorithm as well. Finally, it is clear that the Euclidean distance measure significantly
outperforms the Mahalanobis distance measure.

7 Discussion

The use of the normal mixture pdf in combination with the EM algorithm as proposed in this
paper, requires a vast amount of computation time. For highly epistatic search spaces however, it
has shown to be effective with respect to the required amount of evaluations as well as optimization
performance. Since the EM algorithm gives a general approach to finding the involved parameters,
the normal mixture pdf is preferable over the normal kernels pdf that was proposed earlier [12].

The use of clustering in combination with the normal pdf also results in a normal mixture
pdf. However, the results in this paper show different behavior of the two techniques on different
landscapes. On non-linear landscapes, clustering is the most effective way to estimate the non—
linearity, unless higher order factorizations are allowed for the normal mixture pdf. However,
allowing such factorizations results in vast additional amounts of computation time, which is
undesirable.

49



| Clustering | Distance | i | Metric | pdf | n | C | evals | RT |

Leader 5 Mahalanobis | (7, w) AIC normal | 750 | -4.687658 | 95364 | 0.32
Leader 3% Euclidean univ. — mix 2 1500 | -4.687658 38416 0.37
Leader 5 Mahalanobis v BIC normal | 1000 | -4.687658 117979 | 0.38
Leader 5 Mahalanobis | (w,w) BIC normal | 1000 | -4.687658 | 122711 | 0.41
Leader 33 Euclidean (7, w) BIC normal | 4000 | -4.687658 | 180813 | 0.42
Leader 5 Mahalanobis v AIC normal | 1000 | -4.687658 131561 | 0.43
Leader 5 Mahalanobis | univ. — mix b 1000 | -4.687658 22118 0.45
Leader 3% Euclidean v BIC normal | 3500 | -4.687658 193759 | 0.45
Leader 3% Euclidean v AIC normal | 3750 | -4.687658 | 194792 | 0.46
Leader 31 Euclidean (7, w) AIC normal | 4000 | -4.687658 | 201120 | 0.47
Leader 5 Euclidean v BIC normal | 2250 | -4.687658 | 221314 | 0.47
k—means 2 Euclidean univ. — mix 2 2000 | -4.687658 49634 0.52
Leader 31 | Mahalanobis | (7,w) BIC normal | 3500 | -4.687658 | 129114 | 0.54
Leader 5 Mahalanobis | univ. — mix 2 | 2000 | -4.687658 51035 0.55
Leader 5 Euclidean univ. — mix 2 2250 | -4.687658 58789 0.58
k—means b Euclidean univ. — mix b 1250 | -4.687658 28954 0.59
Leader 3% Mahalanobis v BIC normal | 3750 | -4.687658 139646 | 0.59
— — univ. — mix 5 | 1300 | -4.687658 28903 0.61
Leader 5 Euclidean (7, w) BIC normal | 1500 | -4.687658 | 301297 | 0.63
k-means 5 Euclidean univ. — mix 2 | 2500 | -4.687658 63128 0.67
Leader 3% Mahalanobis v AIC normal | 4250 | -4.687658 155654 | 0.68
k-means 2 Euclidean univ. — mix 10 | 750 | -4.687658 16596 0.70
k—means 10 Euclidean univ. — mix b 1750 | -4.687658 43894 0.88
Leader 3% Mahalanobis | univ. — mix 2 | 3500 | -4.687658 86528 0.92
Leader 5 Euclidean v AIC normal | 3250 | -4.687658 | 423172 | 0.92
Leader 5 Euclidean univ. — mix 10 | 1000 | -4.687658 21680 0.96
k—means 2 Euclidean univ. — mix 5 2000 | -4.687658 45606 0.96
Leader 3% Mahalanobis | univ. — mix 5 | 2250 | -4.687658 52288 1.04
Leader 5 Euclidean (7, w) AIC normal | 2000 | -4.687658 | 512489 | 1.08
k—means 10 Euclidean univ. — mix 10 | 1250 | -4.687658 30925 1.10
Leader 3% Mahalanobis | univ. — mix 10 | 1500 | -4.687658 34475 1.25
Leader 3% Euclidean univ. — mix 5 | 3000 | -4.687658 70232 1.33
k—means 10 Euclidean univ. — mix 2 | 4250 | -4.687658 115106 1.34
Leader 5 Euclidean univ. — mix 5 | 3000 | -4.687658 68131 1.38
— — univ. — mix 2 | 5000 | -4.687658 | 135938 | 1.45
k—means b Euclidean univ. — mix 10 | 1750 | -4.687658 40522 1.51
— — univ. — mix 10 | 1800 | -4.687658 39756 1.61
Leader 3% Euclidean univ. — mix 10 | 2000 | -4.687658 45431 1.68
Leader 5 Mahalanobis | univ. — mix 10 | 2500 | -4.687658 58751 2.18
Leader 3% | Mahalanobis | (m,w) AIC normal | 4250 | -4.682400 | 258326 | 1.14
k-means 2 Euclidean (7, w) AIC normal | 2500 | -4.661225 | 114406 | 0.48
k-means 5 Euclidean (7, w) BIC normal | 5000 | -4.660579 | 825985 | 2.63
k-means 2 Euclidean v BIC normal | 4750 | -4.659790 | 543562 | 1.44
— — v BIC normal | 325 | -4.659300 | 1032504 | 2.13

— — (m,w) AIC normal | 1100 | -4.657363 | 4064810 | 8.20
k-means 2 Euclidean (7, w) BIC normal | 3500 | -4.656492 | 615331 | 1.54
k-means 2 Euclidean v AIC normal | 3750 | -4.656120 | 646464 | 1.66
— — (m,w) BIC normal | 1700 | -4.654513 | 4088736 | 8.26

— — v AIC normal | 175 | -4.654248 13693 0.03
k-means 10 Euclidean v BIC normal | 2000 | -4.650213 | 377993 1.48
k-means 5 Euclidean (7, w) AIC normal | 4000 | -4.643722 | 773225 | 2.35
k-means 5 Euclidean v AIC normal | 2750 | -4.639595 | 443323 | 1.38
k—means 10 Euclidean v AIC normal | 3500 | -4.638577 | 856142 | 3.31
k—means 10 Euclidean (7, w) BIC normal | 4250 | -4.637136 | 551834 | 2.35
k—means b Euclidean v BIC normal | 3750 | -4.635958 | 499408 | 1.59
k-means 10 Euclidean (7, w) AIC normal | 2250 | -4.622931 | 1262262 | 4.52

Figure 20: Results on Michalewicz’s Function, sorted on C' (primary) and RT (secondary).
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Clustering | Distance § | Metric | pdf | n | C | evals RT
k-means 10 Euclidean (7, w) AIC normal | 2500 | 0.000000 | 67506 3.03
k-means 10 Euclidean (7, w) BIC normal | 3000 | 0.000000 | 82575 3.65
k—means 10 Euclidean v AIC normal | 4250 | 0.000000 157886 6.30
k—means 10 Euclidean v BIC normal | 2750 | 0.001550 | 168627 5.35
Leader 31 Euclidean (7, w) AIC normal | 4750 | 0.002011 | 166477 1.81
Leader 3% Euclidean v AIC normal | 5000 | 0.033155 773470 8.84
Leader 3% Euclidean (7, w) BIC normal | 5000 | 0.050435 | 646558 7.36
k—means 10 Euclidean univ. — mix 5 | 3500 | 0.062745 | 309262 31.00
Leader 5 Euclidean univ. — mix 10 | 4000 | 0.065469 | 341870 72.56
Leader 3% Euclidean v BIC normal | 5000 | 0.074347 | 742398 8.52
k-means 5 Euclidean (7, w) BIC normal | 1250 | 0.078283 | 53482 1.18
k—means 5 Euclidean v AIC normal | 4750 | 0.079437 | 904017 15.03
k—means 5 Euclidean (7, w) AIC normal | 4750 | 0.083104 | 615903 10.53
Leader 5 Euclidean univ. — mix 5 | 2250 | 0.085702 | 191173 19.92
Leader 5 Euclidean univ. — mix 2 3500 | 0.092902 | 278625 13.86
k—means 10 Euclidean univ. — mix 10 | 4250 | 0.106256 | 610238 89.13
k—means 10 Euclidean univ. — mix 2 | 2000 | 0.125456 | 272568 13.00
Leader 5 Euclidean v AIC normal | 3750 | 0.128021 | 478400 4.81
Leader 3% Euclidean univ. — mix 2 | 3500 | 0.143837 | 621458 20.36
k—means 5 Euclidean v BIC normal | 4750 | 0.160205 | 1246595 | 19.71
k—means 5 Euclidean univ. — mix 5 | 4750 | 0.160414 | 531505 45.24
Leader 3% Euclidean univ. — mix 10 | 4500 | 0.172262 | 472424 79.29
Leader 3% Euclidean univ. — mix 5 | 3000 | 0.189304 | 286372 25.40
k-means 2 Euclidean v BIC normal | 5000 | 0.189420 | 1621587 | 19.09
Leader 5 Mahalanobis | wuniv. — mix 5 | 2250 | 0.191094 | 261108 27.56
Leader 5 Euclidean (7, w) AIC normal | 4500 | 0.209030 | 1361006 | 13.73
Leader 3% Mahalanobis v AIC normal | 2000 | 0.209074 | 808100 20.10
Leader 3% Mahalanobis | (7, w) AIC normal | 2500 | 0.247123 | 1765538 | 43.24
k—means b Euclidean univ. — mix 10 | 5000 | 0.259675 | 551594 86.79
Leader 5 Mahalanobis | univ. — mix 2 | 4250 | 0.260017 | 457718 24.28
Leader 5 Mahalanobis | wuniv. — mix 10 | 4500 | 0.261190 | 735926 145.22
Leader 5 Euclidean v BIC normal | 2250 | 0.285851 | 1338881 | 13.80
— — univ. — mix 5 450 | 0.288066 37074 3.52
Leader 5 Euclidean (7, w) BIC normal | 5000 | 0.304032 | 1427719 | 14.91
Leader 3% Mahalanobis v BIC normal | 2500 | 0.325525 | 918273 23.56
— — univ. — mix 10 | 1400 | 0.345850 | 133443 25.19
Leader 5 Mahalanobis | (,w) BIC normal | 3000 | 0.363407 | 2252646 | 49.28
k—means 5 Euclidean univ. — mix 2 | 4250 | 0.366888 | 600938 24.30
Leader 3% Mahalanobis | univ. — mix 10 | 3500 | 0.367077 | 555588 | 100.59
Leader 3% Mahalanobis | univ. — mix 2 | 2750 | 0.396008 | 378320 20.99
k—means 2 Euclidean univ. — mix 2 5000 | 0.421393 | 1166456 | 45.95
Leader 31 | Mahalanobis | (m,w) BIC normal | 1750 | 0.445489 | 1915536 | 46.29
Leader 3% Mahalanobis | univ. — mix 5 | 2500 | 0.459225 | 406324 40.36
k—means 2 Euclidean univ. — mix 10 | 3250 | 0.481794 | 291164 52.68
k—means 2 Euclidean univ. — mix 5 2250 | 0.495617 | 180535 17.21
Leader 5 Mahalanobis v AIC normal | 3250 | 0.605696 | 1506264 | 32.43
Leader 5 Mahalanobis | (,w) AIC normal | 5000 | 0.615485 | 2316097 | 53.52
Leader 5 Mahalanobis v BIC normal | 4250 | 0.774399 | 1978082 | 43.80
k-means 2 Euclidean (7, w) AIC normal | 4750 | 0.923545 | 1057429 | 12.74
— — univ. — mix 2 975 1.083728 92292 5.01
k-means 2 Euclidean (7, w) BIC normal | 1250 | 1.281874 | 79419 1.53
k-means 2 Euclidean v AIC normal | 3250 | 1.298608 | 919056 10.63
— — (7, w) BIC normal | 2750 | 1.859228 | 2370574 | 19.30
— — (7, w) AIC normal | 675 | 1.867434 | 79619 0.72
— — v BIC normal | 4000 | 1.906433 | 1592727 | 13.52
— — v AIC normal 900 1.971504 135492 1.10

Figure 21: Results on Rosenbrock’s Function,
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Given the low computational requirements on the factorized normal pdf, introducing clustering
is the most cost effective way to improve the performance of IDEAs on a variety of non-linear
and epistatic continuous optimization functions. To further improve the effectiveness of the al-
gorithms, local gradient information must be taken into account. By only estimating probability
distributions and by generating more samples from them, gradient information is ignored. On true
differential continuous search spaces however, this information is a very important guide to find
local minima or maximima. Implicitly, approaches such as Evolution Strategies make use of such
gradient information, be it completely local or on a less detailed scale of information. Furthermore,
many classical gradient search techniques exist that have proven to be very effective. Therefore,
to improve the optimization performance of IDEA approaches for differential continuous search
spaces, a local search method that uses gradient information should be incorporated. Combining
the global approach of the IDEA and the local gradient search will likely be very effective.

For the experiments in this paper, we have set the §; mixing coefficients of the factorization
mixture to the proportional cluster size. To increase the optimization pressure, the coefficients
should be set to the proportional average cluster fitness. Preliminary results have shown that this
is effective for many different cost functions.

In this paper, we have introduced general mixtures of factorizations. To learn them, we have
applied clustering and subsequent factorization learning in each of the clusters separately. The
amount of clusters has so far been determined either directly by means of the k-means clustering
algorithm or indirectly through a distance threshold in the leader algorithms. Even though the
latter is a form of adaptive clustering, it is not really adaptive in the sense that new clusters
are introduced as they are required to estimate the probability distribution better. If we would
have such a mechanism that is effective with respect to computational requirements, clustering in
density estimation for evolutionary optimization in IDEAs, will become even more valuable.

From the results in this paper, we find that the Mahalanobis distance for clustering does not
introduce a significant optimization performance increase of the use of the Euclidean distance
measure. Since the Euclidean distance measure can be evaluated faster, this measure should be
preferred. Furthermore, the use of the simple and fast leader clustering algorithm gives results
that are comparable to those of the k—means clustering algorithm. Therefore, the leader algorithm
is preferable. Since we have only tested low dimensional problems, the use of unconditional
factorizations versus conditional factorizations can hardly be commented upon. However, it seems
that using conditional factorizations often leads to superior results.

The use of either the AIC or the BIC metric to search for a factorization should be tested
on problems of a higher dimensionality. Moreover, finding a good factorization becomes more
important for problems in which the problem structure is made up of true building blocks. On
such problems, the linkage between the problem variables has to be exploited in the best way
possible to efficiently process the generated solutions and traverse the search space [9]. Such
problems occur both in differential continuous optimization as well as in spaces such as the one
that is defined by using random keys. Random keys are continuous values that are used to encode
permutations. Therefore, we are actually dealing with a discrete space in which problem structure
plays a subtle different role than is the case in conventional continuous differential problems.

8 Conclusions

We have expanded the use of continuous probabilistic models for any factorization from a single
normal pdf to mixtures of normal pdfs. To learn normal mixture pdfs, we have used the EM
algorithm. Next to the normal mixture pdf, we have shown how efficient clustering algorithms
can be used to break the non-linearity of the search space. By treating each cluster as a separate
sample vector, we can again achieve an ormal mixture pdf. The two approaches to reaching the
mixture however, is fundamentally different. Furthermore, the EM algorithm has been found to
be computationally more expensive. For non-linear search spaces, clustering is a cost effective way
to break this non-linearity in order for the promising regions of the search space to be explored
efficiently. The resulting probabilistic model structure is then a mixture of factorizations.
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We have clarified the use of a set of intuitive search metrics and have shown how these fit in
with the basic notion of likelihood, which is a measure of how well a probability distribution fits a
vector of samples. Starting from there, we have shown how well known measures such as the AIC
and BIC metric can be derived. It becomes clear that these metrics are quite similar and only
differ by means of the amount of regularization that is applied to ensure a good generalization
performance of the estimated probability distribution. In subsequent research, the use of the AIC
and BIC metric in higher dimensional search spaces and non—continuous search spaces is to be
investigated to get a notion of their performance quality.

Even though nice optimization results have been achieved for varying epistatic and non—linear
differential continuous search spaces, the use of gradient information to help guide the search
towards promising regions of the search space will most likely result in even more effective con-
tinuous optimization algorithms. By only using the estimation of and sampling from probability
distributions, as is done at this point, the local gradient information is ignored. In true differential
continuous search spaces however, it is a waste to ignore such important information.

Summarizing, in this paper we have extended the set of available tools for IDEAs to perform
continuous optimization with. This extension consists of new and more complex tools that we
have shown to allow for a better performance of IDEAs.
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A Notation glossary

| General
A={e e .. e} A set A of size |[A| — 1. The order of the
elements in a set is irrelevant, so its contents
cannot be enumerated.
|A] The amount of elements in set A.
0 The empty set.
true if a is contained in A

a€Ad= { false otherwise

Element query.

A§B=VQEA<a€B)

Subset query.

ACB=ACBA|A|l <|B|

Proper subset query.

AUB={zlx € AVz € B}

Union operation on sets, each element ap-
pears only once in the result, |4 U B| <
|A] +|B|.

ANB={zlzx € ANz € B}

Intersection operation on sets, each element
appears only once in the result, (|JAN B| <
|A)) A (JAN B < |B]).

A—B={z|lre ANz g B}

Difference operation on sets.

a=(ag,a1,...,a|q/—1) A vector a of length |a|. The order of the
elements in a vector is relevant.
la| The amount of elements in vector a.
O The empty vector.

a€a=Vicale=a)

Element query.

aC b=VYycc|a/{a; €D)

Subvector query.

aCb=aCDbA[A[<|B]

Proper subvector query.

Cl(J) = (ajoaa(im .- 7aj‘j‘_1)

Shorthand for a vector, |a(j)| = |7].

allb= (ao,al,...,a|a‘,1,b0,b1,...,b|b|,1)

Union/splice operation on vectors, each ele-
ment appears exactly as often as it appears
in the input, |a U b| = |a| + |b].

anb=a(j)
s.t. V0§i<|j|(aji EBAGE>1—7;>7i-1))
A Yo<i<|a/{@i € b= a; € a(j))

Intersection operation on vectors, each ele-
ment of a is preserved if it appears in b,
lamb| <lal.

a—b=a(j)
s.t. Yo<iciji{@s; €0 A(E>1—= 3 > Ji1))
A V0<i<|a\<az' Zb— a; €a(j))

Difference operation on vectors.

dy(a) = H‘al ' dya, Shorthand for the multivariate derivative.
| Special symbols
l The amount of available random variables.
L£L=(0,1,...,1-1) A vector containing [ numbers, £; = .
k The amount of components in the factorization mixture.
K=(0,1,...,k—1) A vector containing k numbers, IC; = i.
w The amount of components in the normal mixture pdf.
w=(0,1,...,w—1) A vector containing w numbers, W; = i.
S = (yo,yl, LylSI=h) The vector of sample points.
y’ (W6, yt,---,yi_1) = y*(£) | The i~th sample point is an | dimensional vector, (y*); = y5.
= (]9, q1,... Q8- The vector of clusters.
ﬁ’ = (R, R, - .. ﬁlzﬁ i ) | Thei-th cluster contains [&*|—1 samples, Y, ; | qi (R € S).
Y=%,Y,...,Y_1) =Y (L) | A vector containing / continuous random variables, Y; = Y.
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B Statistical hypothesis testing

The testing of statistical hypothesis is a well understood topic. In this appendix, we restrict
ourselves to the basics. We discuss important and frequently used existing tests along with their
applicability in section B.1. In section B.2, we show how some of these tests can be used to define
some dependency tests based upon correlation.

B.1 Some important statistical hypothesis tests and their distributions

A lot of statistical hypothesis tests are common because certain statistical expressions that are
used to base hypotheses on, occur in many applications. Such tests have therefore been formalized
over the past. The normalized pdfs that the expressions follow have been tabulated and are
included in statistics text books. In this section, we go over some of these tests. We introduce
the accompanying statistical expression, show how the density of the expression is formed and
how the statistical hypothesis test can be formulated. The distributions are the most important.
When we wish to test some property, the main idea is that some statistical expression is used that
usually is not the same as the default expressions we shall introduce. The distribution however
will be equal to the ones discussed here, so the hypothesis tests as explained here, can be used.

B.1.1 Z-Test

Assume that we have an a priori fixed hypothesized value h for some random variable R that a
hypothesis is based on. Assume furthermore that we know the actual standard deviation og for
random variable R. The definition of the standard deviation ¢ can be given with respect to the
pdf Pr according to which the values for R are distributed and the mean pg of R:

oo
pr = E[R] = / yPr(y)dy (54)
—0o0
oo
oh=ElR -0 = [ (0 Pal)dy (55)
—0o0
Given a vector R of one-dimensional samples R = (ro,71,...,7r|—1) for random variable R,
their sample mean R is defined as follows:
= YR
R===— (56)
IR|

The Z—test is a test on the mean ug. The statistical expression that underlies this test, given
some hypothesized value §, can be described as follows:

OR

The central limit theorem states that if the samples r; € R are all drawn from a pdf that has
mean 0 and standard deviation o, the distribution for the random variable Yy = (1/|R|R)/o in
the limit of |R| — oo is the standard normal pdf N (0,1).

Using the central limit theorem, we have that if we transform the r; € R so that we get
rl =r;—pr, we have R’ = R— pug. By doing so, we have a random variable R’ whose expectation
is E[R'] = 0. Substituting this variable along with its samples in equation 57, we have according to
the central limit theorem that the value of Z' = (\/|R|(R— pr))/or is approximately distributed
according to N(0,1). Furthermore, this approximation becomes more precise for increasing |R|.

In the Z-test, we assume that we know the actual standard deviation cr. However, we only
have a hypothesized value h for the actual mean pg. We can therefore hypothesize that ug = b,
or in other words that our hypothesized value is the actual mean. Given the sample set R, we
can use the Z—test to validate this hypothesis. To show how this can be done, we first note that
we may rewrite equation 57 as follows:
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Figure 22: A right sided Z—test with ug = 2,05 = 2,h =1,|R| = 25.
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If we now use the fact that if Yo ~ AM(u,0) and Y7 = aYy + b, then Y1 ~ N(ap + b,a0), we
can conclude that Z ~ N'((1/|S[(ur —b))/or,1). We then observe that if our hypothesized value
is correct, we have ug = h and thus Z = Z' ~ N(0,1). If our hypothesized value is not correct
however, the distribution for Z will deviate in its mean from Z'. The basic idea is now that the
hypothesis regarding h is merely an hypothesis and that its justification lies in rejecting the actual
value, even though we might not know it. This means that we look at the distribution of Z’' and
observe the critical values zs and 21_e for which we take it to be significant that the sample
mean differs from the actual mean and looks more like the hypothesized mean. A critical value
¢z given some z € [0,1] for some one—dimensional pdf f(y) is defined as the input value for which
the cumulative pdf equals z. This can be defined as follows:

Z= (58)

[ Tty == (59)

We disregard the distribution of Z. Instead, we regard the standard distribution given by
Z' and relate the actual instance value of Z to this distribution as a possible rejection of the
hypothesis that b is the actual mean value. This comes down to the notion of ug = b being the
hypothesis H; we are testing against our basic hypothesis, which is often referred to as the null
hypothesis Hy: pur # b. Graphically this is depicted in figure 22.

Making a decision between the two distributions for Z and Z' is not errorfree as can be seen
in figure 22. The area of overlap indicates the how well we can make a decision based on the set
R. Clearly, if the mean of Z falls to the leftside of z;_,, we will not be able to decide very well
whether to accept or reject the hypothesis given R. Note however that if the amount of samples
|R| goes up, the decision strength increases as the normalized distributions will be further apart
since the mean of Z' remains 0, but the mean of Z moves further away from 0. The fact that
the form of the distributions remains the same and that only the mean of Z changes is a result of
the fact that Z is a normalized expression. The effect of more samples on the decision making is
graphically depicted in figure 23.
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Figure 23: A right sided Z—test with ugp = 2,05 = 2,h =1,|R| = 100.

The hypothesis of the Z—test concerns the validity of h being the correct mean. The probability
a that such a hypothesis is not true, can be found using critical values. This test can be formalized
by stating three hypotheses and noting for what critical value to accept them:

| Hypothesis | Accept if |
H(,U,R > l)) Z > Z—q
H(/J/R < b) Z < 2q4

B.1.2 Student T—Test

In a typical case where we want to use a test for equality of means, the actual standard deviation
or will not be available. In such a case, we can use the unbiased sample standard deviation 5g:

Sk = \/Eml(” = (61)

The reason why the denominator is not |R| but |R|—1, is that the expected value of the actual
sample variance does not equal 0%, but (R — 1)/Ro%. The actual sample variance is defined by
by dividing by |R| instead of |R| — 1 in equation 61:

RI-1,. _ B
sR:\/Eilzo |7(£|1_R)2 (62)

The statistical expression that underlies the T—test, given some hypothesized value b, is the
same as that for the Z—test, with o substituted by §g:

7 VIRIE-b) (63)

SR

The statistic 7' however cannot be shown to follow a normal distribution unless |R| goes to
infinity. We call 6 = |R| — 1 the amount of degrees of freedom. The reason for this is that if we
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Figure 24: The difference between far(y,0,1) and f7(d,y) for different values of §.

are given |R| — 1 values ro,71,...,7|R|—2, We are not yet constrained in any way with respect to
the definition of the sample mean and the property that:

IR|-1

Y ri-R=0 (64)
=0

However, when the first |R| — 1 values are set, the value for T r|—1 cannot be chosen freely
and must be fixed if equations 56 and 64 are to be obeyed. Therefore, we say that the T statistic
has 6 = |R| — 1 degrees of freedom. It can be shown (see for instance [21]) that the T statistic
has the following corresponding pdf with § degrees of freedom:

5+1
T(%%) v\ T
5 = o= (1455 65
Fridy) = ()or 5 (65)
In the definition of f7 we have used Euler’s Gamma function I'(y):
o0
I(y) = / v te ™ dx, y>0 (66)
0
To evaluate I'(y) efficiently, we can use a result by Feller [17], that states that as y — oo,
T(y) =y¥ e ¥V2r |1+ 2+ +R where |R,| < 2 (67)
129 "Y)° YIT 3y2

The difference between the T' pdf and the Z pdf is depicted in figure 24. In practice, for § > 30,
fn(y,0,1) can be used as an approximation to f7(d,y) without any loss of significance.

It may be clear that this test is also a test on the mean. The accompanying hypotheses as
well as the way in which we should use the T statistic are therefore of the exact same kind as in
the case of the Z statistic. The test we have described, is called the Student T test for equality
of means. We can formalize the Student T test by stating three hypothesis and noting for what
critical value to accept them:
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Figure 25: Plots of fc(d,y) for different values of é.

| Hypothesis | Accept if |

Hpr#bh) | T[>t-g
H(ugr > b) T>t 4 (68)
H(IU/R < b) T <tq

B.1.3 )2 Test

The notion of x? was introduced by Pearson. The symbol x? actually stands for a random variable,
even though it appears to be a quadratic. The reason for this, is that the random variable 2
stands for the sum of squares of the samples for R in vector R we have been working with so far:

IR|—1

2 __ 2
X = § T
i=0

The %2 test is based on the assumption that R is a standard normally distributed variable with
pr = 0 and og = 1. As there is no restriction on the variance as is the case for the T statistic,
we have § = |R| degrees of freedom in this case. It can be shown (see for instance [14]) that x>
follows the following pdf with § degrees of freedom:

(69)

]

-y
fC((sJy) - 2%1_,(%)

Example plots of the x? pdf are depicted in figure 25.
following test statistic:

_y
e 2

(70)

Now we turn our attention to the

(IR| - 1)37
C = 7 ki (71)
Using equation 61, we can rewrite the C' statistic to get:
IR|-1,. _ B2
C = iz h(;‘ ) (72)
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If we again set i = r; — R, we have that R’ = 0. By dividing by the sum over 7} by the actual
variance 0%, we get that the so achieved C’ expression follows a x? distribution from equation 70.
The amount of degrees of freedom however is not equal to |R| but |R| —1 as the statistic contains
3%. By substituting the actual variance by a hypothesized value h?, we obtain again a similar
situation to the previous two tests, but now concerning the variance parameter instead of the

mean. This test is called the x? test of variance.

| Hypothesis | Accept if |
H(U%#[ﬁ) C>017%VC<C%
H(o% >bh?) [ C>cioq

H(o}, <b?) | C<eca

(73)

B.1.4 F—Test

The x? test can be used to validate some hypothesized value for the standard deviation. If we are
given two sets of samples R and R! for respective random variables R® and R! however, we can
test whether the variances of the distributions for the sets of samples are the same H (0%, = o5, ).
This leads to the F test. Firstly, observe the following definition:

(R — Vs > 1)5%", i€{0,1} (74)

Ri

C'=
g

It follows from the previous paragraph that C° and C? follow x? distributions with §° = |RY|
and 0! = |R!| degrees of freedom respectively. We then define the quotient of the C* multiplied
by the inverse ratio of the degrees of freedom:

Y oot
OCt  s%hioh

Co (75)

It can be shown that if both R® and R! are normally distributed with arbitrary means and
variances 0%, and 0%, (see for instance [32]), then Cg is described by the following pdf with
(6°,81) degrees of freedom:

50 0, 51 0
0\ 2z [ (&S &1

8°,6" =\ 51 1 0441
#000-(5) et

2 2 51

Example plots of the F' pdf are depicted in figure 26. If we now wish to test the hypothesis
H (0’%0 = 0%1), we can use Cg as a statistic. Note that the hypothesis can be alternatively stated
as H(o%, = h? = 0%,) so that the ogi = b disappear in the resulting statistic because of their

hypothesized equality:
F = SR (77)

The F statistic follows the F' distribution with (6°,6') degrees of freedom. The corresponding
F test is called the F' test for equality of variance.

[ Hypothesis | Accept if |
H(ogp #0ig) | F>fi-a VF < fq
H(ogp > 0ip) | F> fi—a
H(osp < 0ig) | F < fa

Before concluding this paragraph, we note that there is an obvious correspondence between the
F distribution and the x? distribution as the F distribution is the ratio of two x? distributions.
We also point out however that the F' distribution has a clear correspondence with the Student
T distribution from equation 76. To be precise, if we set 6! to 1 and 5 to &, the F distribution

(78)
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Figure 26: Plots of fx(6°,8%,y) for different combinations of (4°,4%).

equals the T? distribution. This can be seen by first noting that the probability that a <Y < b
for some continuous random variable Y is given by:

b

Pla<¥ <t)= [ iy (79)
In order to find the pdf for Y2, we note that the probability that 0 < a < Y2 < b is given by:

b
PO<a<y?<t)=2 [ frady (80)

va
We cannot directly derive the density function for Y2 from equation 80 as we have to transform
Va into a and v/b into b. To do this, we note that for any function f(y) and its primitive function

F(y) such that dF(y)/dy = f(y) and any function g(y) with its corresponding inverse g~!(y) such
that, at least on the interval [a, b], g7 (9(y)) = g(97*(y)) = y, we have that:

/f )y = F(t) 2 = F(b) - F(a) = (81)

90) 1 da—1
— - — g ¥y -
F@l@@»—F@1@@»=F@l@»&2=/})( e
g(a
If we now set g(y) = y* and thus g~'(y) = /y on the interval [0,00), we can combine
equations 80 and 81 to get:

(VB)?
P(0§a<Y2<b):2/ . %fy y—/—fy (82)

Thus we find from equation 82 that the pdf for Y2 equals fy> = ﬁfY(\/ﬂ). Using the fact

that ['(1) = /7, we can now show that the F distribution equals the T? distribution under the
conditions that 61 = 1 and §, = §:

_ -1 I
I0.9) = 0D = o

5 +

(1 + %)_T = (83)
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B.2 TUnconditional dependency testing using correlation

In this section, we give an example of how we can test for unconditional dependencies by using
the correlation measure. A test may be either parametric or non—parametric. In the case of a
parametric test, the sample data is assumed to follow a certain distribution. Given this fact, a test
can be derived. If this assumption is dropped, a test must be independent of whatever distribution
the samples were drawn from. Such a non-parametric test is of course ultimately what we are
looking for, but is mostly also more involved. Therefore, there is always a trade—off between
being as precise as possible for every test and being faster and less precise. The amount in which
the optimization process benefits from a certain test using as little effort as possible, determines
its actual usage. The correlation coefficient is a measure of the linear dependence between two
or more variables. As such, the test based upon the correlation measure is parametric. This
section however serves mainly as an example. Furthermore, the correlation coefficient is a widely
known measure. Finally, but not least most important, as using the correlation measure does
not evaluate the estimated or underlying pdf, its computational running time requirements are
always the same. In the case of using tests that do require an evaluation of the underlying pdf,
its computation running time complexity can grow to become quite large.

B.2.1 Correlation coefficient

An introduction to statistics is most likely to visit the field of correlation and regression given two—
dimensional observations. Such an introduction presents linear regression so as to investigate the
linear relationship between two random variables. Even though such analysis is a crude measure of
relationship, it is also a fundamental one. Furthermore, the resulting expressions can be evaluated
efficiently. To start off, we first recall the mean uy; and the sample mean ?] over random variable
Y; and refer to equations 54 and 56 respectively. Second, we recall the measure of how much
the actual samples vary around this sample average, which is called the sample variance s% over
random variable Y; and has been defined in equation 62. Its exact counterpart is the variance,
which has been specified in equation 55.

The average of the product of the deviations from the sample averages for two random variables
Y; and Yy over all samples, is the covariance. This measure oy;y, is useful for examining linear
dependencies. If Y; tends to be smaller than py, whenever Y; is larger than py;, the covariance
is negative. The covariance is positive in an analogous case. The sample equivalent of covariance
is written as sy;y; . Their definitions are the following:

rvyve = B = ) (Ve — )] = [ h / "y — ) — ) P v dyge (89)

Sl-1/ i TN(i Sl-1,; i
DS (R O SR (YR vl g7 S .
T 3] -8 o

Note that oy,y, = ov,y; and sy,y, = Sy,v;. Also note that oy,y; = af,j and sy;y; = sg,j. We
now turn our attention to linear regression. If we have an exact linear regression for Y; on Y}, the
expected value for Y; given a value for Y%, is a linear equation. This can be formalized by writing:

E[Y;[Yi] = ajk + by;v, Y (86)
Since E[E[Y;|Y}]] = E[Y;], taking expectation with respect to Y} in equation 86 leads to:

py; = jk + by, v, fry, (87)

If we now combine equation 86 with equation 87, and use sample approximations to the ex-
pectation expressions, we can derive the following:
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E[Y;|Ys] = py; = by;vi (Y — pv,) (88)

=
2 0Y; Yy

E[(E[Y;|Yk] — py; ) (Y — pyi)] = Eby;ve, (Ve — pvi)”] = byyv = p;
Y

Analogously, we have that by,y;, = ovv;/ a%j. The values by, v, and by, y, are indicators of the
linear dependence that exists between variables Y; and Y;. The square root of their product is
called the correlation coefficient:

JY;Y;
PY; Y = bY]Yk bYij = Lt (89)
v oy, 0y,

Note that py,y, = pv,v;- Furthermore, —1 < py,y, < 1. Now, if ¥; and Y}, are independent,
we have that P(Yj,Yx) = P(Y;)P(Yx) and thus that E[Y;Y}] = E[Y;]E[Y:], meaning that oy,y, =
oy,y; = 0 and thus that py,y, = py,y; = 0. However, if pY;Y, = Pv.y; = 0, we do not have in
general that Y; and Y}, are independent. This can only be stated if Y; and Y}, are jointly normally
distributed. Furthermore, the correlation coefficient is very sensitive to outliers. At this point, we
should remind ourselves again that p;y, is a coeflicient of linear dependence only. For these reasons,
it is questionable whether or not p;; should be used as a measure of unconditional dependence
and what its strength in expressing such dependence is.

Having defined the correlation coefficient, we must still construct a test for the FSTH in
the case of unconditional dependencies. We first continue to consider the case of two isolated
variables Y; and Yj. Observing the definition of py,y, , we define our hypothesis as H(py,y;, = 0),
representing the case in which Y; and Y; are not unconditionally dependent. Now observe the
following statistic:

Ty,v, = (90)

In the above statistic, ry;y, is the sample correlation coefficient, which is equivalent to equa-
tion 89 with the covariance and standard deviation expressions substituted by their sample equiv-
alents. Kendall [21] has shown that the statistic in equation 90 follows a Student T' distribution
with (|S| —2) degrees of freedom. This implies that we can compute Ty,y, for a given sample set
S and test whether the value is larger than the critical value of the Student T' distribution at the
confidence factor of 5, or in other words whether Ty;y, > t1— <. If this is the case, the hypothesis
is rejected H(py;y, = 0). Note that we have to test for half the significance value of a because
of the fact that rf,j v, is symmetric. To violate the hypothesis we can either have ry;y, < 0 or
ry;y, > 0. The FSTH in this case thus equals the null hypothesis H(py,y, # 0) we just described.

We have now arrived at the point where we can use the statistic and the accompanying test
based on correlation for the use of unconditional factorization selection. However, we have only
discussed the case of two variables. In the general case, we require to be able to perform a test for
the unconditional dependence between |a| variables. A notion of multiple correlation exists, but
it is a measure of the linear dependence of a single variable on a set of other variables. However,
if a linear dependence of a single variable on a set of other variables is strong, the dependence
of any other involved variable on the remainder of the variables will also be strong. So if we
have a notion of multiple correlation, we can start out by finding the strongest correlation we can
find between sets of variables, where we define the correlation between set Sy and set S; as the
maximum correlation of any Y € Sy with the variables in S;. A rationale for such a decision lies
in the fact that the variables in Sy have already been found to be strongly correlated, just as is
the case for the variables in S;. If any of the variables in Sy have a strong correlation with all of
the variables in Sy, there must be a strong mutual correlation between the variables in both sets.

As we will have a test for validating whether the correlation is zero and we thus assume that
there is no relationship, we actually test whether the strongest correlation that is found, is zero. If
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it is not, the merge is performed, otherwise the search for sets to merge stops. Kendall [21] warns
for problems that may arise in using such a methodology as small lower order coefficients do not
imply that higher order coefficients are also small. This means that linear dependence between
multiple variables may come out only if a test is portrayed for higher order correlations. A method
to perform such tests is to find the strongest correlation between a variable and all possible subsets
of other variables, but such an approach leads to z';j;lqs | — 1)!/@EN(|S] — 1 —14)!) combinations,
which is intractable for increasing |S]|.

In order to use our correlation approach, we thus need the notion of multiple correlation. To this
end, we first define the covariance matriz ¥(a) to be the matrix such that X(a)(4,j) = oy,, Ya,-

Furthermore, let X(a);; be the matrix that is obtained by removing row i and column j from
3(a). We can then define a cofactor X(a);;:
(a)i; = (-1)"det(E(a);;) (91)

We now write the partial regression coefficient of ya, on yq, with the other |a| — 2 variables
held fixed, by by, v.,|Y(a)~{Ya,,Ya, }- Kendall [21] shows that:

-1
ElYa,[Y{(a) = Ya,] _ _ 3 2(a)o; Ya, (92)
Oay — 3(a)oo Oa;
J_
Furthermore, using partial regression coefficients, we have that:
-1
E[Yq,|Y{a) — Ya,] = Z bYaq Ya, Y (a)~Yaqy Ya, Yaj (93)
7j=1
Combining equations 92 and 93, we get a definition for the partial regression coefficients:
0Y,, X(a)o;
b a)— =-—= ! 94
YaoYa; |Y(a)~{Yay,Ya,} ov., 2(@)oo (94)
The error or residual of order [ — 1 can now be defined by
Yaolﬂ—ﬂo =Ya, — E[Yao|Y<a) - Yao] (95)
The mean of equation 95 is zero and its variance is defined to be:
0%, ¥ (a)—Yay = Bl(Yas — E[Ya,[Y (@) — Yo,))’] (96)
Using the equations so far, we are now able to find that:
-1
2 _ 2
OY, o lY{a)—Yay = T¥ay ~ Z byaoy.,j Y(a)—{Yay,Ya; }OVagYa; (97)
j=1
The multiple correlation coefficient Ry, (v (a)-Ya,) of Yo, on Yg,,Ya,, ..., Y, _, is a measure
of the linear dependence. It is defined by:
2
0%y ¥ {a)—Ya
Ry, (v(a)-Ya,) =4|1— eolYA2) Ve (98)

2
0%,

The sample analogue of equation 98 is written Rya(y(a>_ya0). The multiple correlation co-
efficient is truly an extension of the ordinary correlation coeflicient. If I = 2, we have that
Ry o (Yay) = PYagYa, and Ryao (Ya,) = TYa,Ya,- In order to use this multivariate statistic, we

a,

require a test for the FSTH. To this end, observe the following ratio:

Ry (Y(a)-vag) IS = lal)

Py, a)—Ya,) =
Y. O(Y( ) 0) (]_ - R%,ao(y(a>,ya0))(|a| - 1)

(99)
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Kendall [21] has shown that Fy, (y(a)-v.,) follows an F' distribution with (|a| — 1,[S| — |a|)
degrees of freedom. This implies that we can compute the statistic and test whether the value is
larger than the critical value fi_g of the F' distribution with the specified degrees of freedom. If
this is so, the null hypothesis, which corresponds to the hypothesis that there is no dependence,
is rejected. The FSTH thus corresponds to H (Ryao(y(a)_yao) # 0). Note that the resulting
hypothesis test in the multivariate case is an F' test, whereas in the case of two variables we
had a Students T test. However, if we use the correspondence between the multiple correlation
coefficient and the ordinary correlation coefficient in the test expression in equation 99, we get:

- B R%q,j (va)(IS1=2) o 8|-2 (100)
Ya;Yar = (1 - R%,a. (Yak))(2 -1) 1
J Yanak

Thus, the tests are equivalent in the sense that the F test is the same as using a T2 test in the
case of two variables. This agrees with the correspondence between the F' distribution and the
Students T distribution as was shown in section B.1.4.

B.2.2 Spearmans rank correlation coefficient

In some cases, the use of the correlation measure as defined by equations 89 and 98 are unfit to
serve as an indicator of linear dependence. This is for instance the case when we have outliers. If
we have a strong outlier, the correlation measure will tend to find a linear relation as the remainder
of the points seem more clustered into a single point relative to the outlier. This problem can be
overcome if we focus on the relations between the points instead of on the locations themselves.

Another problem with using the ordinary correlation coefficient is that testing the hypothesis
of no correlation is based on the assumption that the joint density of the variables is normal.
Therefore, it is desirable to have a nonparametric test as an alternative in case the assumption
on the underlying distribution of the variables is not satisfied. To this end, the values to actually
compute the correlation coefficients with, have to be altered so that they reflect the relationships
between the samples instead of the samples themselves. This leads to the definition of a rank as
used in order statistics. We define the rank rank(y;'-) of a sample value y; to be:

rank(y;) = {yil(Wi <9) vV = y; Ak <5) Ak €{0,1,..., S} (101)

The rank of a sample value in a certain dimension is thus defined as the amount of samples
that is smaller than that value in that dimension, increased by the amount of samples that have
the same value in that dimension. The latter is done to break ties. An equivalent definition of the
rank of the i—th sample is its position in an ascending sorting that preserves the input ordering
in case of ties. Kendall [21] points out that the use of ranks is invariant under the use of the
hypothesis of independence as described in the case of the ordinary correlation measure. The
simplest measure is then to use the ranks of the variables instead of the variables themselves in
equations 89 and 98. This means that every occurrence of any yj-,i € L,j € S is replaced by
rank(y;) The resulting measure is called Spearman’s rank correlation coefficient. There are other
uses of ranks in correlation coefficients. The one described is however effective as well simple. The
measure was named after Spearman, who invented it.

Since the formulae for the ordinary correlation coefficient are independent of the actual values,
the transformation using the ranks directly makes it possible to use the tests and methodology as
described for the ordinary correlation coefficient.

C The EM algorithm for the normal mixture pdf
The EM algorithm [16] is a general approach to compute maximum likelihood estimates. To achieve

these estimates, it uses an iterative procedure. The reason why we require the EM algorithm, is
that the maximum likelihood estimate cannot always be analytically determined. This is for
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instance the case for a normal mixture pdf. We discuss the EM algorithm in a somewhat general
setting and give an instance for it using the normal pdf in the multivariate mixture model.

The EM algorithm uses the difference in negative log—likelihood between iterations to derive
the parameters. The negative log-likelihood can be seen as an error that we wish to minimize. We
let £ be the error of the current mixture model and let E™V be the error of the new mixture
model. The error difference then equals:

I8|-1 I8|—1
B - Bl = 3 (P (@) (@) + 3 m({P(Y (@) @)} = (102)
i=0 i=0
§)-1 N .
{P(Y{a))(y'(a) }""
— In =
; ( {P(Y{a))(yi(a))}old )

Starting from equation 102, update equations can be derived for the parameters involved in the
probability distribution. As we assume that the probability distribution is a mixture that consists
of w components, by writing «; for the mixing coefficients, we can rewrite equation 102 as:

|S|-1 w—1 n Dj i n
o {P(Y{a))(y'(a)) }""
Enew _ Eold In ] J _ - 103
Z Z 0;{P (Y {(a))(y*{a))}old (103
N _ a§{PI(Y(a)(y'(a))}M
where g; = - -
{P(Y{a))(y(a))}°!d
Jensen’s inequality states that:
[A[-1 |A]—-1 |A]—1

A e R* A Vyea(d > 0) Z Ai=1] = I > Ay <D Ailn(y) (104)

If we now observe equation 103, we note that o(W) can be used for A in equation 104, since
{P(Y{(a))(y*{a))}°d = Yico aOld{PJ( (a))(y¥(a))}°'. By using Jensen’s inequality, we get:

[S|—1w-1 old i old new f pj i new
v ol {Pf(Y<a>)(y @ <aj {DI(Y (@) (@)} )
RS Z Yanwi@d "\ BT @) piapd ) P

In order to minimize the error, we seek to minimize the righthandside of equation 105 so that
the decrease in the error —(E™Y — E°l4) is the largest possible. The old parameters are known
and all of the terms that contain only these parameters are therefore constant. The righthandside
of equation 105 can be written as:

18] -1 w— old i old
{PJ Y(“))(y <a))} new y pj i new
- E:o ]Eo Y (@) (g (@)}l In(a;*"{P?(Y(a))(y*(a)}"*") + (106)
Sl-1w— old i( i old N )
P {P Ha ”i;ﬁﬁi In(a (P (Y {a))(y (a))})
i=0 j=0

As we want to minimize the expression in equation 106, the second pair of sums can be omitted
to this end since they involve only old values. If we now take the pdfs in the mixture to be of
a certain form, we can derive an actual instance of the EM algorithm. We write X(a) for a
symmetric covariance matrix over variables Y(a). By taking each pdf in the mixture to be a
multivariate normal pdf as described by equation 38, the expression to minimize, becomes:
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= “’Z a°ld{P1 (V@) (@)}
S o PO (@) e

Ial

(107)
In(27) — —ln(d t {27 (a)}"") —

5@'a) = {p(a)}"") T ({2 (a)}"™) " (y'(a) — {1 (a)}“ew))

In order to obtain expressions for the new parameters, we compute the partial derivative of
FE with respect to each parameter individually and equate it to 0. The tricky part in the mixing
parameters is that they must continue to sum up to 1. By introducing a Lagrange multiplier A,
we can minimize:

w—1
E' =E+ )\ (—1 +> a;‘eW> (108)

=0

Subsequently, using the fact that 3~ (a914{P7(Y(a))(y'(a))}°1) /{ P(Y (a))(y (@)} = 1

1 .
as well as 377" a2V = 1, we can derive:

OF _ Lo PV (@) @)} 1
g =0 T L T R @yt A (109
<~
IS old y pj old
{P?(Y(a))(y*(a))}
_)\ new
; {P;(Y(a))(y*(a))}d !
<
-1[8]-1 old i old w-1
{P’(Y(a))(y (a))}
=3V Aatew
; DT I i P
—
L QP (v (@) (@)}
J - = aew
2 L By 5
<~
A =S|
As a result, we have directly from the second derivation step in equation 109 that:
|S|-1 old i old
Qe _ {P](Y< N(y*(a))}
55 X (H0)

For the mean parameters u’ (a) of the jf‘ph normal pdf in the mixture, we require to compute
the partial derivative of E with respect to p?(a) and equate the result to 0:

OFE

T layyme (1)
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St oldy piy i old ) ) )
-y i (U= @) 2 ) — W @)D =0
=0
—

L QY PI(Y (@) (5 (@)}

(E@F @™ 2 55 @y @)

[SI=1 _oldy pj i old
. 1S G0 i (v () (i (a)) M
EJ a new J b 2 a
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|8|-1 af ¢ {PI (Y (a))(y (@)} ;
(i (@yney = =20~ PO antiapr Y (@
|8|—1 o d{Pi(¥V{a))(y*(a))}d
=0 {P(Y (a))(yi(a))}oHd
Lastly, we want to find the new value for the covariance matrix for each model. The derivation
of this is quite involved and requires the derivative of a function of a matrix with respect to
elements in that matrix. An extensive description can be found elsewhere [6]. The unique solution

is given by:

OFE
S @pe e

—

5|-1 25 LB, (V)@ (i new\(,i/n\ _ i new\T
{EJ(a)}neW _ Ei:o {pr(Y(a>)(y‘l(a>)}old (y <a’) {l"’ (a’)} )(y <a’> {/J’ (a’)} )
s/t S (@) @)y
=0 {£(Y (@) (v (a))}oid
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D Additional algorithms

ADDARC(KJ, Vo, V1, a['a ']a ,Up[_]’ ,Us[_])
m < new array of boolean with size |
n®,n? < 2 new vectors of integer
S < new stack of integer
00
US[U0]|U5[UO]| «— v
VP1]jorfon]] ¢ Vo
if alvg,v1] then
7.1 afvg,v1] < false
72 d+4d+1
8 fori+O0tol—1do
8.1 m[i] «+ false
9 PUSH(S,v1)
10 while —-EMPTY(S) do
10.1 v« poP(S)
10.2  if —-m[v] then
10.2.1  mfv] « true
10.2.2 ”|Sns “—
10.2.3  for k + 0 to |[v[v]| do
10.2.3.1 pUSH(S,v)

N O U W N

11  pUSH(S, o)
12  while -EMPTY(S) do
12.1 v « pop(S)
12.2  4f —-mv] then
12.2.1  mfv] «+ true
1222 nf, <
12.2.3  for k + 0 to |[vP[v]| do
12.2.3.1 pUsH(S,v)
13 for i+ 0to |n°| do
13.1 for j « 0to |n?| do
13.1.1  if a[nf,n}] then
13.1.1.1  a[nf,nf] + false
13.1.1.2 d+d+1
14 if |vP[v1]| = k then
141 fori<+ Otol—1do
14.1.1  ¢f afi,v1] then
14.1.1.1  afi,v1] « false
14.1.1.2 d+6+1
15  return(d)

TOPOLOGICALSORT(vP[])
1 m + new array of boolean with size [
2 fori+0tol—1do
2.1 m[i] «+ false
2.2 7(i) + vP[i]
z+1-1
4 fori+0tol—1do

4.1 if —-m[i] then

4.1.1 2z <+ TOPOLOGICALSORTVISIT(%,m,v?,z2)

5 return((r,w))

w
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TOPOLOGICALSORTVISIT(¢,m[-],vP[],2)
1 mli] « true
2 forj« 0to |vP[i]]—1do
2.1 if —-m[vP[i];] then
2.1.1 2z + TOPOLOGICALSORTVISIT(vP[i];,m,vP,2)
3 w, 1
4 return(z—1)
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