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Abstract

Shape matching is an important ingredient in shape retrieval, recognition and classification,
alignment and registration, and approximation and simplification. This paper treats various as-
pects that are needed to solve shape matching problems: choosing the precise problem, selecting
the properties of the similarity measure that are needed for the problem, choosing the specific
similarity measure, and constructing the algorithm to compute the similarity. The focus is on
methods that lie close to the field of computational geometry.

1 Introduction

There is no universal definition of what shape is. Impressions of shape can be conveyed by color or
intensity patterns (texture), from which a geometrical representation can be derived. This is shown
already in Plato’s work Meno (380 BC) [41]. This is one of the so-called Socratic dialogues, where
two persons discuss aspects of virtue; to honor and memorialize him, one person is called Socrates.
In the dialogue, Socrates describes shape as follows (the word ‘figure’ is used for shape):

“figure is the only existing thing that is found always following color”.

This does not satisfy Meno, after which Socrates gives a definition in “terms employed in geometrical
problems”:

“figure is limit of solid”.

Here we also consider shape as something geometrical. We will use the term shape for a geo-
metrical pattern, consisting of a set of points, curves, surfaces, solids, etc. This is commonly done,
although ‘shape’ is sometimes used for a geometrical pattern modulo some transformation group, in
particular similarity transformations (combinations of translations, rotations, and scalings).

Shape matching deals with transforming a shape, and measuring the resemblance with another
one, using some similarity measure. So, shape similarity measures are an essential ingredient in
shape matching. Although the term similarity is often used, dissimilarity corresponds to the notion of
distance: small distance means small dissimilarity, and large similarity.

The algorithm to compute the similarity often depends on the precise measure, which depends on
the required properties, which in turn depends on the particular matching problem for the application
at hand. Therefore, section 2 is about the classification of matching problems, section 3 is about sim-
ilarity measure properties, section 4 presents a number of specific similarity measures, and section 5
treats a few matching algorithms.



There are various ways to approach the shape matching problem. In this article we focus on
methods that lie close to computational geometry, the subarea of algorithms design that deals with
the design and analysis of algorithms for geometric problems involving objects like points, lines,
polygons, and polyhedra. The standard approach taken in computational geometry is the development
of exact, provably correct and efficient solutions to geometric problems. First some related work is
mentioned in the next subsection.

1.1 Related work

Matching has been approached in a number of ways, including tree pruning [55], the generalized
Hough transform [8] or pose clustering [51], geometric hashing [59], the alignment method [27],
statistics [40], deformable templates [50], relaxation labeling [44], Fourier descriptors [35], wavelet
transform [31], curvature scale space [36], and neural networks [21]. The following subsections treat
a few methods in more detail. They are based on shape representations that depend on the global
shape. Therefore, they are not robust against occlusion, and do not allow partial matching.

1.1.1 Moments

When a complete object in an image has been identified, it can be described by a set of moments
The (p, ¢)-moment of an objea® C R? is given by

Mp g = / 2Py? dz dy.
(z,y)€0

For finite point sets the integral can be replaced by a summation. The infinite sequence of moments,
p,q =0,1,..., uniquely determines the shape, and vice versa. Variations such as Zernike moments
are described in [32] and [12].

Based on such moments, a number of functions, moment invariants, can be defined that are in-
variant under certain transformations such as translation, scaling, and rotation. Using only a limited
number of low order moment invariants, the less critical and noisy high order moments are discarded.
A number of such moment invariants can be put into a feature vector, which can be used for matching.

Algebraic moments and other global object features such as area, circularity, eccentricity, com-
pactness, major axis orientation, Euler number, concavity tree, shape numbers, can all be used for
shape description [9], [42].

1.1.2 Modal matching

Rather than working with the area of a 2D object, the boundary can be used instead. Samples of the
boundary can be described with Fourier descriptors, the coefficients of the discrete Fourier transform
[56].

Another form of shape decomposition is the decomposition into an ordered set of eigenvectors,
also called principal components. Again, the noisy high order components can be discarded, using
only the most robust components. The idea is to considasints on the boundary of an object, and
to define a matrixD such that elemenb;; determines how boundary pointsand j of the object
interact, typically involving the distance between poingnd;.

The eigenvectors; of D, satisfyingDe; = Xe;, i = 1,... ,n, are themodesof D, also called
eigenshapes. To match two shapes, take the eigenvegtofsone object, and the eigenvectcn’js

of the other object, and compute a mismatch vah(e;, ;). For simplicity, let us assume that the



eigenvectors have the same length. For a fixedi,, determine the valug, of j for whichm(e;,, e})

is minimal. If the value of for whichm(e;, e'-o) is minimal is equal t@y, then point of one shape and
point 5 of the other shape match. See for example [22] and [49] for variations on this basic technique
of modal matching.

1.1.3 Curvature scale space

Another approach is the use of a scale space representation of the curvature of the contour of 2D
objects. Let the contouf’ be parameterized by arc-length C'(s) = (z(s),y(s)). The coordinate
functions ofC' are convolved with a Gaussian kerig! of width o

2o(o) = [ 2ol =s) dts Bolt) = <=0 .

and the same fag(s). With increasing value of, the resulting contour gets smoother, see figure 1,
and the number of zero crossings of the curvature along it decreases, until finally the contour is convex
and the curvature is positive everywhere.

Figure 1. Contour smoothing, reducing curvature changes.

For continuously increasing, the positions of the curvature zero-crossings continuously move
along the contour, until two such positions meet and annihilate. Matching of two objects can be
done by matching points of annihilation in th o) plane [36]. Another way of reducing curvature
changes is based on the turning angle function (see section 4.5) [34].

Matching with the curvature scale space is robust against slight affine distortion, as has been
experimentally determined [37]. Be careful, however, to use this property for fish recognition, see
section 3.

2 Matching problems

Shape matching is studied in various forms. Given two patterns and a dissimilarity measure, we can:
e (computation problem) compute the dissimilarity between the two patterns,

¢ (decision problem) for a given threshold, decide whether the dissimilarity is smaller than the
threshold,



¢ (decision problem) for a given threshold, decide whether there exists a transformation such
that the dissimilarity between the transformed pattern and the other pattern is smaller than the
threshold,

e (optimization problem) find the transformation that minimizes the dissimilarity between the
transformed pattern and the other pattern.

Sometimes the time complexities to solve these problems are rather high, so that it makes sense to
devise approximation algorithms:

¢ (approximate optimization problem) find a transformation that gives a dissimilarity between the
two patterns that is within a constant multiplicative factor from the minimum dissimilarity.

These problems play an important role in the following categories of applications.

Shape retrieval: search for all shapes in a typically large database of shapes that are similar to a
qguery shape. Usually all shapes within a given distance from the query are determined (decision
problem), or the first few shapes that have the smallest distance (computation problem). If
the database is large, it may be infeasible to compute the similarity between the query and
every database shape. An indexing structure can help to exclude large parts of the database
from consideration at an early stage of the search, often using some form of triangle inequality
property, see section 3.

Shape recognition and classification:determine whether a given shape matches a model sufficiently
close (decision problem), or which &f class representatives is most similardpmputation
problems).

Shape alignment and registration: transform one shape so that it best matches another shape (opti-
mization problem), in whole or in part.

Shape approximation and simplification: construct a shape of fewer elements (points, segments,
triangles, etc.), that is still similar to the original. There are many heuristics for approximating
polygonal curves [45] and polyhedral surfaces [26]. Optimal methods construct an approxima-
tion with the fewest elements given a maximal dissimilarity, or with the smallest dissimilarity
given the maximal number of elements. (Checking the former dissimilarity is a decision prob-
lem, the latter is a computation problem.)

3 Properties

In this section we list a number of properties. It can be desirable that a similarity measures has
such properties. Whether or not specific properties are wanted will depend on the application at
hand, sometimes a property will be useful, sometimes it will be undesirable. Some combinations
of properties are contradictory, so that no distance function can be found satisfying them. A shape
dissimilarity measure, or distance function, on a collection of sh&pesa functiond : S x S — R.
In the properties listed below, it is understood that they must hold for all shépBsor C'in S.

Metric properties Nonnegativity meang(A, B) > 0. The identity property is that(A, A) = 0.
Uniqueness says thai{A, B) = 0 implies A = B. A strong form of the triangle inequality is
d(A, B)+d(A,C) > d(B, C). Adistance function satisfying identity, uniqueness, and strong triangle
inequality is called a metric. If a function satisfies only identity and strong triangle inequality, then



it is called a semimetric. Symmetwy(A, B) = d(B, A), follows from the strong triangle inequality
and identity. Symmetry is not always wanted. Indeed, human perception does not always find that
shapeA is equally similar taB, asB is to A. In particular, a varianfi of prototypeB is often found
more similar toB than vice versa [53].
A more frequently encountered formulation of the triangle inequality is the followitd; B) +
d(B,C) > d(A,C). Similarity measures for partial matching, giving a small distaiicé, B) if a
part of A matches a part aB, do not obey the triangle inequality. An illustration is given in figure 2:
the distance from the man to the centaur is small, the distance from the centaur to the horse is small,
but the distance from the man to the horse is larged(soan, centaur) + d(centaur, horse) >
d(man, horse) does not hold. It therefore makes sense to formulate an even weaker form, the relaxed
triangle inequality [18]c(d(A, B) + d(B,C)) > d(A, C), for some constant > 1.

-~

Figure 2: Under partial matching, the triangle inequality does not hold.

Continuity properties It is often desirable that a similarity function has some continuity prop-
erties. The following four properties are about robustness, a form of continuity. Such properties
are for example useful to be robust against the effects of discretization. Perturbation robustness:
for eache > 0, there is an open sdt of deformations sulfficiently close to the identity, such that
d(f(A),A) < eforall f € F. For example, it can be desirable that a distance function is robust
against small affine distortion. Crack robustness: for each ea€li), and each “crack’: in bd(A),
the boundary of4, an open neighborhoad of z exists such that for alB, A — U = B — U implies
d(A, B) < e. Blur robustness: for each> 0, an open neighborhootl of bd(A) exists, such that
d(A, B) < efor all B satisfyingB — U = A — U andbd(A) C bd(B). Noise and occlusion robust-
ness: for eaclr € R? — A, and eaclk > 0, an open neighborhodd of z exists such that for alB,
B—-U=A-Uimpliesd(4, B) <e.

Invariance A distance functioni is invariant under a chosen group of transformatiohg for
allg € G, d(g(A),g(B)) = d(A, B). For object recognition, it is often desirable that the similarity
measure is invariant under affine transformations, since this is a good approximation of weak per-
spective projections of points lying in or close to a plane. However, it depends on the application
whether a large invariance group is wanted. For example, Sir d’Arcy Thompson [52] showed that the
outlines of two hatchetfishes of different gendsgyropelecus olfersand Sternoptyx diaphanacan
be transformed into each other by shear and scaling, see figure 3. So, the two fishes will be found to
match the same model if the matching is invariant under affine transformations.



Figure 3: Two hatchetfishes of different gendsgyropelecus olfershndSternoptyx diaphanaAfter
[52].

4  Similarity Measures

4.1 Discrete Metric

Finding an affine invariant metric for patterns is not so difficult. Indeed, a metric that is invariant not
only for affine transformations, but for general homeomorphisms is the discrete metric:

d(A,B) =

0 if AequalsB
1 otherwise

However, this metric lacks useful properties. For example, if a pattemonly slightly distorted to
form a patternd’, the discrete distanc§( A, A') is already maximal.

Under the discrete metric, computing the smaltést, B) over all transformations in a transfor-
mation groupG is equivalent to deciding whether there is some transformationG such thaty(A)
equalsB. This is known as exact congruence matching. For setgoints inR*, the algorithms with
the best known time complexity run @(n logn) time if G is translations, scaling, or homotheties
(translation plus scaling), ar@(n#/3] log ) time for rotations, isometries, and similarities [11].

4.2 L, Distance, Minkowski Distance

Many similarity measures on shapes are based ol flistance between two points. For two points
z,y in R¥, the L, distance is defined &b, (x,y) = (X%, |«; — y:|?)!/P. This is also often called
the Minkowski distance. Fop = 2, this yields the Euclidean distandg,. Forp = 1, we get
the Manhattan, city block, or taxicab distanEe. For p approachingx, we get the max metric:
max;(|x; — yil).

Forallp > 1, the L, distances are metrics. Fpr< 1 itis not a metric anymore, since the triangle
inequality does not hold.



4.3 Bottleneck Distance

Let A and B be two point sets of size, andd(a, b) a distance between two points. The bottleneck
distanceF'( A, B) is the minimum over all — 1 correspondencegbetweend and B of the maximum
distanced(a, f(a)). For the distancé(a, b) between two points, af, distance could be chosen. An
alternative is to compute an approximatidhto the real bottleneck distande. An approximate
matching betweenl and B with I the furthest matched pair, such tHat< ' < (1 + ¢)F, can be
computed with a less complex algorithm [17].

The decision problem for translations, deciding whether there exists a trandasioch that
F(A +¢,B) < e can also be solved, but takes considerably more time [17]. Because of the high
degree in the computational complexity, it is interesting to look at approximations with a tactor
F(A+1¢,B) < (1+¢€)F(A+¢*,T), wheret* is the optimal translation. Finding such a translation
can be done i (n??) time [48].

Variations on the bottleneck distance are the minimum weight distance, the most uniform distance,
and the minimum deviation distance.

4.4 Hausdorff Distance

In many applications, for example stereo matching, not all points #fameed to have a corresponding
point in B, due to occlusion and noise. Typically, the two point sets are of different size, so that no
one-to-one correspondence exists between all points. In that case, a dissimilarity measure that is often
used is the Hausdorff distance. The Hausdorff distance is defined not only for finite point sets, it is
defined on nonempty closed bounded subsets of any metric space.

The directedHausdorff distancé (A, B) is defined as the lowest upper bound (supremum) over
all points in 4 of the distances t@: h(A4, B) = Sup,¢ 4 infpe  d(a, b), with d(a, b) the underlying
distance, for example the Euclidean distante)( The Hausdorff distancél (A, B) is the maxi-
mum of (A, B) andh(B, A): H(A, B) = max{d(A, B),d(B, A)}. For finite point sets, it can be
computed using Voronoi diagrams in tind¥ (m + n) log(m + n)) [2].

Given two finit point setsd and B, the translatiorf* that minimizes the Hausdorff distandeA +
¢, B) can be determined in tim@(mn(log mn)?) when the underlying metric i&; or L, [14]. For
other L, metrics,p = 2,3, ... it can be computed in tim& (mn(m + n)a(mn) log(m + n)) [29].

(a(n) is the inverse Ackermann function, a very slowly increasing function.) This is done using the
upper envelopes of Voronoi surfaces.

Computing the optimal rigid motiom (translation plus rotation), minimizing (r(A), B) can
be done inO((m + n)%log(mn)) time [28]. This is done using dynamic Voronoi diagrams. Given
a real valuee, deciding if there is a rigid motion such that(r(A), B) < e can be done in time
O((m + n)m?n?logmn) [13].

Given the high complexities of these problems, it makes sense to look at approximations. Com-
puting an approximate optimal Hausdorff distance under translation and rigid motion is discussed in
[1].

The Hausdorff distance is very sensitive to noise: a single outlier can determine the distance value.
For finite point sets, a similar measure that is not as sensitive psitti@l Hausdorff distancelt is the
maximum of the two directed partial Hausdorff distancBg:(A, B) = max{h;(A, B), hi(B, A)},
where the directed distances are defined as the k-th value in increasing order of the distance from a
point in A to B: hy(A, B) = k" , minyep d(a,b). The partial Hausdorff distance is not a metric
since it fails the triangle inequality. Deciding whether there is a translation plus scaling that brings the
partial Hausdorff distance under a given threshold is done in [30] by means of a transformation space



subdivision scheme. The running time depends on the depth of subdivision of transformation space.
For pattern matching, the Hausdorff metric is often too sensitive to noise. For finite point sets,

the partial Hausdorff distance is not that sensitive, but it is no metric. Alternatively, [7] observes

that the Hausdorff distance of, B C X, X having a finite number of elements, can be written as

H(A, B) = sup,cy |d(z, A) —d(z, B)|. The supremum is then replaced by an averag:A, B) =

(ITI\ Y opex ld(z, A) — d(z, B)[P)'/?, whered(z, A) = inf,c4 d(z,a), resulting in thep-th order

mean Hausdorff distancerhis is a metric less sensitive to noise, but it is still not robust. It can also

not be used for partial matching, since it depends on all points.

4.5 Turning Function Distance

The cumulative angle function, or turning functiad, (s) of a polygon or polylineA gives the angle
between the counterclockwise tangent andatkexis as a function of the arc length © 4(s) keeps

track of the turning that takes place, increasing with left hand turns, and decreasing with right hand
turns, see figure 4.

Figure 4: Polygonal curve and turning function.

Clearly, this function is invariant under translation of the polyline. Rotating a polyline over an
angled results in a vertical shift of the function with an amouhtFor polygons and polylines, the
turning function is a piecewise constant function, increasing or decreasing at the vertices, and constant
between two consecutive vertices.

In [6] the turning angle function is used to match polygons. First the size of the polygons are
scaled so that they have equal perimeter. Thenetric on function spaces, applied @, and©p,

gives a dissimilarity measure ohandB: d(A4, B) = ([ |©4(s) — Op(s)|? ds)l/p, see figure 5.

at
:

-

Figure 5: Rectangles enclosed By, (s), ©(s), and dotted lines are used for evaluation of dissimi-
larity.

In [58], for the purpose of retrieving hieroglyphic shapes, polyline curves do not have the same
length, so that partial matching can be performed. In that case the starting point of the shorter one
is moved along the longer one, considering only the turning function where the arc lengths overlap.
This is a variation of the algorithms for matching closed polygons with respect to the turning function,
which can be done i (mn log(mn)) time [6].

Partial matching under scaling, in addition to translation and rotation, is more involved. It can be
done in timeO(m?n?), see [15].



4.6 Fréchet Distance

The Hausdorff distance is often not appropriate to measure the dissimilarity between curves. For all
points onA4, the distance to the closest point Brmay be small, but if we walk forward along curves

andB simultaneously, and measure the distance between corresponding points, the maximum of these
distances may be larger. This is what is called thecket distance. More formally, let and B be

two parameterized curve$(«(t)) andB(5(t)), and let their parameterizationsand be continuous
functions of the same parametee |0, 1], such thatx(0) = 5(0) = 0, anda(1) = B(1) = 1. The

Fréchet distance is the minimum over all monotone increasing parameterizatigrend/(t) of the

maximal distancel(A(«a(t)), B(B(t))), t € [0, 1].

[4] considers the computation of thedehet distance for the special case of polylines. Deciding
whether the FeChet distance is smaller than a given constant, can be done idtffme). Based on
this result, and the ‘parametric search’ technique, it is derived that the computation oéthetdis-
tance can be done in tint@(mn log(mn)). Although the algorithm has low asymptotic complexity, it
is not really practical. The parametric search technique used here makes use of a sorting network with
very high constants in the running time. A simpler sorting algorithm leads to an asymptotic running
time of O(mn(logmn)?). Still, the parametric search is not easy to implement. A simpler algorithm,
which runs in timeQ (mn(m + n) log(mn)) is given in [20].

A variation of the Fechet distance is obtained by dropping the monotonicity condition of the
parameterization. The resultingdétiet distancel/(A, B) is a semimetric: zero distance need not
mean that the objects are the same. Another variation is to consider partial matching: finding the part
of one curve to which the other has the smalleschet distance.

Parameterized contours are curves where the starting point and ending point are the same. How-
ever, the starting and ending point could as well lie somewhere else on the contour, without changing
the shape of the contour curve. For convex contours, thehet distance is equal to the Hausdorff
distance [4].

4.7 Nonlinear elastic matching distance

Let A = {ai,... ,ap} andB = {by,... ,b,} be two finite sets of ordered contour points, and let

f be a correspondence between all pointsliand all points inB such that there are no < as,

with f(a1) > f(a2). The stretchs(a;, b;) of (a;, f(a;) = b;) is 1 if either f(a;—1) = b; or f(a;) =

b;j_1, or 0 otherwise. The nonlinear elastic matching distaNdeM (A, B) is the minimum over all
correspondencegof ) s(a;, bj) 4 d(a;, b;), with d(a;, b;) the difference between the tangent angles
ata; andb;. It can be computed using dynamic programming [16]. This measure is not a metric, since
it does not obey the triangle inequality.

Therelaxed nonlinear elastic matching distand&” M,. is a variation ofN E M, where the stretch
s(ag, bj) of (ai, f(a;) = b;) isr (rather than 1) if eithef (a;—1) = b; or f(a;) = b;j_1, or O otherwise,
wherer > 1 is a chosen constant. The resulting distance is not a metric, but it does obey the relaxed
triangle inequality [18].

4.8 Reflection Distance

Thereflection metriq24] is an affine-invariant metric that is defined on finite unions of curves in the
plane or surfaces in space. They are converted into real-valued functions on the plane. Then, these
functions are compared using integration, resulting in a similarity measure for the corresponding
patterns.



The functions are formed as follows, for each finite union of curdesFor eachz € R2, the
visibility star V7 is defined as the union of open line segments connecting pointsiudt are visible
fromz: Vi = |J{ZTa | « € AandA Nza = @}. Thereflection starR? is defined by intersecting
V¥ with its reflection inz: RY = {z +v € R? |z —v € V{ andz + v € V$}, see figure 6. The

Figure 6: Reflection star at(dark grey).

functionps : R? — R is the area of the reflection star in each poji(z) = area(R%). Observe
that for pointsz outside the convex hull ofl, this area is always zero. The reflection metric between
patternsA and B defines a normalized difference of the corresponding funciionandpp:

Je2 lpa(@) — pp(2)| dz
Jre max(pa(z), pp(z)) dz”

d(A,B) =

From the definition follows that the reflection metric is invariant under all affine transformations.
In contrast to the Fchet distance, this metric is defined also for patterns consisting of multiple curves.
In addition, the reflection metric is deformation, blur, crack, and noise occlusion robust. Computing
the reflection metric by explicitly constructing the overlay of two visibility graphs results in a high
time complexity,O(c(m + n)), with ¢ the complexity of the overlay, which @ ((m + n)*) [23].

4.9 Area of Symmetric Difference, Template Metric

For two compact setgl and B, the area of symmetric difference, also called template metric, is
defined asirea((A — B) U (B — A)). Unlike the area of overlap, this measure is a metric.

Translating convex polygons so that their centroids coincide also gives an approximate solution
for the symmetric difference, which is at most 11/3 of the optimal solution under translations [3]. This
also holds for a set of transformatiofsother than translations, if the following holds: the centroid
of A, ¢(A), is equivariant under the transformations, &€f(A)) = f(c(A)) for all fin F', andF' is
closed under composition with translation.

4.10 Transport Distance, Earth Mover’s Distance

Given two weighted point patternd = {(A, w(A1)), ..., (Am, w(Ay))} andB = {(By,w(By)),
.oo s (B, w(By))}, whereA; and B; are subsets dk?, with associates weights(A;), w(B;). The



transport distance betweehand B is the minimum amount of work needed to transfasninto B.
(The notion of work as in physics: the amount of energy needed to displace a mass.) This is a discrete
form of what is also called the Monge-Kantorovich distance. The transport distance is used for various
purposes, and goes under different names. Monge first stated it in 1781 to describe the most efficient
way to transport piles of soil. It is called the Augean Stable by David Mumford, after the story in
Greek mythology about the moving of piles of dirt from the huge cattle stables of king Augeas by
Hercules [5]. The name Earth Mover's Distance is coined by Jorge Stolfi. The transport distance
has been used in heat transform problems [43], object contour matching [19], and color-based image
retrieval [46].

Let f;; be the flow from locationd; to B;, F the matrix of elementg;;, andd;; the ‘ground
distance’ betweerl; and B;. Then the transport distance is

ming " 330 fijdi
Zgl Z?:l fij ,

under the following conditionsf;; > 0 for all i andj, >3, fij < w(By), 37, fi; < w(4;), and

doimy >iey fiy = min{32, w(A;), D27 w(By)}. If the total weights of the two sets are equal,

and the ground distance is metric, then the transport distance is a metric. It can be computed by
linear programming in polynomial time. The often used simplex algorithm can give exponential time
complexity in the worst case, but often performs linear in practice.

5 Algorithms

In the previous section, algorithms were mentioned along with the description of the measure, when
the algorithm is specific for that measure. This section mentions a few algorithms that are more
general.

5.1 Voting schemes

Geometric hashing [33, 59] is a method that determines if there is a transformed subset of the query
point set that matches a subset of a target point set. The method first constructs a single hash table
for all target point sets together. It is described here for 2D. Each point is represented age; —
eo) + A(e2 — eg), for some fixed choice of points, e, e2, and the(x, A)-plane is quantized into a
two-dimensional table, mapping each real coordinate (paik) to an integer index paifk, ).

Let there beV target point set#3;. For each target point set, the following is done. For each three
non-collinear points, e1, e from the point set, express the other points@sk(e; —eg)+A(ea—ep),
and append the tuplg, e, e1, e2) to entry (k, ¢). If there areQ(m) points in each target point set,
the construction of the hash table is of complexityNm?).

Now, given a query point set, choose three noncollinear poirts €/, e/, from the point set, and
express each other pointgs+ x(e] — ef) + A(e, — ef), and tally a vote for each tuplg, ey, e, e2)
in entry (k, £) of the table. The tupléi, eg, e1, e2) that receives most votes indicates the target point
setT; containing the query point set. The affine transformation that niefps’ , e5) to the winner
(eo, €1, €2) is assumed to be the transformation between the two shapes. The complexity of matching
a single query set of points isO(n). There are several variations of this basic method, such as
balancing the hashing table, or avoiding taking all possible?) 3-tuples.

The generalized Hough transform [8], or pose clustering [51], is also a voting scheme. Here, affine
transformations are represented by six coefficients. The quantized transformation space is represented



as a six-dimensional table. Now for each triplet of points in one set, and each triplet of points from the

other set, compute the transformation between the two triples, and tally a vote in the corresponding
entry of the table. Again the winner entry determines the matching transformation. The complexity

of matching a single query set@(Nm3n?).

In the alignment method [27, 54], for each triplet of points from the query set, and each triplet from
the target set, we compute the transformation between them. With each such transformation, all the
other points from the target set are transformed. If they match with query points, the transformation
receives a vote, and if the number of votes is above a chosen threshold, the transformation is assumed
to be the matching transformation between the query and the target. The complexity of matching a
single query set i®)(Nm'n?).

Variations of these methods also work for geometric features other than points, such as segments,
or points with normal vectors [10], and for other transformations than affine transformations. A
comparison between geometric hashing, pose clustering, and the alignment method is made in [60].
Other voting schemes exist, for example taking a probabilistic approach [39].

5.2 Subdivision Schemes

As mentioned above, deciding whether there is a translation plus scaling that brings the partial Haus-
dorff distance under a given threshold is done in [30] by a progressive subdivision of transformation
space. The subdivision of transformation space is generalized to a general ‘geometric branch and
bound’ framework in [25]. Here the optimal transformation is approximated to any desired accu-
racy. The matching can be done with respect to any transformation g¥ptgr example similarity
(translation, rotation, and scaling), or affine transformations (translation, rotation, scaling, and shear).

The algorithm uses a lower boundC, A, B) for the similarityd(g(A), B) overg € C C G,
whereC'is a set of transformations represented by a rectangular cell in parameter space. The algorithm
starts with a cell’’ that contains all possible minima, which is inserted in a priority queue, using the
lower bound\(C, A, B) as a key. In each iteration, the cell having a minimal associated valuésof
extracted from the priority queue. If the size of the corresponding cell is so small that it achieves the
desired accuracy, some transformation in that cell is reported as a (pseudo-)minimum. Otherwise the
cell is split in two, the lower bounds of its sub-cells will be evaluated, and subsequently inserted into
the priority queue.

The previous algorithm is simple, and tests show that it has a typical running time of a few minutes
for translation, translation plus scaling, rigid transformations and sometimes even for affine transfor-
mation. Since transformation space is split up recursively, the algorithm is also expected to work well
in applications in which the minima lie in small clusters. A speed-up can be achieved by combining
the progressive subdivision with alignment [38].

6 Concluding remarks

We have discussed a number of shape similarity properties. More possibly useful properties are for-
mulated in [57]. It is a challenging research task to construct similarity measure with a chosen set
of properties. We can use a number of constructions to achieve some properties, such as remapping,
normalization, going from semi-metric to metric, defining semi-metrics on orbits, extension of pattern
space with the empty set, vantageing, and imbedding patterns in a function space, see [57].

A difficult problem is partial matching. Applications where this plays a vital role is the registration
of scanning data sets from multiple views, reverse engineering, and shape database retrieval. The



difficulty is that the distance measure must be suitable for partial matching. The dissimilarity must be
small when two shapes contain similar regions, and the measure should not penalize for regions that
do not match. Also, the number of local minima of the distance can be large. For example, even for
rigid motions in 2D, the lower bound on the worst case number of minima of the Hausdorff distance
is Q(n®) [47]. So, for large values af, the time complexity is prohibitively high if all local minima
should be evaluated. Finding a good approximate transformation is essential. After that, numerical
optimization technigues can perhaps be used to find the optimum. This cannot be done right from the
start, because such techniques get easily stuck in local minima.

Another approach to partial matching is to first decompose the shapes into smaller parts, and do
the matching with the parts. For example, retrieving shapes similar to the centaur from figure 2 with
partial matching, should yield both the man and the horse. If these shape are decomposed into a buste
and a body, than matching is much easier. The advantages of taking apart buste and body was already
recognized by Xenophon in his work Cyropaedia (370s BC) [61]:

“Indeed, my state will be better than being grown together in one piece. [...] so what else
shall | be than a centaur that can be taken apart and put together.”
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