
To appear in: Electronic Notes in Theoretical Computer Science 59 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume59.html

Scoped Dynamic Rewrite Rules

Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht, P.O. Box
80089, 3508 TB Utrecht, The Netherlands. http://www.cs.uu.nl/people/visser,

visser@acm.org

Abstract

The applicability of term rewriting to program transformation is limited by the lack
of control over rule application and by the context-free nature of rewrite rules. The
first problem is addressed by languages supporting user-definable rewriting strate-
gies. This paper addresses the second problem by extending rewriting strategies
with scoped dynamic rewrite rules. Dynamic rules are generated at run-time and
can access variables available from their definition context. Rules generated within
a rule scope are automatically retracted at the end of that scope. The technique is
illustrated by means of several program tranformations: bound variable renaming,
function inlining, and dead function elimination.

1 Introduction

Rewrite rules provide a good formalism for expressing program transforma-
tions. A rewrite rule defines a local transformation derived from an algebraic
equality of programs. There are two problems associated with the application
of standard term rewriting techniques to program transformation: the need
to intertwine rules and strategies in order to control the application of rewrite
rules and the context-free nature of rewrite rules.

1.1 Exhaustive Application of Rules

Exhaustive application of all rules to the entire abstract syntax tree of a
program is not adequate for most transformation problems. The system of
rewrite rules expressing basic transformations is often non-confluent and/or
non-terminating.

An ad hoc solution that is often used is to encode control over the appli-
cation of rules into the rules themselves by introducing additional function
symbols. This intertwining of rules and strategy obscures the underlying pro-
gram equalities, incurs a programming penalty in the form of rules that define
a traversal through the abstract syntax tree, and disables the reuse of rules in
different transformations.

http://www.elsevier.nl/locate/entcs/volume59.html

Visser

The paradigm of programmable rewriting strategies solves the problem of
control over the application of rules while maintaining the separation of rules
and strategies. A strategy is a little program that makes a selection from the
available rules and defines the order and position in the tree for applying the
rules. Thus rules remain pure, are not intertwined with the strategy, and can
be reused in multiple transformations.

Support for strategies is provided by a number of transformation systems
in various forms. In TAMPR [4] a transformation is organized as a sequence of
canonical forms. For each canonical form a tree is normalized with respect to
a subset of the rules in the specification. ELAN [3] provides non-deterministic
sequential strategies. Stratego [17,15] provides generic primitive traversal op-
erators that can be used to compose generic tree traversal schemas. See [16]
for a survey of strategies in program transformation.

1.2 Context-free Nature of Rewrite Rules

The second problem of rewriting is the context-free nature of rewrite rules. A
rule has only knowledge of the construct it is transforming. However, trans-
formation problems are often context-sensitive. For example, when inlining a
function at a call site, the call is replaced by the body of the function in which
the actual parameters have been substituted for the formal parameters. This
requires that the formal parameters and the body of the function are known
at the call site, but these are only available higher-up in the syntax tree.

There are many similar problems in program transformation, including
bound variable renaming, typechecking, constant and copy propagation, and
dead code elimination. Although the basic transformations in all these ap-
plications can be expressed by means of rewrite rules, they need contextual
information.

The usual solution to this problem is to extend the traversal over the
tree (be it hand-written or generic) such that it distributes the data needed
by transformation rules. For example, traversal functions in ASF+SDF [5]
can be declared to have an accumulation parameter in which data can be
collected. Language independent definitions of operations such as bound vari-
able renaming in Stratego [15] capture a generic tree traversal schema that
takes care of distributing an environment through a tree. The disadvantage
of these solutions is that the traversal strategy becomes data heavy instead
of just handling control flow. That is, all traversal functions become infected
with additional parameters carrying context information. Generic solutions
break down when multiple environments are needed, to handle multiple name
spaces, for instance.

Another solution is the use of contextual rules [2,17]. Contextual rules
combine the context and the local transformation in one rule by using a local
traversal that applies a rule that reuses information from the context. The
problem with this approach is that it performs an extra traversal over the

2

Visser

abstract syntax tree, leading to quadratic complexity in case the contextual
rule is applied as part of a traversal over the same tree that the context
accesses.

1.3 Dynamic Rules

This paper introduces the extension of rewriting strategies with scoped dy-
namic rules. A dynamic rule is a normal rewrite rule that is generated at
run-time and that can access information from its generation context. For
example, to define an inliner, a rule that inlines function calls for a specific
function can be generated at the point where the function is declared, and
used at call sites of the function.

Dynamic rules are first-class. Their application is under control of a normal
strategy. Thus dynamic rules can be applied as part of a global tree traversal.
Rules can overrule the definition of previously generated rules. To restrict
the application of a dynamic rule to a certain part of the tree, the live range
of a rule can be determined by rule scopes (Section 3). A rule temporarily
overruled in a scope becomes visible again at the end of that scope. To hide
rules generated in outer scopes, rules can be undefined (Section 4). Rules from
outer scopes can also be permanently overridden (Section 5).

The mechanism of dynamic rules as described in this paper reflects the
implementation of dynamic rules in Stratego version 0.6.2 available from www.

stratego-language.org.

1.4 Outline

Section 2 reviews the basics of rewriting strategies in Stratego. Sections 3
through 5 introduce dynamic rules by means of a number of transformations
on Tiger programs: bound variable renaming (Section 3), function inlining
(Section 4), and dead function elimination (Section 5). Each of these examples
motivates and illustrates an aspect of dynamic rules. Section 6 discusses other
applications, related and future work. Section 7 concludes.

2 Rewriting Strategies

This section reviews the basics of rewriting strategies in Stratego as far as
needed for this paper. See [17] for details of the operational semantics under-
lying the language. In this paper Tiger, the example language in the compiler
construction textbook of Appel [1], is used to illustrate the application of
dynamic rules.

2.1 Program Representation

In Stratego, programs to be transformed are expressed as first-order terms.
Signatures describe the structure of terms. A term over a signature S is either

3

www.stratego-language.org.
www.stratego-language.org.

Visser

let function fact(n : int) : int =
if n < 1 then 1 else (n * fact(n - 1))

in fact(10)
end

Let([
FunctionDec([
FunDec("fact",[FArg("n",Tid("int"))],Some(Tid("int")),
If(RelOp(LT,Var("n"),Int("1")),

Int("1"),
BinOp(MUL,Var("n"),

Call(Var("fact"),
[BinOp(MINUS,Var("n"),Int("1"))]))))])],

[Call(Var("fact"),[Int("10")])])

Fig. 1. Concrete and abstract syntax of a small Tiger program.

a nullary constructor C from S or the application C(t1,...,tn) of an n-ary
constructor C from S to terms ti over S. List notation [t1,...,tn] is an
abbreviation for terms constructed with the constructors Cons and Nil.

Figure 2 shows the signature of the abstract syntax of Tiger programs.
Tiger is an imperative, first-order language with nested functions. Data are
composed using arrays and records from integers and strings. Control flow is
determined using if-then-else, while and for. Examples of terms over the Tiger
signature are Var("x") (the variable x), Call(Var("f"), [Var("x")]) (call
of function f with argument x), and Let([VarDec("x", None, Int("1"))],

[Var("x")]) (the declaration of local variable x initialized to the integer con-
stant 1). Figure 1 gives a small example program and the corresponding
abstract syntax representation.

2.2 Rewrite Rules

Rewrite rules express basic transformations on terms. A rewrite rule has the
form L : l -> r, where L is the label of the rule, and the term patterns l

and r are its left-hand side and right-hand side, respectively. A term pattern
is either a variable, a nullary constructor C, or the application C(p1,...,pn)

of an n-ary constructor C to term patterns pi. For example,

Fold : BinOp(PLUS, e, Int("0")) -> e

is a simple constant folding rule for Tiger expressions.

A rule L: l -> r applies to a term t when the pattern l matches t, i.e.,
when l has the same top-level structure as t. Applying L to t has the effect
of transforming t to the term obtained by replacing the variables in r with
the subterms of t to which they correspond. Actually the basic actions un-
derlying rules are first-class operations in Stratego. The operation ?t denotes
matching against the term pattern t, and !t denotes building an instantia-

4

Visser

module Tiger-Core
signature

sorts Exp LValue InitField Tdec Dec FunDec FArg Type Field TypeId
constructors
Var : String -> Var
FieldVar : LValue * String -> LValue
Subscript : LValue * Exp -> LValue

Int : String -> Exp
String : String -> Exp
NilExp : Exp

Call : Var * List(Exp) -> Exp
Record : TypeId * List(InitField) -> Exp
InitField : String * Exp -> InitField
Array : TypeId * Exp * Exp -> Exp
BinOp : BinOp * Exp * Exp -> Exp
RelOp : RelOp * Exp * Exp -> Exp

Seq : List(Exp) -> Exp
Assign : LValue * Exp -> Exp
If : Exp * Exp * Exp -> Exp
IfThen : Exp * Exp -> Exp
While : Exp * Exp -> Exp
For : Var * Exp * Exp * Exp -> Exp
Break : Exp
Let : List(Dec) * List(Exp) -> Exp

Tdec : String * Type -> Tdec
TypeDec : List(Tdec) -> Dec
VarDec : String * Option(TypeId) * Exp -> Dec
FunctionDec : List(FunDec) -> Dec
FArg : String * TypeId -> FArg
FunDec : String * List(FArg)

* Option(TypeId) * Exp -> FunDec

NameTy : TypeId -> Type
RecordTy : List(Field) -> Type
Field : String * TypeId -> Field
ArrayTy : TypeId -> Type
Tid : String -> TypeId

Fig. 2. Signature of the abstract syntax of Tiger

5

Visser

tion of the term pattern t. Thus, a rule L: l -> r is just syntactic sugar
for L = {x1,...,xn: ?l; !r}, where {x1,...,xn: s} delimits the scope of
the pattern variables x1,...,xn. The construct {s} implicitly makes all free
variables in s local.

2.3 Rewriting Strategies

Programmable rewriting strategies provide a mechanism for achieving control
over the application of rewrite rules, while avoiding the introduction of new
constructors or rules. A rewriting strategy is a program that transforms terms
or fails at doing so. In the case of success, the result is a transformed term.
In the case of failure, there is no result.

Rewrite rules are just strategies which apply transformations to the roots
of terms. Strategies can be combined into more complex strategies by means
of Stratego’s strategy operators. The identity strategy id always succeeds and
leaves its subject term unchanged. The failure strategy fail always fails. The
sequential composition s1 ; s2 of strategies s1 and s2 first attempts to apply
s1 to the subject term. If that succeeds, it applies s2 to the result; otherwise it
fails. The non-deterministic choice s1 + s2 of strategies s1 and s2 attempts
to apply either s1 or s2 to the subject term, but in an unspecified order. It
succeeds if either s1 or s2 succeeds, and fails otherwise. The deterministic
choice s1 <+ s2 of strategies s1 and s2 first attempts to apply s1 to the
subject term. Only if s1 fails, it attempts to apply s2 to the subject term. If
s1 and s2 both fail, the choice fails as well. The recursive closure rec x(s)

of a strategy s attempts to apply to the subject term the strategy obtained
by replacing each occurrence of the variable x in s by the strategy rec x(s).

A strategy definition f(x1,...,xn) = s introduces a new strategy oper-
ator f parameterized with strategies x1,...,xn that applies body s.

2.4 Generic Term Traversal

The strategy combinators just described combine strategies which apply trans-
formation rules to the roots of their subject terms. In order to apply a rule
at an internal site of a term (i.e., to a subterm), it is necessary to traverse
the term. Stratego defines several primitive operators which expose the direct
subterms of a constructor application. These can be combined with the op-
erators described above to define a wide variety of complete term traversals.
For the purposes of this paper we restrict the discussion of traversal operators
to congruence operators and the all operator.

Congruence operators provide one mechanism for term traversal in Strat-
ego. If C is an n-ary constructor, then the congruence C(s1,...,sn) is the
strategy that applies only to terms of the form C(t1,...,tn), and works
by applying the strategies si to the terms ti. For example, the congruence
Let(s1,s2) transforms terms of the form Let(t1,t2) into Let(t1’,t2’),
where t1’ is the result of applying s1 to t1, and similarly for t2’. If the

6

Visser

application of si to ti fails for any i, then the application of C(s1,...,sn)
to C(t1,...,tn) also fails.

The operator all(s) applies s to all direct subterms ti of a constructor
application C(t1,...,tn). It succeeds if and only if all applications to the
direct subterms succeed. The resulting term is the constructor application
C(t1’,...,tn’) where the ti’ are the results obtained by applying s to the
terms ti. Note that all(s) is the identity on constants, i.e., on constructor
applications without children. An example of the use of all is the strategy
topdown, defined as

topdown(s) = rec x(s; all(x))

The strategy expression rec x(s; all(x)) specifies that the parameter
transformation s is first applied to the root of the current subject term. If
that succeeds, the strategy is applied recursively to all direct subterms of the
term, and, thereby, to all of its subterms. This definition of topdown captures
the generic notion of a pre-order traversal over a term.

3 Bound Variable Renaming

Bound variable renaming is a transformation that replaces bound variables
and their corresponding occurrences by new unique names. As a result of the
transformation a name is used by at most one binding. This transformation is
necessary to prevent free variable capture when substituting expressions under
bindings, for example when performing function inlining.

The following transformation illustrates renaming of variable declarations
in Tiger programs.

let var i := 1
in (let var i := (i + 2)

in i
end + i)

end

⇒

let var a_0 := 1
in (let var b_0 := (a_0 + 2)

in b_0
end + a_0)

end

Note that the i used in the initialization of the second declaration is bound
by the outer declaration, and that the i used after the inner let also refers to
the outer declaration. However, the i inside the inner let refers to the inner
declaration. These issues are clarified by the renamed version on the right.

The abstract syntax representation for the expression on the left is the
term:

Let([VarDec("i",None,Int("1"))],
[BinOp(PLUS,

Let([VarDec("i",None,BinOp(PLUS,Var("i"),Int("2")))],
[Var("i")]),

Var("i"))])

7

Visser

exprename(Let([VarDec(x, t, e1)], e2), rn) =
Let([VarDec(y, t, exprename(e1, rn))], exprename(e2, (x,y) : rn))
where new => y

exprename(Var(x), rn) =
Var(lookup(x, rn))

exprename(BinOp(op, e1, e2), rn) =
BinOp(op, exprename(e1, rn), exprename(e2, rn))

Fig. 3. Definition of renaming function. The first box contains the essential rules.
The second box shows an example of the other rules the definition consists of.

3.1 Functional Definition of Renaming

A conventional implemention of bound variable renaming defines a function
exprename that recursively visits all nodes of an abstract syntax tree, carrying
a renaming table rn, which is extended at binding sites and consulted at
variable occurrences (Figure 3). Note that for renaming the initializer of the
declaration the unextended renaming environment is used. The new function
generates a new string that is unique in the sense that it does not occur
anywhere in the current syntax tree.

The disadvantage of this implementation is that the function has to ex-
plicitly visit all tree nodes, even those (such as BinOp) that are not variables
or do not bind variables. Thus, the definition of a renaming function has a
rule for each constructor following the schema

exprename(C(e1, ..., en), rn) =

C(exprename(e1, rn), ..., exprename(en, rn))

For a full definition of renaming of Tiger programs, 6 essential renaming rules
and 17 additional rules are required. For real languages the ratio of essential
rules over additional rules is likely to decrease.

3.2 Renaming using Rewrite Rules

Generic traversals make it possible to avoid the overhead of defining traversals
of constructs not involved in the transformation at hand. The recursive rename
function above can be expressed essentially by a topdown traversal

exprename = topdown(try(RenameVarDec + RenameVar))

This strategy traverses an abstract syntax tree, and at each subtree tries to
apply one of the rules RenameVarDec or RenameVar. The operator try is
defined as try(s) = s <+ id, i.e., it tries to apply a transformation s, but if
that fails returns the original term. Only rules for constructs that are actually
changed need to be provided.

The first rule renames the binding variable in a variable declaration by
generating a new name:

8

Visser

RenameVarDec :

Let([VarDec(x, t, e1)], e2) -> Let([VarDec(y, t, e1)], e2)

where new => y

The second rule renames an occurrence of Var(x) to Var(y):

RenameVar :

Var(x) -> Var(y)

But here is the catch: in rule RenameVar the intention is not to rename just any
variable to any other variable, but to rename an occurrence of a bound variable
to its new name generated at its binding site, i.e., in rule RenameVarDec.

3.3 Generating Renaming Rules

The rule for renaming a variable thus depends on the renaming of the corre-
sponding binding construct. This dependency can be expressed using dynamic
rules. RenameVarDec can be reformulated such that it generates a renaming
rule for the variable that is bound by the declaration construct:

RenameVarDec :

Let([VarDec(x, t, e1)], e2) -> Let([VarDec(y, t, e1)], e2)

where new => y

; rules(RenameVar : Var(x) -> Var(y))

The dynamic rule declaration rules(RenameVar : Var(x) -> Var(y)) in
the condition of RenameVarDec generates an instance of the RenameVar rule
that inherits the values of the meta-variables x and y in its context.

As an example of the operation of this dynamic rule generation, consider
the application of RenameVarDec to the term

Let([VarDec("i", None, Int("1"))], ...)

When matching the left-hand side of the rule against this term, the variable
x is bound to the string "i". Subsequently, a new unique string, say "a_0",
is generated by new, and bound to the variable y. In the context of these
bindings the dynamic rule RenameVar is created, resulting in the generation
of the rule:

RenameVar : Var("i") -> Var("a_0")

Finally, the renamed variable declaration is produced:

Let([VarDec("a_0", None, Int("1"))], ...)

While further traversing the tree, each occurrence of Var("i") to which the
dynamically generated rule RenameVar is applied is replaced by Var("a_0"),
while other (free) variables are not affected.

9

Visser

3.4 Limiting the Scope of Generated Rules

The topdown renaming strategy using RenameVarDec and RenameVar as de-
fined above is not quite right, yet. If we apply it to our example expression,
we get:

let var i := 1
in (let var i := (i + 2)

in i
end + i)

end

⇒

let var a_0 := 1
in (let var b_0 := (b_0 + 2)

in b_0
end + b_0)

end

The renaming rule generated for the inner declaration of i overrides the rule
for the outer declaration. That is correct for the occurrences of i inside the
inner let, but the rule also still applies after the inner let.

This problem suggests that it should be possible to retract generated rules
after the scope in which they are valid ends. This is exactly what the rule
scope {| lab : s |} achieves. A rule with label lab that is generated while
executing s is automatically removed at the end of the scope. Thus, any rule
that was overridden by rules generated inside the scope becomes visible again
after the scope. Recall that exprename was defined as

exprename = topdown(try(RenameVarDec + RenameVar))

where the definition of topdown is:

topdown(s) = rec x(s; all(x))

By redefining the renaming strategy as

exprename =

rec r({| RenameVar :

try(RenameVarDec + RenameVar); all(r)

|})

a RenameVar rule generated by a variable declaration is automatically removed
after exiting the scope. It is necessary to inline the definition of topdown since
the scope of the generated renaming rules should include the traversal of the
subterms with all(r).

Consider the effect of the new strategy on the example and note that i

after the inner let is now correctly renamed:

let var i := 1
in (let var i := (i + 2)

in i
end + i)

end

⇒

let var a_0 := 1
in (let var b_0 := (b_0 + 2)

in b_0
end + a_0)

end

However, the renaming is still not correct, since the i in the initializer is not
renamed correctly.

10

Visser

To also correctly treat initializers of variable declarations the traversal
should be adapted such that variables in initializers are renamed before gener-
ating a new renaming rule. That is what the following strategy achieves. The
congruence Let([VarDec(id,id,r)],id) visits the initializer of a variable
declaration, while the congruence Let([VarDec(id,id,id)],r) only visits
the body of the Let:

exprename =

rec r(try(Let([VarDec(id,id,r)],id));

{| RenameVar :

try(RenameVarDec + RenameVar);

(Let([VarDec(id,id,id)],r) <+ all(r))

|})

The choice (Let([VarDec(id,id,id)],r) <+ all(r)) adapts the generic
traversal just for the case of a variable declaration.

3.5 Abstracting over Rule Generation

Since there are several constructs that bind variables in Tiger it is unattractive
to repeat the code for generating renaming rules for every binding construct.
This can be avoided by creating a rule that transforms a name into a fresh
name and at the same time generates a renaming rule.

Figure 4 defines a full-fledged renaming strategy for Tiger programs cov-
ering all binding constructs, and also renaming type identifiers, thus dealing
with two name spaces simultaneously. The renaming rules for the binding con-
structs call rule NewVar to generate a new name and a corresponding variable
renaming rule. The rule is defined as follows:

NewVar : x -> y

where new => y; rules(RenameVar : Var(x) -> Var(y))

The renamer defined using this rule renames all variables, even if a variable
name was already unique. For some applications it is useful to rename as few
variables as possible, for instance, when the result should be readable by a
programmer. One approach is to rename only those variables that clash with
outer bindings. In our running example this approach has the following effect:

let var i := 1
in (let var i := (i + 2)

in i
end + i)

end

⇒

let var i := 1
in (let var a_0 := (i + 2)

in a_0
end + i)

end

This can be achieved by only generating a new name for variables that already
exist in an outer scope. The following rule tries to apply RenameVar to the
variable x. If that succeeds the variable was already declared in an outer scope.
In that case a new variable is generated. Otherwise the original variable name

11

Visser

module Tiger-Rename
imports Tiger dynamic-rules lib
strategies

exprename =
rec r(try(Let([VarDec(id,id,r)],id))

; {| RenameVar, RenameTid :
try(RenameDeclaration + RenameArgs + RenameFor

+ RenameVar + RenameTid);
(Let([VarDec(id,id,id)],r) <+ all(r))

|})

RenameDeclaration =
Let([RenameVarDec + FunctionDec(map(RenameFun))

+ TypeDec(map(RenameTdec))], id)

RenameVarDec :
VarDec(x, t, e) -> VarDec(y, t, e)
where <NewVar> x => y

RenameFun :
FunDec(f, xs, t, e) -> FunDec(g, xs, t, e)
where <NewVar> f => g

RenameArgs :
FunDec(f, xs, t, e) -> FunDec(f, ys, t, e)
where <map(FArg(NewVar,id))> xs => ys

RenameFor :
For(Var(x), e1, e2, e3) -> For(Var(y), e1, e2, e3)
where <NewVar> x => y

RenameTdec :
Tdec(x, t) -> Tdec(y, t)
where <NewTid> x => y

Fig. 4. Renaming of bound variables and type names

is used.

NewVar : x -> y

where (<RenameVar> Var(x); new <+ !x) => y

; rules(RenameVar : Var(x) -> Var(y))

3.6 Summary

In this section we have seen how context-dependent rewrite rules can be gen-
erated using the rules(...) construct using information from the context in

12

Visser

which they are defined. Subsequent generation of rules overrides previously
generated rules. A rule scope {| lab : s |} limits the live range of a rule
generated by s to the scope. Dynamic rules for several name spaces (e.g.,
variables and types), can be generated at the same time. Dynamic rules can
be used like static rules in a generic traversal of the tree structure. Thus only
relevant tree nodes are visited explicitly, other nodes are traversed implicitly.

4 Function Inlining

Function inlining is a transformation that replaces a function call by the body
of the function in which the actual parameters have been substituted for the
formal parameters. For example, consider the following simple example, in
which a call to the sqr function is replaced by its body.

let function sqr(x : int) =
(x * x)

in sqr((3 + y))
end

⇒

let function sqr(x : int) =
(x * x)

in let var a_0 : int := (3 + y)
in (a_0 * a_0)
end

end

Note that the replacement introduces local variables to bind the actual pa-
rameters to the (renamed) formal parameters. This is necessary since Tiger
is an imperative language. Simply substituting the actual parameters for the
formal parameters could lead to duplication of work or even to errors because
of intervening assignments. Further optimizations such as constant and copy
propagation can get rid of the local declarations if possible.

The function inlining transformation is expressed by the InlineFun rule
that is defined as follows:

InlineFun :

Call(Var(f),es) -> Let(ds, e)

where <exprename-all> fdec => FunDec(_, xs, t, e)

; <zip(BindVar)> (xs, es) => ds

A function call is replaced with a let expression that has the body of the
function declaration e as its body. Furthermore, the let introduces a list
of variable declarations corresponding to the formal parameters xs of the
function declaration (after renaming the declaration). The local variables xs

are bound to the actual parameters es by zipping together the lists of formals
and actuals and building a variable declaration using rule BindVar:

BindVar :

(FArg(x,t), e) -> VarDec(x, Some(t), e)

The variable fdec in the rule should be bound to the original function
declaration of f. This information is not normally available at the call site of
the function. By generating rule InlineFun dynamically when encountering a

13

Visser

module Tiger-Inline
imports Tiger Tiger-Rename
strategies

inline(s1,s2) =
rec x(s1; try(Let([VarDec(id,id,x)],id))

; {| InlineFun :
(Declare; Let([VarDec(id,id,id)] <+ x, id)

; Declare; Let(id, x)
<+ all(x))

; s2
|})

Declare =
Let([FunctionDec(map(DeclareFun <+ UnDeclareFun))

+ UnDeclareVars], id)
+ UnDeclareVars

DeclareFun =
?fdec@FunDec(f, _, _, _);
inlineable;
rules(
InlineFun :

Call(Var(f),es) -> Let(ds, e)
where <exprename-all> fdec => FunDec(_, xs, t, e)

; <zip(BindVar)> (xs, es) => ds
)

BindVar :
(FArg(x,t), e) -> VarDec(x, Some(t), e)

UnDeclareFun =
?FunDec(x, _, _, _);
rules(InlineFun : Call(Var(x),_) -> Undefined)

UnDeclareVars =
(?VarDec(x,_,_) + ?For(Var(x),_,_,_));
rules(InlineFun : Call(Var(x),_) -> Undefined)

Fig. 5. Simple inlining strategy

function declaration the necessary information can be passed on to InlineFun.
In Figure 5 strategy DeclareFun generates an inlining rule for a function
declaration if it is inlineable.

Figure 5 defines a simple inlining strategy inline that is parameterized
with two transformation strategies s1 and s2. These are transformations to
apply on the way down the tree (s1) and on the way up (s2). An example
instantiation could be

14

Visser

inline(repeat(InlineFun + Simplify), repeat(Simplify))

that inlines functions on the way down and simplifies expressions (e.g., con-
stant folding) on the way down and up. The strategy basically comes down
to the following:

inline(s1,s2) =

rec x(s1; {| InlineFun : try(Declare); all(x); s2 |})

That is, first the s1 transformation is applied. Then, after entering the scope
for the InlineFun rule, Declare generates inline rules for any local function
declarations. Subsequently all subtrees are visited recursively. After that the
s2 transformation is applied. The strategy in Figure 5 deals with the scope
rule of variable declarations and regenerates the inline rules after optimizing
their bodies such that only already optimized functions are inlined.

4.1 Undefining Rules

Strategy DeclareFun, which generates the InlineFun rules, only does so when
the function declaration is deemed to be inlineable. The exact definition
of inlineable does not matter here; it could be defined using various heuris-
tics based on static or dynamic program analyses. What does matter is the
fact that for non-inlineable functions no InlineFun rule is generated. If two
functions with the same name exist, one shadowing the other, and the outer
is inlineable while the inner is not, this could lead to replacing a call with
the wrong function body. Thus, it is necessary to prevent inlining rules from
outer scopes to creep trough.

Dynamic rules can be declared as undefined. The strategy UnDeclareFun

generates an InlineFun rule that is undefined:

UnDeclareFun =

?Fdec(x, _, _, _);

rules(InlineFun : Call(Var(x),_) -> Undefined)

This rule always fails when called. The effect is to hide any rules from outer
scopes for the same function name. The same is done for variable declarations
and loop counter variables, since they may shadow function definitions.

An alternative to undefining InlineFun for functions that should not be
inlined is to compute the inlineable condition in the where clause of the
generated InlineFun rule instead of computing it at generation time. This
expensive, however, since it would entail recomputing the condition everytime
the rule is called.

5 Dead Function Elimination

The purpose of dead code elimination is to remove code fragments from a pro-
gram that are never used at run-time. Dead function elimination is a special
case of dead code elimination in which function declarations are removed if

15

Visser

the function being defined is never called. An example of dead function elim-
ination is the following transformation that takes the result of inlining from
the previous section and removes the, now unused, sqr function:

let function sqr(x : int) =
(x * x)

in let var a_0 : int := (3 + y)
in (a_0 * a_0)
end

end

⇒
let var a_0 : int := (3 + y)
in (a_0 * a_0)
end

Elimination of dead functions requires a traversal over the program to
establish whether there are any calls to a function. Figure 6 gives a definition
of dead function elimination using dynamic rules. The strategy is to declare
each function to be dead by default. The strategy DeclareDead defines the
rule IsDead for a function once its declaration is in scope. When, during the
traversal of the syntax tree, a call to a function is encountered, the IsDead

rule is undefined by NotDead. On the way out all functions for which rule
IsDead still succeeds are then eliminated by strategy Eliminate, which filters
out all functions that should be eliminated. Note that this strategy should be
refined in order to eliminate dead (mutually) recursive functions.

5.1 Overriding Rules

This strategy requires a new kind of dynamic rule introduction. Consider a
definition of NotDead using regular dynamic rules:

NotDead =

?Call(Var(f),_);

rules(IsDead : FunDec(f,_,_,_) -> Undefined)

This would entail that a new rule IsDead would be added for the function
called at that position. However, this new rule would be removed as soon as
the transformation exits the surrounding scope and the function declaration
would still be eliminated.

However, this is not what we want, since the intention of NotDead is to
change the original rule defined in the scope of the function declaration, rather
than to undefine IsDead for local purposes. This is achieved by declaring the
dynamic rules as override rules. The generation of an overriding dynamic
rule only succeeds if there was a prior definition of a dynamic rule for the same
left-hand side.

6 Discussion

6.1 Other Applications

Dynamic rules have been applied succesfully in a number of transformations.

16

Visser

module Tiger-ElimDead
imports Tiger Tiger-Rename
strategies

eliminate-dead-functions =
rec x(try(Let([VarDec(id,id,x)],id))

; {| IsDead :
try(DeclareDead)

; (Let([VarDec(id,id,id)] <+ x, x) <+ all(x))
; try(NotDead + Eliminate; try(RmEmptyLet))

|})

DeclareDead =
Let([FunctionDec(map(DeclareDead))], id)

DeclareDead =
?fdec@FunDec(f, _, _, _);
rules(IsDead : FunDec(f,_,_,_) -> ())

NotDead =
?Call(Var(f),_);
override rules(IsDead : FunDec(f,_,_,_) -> Undefined)

Eliminate =
Let([FunctionDec(filter(not(IsDead)))],id)

RmEmptyLet :
Let([], e) -> e

RmEmptyLet :
Let([FunctionDec([])], e) -> e

Fig. 6. Strategy for eliminating dead functions

In an abstract interpretation style typechecker for Tiger, dynamic rules are
used to generate typechecking rules for variables and functions. Thus, there is
no need for threading type environments along traversals, and type rules can
be expressed directly as rewrite rules.

In an interpreter for Tiger, dynamic rules are used to represent mappings
from variables to values on the stack or heap. Variable bindings are dealt
with using a scoped traversal similar to that of the renamer. Globally visible
heap objects are represented by an unscoped dynamic rule that maps reference
values (pointers) to values. Evaluation for individual constructs is expressed
using constant folding rules.

Several optimizations for Tiger programs including constant propagation,
copy propagation, and dead code elimination can be expressed elegantly using
dynamic rules. In forward transformation problems, dynamic rules rewrite

17

Visser

variables to constant or to copy expressions. In backward problems, dynamic
rules keep track of use/def and neededness information. Instrumentations
of Tiger programs for tracing and profiling use dynamic rules to selectively
extend functions with extra functionality.

There are many other program transformations that can benefit from the
use of dynamic rules. It seems that the data-flow transformations above can
be easily extended to inter-procedural transformations by generating appropri-
ate rules for function calls from their function declarations. The warm fusion
algorithm for deforestation [11] uses dynamically generated rewrite rules for
the derivation of catamorphisms from recursive function definitions. The im-
plementation of warm fusion in Stratego [9] can be simplified using dynamic
rules. Dynamic rules can also be used for memoization. The use/def analysis
mentioned above uses a memoization scheme to incrementally recompute the
analyses for an expression.

Another application area is the run-time configuration of transformation
components. Options passed on the command-line can be used to generate
rules used during a transformation. This can range from simple information
such as optimization level to user-defined optimization rules and instantiation
of an analysis with a set of initial variables to scrutinize.

6.2 Related Work

6.2.1 Language Independent Traversals

In [15] it is shown how generic traversal strategies can be used to define
generic, language independent algorithms for language processing problems
such as free variable extraction, bound variable renaming, substitution, and
unification. These generic algorithms are parameterized with strategies for
recognizing the various aspects of the object language such as representa-
tion of variables, variable binding constructs, and binding positions of binding
constructs. Dynamic rules are orthogonal to generic traversals and can make
their implementation easier since environment threading can be delegated to
dynamic rules.

6.2.2 Assert in Prolog

Dynamic rules are most closely related to the extra-logical operators assert and
retract in Prolog. The goal assert(G) adds G to the rule database. All free
logic variables in G are universally quantified. This is similar to the variables
in dynamic rules that do not occur in the context. The goal retract(G)

retracts from the rule database all rules that unify with G. The dynamic rule
mechanism in this paper does not provide a retract. Instead, the live range of a
rule can be controlled by means of rule scope that automatically retracts rules
at the end of their scope. This provides a much cleaner way to retract rules,
since only those rules generated before are retracted. Rules that were declared
outside the scope become visible again. This cannot be modeled using retract.

18

Visser

A declarative formulation of assert in LProlog is described in [7].

6.2.3 Reflection

Dynamic rules could be considered as a restricted form of computational reflec-
tion [13]. However, it is not nearly as general as general reflection in rewriting
logic, as provided in Maude [6], which supports arbitrary manipulation of
specifications at the meta-level at run-time. A reflective extension of ELAN
is proposed in [10]. The more restricted form of reflection presented in this
paper can be (and has been) effectively implemented by a compiler, i.e., does
not require interpretation.

6.2.4 Dynamic Variables

Dynamic rules are related to dynamically scoped variables in programming
languages. In Lisp dynamic scope is considered a bug in the implementation.
Domain-specific languages such as TEX makes use of dynamically scoped vari-
ables that allows for easy redefinition of behaviour; configuration of a doc-
ument style can be influenced by redefining macros representing parameters
of the style. More recently several papers [12,8] have reintroduced dynamic
scope as a feature in general purpose languages.

Lewis et al. [12] introduce implicit parameters in functional languages such
as Haskell. Implicit parameters can be used deeply embedded in a functional
definition and can be bound at some outer level without having to pass the
value explicitly through all the intermediate function calls. Hansson et al. [8]
introduce dynamic variables in an imperative setting. A dynamic variable is
created and initialized with an initial value. A use of a dynamic variable refers
to the most recent setting of a dynamic variable with the same name. The
main difference between the approaches is the fact that the value of an implicit
parameter in [12] cannot be changed, while a dynamic variable is passed by
reference to the use site and can thus be updated. Such updating corresponds
to the notion of overriding rules generation in this paper.

In contrast to these approaches, dynamic rules define mappings from tuples
of terms to tuples of terms (the bindings to context variables in the left-hand
side and right-hand side, respectively). When introducing a new rule only the
points in the mapping that overlap the left-hand side variables are shadowed,
while other rule instances remain visible.

Furthermore, unlike the approaches of implicit parameters and dynamic
variables, the dynamic rule scope construct in this paper is separated from
both the generation and use of dynamic rules. This entails greater flexibility;
strategies that introduce dynamic rules can be put to different use by manip-
ulating the range of the scope. This is illustrated for example by the various
strategies for variable renaming that reflect different (object language) scope
rules, while (re-)using the same renaming rules.

19

Visser

6.3 Future Work

Wadler’s deforestation algorithm [18] can be expressed using rewrite rules and
a simple strategy. Dynamic rules can be used to implement the folding of
recursive occurrences of the function composition being deforested. However,
this requires abstracting over object variables, which is not supported by the
dynamic rules discussed in this papers. Currently, dynamic rules can only
inherit ground terms from their definition context. Another application that
would need abstraction over object variables are the rule pragmas of the Glas-
gow Haskell Compiler [14] that allow the user to state rewrite rules that should
be applied during compilation in addition to normal optimizations.

In the scheme described in this paper each dynamic rule defines its own
namespace. In order to achieve shadowing effects in the namespaces of other
rules, these rules should be undefined. When mixing many rules this might
become unattractive. Some means of declaring the namespace dependencies
between rules will be useful.

Each of the Tiger transformations in this paper defines its own traversal
over syntax trees and has to deal with the peculiarities of the scope rules for
variable declarations. It would be better if the schema for the scope rules of a
language could be captured in a generic strategy. However, this requires ab-
straction over dynamic rule names (rather than transformations) for limiting
the scope of dynamic variables. This is possible in the underlying implemen-
tation, but it would be more attractive to express this at the level of the
language extension.

It will also be interesting to investigate the interaction between various
optimizations based on dynamic rules if they are combined in a single traversal.

Finally, dynamic scoping may give rise to unexpected behaviour when a
dynamically generated rule A itself calls a dynamic rule B, which is intended to
be the A generation time instance of rule B, instead of the A call time instance
of B, i.e., B could change between the generation of A and a call to A. This
can often be solved by invoking B in the generation context of A. However, in
general this may require closures of dynamic rules.

7 Conclusion

This paper presented an extension of term rewriting with the run-time gen-
eration of context-dependent rewrite rules. Generated rules can be used as
part of the global tree traversal, thus not increasing complexity by performing
additional traversals. The extension is not limited to some specific form of
program representation such as control flow graphs, but can be applied in the
transformation of arbitrary abstract syntax trees.

Scoped dynamic rewrite rules solve (many of) the limitations caused by
the context-free nature of rewrite rules, strengthening the separation of rules
and strategies, and supporting concise and elegant specification of program

20

Visser

transformations. This has been illustrated in this paper by the specification
of three transformations, i.e., bound variable renaming, function inlining, and
dead function elimination.

Acknowledgments

I would like to thank Patricia Johann for comments on a previous version
of this paper.

References

[1] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[2] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time. Journal
of Functional Programming, 7(5):515–540, September 1997.

[3] P. Borovanský, C. Kirchner, and H. Kirchner. Controlling rewriting by
rewriting. In J. Meseguer, editor, Proceedings of the First International
Workshop on Rewriting Logic and its Applications, volume 4 of Electronic Notes
in Theoretical Computer Science, Asilomar, Pacific Grove, CA, September 1996.
Elsevier.

[4] J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR program
transforming system: Simplifying the development of numerical software. In
E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 353–372. Birkhäuser, 1997.

[5] M. G. J. van den Brand, P. Klint, and J. Vinju. Term rewriting with
traversal functions. Technical Report SEN-R0121, Centrum voor Wiskunde
en Informatica, 2001.

[6] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic.
In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science,
volume 4. Elsevier Science Publishers, 1996. Proceedings of the First
International Workshop on Rewriting Logic and its Applications.

[7] S. Dietzen and F. Pfenning. A declarative alternative to “assert” in logic
programming. In V. Saraswat and K. Ueda, editors, Logic Programming,
Proceedings of the 1991 International Symposium, pages 372–386, San Diego,
USA, 1991. The MIT Press.

[8] D. R. Hanson and T. A. Proebsting. Dynamic variables. In Programming
Language Design and Implementation (PLDI’01), Snowbird, UT, USA, June
2001. ACM.

[9] P. Johann and E. Visser. Warm fusion in Stratego: A case study in the
generation of program transformation systems. Annals of Mathematics and
Artificial Intelligence, 29(1–4):1–34, 2000. .

21

Visser

[10] H. Kirchner and P.-E. Moreau. A reflective extension of ELAN. In J. Meseguer,
editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier
Science Publishers, 1996. Proceedings of the First International Workshop on
Rewriting Logic and its Applications.

[11] J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas from recursive
definitions. In S. L. P. Jones, editor, Functional Programming Languages and
Computer Architecture (FPCA’95), pages 314–323. ACM Press, June 1995.

[12] J. R. Lewis, J. Launchbury, E. Meijer, and M. Shields. Implicit parameters:
Dynamic scoping with static types. In Symposium on Principles of
Programming Languages (POPL’00), pages 108–118. ACM, January 2000.

[13] P. Maes. Concepts and experiments in computational reflection. SIGPLAN
Notices, 22(12):147–155, 1987. Proceedings of OOPSLA’87.

[14] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as
a practical optimisation technique in GHC. In R. Hinze, editor, 2001 Haskell
Workshop, Firenze, Italy, September 2001. ACM SIGPLAN.

[15] E. Visser. Language independent traversals for program transformation. In
J. Jeuring, editor, Workshop on Generic Programming (WGP’00), Ponte de
Lima, Portugal, July 2000. Technical Report UU-CS-2000-19, Department of
Information and Computing Sciences, Universiteit Utrecht. .

[16] E. Visser. A survey of strategies in program transformation systems. In
B. Gramlich and S. Lucas, editors, Workshop on Reduction Strategies in
Rewriting and Programming (WRS’01), volume 57/2 of Electronic Notes in
Theoretical Computer Science, Utrecht, The Netherlands, May 2001. Elsevier
Science Publishers. .

[17] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. ACM SIGPLAN Notices, 34(1):13–26, January
1999. Proceedings of the International Conference on Functional Programming
(ICFP’98) .

[18] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231–248, 1990.

22

	Introduction
	Exhaustive Application of Rules
	Context-free Nature of Rewrite Rules
	Dynamic Rules
	Outline

	Rewriting Strategies
	Program Representation
	Rewrite Rules
	Rewriting Strategies
	Generic Term Traversal

	Bound Variable Renaming
	Functional Definition of Renaming
	Renaming using Rewrite Rules
	Generating Renaming Rules
	Limiting the Scope of Generated Rules
	Abstracting over Rule Generation
	Summary

	Function Inlining
	Undefining Rules

	Dead Function Elimination
	Overriding Rules

	Discussion
	Other Applications
	Related Work
	Future Work

	Conclusion

