
To appear in: Electronic Notes in Theoretical Computer Science 57 No. 2 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume57.html

A Survey of Rewriting Strategies in
Program Transformation Systems

Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht, P.O. Box
80089, 3508 TB Utrecht, The Netherlands. http://www.cs.uu.nl/∼visser,

visser@acm.org

Abstract

Program transformation is used in a wide range of applications including compiler
construction, optimization, program synthesis, refactoring, software renovation, and
reverse engineering. Complex program transformations are achieved through a num-
ber of consecutive modifications of a program. Transformation rules define basic
modifications. A transformation strategy is an algorithm for choosing a path in
the rewrite relation induced by a set of rules. This paper surveys the support for
the definition of strategies in program transformation systems. After a discussion
of kinds of program transformation and choices in program representation, the ba-
sic elements of a strategy system are discussed and the choices in the design of a
strategy language are considered. Several styles of strategy systems as provided in
existing languages are then analyzed.

1 Introduction

Program transformation has applications in many areas of software engineer-
ing such as compilation, optimization, refactoring, program synthesis, software
renovation, and reverse engineering. The aim of program transformation is to
increase programmer productivity by automating programming tasks, thus
enabling programming at a higher-level of abstraction, and increasing main-
tainability and re-usability.

Many systems for program transformation exist that are often specialized
for a specific object language and/or kind of transformation. All these systems
share many ideas about program transformation and use similar techniques,
but are often ad-hoc in many respects. The ultimate goal is to achieve a
specification language or family of specification languages for the high-level,
declarative specification of program transformation systems in which generic,
language independent schemas of transformation can be captured, and which
admits efficient implementation of those transformations that can scale up to
large programs.

http://www.elsevier.nl/locate/entcs/volume57.html

This survey aims at understanding the similarities and differences between
systems for program transformation by analyzing existing systems on the ba-
sis of publications. Many aspects of program transformation such as parsing,
pretty-printing and formulating basic transformations are fairly well under-
stood. Therefore, this survey concentrates on transformation strategies, i.e.,
the control part of transformation systems that determine the order of appli-
cation of basic transformation steps.

The paper is structured as follows. Section 2 presents a taxonomy of
program transformation. Section 3 discusses the choices in program repre-
sentations that can be used in program transformation systems. Section 4
discusses the ingredients of a system for the specification of program trans-
formation rules and strategies. Section 5 discusses the implementation of
program transformation in a number of dedicated transformation languages.
Section 6 summarizes and discusses some areas for research in the implemen-
tation of transformation systems.

2 Program Transformation

A program is a structured object with semantics. The structure allows us
to transform a program. Semantics includes the extensional and intensional
behavior of a program and gives us the means to compare programs and to
reason about the validity of transformations. A programming language is
a collection of programs that comply with the same set of structural and
semantic rules. This is a rather broad definition that is intended to cover
proper programming languages (with an operational interpretation), but also
data formats, domain-specific languages, and aspects of programs such as their
control- or data-flow.

Programming languages can be clustered into classes with structural and/or
semantic similarities. One of the aims of a general framework for program
transformation is to define transformations that are reusable across as wide
a range of languages as possible. For example, the notions of variable and
variable binding are shared by all programming languages. Transformations
dealing with variables such as bound variable renaming, substitution, and uni-
fication can be defined in a highly generic manner for all languages at once.

Program transformation is the act of changing one program into another.
The term program transformation is also used for a formal description of an
algorithm that implements program transformation. The language in which
the program being transformed and the resulting program are written are
called the source and target languages, respectively.

Program transformation is used in many areas of software engineering,
including compiler construction, software visualization, documentation gen-
eration, and automatic software renovation. In all these applications we can
distinguish two main scenarios, i.e., the one in which the source and target
languages are different (translations) and the one in which they are the same

2

Translation

• Migration

• Synthesis
· Refinement
· Compilation

• Reverse engineering
· Decompilation
· Architecture extraction
· Documentation generation
· Software visualization

• Analysis
· Control-flow analysis
· Data-flow analysis

Rephrasing

• Normalization
· Simplification
· Desugaring
· Weaving

• Optimization
· Specialization
· Inlining
· Fusion

• Refactoring
· Design improvement
· Obfuscation

• Renovation

Fig. 1. A taxonomy of program transformation

(rephrasings). These main scenarios can be refined into a number of typical
subscenarios based on their effect on the level of abstraction of a program and
to what extent they preserve the semantics of a program. This refinement
results in the taxonomy in Figure 1.

2.1 Translation

In a translation scenario a program is transformed from a source language
into a program in a different target language. Translation scenarios can be
distinguished by their effect on the level of abstraction of a program. Although
translations aim at preserving the extensional semantics of a program, it is
usually not possible to retain all information across a translation. Translation
scenarios can be divided into synthesis, migration, reverse engineering, and
analysis. Their relations are illustrated by the diagram in Figure 2.

2.1.1 Synthesis

Program synthesis is a class of transformations that lower the level of ab-
straction of a program. In the course of synthesis design information is traded
for increased efficiency. In refinement [50] an implementation is derived from
a high-level specification such that the implementation satisfies the specifi-
cation. Compilation [1,2,36] is a form of synthesis in which a program in a
high-level language is transformed to machine code. This translation is usually
achieved in several phases. Typically, a high-level language is first translated
into a target machine independent intermediate representation. Instruction
selection then translates the intermediate representation into machine instruc-
tions. Other examples of synthesis are parser and pretty-printer generation
from context-free grammars [1,11].

3

���������
	�������
	����������������

	������
	�������
	����������������

���������� !�" # !$%��&('
)�������������

* ����+,��'!�"��� ���������
	�������
	��������������.-

 /���0'!���� !�"
+!�����+1 /�
�������2������+,�"���

���������
��������3��4
��56 /'/+,��&('!�����

���7�8�
��������9��4
��56 /'/+,��&('!�����

+!��$:��+,�� !�"���

Fig. 2. Relation between kinds of program transformation

2.1.2 Migration

In migration a program is transformed to another language at the same level
of abstraction. This can be a translation between dialects, for example, trans-
forming a Fortran77 program to an equivalent Fortran90 program or a trans-
lation from one language to another, e.g., porting a Pascal program to C.

2.1.3 Reverse Engineering

The purpose of reverse engineering [12] is to extract from a low-level program
a high-level program or specification, or at least some higher-level aspects.
Reverse engineering raises the level of abstraction and is the dual of synthesis.
Examples of reverse engineering are decompilation in which an object pro-
gram is translated into a high-level program, architecture extraction in which
the design of a program is derived, documentation generation, and software
visualization in which some aspect of a program is depicted in an abstract
way.

2.1.4 Analysis

Program analysis reduces a program to one aspect such as its control- or data-
flow. Analysis can thus be considered a transformation to a sublanguage or
an aspect language.

2.2 Rephrasing

Rephrasings are transformations that transform a program into a different
program in the same language, i.e., source and target language are the same.
In general, rephrasings try to say the same thing in different words thereby
aiming at improving some aspect of the program, which entails that they
change the semantics of the program. The main subscenarios of rephrasing
are normalization, optimization, refactoring, and renovation.

4

2.2.1 Normalization

A normalization reduces a program to a program in a sublanguage, with
the purpose of decreasing its syntactic complexity. Desugaring is a kind of
normalization in which some of the constructs (syntactic sugar) of a language
are eliminated by translating them into more fundamental constructs. For
example, the Haskell language definition [44] describes for many constructs
how they can be desugared to a kernel language. Other examples are module
flattening and the definition of EBNF constructs in pure BNF as is done for
example in the SDF2 normalizer [51]. Simplification is a more general kind
of normalization in which a program is reduced to a normal (standard) form,
without necessarily removing simplified constructs. For example, consider
transformation to canonical form of intermediate representations and algebraic
simplification of expressions. Note that normal form does not necessarily
correspond to being a normal form with respect to a set of rewrite rules.

2.2.2 Optimization

An optimization [2,36] is a transformation that improves the run-time and/or
space performance of a program. Example optimizations are fusion, inlining,
constant propagation, constant folding, common-subexpression elimination,
and dead code elimination.

2.2.3 Refactoring

A refactoring [24] is a transformation that improves the design of a program
by restructuring it such that it becomes easier to understand while preserving
its functionality. Obfuscation [16] is a transformation that makes a program
harder to understand by renaming variables, inserting dead code, etc. Obfus-
cation is done to hide the business rules embedded in software by making it
harder to reverse engineer the program.

2.2.4 Renovation

In software renovation the extensional behavior of a program is changed in
order to repair an error or to bring it up to date with respect to changed
requirements. Examples are repairing a Y2K bug, or converting a program to
deal with the Euro.

2.3 Program Transformation Systems

A program transformation system is determined by the choices it makes in
program representation and the programming paradigm used for implement-
ing transformations. The next section discusses considerations in choosing a
representation for programs. The remaining sections consider implementation
of transformations.

5

3 Program Representation

Although some systems work directly on text, in general a textual represen-
tation is not adequate for performing complex transformations. Therefore, a
structured representation is used by most systems. Since programs are written
as texts by programmers, parsers are needed to convert from text to structure
and unparsers are needed to convert structure to text. However, this might
change in the future; in the Intentional Programming framework [17] programs
are stored, edited and processed as source graphs. Editing of programs is done
via structure editors.

A number of issues should be considered when choosing a program rep-
resentation: to use parse trees or abstract syntax trees, trees or graphs, how
to represent variables and variable bindings, and how to exchange programs
between transformation components.

3.1 Parse Trees or Abstract Syntax Trees

Parse trees contain syntactic information such as layout (whitespace and com-
ments), and parentheses and extra nodes introduced by disambiguating gram-
mar transformations. Since this information is often irrelevant for transforma-
tion, parse trees are usually transformed into abstract syntax trees that do not
contain such information. However, for some applications (such as software
renovation and refactoring) it is necessary to restore as much as possible the
original layout of the program after transformation. This requires that layout
is stored in the tree and preserved throughout transformation. Especially the
latter aspect is problematic; it is not clear in a generic manner where to insert
comments in a transformed fragment of a program. Origin tracking [20] might
be useful here.

For other applications (e.g., certain optimizations and compilation) it is
necessary to carry type information in the tree. This requires the extension of
the tree format to store type information and to preserve consistency of types
throughout transformation.

3.2 Trees or Graphs

Program structure can be represented by means of trees, directed-acyclic
graphs (DAGs), or full fledged graphs with cycles.

Using pure trees is costly because copying of a tree (e.g., by using a variable
twice in constructing a new tree) requires creating a complete copy. Therefore,
most systems use DAGs. When copying a tree, only a pointer to the tree gets
copied, thus sub-trees are shared by multiple contexts. The advantage of
sharing is reduced memory usage. In the ATerm library [8] this approach is
taken to the extreme by only constructing one instance for each sub-tree that
is constructed, thus achieving maximal sharing and minimal memory usage.

Sharing saves memory, makes copying cheap, and, in the case of maximal

6

sharing, testing for equality is cheap as well. However, the downside of sharing
is that performing a transformation of a tree requires re-building the context
in which the transformed tree is used. It would be more attractive to overwrite
the root node of the sub-tree that is changed with the new tree, thus updating
all contexts in which the old tree was used. However, this is not valid in
general. Two occurrences of a shared tree that are syntactically the same can
have a completely different meaning depending on their context. Even if they
have the same meaning, it is not always desirable to change both occurrences.

The same problem of occurrence arises when associating information with
nodes. When sharing is based on syntactic equivalence alone, annotations
become associated with all occurrences of the tree. Consider the examples of
position information in parse trees and type annotations in abstract syntax
trees to conclude that this is usually not desirable.

Finally, full fledged graphs can be useful to represent back-links in the tree
to represent, for example, loops in a control-flow graph [2,33,36], or links to
declarations [17]. Updateable graphs make it easy to attach new information
to nodes, for example results of analysis. The problem of destructive update
versus copying while doing transformation is even more problematic in graphs.
Since a sub-graph can have links to the entire graph, it may be required to
reconstruct the entire graph after a transformation, if it is necessary to keep
the original graph as well. For very specific purposes such as lazy evaluation
of functional programs, it is possible to make such graph updates transparent.

3.3 Variable Bindings

A particular problem of program transformation is the handling of variables
and variable bindings. In the common approach variables and variable bind-
ings in an abstract syntax tree are treated just like any other construct and the
transformation system has no special knowledge of them. This requires the
implementation of operations to rename bound variables, substitution, etc.
Transformations need to be aware of variables by means of extra conditions
to avoid problems such as free variable capture during substitution and lifting
variable occurrences out of bindings.

Transparent handling of variable bindings is desirable. Higher-order ab-
stract syntax (hoas) [34,30,45] gives a solution to such problems by encoding
variable bindings as lambda abstractions. In addition to dealing with the prob-
lem of variable capture, hoas provides higher-order matching which synthesizes
new functions for higher-order variables. One of the problems of higher-order
matching is that there can be many matches for a pattern, requiring a mecha-
nism for choosing between them. FreshML [46] provides a weaker mechanism
for dealing with variable bindings that transparently refreshes variable names,
thus solving the capture problem. Substitution for variables has to be dealt
with explicitly. Both hoas and FreshML require some amount of encoding for
the syntactic structure to fit the lambda abstraction binding scheme. This

7

can become rather far removed from the structure described by the grammar
for more complex binding schemes.

All approaches that rename variables are in conflict with requirements
that original names are preserved, which is required in applications such as
refactoring and renovation.

A problem that is not addressed by the approaches discussed above is as-
sociating declaration information, e.g., type declarations, with usage. This
usually requires maintaining a symbol table during transformation, or dis-
tributing the information over the tree, annotating usage occurrences of a
symbol with the information in the declarations. Either way, the information
needs to be kept consistent during transformations.

3.4 Exchange Format

Finally, a program representation should be supported by an exchange format
that makes it possible to exchange programs between transformation compo-
nents. Example formats are XML, which supports exchange of tree shaped
data, and the Annotated Term Format [8], which supports exchange of DAGs,
maintaining maximal sharing. See [28] for a bibliography of exchange formats.

4 Implementation of Program Transformation

A complex program transformation is achieved through a number of consec-
utive modifications of a program. At least at the level of design it is useful
to distinguish transformation rules from transformation strategies. A rule de-
fines a basic step in the transformation of a program. A strategy is a plan for
achieving a complex transformation using a set of rules.

For example, consider the transformation rules in Figure 3. The Inline

rules define inlining of function and variable definitions. The Dead rule elimi-

rules
InlineF :

let f(xs) = e in e’[f(es)] -> let f(xs) = e in e’[e[es/xs]]
InlineV :

let x = e in e’[x] -> let x = e in e’[e]
Dead :

let x = e in e’ -> e’ where <not(in)> (x,e’)
Extract(f,xs) :

e -> let f(xs) = e in f(xs)
Hoist :

let x = e1 in let f(xs) = e2 in e3 ->
let f(xs) = e2 in let x = e1 in e3
where <not(in)> (x, <free-vars> e2)

Fig. 3. Some example transformation rules

8

nates an unused variable definition. The Extract rule abstracts an expression
into a function. The Hoist rule defines lifting a function definition out of a
variable definition if the variable is not used in the function. Using this set
of rules different transformations can be achieved. For example, a constant
propagation strategy in an optimizer could use the InlineV and Dead rules to
eliminate constant variable definitions:

let x = 3 in x + y -> let x = 3 in 3 + y -> 3 + y

On the other hand, the ExtractFunction strategy in a refactoring browser
could use the Extract and Hoist rules to abstract addition with y into a new
function and lift it to top-level.

let x = 3 in x + y

-> let x = 3 in let addy(z) = z + y in addy(x)

-> let addy(z) = z + y in let x = 3 in addy(x)

Rules can be applied interactively by a programmer via a graphical user
interface. The problem with such manipulations is that the transformation is
not reproducible, since the decisions have not been recorded. By automating
the transformation process, a series of basic transformations can be repeatedly
applied to a program. By generalizing the sequence of transformations the
combined transformation can be applied to many programs. This requires
a mechanism for combining rules into more complex transformations. This
section discusses the basic ingredients for specification of rules and strategies.

4.1 Transformation Rules

Rules are based on the semantics of the language. A rule generally preserves
the semantics of the program. That is, before and after the application of a
rule the program has the same meaning. Usually the observable behavior of
the program is preserved, but some other aspect is changed. Optimizations,
for example, try to decrease the time or space resource usage of a program.
Applying constant propagation can decrease the need for registers, for in-
stance. Extracting a function during refactoring can improve the readability
of the program.

A rule consists of recognizing a program fragment to transform and con-
structing a new program fragment to replace the old one. Recognition involves
matching the syntactic structure of the program and possibly verifying some
semantic conditions. The replacement in a rule can consist of a simple term
pattern, a function that constructs a new tree or graph, or a semantic action
with arbitrary side-effects.

When using a tree or term representation term pattern matching can be
used. First-order term patterns can be used to decompose terms by simultane-
ously recognizing a structure and binding variables to subterms, which would
otherwise be expressed by nested conditional expressions that test tags and
select subterms. However, first-order patterns are not treated as first-class cit-

9

Fig. 4. Phenomena in composition of transformation rules: infinite branches, in-
verses, confluence, non-confluence

izens and their use poses limitations on modularity and reuse: no abstraction
over patterns is provided because they may occur only in the left-hand side of
a rewrite rule, the arms of a case, or the heads of clauses; pattern matching is
at odds with abstract data types because it exposes the data representation; a
first-order pattern can only span a fixed distance from the root of the pattern
to its leaves, which makes it necessary to define recursive traversals of a data
structure separately from the pattern to get all needed information.

For these reasons, enhancements of the basic pattern matching features
have been implemented or considered for several languages. For example, list
matching in ASF+SDF [19] is used to divide a list into multiple sublists pos-
sibly separated by element patterns. Associative-commutative (AC) matching
in OBJ, Maude [13] and ELAN [4] supports the treatment of lists as multi-
sets. Higher-order unification in λProlog [37,45] allows higher-order matching
of subterms in an arbitrary context [22,29], which in turn allows matching of
subterms at arbitrarily deep levels using higher-order variables without ex-
plicit traversal of the structure involved. Views for Haskell, as proposed in
[57], provide a way to view a data structure using different patterns than are
used to represent them. Overlays in Stratego [52] are pseudo-constructors
that abstract from an underlying representation using actual constructors.

4.2 Transformation Strategies

A set of transformation rules for a programming language induces a rewrite
relation on programs [18]. If the relation is confluent and terminating, there is
a unique normal form for every program. In that case it is a matter of applying
the rules in the most efficient way to reach the normal form. However, in
program transformation this is usually not the case. As illustrated in Figure 4,
a set of transformation rules can give rise to infinite branches (e.g., by inlining
a recursive function), inverses in which a transformation is undone (e.g., by
distribution or commutativity rules), and non-confluence in which a program
can be transformed into two different programs.

10

Depending on the goal of a transformation task, a path should be chosen
in the rewrite relation. For a specific program it is always possible to find
the shortest path to the optimal solution for a specific transformation task.
However, for most transformation tasks the process of finding a path needs to
be automated, and optimal solutions might only be approximated. A strategy
is an algorithm for choosing a path in the rewrite relation. Given one set
of rules, there can be many strategies, each achieving a different goal. On
the other hand, a general strategy can be applicable to many different sets of
rules.

A strategy can be provided by the transformation engine or can be user-
definable. There is a range of possibilities between these two options:

• Fixed application order. The engine applies rules exhaustively according to
a built-in strategy. Examples are innermost and outermost reduction.

• Automatic dependency analysis. The engine determines a strategy based
on an analysis of the rules. Examples are strictness and laziness analysis

• Goal driven. The engine finds out how to apply rules to achieve a user-
defined goal.

• Strategy menu. A strategy can be selected from a small set. For example,
choose between innermost and outermost reduction or annotate constructors
with laziness information.

• Completely programmable. The strategy to apply rules can be programmed
in a strategy language.

Whether defined by the user or by the engine, the strategy needs to be ex-
pressed and implemented formally. The rest of this section considers the
ingredients of a language for defining strategies.

4.2.1 Sequential Composition

To choose a path in the rewrite relation the basic rules should be combined into
transformations. Transformations can be combined by consecutively applying
two transformations, by conditionally choosing between two transformations,
and by repeating transformations, iteratively or recursively.

4.2.2 Non-Deterministic Programming

Choosing between two paths based on properties of the current program can
be too limited. It might be necessary to decide on the appropriateness of a
choice after applying several transformations. One approach is to speculatively
explore paths until an acceptable solution is found, the other is to explore all
paths in parallel and choose the best solution.

In the case of speculative exploration some kind of non-deterministic choice
between two alternative paths is needed. On failure in one of the paths, the
other path is taken. If backtracking is local, the choice is made after one of
the chosen branches succeeds. If back-tracking is global, failure at any point

11

inside or after the choice causes back-tracking to the alternative path. This
allows exploring the full search space, until an acceptable solution is found.

Parallel exploration of all paths requires a mechanism for comparing solu-
tions based on some kind of cost function. For some such problems dynamic
programming techniques can be used to efficiently apply all transformations.

In between speculative and parallel exploration is goal based exploration
in which a set of constraints leads to discarding paths inconsistent with the
constraints.

4.2.3 Structure Traversal

A rewrite relation includes application of rules in any context. This entails
traversing the program representation structure to find the location where the
rule is applied, applying the rule, and rebuilding the context. In addition to
the sequential order of application and the choice between paths, the location
where a rule is applied is also determined by the strategy. It is unattractive
to express these locations by means of paths in a tree, since it is inefficient
to traverse and rebuild the context for each rule application. Often rules are
applied close to each other in the tree.

Therefore, some mechanism is needed to traverse syntax trees and to ap-
ply transformation rules at subtrees. A language-specific traversal mechanism
requires definition of traversals for all constructs in a language. This can lead
to large specifications for large languages (having a complex abstract syntax).
A language generic traversal mechanism supports the definition of generic
traversals over abstract syntax trees. This requires exposing the underlying
representation model. Traversal mechanisms can provide a set of fixed traver-
sals such as top-down and bottom-up, or provide traversal primitives from
which all kinds of traversals can be defined.

4.2.4 Information Carrying Strategies

Strategies may carry information that can be used in making decisions about
paths to take and in passing context-sensitive information to rules.

4.2.5 Separation of Rules and Strategies

Although we have distinguished rules at the conceptual level, at the imple-
mentation level rules and strategies can be intertwined, i.e., the rules can be
hardwired in the definition of the strategy. Alternatively, rules and strategies
can be defined separately, which entails that strategies are parameterized with
a set of rules.

Separate definition of rules and strategies leads to clearer specifications
that allow reasoning about smaller entities (rules, strategies) separately. Fur-
thermore, separate definition enables the reuse of rules and strategies and the
generic implementation of aspects of transformation systems that are common
to all or a class of languages. However, intertwining may sometimes be re-
quired for efficiency reasons. In these cases it desirable that the intertwining

12

be done by a compiler rather than by the specifier.

4.2.6 Abstraction

To achieve reuse of strategies in general, and separation of rules from strate-
gies, in particular, an abstraction mechanism is needed that allows abstraction
over rules and strategies. That is, it should be possible to name and parame-
terize rules and strategies.

5 Program Transformation Languages

This section discusses a number of languages designed specifically for the im-
plementation of program transformation. The following topics will be dis-
cussed: interactive program transformation, intentional programming, tree
parsing, term rewriting and a number of extensions of basic term rewriting
addressing the problems of standard rewriting strategies: strategy annota-
tions, sequences of canonical forms, exploring the reduction space with non-
deterministic strategies, guiding rewriting by reflection, rewriting with traver-
sal functions, and generic rewriting strategies.

5.1 Interactive Program Transformation

Draco [39,40] was the first system to support the transformation of high-
level domain-specific programs to executable code. The system supported
the definition of transformation rules for optimizations and refinements to
transform high-level constructs into lower-level ones.

Transformation rules and refinements are identified by means of names.
Transformation rules also have application codes that specify their relative
precedences. The application of transformations and refinements to a domain
program is controlled by the user through an interactive process. In this
process the user has to select domain, instance (region in the abstract syntax
tree representing the program), and locale (node in the abstract syntax tree).
Transformations can be applied directly to the currently selected locale using
apply. The system can examine the tree and suggest transformations to apply.
Using the transform command all transformation rules in a certain range
can be applied automatically. The transform command uses a bottom-up
traversal over the tree, applying rules in the provided code range. Rules with
higher codes are applied first. In [38] there are also descriptions of a top-down
traversal and of traversals that apply the best rules first. Refinements can be
applied individually using try and use. A certain amount of automation of
the process is possible by means of tactics.

5.2 Intentional Programming

Intentional programming is a meta-programming system under development
at Microsoft Research. A good description of intentional programming is given

13

in [17].

In intentional programming a program is represented by a source tree in-
stead of by a source text. Each node of a source tree has a reference to its
declaration (thus making the tree into a source graph). For example, an oc-
currence of a variable has a link to its declaration. Likewise each language
construct, or intention, corresponds to a tree node that defines it. Intentions
can be used by making links to the definitions of the intentions. For example,
a while statement is a node with two children corresponding to the condi-
tion and the iteration statement together with a link to the while intention.
Domain-specific programming abstractions can be captured by defining new
intentions.

Source trees are implemented by reducing them to source trees using only
R-code intentions. R-code intentions are basic constructs that can translated
to some form of machine code by a code generator. Part of the definition
of each intention is a method reducing it to its R-code. The dependencies
between these reduction methods are computed and interpreted by the inten-
tional programming engine to reduce an entire program to its R-code.

5.3 Simple Tree Parsing

Tree parsing is analogous to string parsing; instead of finding structure in a
string, the goal is to find structure in a tree by covering the tree with patterns.
Sorcerer [42,43] is the tree parser generator for the antlr language processing
system. Sorcerer generates tree walkers from tree grammars. A tree grammar
is a bnf-like notation for the definition of tree structures. For example, the
grammar

exp : #(PLUS exp exp)

| INT

describes expression trees composed from integers and addition.

Tree translations and transformations are achieved by associating actions
with the grammar productions. Translations to textual output are achieved
by printing actions. For example, the following grammar prints expressions
using infix notation.

exp : #(PLUS exp <<printf("+");>> exp)

| i:INT <<printf("%d", i);>>

Tree transformations are achieved by reconstructing trees and returning them
as results. For example, the following grammar transforms expressions by
swapping the arguments of the PLUS operator.

exp :! #(PLUS l:exp r:exp) <<#exp = #(PLUS r l);>>

| INT

Grammar non-terminals can have arguments that can be used in the ac-
tions in productions. Non-terminals can also return results. A tree grammar

14

gives rise to a set of mutually recursive functions, one for each non-terminal,
that together define a one-pass traversal over a tree. Patterns can be nested
and can use regular tree expressions with optionals, alternatives and lists.

Transformation rules in tree grammars are embedded in grammar produc-
tions. Separation of rules and strategies and generic tree traversals are not
supported in sorcerer.

5.4 Tree Parsing with Dynamic Programming

If a tree grammar is ambiguous, multiple parses of a tree are possible. The
parser needs to decide which parse to take. By associating costs to each
production, the disambiguation can be based on the accumulated cost of a
tree. Dynamic programming techniques can be used to compute all possible
parses in one traversal.

Burg [25,26,48] is a system for code generation from intermediate represen-
tation (ir) expression trees. A mapping from ir trees to machine instructions
is defined by means of a tree grammar. A production of the form n -> t (c)

defines a mapping of tree pattern t to non-terminal n at cost c. Associated
with each production is an action to take when the production is selected.
For example, Proebsting [48] gives the example grammar in Figure 5. Ac-
cording to this grammar, the term Fetch(Fetch(Plus(Reg,Int))) has two
coverings corresponding to the derivations 4(4(6(5(2,3)))) and 4(4(8(2)))

with costs 7 and 4, respectively.

As illustrated by this example, more than one covering of a tree is pos-
sible, corresponding to different ways to generate code. Each node can have
several different parses because of overlapping patterns and chain rules. The
costs associated with the productions express the cost of executing the asso-
ciated machine instruction. The goal of a code generator is to find the lowest
cost covering (i.e., lowest execution time) of an intermediate representation
expression tree.

According to bottom-up rewriting theory (burs) an ir tree can be trans-
lated to a sequence of instructions using the following strategy. In a bottom-up
traversal all lowest-cost patterns that match each node are computed and as-
sociated with the node. This involves matching the right-hand sides of the
productions to the tree, taking into account earlier matches for sub-trees. In-
structions are then selected in a top-down traversal that is driven by the goal
non-terminal for the root of the tree.

This restricted form of rewriting can also be applied [48] for simple type

[1] goal -> reg (0) [5] reg -> Plus(reg, reg) (2)
[2] reg -> Reg (0) [6] addr -> reg (0)
[3] reg -> Int (1) [7] addr -> Int (0)
[4] reg -> Fetch(addr) (2) [8] addr -> Plus(reg, Int) (0)

Fig. 5. Example BURG specification

15

inference problems, for checking tree formats, and for tree simplifications.

5.5 Term Rewriting

Term rewriting [18] is supported by systems such as OBJ [27], ASF+SDF [19],
ELAN [5], and many more. Term rewriting is an attractive paradigm for pro-
gram transformation. First-order terms can be used to describe the abstract
syntax of programs. For example, consider the declaration of propositional
formulae in Figure 6. A rewrite rule of the form t1 -> t2 declares the trans-
formation of a term matching pattern t1 to the instantiation of t2. Rewrite
rules can be used to express basic transformation rules and can be considered
as operationalizations of the algebraic laws of the language. For example, the
rewrite rules in Figure 6 express basic laws of propositional logic, i.e., the
distribution rules, the rule of double negation, and the De Morgan rules. Us-
ing stronger forms of pattern matching such as various instances of equational
matching (e.g., AC matching, list matching), patterns can capture complicated
term configurations. Furthermore, in conditional rewrite rules additional tests
on the patterns can be stated.

A redex is a subterm that matches with a rewrite rule. A term is in normal
form if it has no redices. Rewrite engines for term rewrite systems compute
the normal form of terms with respect to sets of rules in specifications. This
involves exhaustively applying rules to subterms until no more rules apply. A
rewrite engine can employ different strategies to order the application of rules.
In innermost rewriting all subterms of a term are normalized before rules are
applied to the term itself. In outermost rewriting redices closest to the root of
the term are rewritten first. This implies that rules are automatically applied

signature
sorts Prop
constructors

False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And : Prop * Prop -> Prop
Or : Prop * Prop -> Prop

rules
DAOL : And(Or(x, y), z) -> Or(And(x, z), And(y, z))
DAOR : And(z, Or(x, y)) -> Or(And(z, x), And(z, y))
DOAL : Or(And(x, y), z) -> And(Or(x, z), Or(y, z))
DOAR : Or(z, And(x, y)) -> And(Or(z, x), Or(z, y))
DN : Not(Not(x)) -> x
DMA : Not(And(x, y)) -> Or(Not(x), Not(y))
DMO : Not(Or(x, y)) -> And(Not(x), Not(y))

Fig. 6. Signature and rewrite rules for propositional formulae.

16

throughout a term and that no traversals over the syntax tree need to be
defined.

However, the complete normalization approach of rewriting turns out not
to be adequate for program transformation, because rewrite systems for pro-
gramming languages will often be non-terminating and/or non-confluent. In
general, it is not desirable to apply all rules at the same time or to apply all
rules under all circumstances.

As an example, consider again the set of rewrite rules in Figure 6. This
rewrite system is non-terminating because rules DAOL and DAOR enable rules
DOAL and DOAR, and vice versa. If we want to define a transformation to
normalize formulae to disjunctive normal form we could discard rules DOAL

and DOAR. However, if in another part of the transformation a conjunctive
normal form is required we need a different rewrite system. It is not possible
to combine these rules in one rewrite system.

The common solution to this kind of problem is to introduce additional
constructors (functions) that achieve normalization under a restricted set of
rules. Figure 7 shows how the rewrite system in Figure 6 can be turned into
a terminating rewrite system that defines the normalization to disjunctive
normal form (DNF). To normalize a formula to DNF the function dnf should
be applied to it. Normalization to conjunctive normal form requires a similar
definition.

signature
constructors

dnf : Prop -> Prop
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF1 : dnf(True) -> True
DNF2 : dnf(False) -> False
DNF3 : dnf(Atom(x)) -> Atom(x)
DNF4 : dnf(Not(x)) -> not(dnf(x))
DNF5 : dnf(And(x,y)) -> and(dnf(x),dnf(y))
DNF6 : dnf(Or(x,y)) -> Or(dnf(x),dnf(y))

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,Or(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x
NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 7. Functionalized rewrite system for disjunctive normal form.

17

The dnf function mimics the innermost normalization strategy by recur-
sively traversing terms. The auxiliary functions not and and are used to apply
the distribution rules and the negation rules. In functional programming such
auxiliary functions are known as smart constructors [21]. In the definition of
the rules for and and not it is assumed that the arguments of these functions
are already in disjunctive normal form. For example, if none of the arguments
of and is an Or term, the term itself is considered to be in DNF.

In the solution in Figure 7, the original rules have been completely inter-
twined with the dnf transformation. The rules for negation cannot be reused
in the definition of normalization to conjunctive normal form. For each new
transformation a new traversal function and new smart constructors have to
be defined. Many additional rules had to be added to traverse the term to
find the places to apply the rules. Instead of 5 rules, a total of 13 rules were
needed. Rules AND3 and NOT4 are default rules that only apply if the other
rules do not apply. Without this mechanism even more rules would have had
to be used to handle the cases were the real transformation rules do not apply.
Default rules were introduced in ASF+SDF [19].

The kind of problem illustrated in the example above occurs frequently
in all kinds of transformations. Examples are the normalization of SDF2
syntax definitions to Kernel-Sdf [51]; desugaring of programming constructs;
and refactoring in which parts of a program may have to simplified, while
others may have to de-simplified.

In general, trying to overcome the problems of non-termination and non-
confluence leads to encoding of control in terms of additional rewrite rules
(which is at variance with our goal to separate rules from strategies as much
as possible) . This usually leads to a functional programming style of rewriting,
overhead in the form of traversal rules for each constructor in the signature,
intertwining of rules and function definitions, all of which makes reuse of rules
impossible, and leads to specifications that are much harder to understand.

5.6 Rewriting with Traversal Functions

In ASF+SDF controlling the application of transformation rules has been
recognized as a problem for a long time. Especially for the specification of
transformations for large languages such as cobol the overhead of defining
traversals was seen as the problematic factor. First this was solved by the
generation of default traversal rules [11,10] that could be overridden by normal
rules. In this approach typically only a few rewrite rules have to be specified,
corresponding to the non-default behaviour of the traversal. However, the
number of generated rules still proves to be a source of overhead, be it for
the compiler, not the programmer. Furthermore, providing a new traversal
scheme requires the addition of a new generator.

In a recent approach [9], traversal functions are supported directly by the
rewriting engine, avoiding the compile-time overhead of generated rules. Fig-

18

signature
constructors
dnf : Prop -> Prop {traversal(trafo,bottom-up)}
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF4 : dnf(Not(x)) -> not(x)
DNF5 : dnf(And(x,y)) -> and(x,y)

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,Or(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x
NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 8. Disjunctive Normal Form with traversal function (Version 1)

ure 8 illustrates the approach applied to the problem of normalization to
disjunctive normal form. Note that the example does not use ASF+SDF
syntax. The specification is the same as that in Figure 7, but the dnf

function has been declared a traversal function in the signature. The at-
tribute traversal(trafo,bottom-up) declares that dnf performs a bottom-
up traversal over its argument. This means that the function is first applied
to the direct subterms (and, thus, recursively to all subterms) before it is ap-
plied at the term itself. Rules need to be declared only for those constructs
that are transformed. The default behaviour is to reconstruct the term with
the original constructor. In the example this reduces the specification of the
traversal from 6 to 2 rules. In general, for a signature with n constructors
only m of which need to be handled in a special way, this saves n−m rules.

There is still some overhead in the specification in Figure 8 in the form of
the dispatching from the traversal function to the smart constructors and the
default rules for the smart constructors. A more concise specification is the
one in Figure 9 in which no smart constructors are used. In this style only
one rule is needed for each original rule. However, the problem with this style
is that the recursive calls in the right-hand sides of the rules will completely
retraverse the tree (the arguments of which are already normalized) before
applying one of the rules.

ASF+SDF provides a limited set of traversals. For traversal strategy there
is a choice between top-down and bottom-up. The latter has been explained
above. A top-down traverses down the tree and stops as soon as a rule ap-
plies. In addition a traversal can be a transformation (trafo) and/or a traver-
sal which accumulates information along the way (accu). Finally, traversal

19

signature
constructors
dnf : Prop -> Prop {traversal(trafo,bottom-up)}

rules
AND1 : dnf(And(Or(x,y),z) -> dnf(Or(And(x,z)),And(y,z))
AND2 : dnf(And(z,Or(x,y)) -> dnf(Or(And(z,x)),And(z,y))

NOT1 : dnf(Not(Not(x)) -> x
NOT2 : dnf(Not(And(x,y)) -> dnf(Or(Not(x),Not(y)))
NOT3 : dnf(Not(Or(x,y)) -> dnf(And(Not(x),Not(y)))

Fig. 9. Disjunctive Normal Form with traversal function (Version 2)

functions can be parameterized with additional arguments that contain static
information to be used during traversal.

The advantage of traversal functions is that default traversal behaviour
does not need to be implemented manually. This is similar to default visi-
tors in object-oriented programming or folds with updatable fold algebras in
functional programming. However, the approach has a number of limitations.

First of all, there is no separation of rules from strategies. A rule is bound
to one specific traversal via the traversal function. It is not possible to reuse
rules in different traversals, for example, to normalize under different rule
sets. Furthermore, rules are intertwined with strategies, making it hard to
distinguish the basic transformation rules from the traversal code, and to
argue about correctness of the whole.

Secondly, the traversal function schema provides a limited range of traver-
sals. The bottom-up variant does a full traversal of the tree. The top-down
variant stops as soon as it has found a rule application, this requires explicit
defininition of recursion in rules. Although it is possible to implement a wide
range of traversals, this requires gluing together the basic traversals in an ad-
hoc manner. It is not possible to define new traversal schemas in a reusable
way, i.e., as a new traversal attribute. That would require extending the
rewrite engine.

Finally, the traversals provided by the language capture an abstraction,
i.e., certain traversal schemata. There is no possibility in the language to give
further abstractions for alternative traversal schemata, or for more elaborate
functionality involving traversals. This is desirable for building libraries with
language independent strategies. For example, defining substitution without
variable capture is similar for many languages, given the shape of variables
and variable bindings. Extrapolating the traversal function approach, more
and more such abstractions will be captured as additional primitives in the
rewrite engine. At some point it will make sense to extend the language with
a mechanism for specifying such abstractions generically.

20

5.7 Term Rewriting with Strategy Annotations

Another problem in term rewriting is that of terms with infinite reduction
paths that cannot be resolved by removing unnecessary rules. For example,
the specification in Figure 10 defines the computation of the factorial function
using the conditional If. Using a pure innermost rewriting strategy a term
Fac(3) does not terminate, since the arguments of If are evaluated before
rules IfF or IfT are applied. Using an outermost strategy would solve the
problem, but outermost is harder to implement efficiently. Therefore, several
systems provide strategy annotations to delay the evaluation of arguments.

Note that these strategy annotations help to make some rewrite systems
terminating, but that they do not help in other respects for program trans-
formation. For example, traversals over abstract syntax trees still need to be
defined explicitly.

5.7.1 Just-in-time

The strategy annotations in [47] are designed to delay the evaluation of argu-
ments, but guarantee that the term reached after evaluation is a normal form
with respect to the rewrite system, i.e., contains no redices.

A strategy annotation for a constructor is a list of argument positions
and rule names. The argument positions indicate the next argument to eval-
uate and the rule names indicate a rule to apply. The innermost strategy
corresponds to an annotation strat(C) = [1,2,3,..,R1,R2,R3,...] for a
constructor C and indicates that first all its arguments should be evaluated
and then the rules Ri should be applied. By requiring that all argument po-
sitions and all rules for a constructor are mentioned in the annotation, it can
be guaranteed that a normal form is reached. The just-in-time strategy is
a permutation of argument positions and rules in which rules are applied as
early as possible.

Using these annotations the non-termination for the rewrite system in
Figure 10 is solved by means of the annotation

imports integers
signature

sorts Int
constructors

Fac : Int -> Int
If : Bool * Int * Int -> Int

rules
Fac : Fac(x) -> If(Eq(x,0), 1, Mul(x,Fac(Sub(x,1))))
IfT : If(True, x, y) -> x
IfF : If(False, x, y) -> y
IfE : If(p, x, x) -> x

Fig. 10. Rewrite system with non-terminating reduction path.

21

signature
sorts Nat List(*)
constructors
Z : Nat
S : Nat -> Nat
Cons : a * List(a) -> List(a) {strat: (1 0)}
Inf : Nat -> List(Nat)
Nth : List(a) -> a

rules
Inf(x) -> Cons(x, Inf(S(x)))

Nth(Z, Cons(x, l)) -> x
Nth(S(x), Cons(y, l)) -> Nth(x, l)

Fig. 11. Specification with strategy annotations [41].

strat(If) = [1,IfT,IfF,2,3,IfE]

that declares that only the first argument should be evaluated before applying
rules IfT and IfF.

5.7.2 E-Strategy

The just-in-time strategy cannot deal with rewrite systems that do not have
normal forms for some terms. For example, consider the rules in Figure 11.
Terms of the form Inf(n), for some natural number n, do not have a normal
form.

The E-strategy [41] of the CafeOBJ system uses an extended form of strat-
egy annotations in which not all arguments need to be evaluated. In this style
a strategy annotation is a list of argument positions and the root position (0).
The annotation declares the order of evaluation of the arguments. The root
position 0 indicates the evaluation of the term at the root. Not all argument
positions need to be declared. An undeclared argument is not evaluated.

For example, the non-termination in Figure 11 is solved by the strategy
annotation (1 0), which indicates that first the first argument of Cons should
be evaluated and then the constructor itself (0). The second argument is never
evaluated. The E-normal form of Nth(S(Z),Inf(Z)) is S(Z). Also the term
Inf(Z) has a normal form, i.e., Cons(Z,Inf(S(Z))).

5.7.3 Laziness annotations

The strategy annotations discussed above are interpreted by the rewrite en-
gine. In [23] it is shown how rewrite systems with laziness annotations can
be compiled into rewrite systems that can be evaluated using an innermost
strategy.

A laziness annotation indicates for an argument of a constructor that it
is lazy, i.e., that no reductions should be performed for subterms of that
argument, unless needed for matching. For example, for the rewrite system

22

rules

Inf(x) -> Cons(x, Thunk(L, Vec1(x)))

Nth(Z, Cons(x, l)) -> x

Nth(S(x), Cons(y, l)) -> Nth(x, Inst(l))

Inst(Thunk(L, Vec1(x))) -> Inf(S(X))

Inst(x) -> x

Fig. 12. Result of translating specification with laziness annotations to eager spec-
ification [23].

in Figure 11 the laziness annotation Lazy(Cons,2) achieves the delay of the
evaluation of the second argument of Cons.

A rewrite system with laziness annotations can be translated to an ea-
ger rewrite system using thunks. A thunk is an auxiliary data structure that
stores the structure of the term. For example, the term rewrite system (TRS)
in Figure 11 is transformed to the eager TRS in Figure 12. Note that Thunk

is a generic constructor for representing thunks, L is a constructor for indicat-
ing the thunked pattern, and Vec1 is a constructor for denoting a vector of
length 1.

Note that annotations depend on the application in which they are used.
For example, without the Inf constructor there is no reason for annotating
the second argument of Cons as lazy.

5.8 Sequences of Canonical Forms

Tampr stands for Transformation Assisted Multiple Program Realization Sys-
tem. The tampr system [6,7], which has been in use since the seventies, is
designed for the derivation of efficient implementations from specifications
through transformations, in particular in the domain of numerical program-
ming.

A tampr specification consists of a series of rewrite rules. The tampr rewrite
engine applies rewrite rules exhaustively to reach a canonical form. The prob-
lem of non-termination caused by rules that are each others’ inverses that we
encountered in Section 5.5 is solved in tampr by organizing a large transfor-
mation into a sequence of consecutive reductions to canonical forms under
different sets of rewrite rules. Typically such a sequence starts with several
preparatory steps that bring the program in the right form, followed by the
pivotal step which achieves the actual transformation, followed by some post-
processing.

In [7] this is illustrated with the transformation from a polynomial in y:

(x2 + 2x+ 1)y2 + (x2 − 9)y − (20x2 + 18x− 18)

to the equivalent polynomial in x

(y2 + y − 20)x2 + (2y2 − 18)x+ (y2 − 9y + 18)

23

This is achieved by means of the following sequence of canonical forms:

sum-of-monomonials;

x-commuted-to-right;

like-powers-collected;

x-factored-out

The sum-of-monomonials canonical form transforms the polynomial into

x2y2 + 2xy2 + y2 + x2y − 9y − 20x2 − 18x+ 18

By commuting the multiplications, the x-commuted-to-right canonical form
is achieved:

y2x2 + 2y2x+ y2 + yx2 − 9y − 20x2 − 18x+ 18

The like-powers-collected canonical form commutes the additions to bring
monomonials with the same power of x together:

y2x2 + yx2 − 20x2 + 2y2x− 18x+ y2 − 9y + 18

Finally, by factoring out the powers of x, the desired form is reached.

5.9 Non-deterministic Sequential Strategies

Elan [3] is a language for rewriting with user-definable strategies in a special
strategy language. An elan specification consists of a set of unlabeled rewrite
rules, which are applied using a fixed innermost strategy, and labeled rules,
which are applied by user-defined strategies. Rewrite rules support matching
modulo associativity and commutativity.

A strategy expression combines several rule labels by means of strategy
operators. The application of a strategy to a term leads to a set of results. An
empty set of results denotes failure. Evaluation of a term involves normalizing
the term according to the unlabeled rules, and then applying a strategy to it.

Strategies exist at two levels: the elementary strategies built into the lan-
guage that can be used to apply labeled rules and defined strategies, which
are interpreted using innermost rewriting.

An example of the use of labeled rules and elementary strategies in the def-
inition of Knuth-Bendix completion (from [35]) is shown in Figure 13. Other
applications of elan include constraint solving and communication protocol
testing.

The identity strategy id succeeds and returns the singleton set containing
the subject term. The failure strategy fail returns the empty set. The
sequential composition e1; e2 of two strategies first applies e1, then e2.
There are several choice operators each with different back-tracking prop-
erties. The operator dk(e1,...,en) (don’t know) returns all results from all
strategies ei. The operator dc(e1,...,en) (don’t care) returns the results

24

[Delete] (E U {s=s} ; R) => (E ; R) end
[Compose] (E ; R U {s->t}) => (E ; R U {s->u}) if reduce(t->u) end
[Simplify] (E U {s=t} ; R) => (E U {s=u} ; R) if reduce(t->u) end
[Orient] (E U {s=t) ; R) => (E ; R U {s->t}) if s > t end
[Collapse] (E ; R U {s->t}) => (E U {u=t} ; R) if reduce(s->u) end
[Deduce] (E ; R) => (E U {s=t} ; R) if s=t in CP(R) end

completion =>
repeat*(repeat*(repeat*(Collapse);

repeat*(Compose) ;
repeat*(Simplify) ;
repeat*(Delete) ;
repeat*(Orient)) ;

Deduce)

Fig. 13. Example elan rules and strategy for Knuth-Bendix completion [35].

from one of its argument strategies as long as it does not fail. The opera-
tor first(e1,...,en) returns the results of the first ei that does not fail.
The operators dc one(e1,...,en) and first one(e1,...,en) return only
one result. The operator iterate*(e) (iterate+(e)) returns all possible re-
sults from iterating the strategy e zero (one) or more times. The operator
repeat*(e) (repeat+(e)) returns the last set of results from repeatedly ap-
plying e until it fails. Finally, the operator normalize(e) normalizes a term
with respect to a strategy, i.e., applying the strategy to all subterms until it
fails for all sub-terms. Note that all other operators apply labeled rules at the
root. There is no other support for term traversal using elementary strategies.

Using defined strategies language specific traversal can be defined using
congruence operators.

A limited form of genericity is provided by the preprocessor mechanism
of the language, which supports the definition of specification schemas. Elan

does not support language generic term traversal.

5.10 Generating Strategies with Reflection

Maude [13] is one of the successors of the algebraic specification formalism
OBJ. Maude supports two kinds of rewrite rules: equations and rules. Equa-
tions are applied using an innermost strategy and rules are applied using an
outermost strategy. Pattern matching in equations and rules can use matching
modulo many combinations of associativity, commutativity and identity.

Maude does not support operators for the definition of strategies. Instead
the language provides a meta-level in which specifications can be manipulated
by reflection [14,15].

25

5.11 Generic Traversal Strategies

Stratego [54,55] is a language for program transformation completely based
on rewriting strategies. Stratego supports sequential programming with local
backtracking, generic and specific term traversal, strategy abstraction, and
first class pattern matching.

Figure 14 gives several examples of uses of strategies. The examples use
basic operators and defined strategies discussed below. The strategies disj-nf
and conj-nf define normalizations to disjunctive and conjunctive normal-
form, respectively, using the rules from Figure 6. The eval strategy performs
constant folding on propositional formulae using the standard truth rules (not
shown here). The strategies desugar and impl-nf define two desugarings of
propositional formulae, i.e., elimination of implication and equivalence, and
desugaring to implicative normal-form using standard elimination rules (not
shown here).

5.11.1 Sequential Programming

Strategies are programs that attempt to transform terms into terms, at which
they may succeed or fail. In case of success the result of such an attempt is a
transformed term. In case of failure there is no result of the transformation.
Strategies can be combined into new strategies by means of the following oper-
ators. The identity strategy id leaves the subject term unchanged and always
succeeds. The failure strategy fail always fails. The sequential composition
s1 ; s2 of strategies s1 and s2 first attempts to apply s1 to the subject term
and, if that succeeds, applies s2 to the result. The non-deterministic choice
s1 + s2 of strategies s1 and s2 attempts to apply either s1 or s2. It succeeds
if either succeeds and it fails if both fail; the order in which s1 and s2 are
tried is unspecified. The deterministic choice s1 <+ s2 of strategies s1 and
s2 attempts to apply either s1 or s2, in that order. Note that ; has higher

strategies
disj-nf = innermost(DAOL + DAOR + DN + DMA + DMO)

conj-nf = innermost(DOAL + DOAR + DN + DMA + DMO)

T = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10 +
T11 + T12 + T13 + T14 + T15 + T16 + T17 + T18 + T19

eval = bottomup(repeat(T))

desugar = topdown(try(DefI + DefE))

impl-nf = topdown(repeat(DefN + DefA2 + DefO1 + DefE))

Fig. 14. Various transformations on propositional formulae.

26

strategies
try(s) = s <+ id
repeat(s) = rec x(try(s; x))
while(c, s) = rec x(try(c; s; x))
do-while(s, c) = rec x(s; try(c; x))
while-not(c, s) = rec x(c <+ s; x)
for(i, c, s) = i; while-not(c, s)

Fig. 15. Generic iteration strategies.

precedence than + and <+. The recursive closure rec x(s) of the strategy
s attempts to apply s to the entire subject term and the strategy rec x(s)

to each occurrence of the variable x in s. The test strategy test(s) tries to
apply the strategy s. It succeeds if s succeeds, and reverts the subject term
to the original term. It also fails if s fails. The negation not(s) succeeds
(with the identity transformation) if s fails and fails if s succeeds. Examples
of strategies that can be defined with these operators are the try and iteration
strategies in Figure 15.

5.11.2 Term Traversal

The combinators discussed above combine strategies that apply transforma-
tions to the root of a term. In order to apply transformations throughout
a term it is necessary to traverse it. For this purpose, Stratego provides a
congruence operator C(s1,...,sn) for each n-ary constructor C. It applies to
terms of the form C(t1,...,tn) and applies si to ti. An example of the
use of congruences is the operator map(s) defined in Figure 16 that applies a
strategy s to each element of a list.

Congruences can be used to define traversals over specific data struc-
tures. Specification of generic traversals (e.g., pre- or post-order over ar-
bitrary structures) requires more generic operators. The operator all(s)

applies s to all children of a constructor application C(t1,...,tn). In par-
ticular, all(s) is the identity on constants (constructor applications without
children). The strategy one(s) applies s to one child of a constructor appli-
cation C(t1,...,tn); it is precisely the failure strategy on constants. The
strategy some(s) applies s to some of the children of a constructor applica-
tion C(t1,...,tn), i.e., to at least one and as many as possible. Like one(s),
some(s) fails on constants.

Figure 16 defines various traversals based on these operators. For instance,
oncetd(s) tries to find one application of s somewhere in the term starting
at the root working its way down; s <+ one(x) first attempts to apply s, if
that fails an application of s is (recursively) attempted at one of the children
of the subject term. If no application is found the traversal fails. Compare
this to the traversal alltd(s), which finds all outermost applications of s and
never fails.

27

strategies
map(s) = rec x(Nil + Cons(s,x))
conj(s) = rec x(And(x,x) <+ s)

topdown(s) = rec x(s; all(x))
bottomup(s) = rec x(all(x); s)
downup(s) = rec x(s; all(x); s)
downup2(s1,s2) = rec x(s1; all(x); s2)
oncetd(s) = rec x(s <+ one(x))
onebu(s) = rec x(one(x) <+ s)
alltd(s) = rec x(s <+ all(x))
sometd(s) = rec x(s <+ some(x))
somebu(s) = rec x(some(x) <+ s)

innermost(s) = rec x(all(x); try(s; x))

Fig. 16. Specific and generic traversal strategies.

5.11.3 Match, Build and Variable Binding

The operators we have introduced thus far are useful for repeatedly applying
transformation rules throughout a term. Actual transformation rules are con-
structed by means of pattern matching and building of pattern instantiations.

A match ?t succeeds if the subject term matches with the term t. As
a side-effect, any variables in t are bound to the corresponding subterms of
the subject term. If a variable was already bound before the match, then
the binding only succeeds if the terms are the same. This enables non-linear
pattern matching, so that a match such as ?F(x, x) succeeds only if the two
arguments of F in the subject term are equal. This non-linear behavior can
also arise across other operations. For example, the two consecutive matches
?F(x, y); ?F(y, x) succeed exactly when the two arguments of F are equal.
Once a variable is bound it cannot be unbound.

A build !t replaces the subject term with the instantiation of the pattern t

using the current bindings of terms to variables in t. A scope {x1,...,xn: s}

makes the variables xi local to the strategy s. This means that bindings to
these variables outside the scope are undone when entering the scope and are
restored after leaving it. The operation where(s) applies the strategy s to
the subject term. If successful, it restores the original subject term, keeping
only the newly obtained bindings to variables.

5.11.4 Abstraction

A strategy definition f(x1,...,xn) = s introduces a new strategy opera-
tor f parameterized with strategies x1 through xn and with body s. La-
beled transformation rules are abbreviations of a particular form of strat-
egy definitions. A conditional rule L : l -> r where s with label L, left-
hand side l, right-hand side r, and condition s denotes a strategy defini-

28

tion L = {x1,...,xn: ?l; where(s); !r}. Here, the body of the rule first
matches the left-hand side l against the subject term, and then attempts to
satisfy the condition s. If that succeeds, it builds the right-hand side r. The
rule is enclosed in a scope that makes all term variables xi occurring freely in
l, s and r local to the rule.

Stratego also supports pattern abstraction by means of overlays [52].

5.11.5 Generic Strategies

Using the machinery of Stratego, highly generic strategies can be defined. The
Stratego library defines a wide range of generic strategies including traversal
strategies as in Figure 16. In addition the library defines a number of higher-
level language-independent operations such as free-variable collection, bound
variable renaming, capture free substitution, syntactic unification, and com-
puting the spanning tree of a graph. These operations are parameterized with
the relevant language constructs and work generically otherwise [53].

A problem of some generic strategies is that they lack knowledge of the
computations in their argument strategies, which may cause overhead. For
example, the innermost strategy in Figure 16 renormalizes arguments of left-
hand sides of rules when they are used in the right-hand side. In [31] it is
shown how this can be repaired by fusing the generic innermost strategy with
its arguments.

6 Concluding Remarks

6.1 Summary

In this paper I have given an overview of considerations that play a role in
building program transformation systems and focussed on the role of strategies
for control of transformation rules. Several languages for program transfor-
mation are discussed, each representing a particular style of strategy support,
covering the following styles:

• simple tree parsing

• tree parsing with dynamic programming

• exhaustive evaluation

• traversal functions

• strategy annotations

• sequence of canonical forms

• non-deterministic sequential strategies

• reflective strategies

• generic traversal strategies

This discussion follows the development from languages with built-in strategies
to languages with fully programmable strategies.

29

6.2 Future Work

The languages discussed in this paper are closely related to the term rewriting
paradigm. Since any implementation of program transformation is ultimately
a form of rewriting, languages dedicated to transformation will likely be based
on rewriting. However, program transformation systems are also programmed
in other paradigms. An extended survey should also investigate how strate-
gies are modeled in these paradigms. The strategies discussed in this paper
control transformation by explicitly ordering the application of rules. Another
approach is to let constraints or goals guide the application of rules.

Finally, the various approaches to strategies are illustrated with very small
examples. A better comparison between the various approaches can be achieved
by encoding one or several more complex program transformations.

6.3 Research Issues

There are numerous unresolved issues in the specification and implementation
of strategies for program transformation, including the following:

• Strategies are used to control the application of rewrite rules in order to pre-
vent undesired interference between transformations. The design of strate-
gies is based on an analysis of this interference. Often this analysis is in-
formal. For pure, unconditional rewrite rules, analysis techniques exist for
discovering such interference. For more complex transformation rules such
analysis is needed as well.

• How can dynamic programming in the style of BURG be expressed in a more
general framework of strategies while obtaining the same efficiency? Can
the approach be generalized to more complex, cascading transformations?
In other words, how can we find the optimal sequence of transformations.
For the complexities this may involve in an high-performance computing
context see [49].

• Is there a type system that reconciles static typing with generic strategies?

• How can we transparently deal with variable bindings and other context-
sensitive issues? What is the interaction between strategies and higher-order
abstract syntax?

• In [33] rewrite rules on control-flow graphs are defined using temporal logic
assertions. What is the role of strategies in graph transformation?

• Generic strategies parameterized with rules or other strategies often have
to renormalize/retraverse terms. In [31] an optimization for the case of the
generic definition of innermost is given. There is a general need for fusion
of generic traversals.

• In general, the fusion of generic strategies with rules can be seen as a form
of aspect weaving [32]. Can strategies be formulated in terms of aspect-
oriented programming?

30

• Origin tracking [20] for term rewriting relates a normalized term to the orig-
inal term. Applications include error messages and layout reconstruction.
How can we compute origins in a system with strategies? In systems with a
clean separation between rules and strategies it should be possible to make
the inheritance of origin information transparent to strategies.

6.4 Online Survey

This survey is part of a larger effort to create an overview of the theory and
practice of program transformation in the online survey of program transfor-
mation [56].

Acknowledgments

I would like to thank Bernhard Gramlich and Salvador Lucas for inviting
me to write this paper for the Workshop on Rewriting Strategies. Jan Heer-
ing, Patricia Johann, Paul Klint, and Jurgen Vinju commented on a previous
version of this paper.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, techniques, and tools.
Addison Wesley, Reading, Massachusetts, 1986.

[2] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[3] P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau,
C. Ringeissen, and M. Vittek. ELAN: User Manual. Loria, Nancy, France, v3.4
edition, January 27 2000.

[4] P. Borovanský, C. Kirchner, and H. Kirchner. Controlling rewriting by
rewriting. In J. Meseguer, editor, Proceedings of the First International
Workshop on Rewriting Logic and its Applications, volume 4 of Electronic Notes
in Theoretical Computer Science, Asilomar, Pacific Grove, CA, September 1996.
Elsevier.

[5] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. Elan:
A logical framework based on computational systems. In J. Meseguer, editor,
Electronic Notes in Theoretical Computer Science, volume 4. Elsevier Science
Publishers, 1996. Proceedings of the First Workshop on Rewriting Logic and
Applications 1996 (WRLA’96).

[6] J. M. Boyle. Abstract programming and program transformation—An
approach to reusing programs. In T. J. Biggerstaff and A. J. Perlis, editors,
Software Reusability, volume 1, pages 361–413. ACM Press, 1989.

31

[7] J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR program
transformation system: Simplifying the development of numerical software. In
E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
for Scientific Computing, pages 353–372. Birkhäuser, 1997.

[8] M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient annotated
terms. Software, Practice & Experience, 30(3):259–291, 2000.

[9] M. G. J. van den Brand, P. Klint, and J. Vinju. Term rewriting with
traversal functions. Technical Report SEN-R0121, Centrum voor Wiskunde
en Informatica, 2001.

[10] M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Generation
of components for software renovation factories from context-free grammars.
Science of Computer Programming, 36:209–266, 2000.

[11] M. G. J. van den Brand and E. Visser. Generation of formatters for context-
free languages. ACM Transactions on Software Engineering and Methodology,
5(1):1–41, January 1996.

[12] E. Chikofski and J. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 1990.

[13] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic and its Applications, volume 4 of Electronic Notes in Theoretical
Computer Science, pages 65–89, Asilomar, Pacific Grove, CA, September 1996.
Elsevier.

[14] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic.
In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science,
volume 4. Elsevier Science Publishers, 1996. Proceedings of the First
International Workshop on Rewriting Logic and its Applications.

[15] M. G. Clavel. Reflection in General Logics and in Rewriting Logic with
Applications to the Maude Language. PhD thesis, Universidad de Navarra,
Facultad de Filosofia y Letras, Pamplona, España, 1998.

[16] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient
and stealthy opaque constructs. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 98), pages 184–196, San Diego
CA, USA, January 1998.

[17] K. Czarnecki and U. W. Eisenecker. Intentional programming. In Generative
Programming. Methods, Tools, and Applications, chapter 11. Addison-Wesley,
2000.

[18] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 6, pages
243–320. Elsevier, 1990.

32

[19] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific, Singapore, September 1996.

[20] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic
Computation, 15(5–6):523–546, 1993.

[21] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
In Semantics, Applications and Implementation of Program Generation
(SAIG’00), Springer Lecture Notes in Computer Science, 2000.

[22] A. Felty. A logic programming approach to implementing higher-order term
rewriting. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors,
Extensions of Logic Programming (ELP ’91), volume 596 of Lecture Notes in
Artifial Intelligence, pages 135–158. Springer-Verlag, 1992.

[23] W. J. Fokkink, J. F. T. Kamperman, and H. R. Walters. Lazy rewriting on
eager machinery. ACM Transactions on Programming Languages and Systems,
22(1):45–86, January 2000.

[24] M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999.

[25] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a simple,
efficient code-generator generator. ACM Letters on Programming Languages
and Systems, 1(3):213–226, September 1992.

[26] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG—fast optimal
instruction selection and tree parsing. ACM SIGPLAN Notices, 27(4):68–76,
April 1992.

[27] J. A. Goguen and T. W. et. al. Introducing OBJ. Technical Report SRI-CSL-
92-03, SRI International Computer Science Laboratory, March 1992.

[28] T. E. H. Kienle, J. Czeranski. Exchange format bibliography. In Workshop on
Standard Exchange Format (WoSEF), pages 2–9, Limerick, Ireland, June 2000.

[29] J. Heering. Implementing higher-order algebraic specifications. In D. Miller,
editor, Proceedings of the Workshop on the λProlog Programming Language,
pages 141–157. University of Pennsylvania, Philadelphia, 1992. Published as
Technical Report MS-CIS-92-86; http://www.cwi.nl/~jan/HO.WLP.ps.

[30] G. Huet and B. Lang. Proving and applying program transformations expressed
with second-order patterns. Acta Informatica, 11:31–55, 1978.

[31] P. Johann and E. Visser. Fusing logic and control with local transformations:
An example optimization. In B. Gramlich and S. Lucas, editors, Workshop on
Reduction Strategies in Rewriting and Programming (WRS’01), volume 57 of
Electronic Notes in Theoretical Computer Science, Utrecht, The Netherlands,
May 2001. Elsevier Science Publishers.

33

http://www.cwi.nl/~jan/HO.WLP.ps

[32] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. Technical report, Xerox Palo Alto
Research Center, 1997.

[33] D. Lacey and O. de Moor. Imperative program transformation by rewriting. In
Compiler Construction (CC’01), Lecture Notes in Computer Science. Springer-
Verlag, April 2001.

[34] O. de Moor and G. Sittampalam. Higher-order matching for program
transformation. Theoretical Computer Science, 269(1–2):135–162, 2001.

[35] P.-E. Moreau. Compilation de règles de réécriture et de stratégies non-
déterministes. PhD thesis, L’Université Henri Poincaré-Nancy 1, June 22 1999.

[36] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[37] G. Nadathur and D. Miller. An overview of λProlog. In R. A. Kowalski,
editor, Logic Programming. Proceedings of the Fifth International Conference
and Symposium, volume 1, pages 810–827, Cambridge, Mass., USA, 1988. MIT
Press.

[38] J. M. Neighbors. Software Construction Using Components. PhD thesis,
Department of Information and Computer Science, University of California,
Irvine, 1980.

[39] J. M. Neighbors. Draco 1.2 Users Manual. Department of Information and
Computer Science, University of California, Irvine, Irvine, CA, USA, June 1983.

[40] J. M. Neighbors. The Draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, SE-10(5):564–573,
September 1984.

[41] K. Ogata and K. Futatsugi. Implementation of term rewritings with the
evaluation strategy. In Proceedings 9th Symposium on Programming Languages:
Implementations, Logics, and Programs (PLILP’97), volume 1292 of Lecture
Notes in Computer Science, pages 225–239, Southampton, 1997. Springer-
Verlag.

[42] T. J. Parr. SORCERER reference. In Language Translation Using PCCTS
and C++. A Reference Guide, chapter 4, pages 161–199. Automata Publishing
Company, 1993. Available at http://www.antlr.org/buybook.html.

[43] T. J. Parr. An overview of SORCERER: A simple tree-parser generator.
http://www.antlr.org/papers/sorcerer.ps, April 1994.

[44] S. Peyton Jones, J. Hughes, et al. Report of the programming language
Haskell98. a non-strict, purely functional language, February 1999.

[45] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’88),
pages 199–208. ACM, 1988.

34

[46] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira, editors,
Proceedings of the 5th International Conference on Mathematics of Programme
Construction (MPC2000), volume 1837 of Lecture Notes in Computer Science,
pages 230–255, Ponte de Lima, Portugal, July 2000. Springer-Verlag.

[47] J. van der Pol. Just-in-time: On strategy annotations. In Proceedings of the
International Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2001), 2001.

[48] T. A. Proebsting. BURS automata generation. ACM Transactions on
Programming Languages and Systems, 17(3):461–486, May 1995.

[49] Sarkar. Automatic selection of high-order transformations in the IBM XL
FORTRAN compilers. IBM Journal for Research and Development, 41(3):233–
264, May 1997.

[50] D. R. Smith. KIDS: A semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024–1043, 1990.

[51] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University
of Amsterdam, September 1997.

[52] E. Visser. Strategic pattern matching. In P. Narendran and M. Rusinowitch,
editors, Rewriting Techniques and Applications (RTA’99), volume 1631 of
Lecture Notes in Computer Science, pages 30–44, Trento, Italy, July 1999.
Springer-Verlag.

[53] E. Visser. Language independent traversals for program transformation. In
J. Jeuring, editor, Workshop on Generic Programming (WGP’00), Ponte de
Lima, Portugal, July 2000. Technical Report UU-CS-2000-19, Department of
Information and Computing Sciences, Universiteit Utrecht.

[54] E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In A. Middeldorp, editor,
Rewriting Techniques and Applications (RTA’01), volume 2051 of Lecture Notes
in Computer Science, pages 357–361. Springer-Verlag, May 2001.

[55] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. ACM SIGPLAN Notices, 34(1):13–26, January
1999. Proceedings of the International Conference on Functional Programming
(ICFP’98).

[56] E. Visser et al. The online survey of program transformation. www.
program-transformation.org, 2000–2001.

[57] P. Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In ACM Symposium on Principles of Programming Languages, pages 307–313,
Munich, January 1987. ACM.

35

www.program-transformation.org
www.program-transformation.org

	Introduction
	Program Transformation
	Translation
	Rephrasing
	Program Transformation Systems

	Program Representation
	Parse Trees or Abstract Syntax Trees
	Trees or Graphs
	Variable Bindings
	Exchange Format

	Implementation of Program Transformation
	Transformation Rules
	Transformation Strategies

	Program Transformation Languages
	Interactive Program Transformation
	Intentional Programming
	Simple Tree Parsing
	Tree Parsing with Dynamic Programming
	Term Rewriting
	Rewriting with Traversal Functions
	Term Rewriting with Strategy Annotations
	Sequences of Canonical Forms
	Non-deterministic Sequential Strategies
	Generating Strategies with Reflection
	Generic Traversal Strategies

	Concluding Remarks
	Summary
	Future Work
	Research Issues
	Online Survey

	References

