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Abstract

Several generic programs for converting values from regular datatypes to some other
format, together with their corresponding inverses, are constructed. Among the
formats considered are shape plus contents, compact bit streams and pretty printed
strings. The different data conversion programs are constructed using John Hughes’
arrow combinators along with a proof that printing (from a regular datatype to
another format) followed by parsing (from that format back to the regular datatype)
is the identity. The printers and parsers are described in PolyP, a polytypic extension
of the functional language Haskell.

1 Introduction

Many programs convert data from one format to another, for example, parsers,
pretty printers, data compressors, encryptors and functions that communicate
with a database. Some of these programs, such as parsers and pretty printers,
critically depend on the structure of the input data. Other programs, such
as most data compressors and encryptors, more or less ignore the structure
of the data. Using the structure of the input data in a program for a data
conversion problem almost always gives a more efficient program with better
results. For example, a data compressor that uses the structure of the input
data runs faster and compresses better than a conventional data compressor.
This paper constructs several polytypic data conversion programs that make
use of the structure of the input data. We construct programs for determining
the shape of data, traversing, packing and pretty printing data.
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1.1 Data conversion programs

1.1.1 Shape.

A value of a container type d a can be uniquely represented by its shape (of
type d ()) and a list of its contents (of type [a]). As an example, consider the
datatype of binary trees with leaves containing values of type a.

data Tree a = Leaf a | Bin (Tree a) (Tree a)

The following example binary tree

tree : Tree Int
tree = Bin (Bin (Leaf 1) (Bin (Leaf 7) (Leaf 3))) (Leaf 8)

can be represented by a pair of its shape

treeShape :: Tree ()
treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())

and its contents [1,7, 3, 8].

Our first data conversion program is a program separate for separating a
value into its shape and its contents, together with its inverse: a program
combine that combines a shape and some contents into a datatype value.
These programs are polytypic [15] programs: programs that work uniformly for
large classes of datatypes. The construction proves that the two functions are
each others’ inverses. Note that shapes are at the heart of Jay’s [14] theory of
polytypism, but here we only use separate and combine as examples of simple
data conversion programs.

1.1.2 Traversals.

When working with structured data, one often performs operations on all
elements in a structure. A traversal is an operation on a structured value that
walks through the structure and performs some task at each of the elements
stored in the structure. Traversals are simple data conversion programs which
leave the shape of the input structure unchanged but which can change, or
collect information about, the contents. The classical functional programming
combinator map :: (e — b) — [a] — [b] is a very simple traversal over lists.
A more general traversal could carry around an environment (for example, a
dictionary to spell-check every word in a structured text), update a state (for
example, collecting a list of all variables in an abstract syntax tree) or collect
multiple results (for example, alternative layouts for pretty printing a tree).



We define general polytypic traversals, arrow maps, which can do all of this
uniformly for all regular datatypes.

For many applications the traversal order is important, and therefore we define
a forward and a backward arrow map and prove that they are inverses. The
arrow maps are surprisingly simple to define (they are very similar to the
normal polytypic map function) but much of the essential structure of the
packing and pretty printing programs is present already at this stage.

1.1.8 Packing.

Many files that are distributed around the world, either over the Internet
or on CD-rom, possess structure — examples are databases, HI'ML files, and
JavaScript programs — and it pays to compress these structured files to obtain
faster transmission or fewer CDs. Structure-specific compression methods give
much better compression results than conventional compression methods such
as the Unix compress utility [2,4]. Structured compression is also used in heap
compression and binary I/0 [23].

The idea of designing structure-specific compression programs has been a-
round since the beginning of the 1980s, but for many years only example in-
stantiations appeared in the literature. This paper describes the compression
program generically by combining a polytypic parser with a polytypic packing
program. The uncompression program is similarly composed of a polytypic
unpacker and a polytypic pretty printer. The first implemented generic de-
scription of a packing program was in our earlier work [12].

Our packing algorithm compresses data by compactly representing the struc-
ture of the data using only static information — the type of the data. Tra-
ditional (bit stream) compressors that use dynamic (statistical) properties of
the data are largely orthogonal to our approach and thus better compression
results are obtained by composing the packer with a bit stream compressor.

1.1.4 Pretty printing.

Modern programming languages allow the user to define new kinds of data.
When testing or debugging a program, the user often wants to see values
of these new datatypes. Many languages support the automatic derivation of
printing functions for user-defined datatypes. For example, by writing deriving
Show after a Haskell datatype definition, the function show for this datatype
is obtained for free. Thus in Haskell one can use a built-in polytypic function
show, but show can not be expressed in the language, and one can not define
alternative polytypic pretty printing functions.



This paper shows how one can define polytypic versions of the functions show
and its inverse read that work for values of arbitrary regular datatypes. Again,
the functions show and read are each others inverses by construction. Thus
we externalize the definitions of these functions — in Haskell they are part of
the compiler and can neither be inspected nor changed.

1.2 Constructing data conversion programs

The fundamental property of the four data conversion functions just de-
scribed is that each of them has a right inverse with respect to forward
composition. If we call the conversion function from a structured value print
and the corresponding function back to the structured value parse, we have
print ; parse = id. The other composition parse ; print need not be id for all
strings but it is ¢d on the range of print: if s = print z then (parse ; print) s =
(print ; parse ; print) x = (id ; print) x = print x = s. The behavior of
parse ; print for other values is not specified. In the rest of the paper we
will write just inverse, when we really mean right inverse. This is a very com-
mon specification pattern: all data conversion problems are specified as pairs
of inverse functions with some additional properties.

In this paper, the driving force behind the definitions of the functions print
and parse is inverse function construction. Thus correctness of print and parse
is guaranteed by construction. Interestingly, when we forced ourselves to only
construct pairs of inverse functions, we managed to reduce the size and com-
plexity of the resulting programs considerably compared with our previous
attempts.

The conversion programs are expressed using arrows — John Hughes’ sug-
gestion for generalizing monads [9]. The arrow combinators can be seen as
defining a small (impure) functional language embedded in (pure) Haskell.
We use constructor classes to allow for varying interpretations of this em-
bedded language. Thus the conversion programs are implicitly parametrized
with respect to the choice of implementation and semantics for this embed-
ded language, and the laws needed to prove the correctness of the conversion
programs can be seen as restrictions on the possible implementations.

This paper has the following goals:

e construct a number of polytypic programs for data conversion problems,
together with their inverses;
e show how to construct and calculate with polytypic functions.

The implementation of the data conversion programs as PolyP code can be
obtained from the polytypic programming WWW page [13].



The rest of this paper is organized as follows. Section 2 briefly introduces
polytypic programming. Section 3 constructs polytypic programs for separat-
ing a datatype value into its shape and its contents, and for combining shape
and contents back to the original value. Section 4 introduces an abstract func-
tion concept called arrows, which is used extensively in the following sections.
Section 5 defines arrow traversals in two directions and proves that they are
inverses. Section 6 sketches the construction and correctness proof of the pack-
ing program. Section 7 constructs polytypic programs for showing and reading
values of datatypes. Section 8 defines instances of the various arrow classes.
Section 9 concludes with an overview of the results, a discussion and some
suggestions for future work.

2 Polytypic programming

The data conversion functions constructed in this paper are polytypic func-
tions. This section briefly introduces polytypic functions in the context of the
Haskell extension PolyP [11], and defines some basic polytypic concepts used
in the paper. We assume that the reader is familiar with the initial algebra
approach to datatypes [17], and not completely unfamiliar with polytypic pro-
gramming. For an introduction to polytypic programming, see [1].

2.1 Notation

We use Haskell [20] notation with a few exceptions for notational convenience.
We have already introduced ( ;) for forward composition (that is, f ; g =
go f) and we sometimes write function names starting with a capital, although
Haskell only allows a lower case letter. We use “condensed” operators: for
example, the operator (-+-) is written (= ). As a reminder of the syntax of
Haskell we start with a few definitions that will be used in the sequel. The type
constructor Either constructs a binary sum type, with [ v r as a shorthand
notation for case analysis (written either | r in Haskell).

data Fither a b = Left a | Right b

(v) = (a—c¢c)— (b—c)— (Either a b — c)
lvr=Ax — case z of
Lefta — 1l a
Right b — r b



The call f -+ ¢ is used to apply either f or ¢ inside Left or Right.

(+) = (a—c)— (b— d)— (Either a b — Fither c d)
f—+g9=(f; Left) v (g ; Right)

The binary product type and its elements are written as pairs (a, b) and the
duals of (v) and (=) are (2) and (-).

(&) = (a—=b —(a—c)—= (a— (b))
frg=x—(fz,902)
() =m(a—c)=(b—=>d)— ((a,0) = (c,d))

fag=(fst;f)2 (snd;g)

We will often use Haskell’s class system [16] to write generic overloaded code.
The type of an overloaded function has the form context = type where context
lists the class constraints the variables in the type must satisfy. An example
is sort :: Ord a = [a] — [a] where a is restricted to be in the class Ord of
types with a comparison operator.

2.2  Functors and datatypes

A polytypic function is a function parametrized on type constructors. Poly-
typic functions are defined either by induction on the structure of user-defined
type constructors, or defined in terms of other polytypic (and non-polytypic)
functions. In the definition of a function that works for an arbitrary (as yet
unknown) datatype we cannot use the constructors to build values, nor pat-
tern match against values. Instead, PolyP provides two built-in functions, in
and out, to construct and destruct a value of an arbitrary so-called regular
datatype from and to its top level components. As an example, instances of
functions ¢n and out on the datatype Tree a are presented in Figure 1.

A datatype d a is regular (satisfies Regular d) if it is not mutually recursive,

type FTree p r = Either p (r,r)

Nvee 2 FTree a (Treea) — Tree a
invee (Left x) = Leaf z
inTee (Right (1,71)) = Binlr

Ul e 2 Tree a — FTree a (Tree a)
oule. (Leaf ) = Left x
oulee (Bin I 1) = Right (1, 1)

Figure 1. Instances of in and out for Tree.



contains no function spaces, and if the argument of the type constructor d
is the same on the left- and right-hand side of its definition. Every regular
datatype d a in Haskell is equivalent to the fixed point of a functor. PolyP
provides a type constructor FunctorOf d (we use @4 as a shorthand) for this
functor and defines in and out as the fold and unfold isomorphisms showing
that d ¢ and &4 a (d a) are isomorphic.

ing : Regqular d = ®4a (da)—da
outy :: Regular d = d a — &4 a (d a)

We call @, a pattern functor as it is used to capture the recursion pattern of
a datatype, for example, a list is either empty or contains one element and a
recursive occurrence of a list. This top level structure is captured by the defini-
tion of the pattern functor FList p r = Either () (p,r). We represent pattern
functors in a variable free form by introducing a number of functor construc-
tors: with Par for the datatype parameter, Rec for the recursive parameter,
Empty for the empty product and (+) and (x) for lifted versions of FEither
and (,) we can write @r;s = Empty + (Par * Rec). The pattern functor of the
datatype Tree a is in a similar way represented by @y = Par + (Rec * Rec).
As a last example, the datatype Rose a of rose trees over a:

data Rose a = Node a (List (Rose a))

has the pattern functor ®g,s. = Par x (List @ Rec), where @ is functor com-
position. In general, PolyP’s pattern functors are generated by the following
grammar:

f,9,h == g+h | gxh | Empty | Par | Rec | d@Qg | Const t

where d generates regular datatype constructors, and ¢ generates monomor-
phic types. The pattern functor Const t denotes a constant functor with
value t. The type context Bifunctor f = 1is used to indicate that f is a
pattern functor.

Regular datatypes are fixed points of pattern functors: d a = (P4 a). As the
functor @, may refer to other (previously defined) regular datatypes in the
dQg case, the grammar for regular datatypes is mutually recursive with that
for pattern functors. This means that most polytypic definitions are given as
two mutually recursive bindings — one for the datatype level and one for the
pattern functor level. Similarly, laws for polytypic functions are often proved
by mutual induction over the grammars for regular datatypes and pattern
functors. This induction is well-founded as a datatype can only refer to a
datatype that is defined earlier.

The pattern functor of a Haskell datatype with n constructors is an n-ary
sum (of products) on the outermost level. In PolyP this sum is represented



by a nested binary sum, which associates to the right. (This representation
is used in Section 6.1.) PolyP provides a few built-in polytypic functions to
query datatypes and their value constructors for information which is useful
when printing and parsing. The polytypic value constructorsy gives a list of
representations of the constructors of the datatype d a and noOfCons,; gives
the number of constructors (the length of the list).

constructorsy = [Constructor]
noOfCons; == Int
noOfCons; = length constructors,

In these definitions, the subscript d cannot be inferred by the system, but must
be supplied through explicit type information. The abstract type Constructor
has selectors for the name and the precedence level of the constructor.

name :: Constructor — String
prec :: Constructor — Prec
type Prec = Int

In Haskell, all infix operators have a precedence level between 0 and 9 where
higher precedence means tighter binding and less need for disambiguating
parentheses. It turns out that it makes sense to define a precedence level also
for prefix constructors: nullary constructors are at level 10 (they never need to
be surrounded by parentheses) and other constructors are at level 9 (this can
be seen as the precedence level of the invisible infix application operator).

2.8 The polytypic construct

Using the polytypic construct a polytypic function can be defined by induc-
tion over the structure of pattern functors. As an example we take the function
flatten defined in Figure 2. Note that:

e the subscripts indicating the type are included for readability and are not
part of the definition (they are automatically inserted during type inference);
e the definitions of map and map2 are given below.

Function flatten lists the values of type a in a value of type d a. As examples,
we give the (edited) definitions, generated by PolyP, of functions flatten and



flatten, :: Regular d = d a — [a]
flatten, = outy ; map24, singleton flatten, ; Flg,

polytypic Fr; :: f [a] [a] — [a]

= case f of

g+h — Fi,v Fi
gxh — Az,y) > Fyz#Fr y
Empty — A() — ]
Par — ud
Rec — ud
dQ@g — map,; Fi, ; flatten, ; concat
Const t — const []

singleton = a — |a]

singleton T = [z]

Figure 2. The definition of flatten

FL when instantiated on Tree.

flattenyy,, = Tree a — [a]
flatten,, = oulryee ; Map2pqy,. singleton flatteny,., ; FLpryee

FLptree :: FTree [a] [a] — [dq]
Fletwee (Left xs) = 15
FLFTree (nght ("I"Sa ys)) = 5 - Yys

2.4 Polytypic map functions

For every regular datatype d a we define map,, that takes a functionp :: a —

b and a value z :: d a, and applies p to all a values in z, giving a value of
type d b. Similarly, for every pattern functor f, we define mapZ2;, that takes
two functions p :: a — cand r = b — d and a valuez :: f a b, and

applies p to all a values in z, and r to all b values in z, giving a value of
type f ¢ d. The definitions of map and map2 can be found in Figure 3. As
examples, we give the (edited) definitions, generated by PolyP, of functions
map and map2 on the datatype Tree a.

mapre (@ —b) = (Tree a — Tree b)
ma‘pTree p = OUtTT‘ee ) mang'Pree p (mapT'ree p) ; inTree

map2pqree 2 (@ — ¢) = (b= d) — FTree a b — FTree ¢ d
map?FTree p pl (Leﬁ .Z) = Leﬁ (p ZE)
map?FT'ree p pl (nght (Sa t)) = RZght (p, Sapl t)



mapy; :: Regular d = (a —b) — (d a — d b)
mapy p = outq ; map2g, p (Mmap, p) ; ing

polytypic map2; :: (a —c)—(b—d)—(fab—fcd)
= Ap p/ — case [ of

g+h  — map2, p p' + map2, p p’'
g*h — map2, p p' -+ map2, p p’'
Empty — ud

Par —p

Rec — p

d@g — map, (map2, p p')

Constt — 1id

Figure 3. The definition of map and map2

In the following sections we will construct pairs of inverse functions. The proof
of the fact that these pairs of functions are inverses is by calculation: using
laws for polytypic functions we calculate that the composition of the pair
of functions is the identity. As examples of laws for polytypic functions we
present the laws expressing that map and map2 are functors:

map,; id =id
mapy (p ; u) = map, p ; map, u
map2; id id = 1d

map2; (p 5 u) (p'; u') = map2; p p'; map2; u o'

These laws are easily proved from corresponding laws for (+) and (=) by
induction over the structure of regular datatypes.

In the rest of the paper we always assume that d a is a regular datatype
and that f is a pattern functor, but we omit the contexts (Regular d = or
Bifunctor f =) from the types for brevity.

3 Shape

The shape of a value is its structure without its contents. This section defines
functions for separating a datatype value into its shape and its contents, and
for combining shape and contents to a datatype value. Furthermore, it proves
that the composition of these functions is the identity.
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3.1 Function separate

Using the functions flatten and map, defined in the previous section, it is easy
to define a function separate that separates a datatype value into its shape
and its contents.

separate = Regular d = d a — (d (), [a])
separate x = (shape z, flatten z)

shape t Regular d = da— d ()
shape = map (const ())

It is more difficult to define the function combine, the inverse of function
separate. A standard implementation of function combine traverses the shape,
carrying around the content list, and inserts one element from the list at each
of the parameter positions in the shape. Because it is not easy to prove that
such a function is the inverse of function separate, we redefine function separate
to make the inverse construction straightforward.

The preceding definition of function separate traverses its input datatype value
twice: once with map (const ()), and once with flatten. We can fuse these two
traversals into a single traversal that carries around an accumulating state
parameter. This traversal is carried out by a function similar to map which we
call an arrow map. The arrow map takes as an argument a function, in this
case the function put, which at each parameter position prepends the element
to the accumulating list, and replaces the element by the empty tuple. To
avoid ‘pollution’ of the types with state information, we introduce a new type
constructor SA for functions that side-effect on a state.

data SA s a b = SA ((a,s) — (b,s))

We use the notation a ~»; b for the type SA s a b. Using this type and an arrow
map called mapAr, we obtain the following definition for function separate:

separate :: d a~>q d ()
separate = mapAr put

put i a~g) ()
put = SA (M(a,as) = ((),a: as))

mapAr :: (a~sb) — (d a~s d b)

where mapAr is defined in Section 5. The r in mapAr denotes the direction of
the traversal: mapAr is a right to left traversal. This means that given a tree
node with two subtrees, function mapAr first traverses the right subtree, and
then the left subtree. Direction doesn’t matter for normal maps, but for maps
that carry around and update a state direction is important. For separate we
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could have used put’ = SA (A(a,as) — ((), as + [a])) and the left to right
traversal, mapAl, but it turns out that the (somewhat counterintuitive) right
to left traversal with put is lazier, more efficient and easier to prove correct.

3.2 Function combine

Using the left to right traversing variant of the arrow map, mapAl, we can
write the inverse of separate, called combine, as follows.

combine :: d () ~q d a
combine = mapAl get

get i ()~
get = SA (M), a: as) — (a, as))

mapAl i (a~sb) = (d a~s d D)

It remains to define the arrow maps, and to prove that combine is the inverse
of separate, that is, separate followed by combine is the identity. Note that,
due to the constructor SA, we cannot use normal function composition for
values of type a ~», b. Instead we define a new composition operator (>>):

() = (a~sb) = (b~sc) = (a~s0)
SAf>>SAg = SA(f;9)

It is easy to see that get is the inverse of put, but we include the proof to
introduce the notation we use for calculational equality proofs.

put > get
= {Definitions of get and put}

SA (A(a, as) = ((),a : as)) > SA (A((), a : as) = (a, as))
= {Definition of (>>)}

SA (Ma, as) = (O, a: as)); A0, a: as) = (a, as)))
= {Simplification}

SA id

Here SA id :: a -~ ais the identity on SA and the operator ( = ) is equality
on SA.
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3.8  Function combine is the inverse of separate

The main ingredient of the proof that combine is the inverse of separate is a
law about inverting arrow maps. More specifically, we have that mapAl is the
inverse of mapAr provided the arguments of the maps are inverses:

mapAr :: (a~sb) — (d a ~4 d b)
mapAl 2 (b~ a) — (d b~ d a)

(1) p> u=SA4d = mapArp > mapAl u= SA id

Using this law (which is proved in Section 5) we have:

separate >> combine

= {Definitions of separate and combine}
mapAr put => mapAl get

= {Law (1) and put >> get = SA id }
SA id

This proves the correctness of functions separate and combine.

4 Arrows and laws

The previous section defines functions that side-effect on a state. Side effect-
ing functions are often modeled as monadic functions, f :: a« — M b for
some monad M. However, the inverse proofs in this papers benefit from a
more symmetrical abstraction. Therefore, we will use Hughes’ abstract class
for arrows [9], a generalization of monads. Just as with monads, combina-
tor libraries can often be based on an arrow type, but arrows have a wider
applicability than monads. We use a hierarchy of arrow classes as embedded
domain specific languages for expressing data conversion programs. For addi-
tional motivation and background for using arrows, see the papers by Hughes
and Paterson [9,19].

4.1 Basic definitions and laws for arrows

To define the arrow maps and to prove (a generalization of) Law (1), we need
a few combinators to construct and combine arrows, together with some laws
that relate these combinators. We introduce the arrow combinators together
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with example implementations for the SA s a b arrow (short form, a ~»; b)
but as we will see later, the types and the laws for the combinators form the
signature of a general class of arrows. Thus, any program written using these
combinators will automatically be parametrized over the instances of this class.
In definitions and laws that hold for arbitrary arrows we write a ~ b instead
of a ~», b.

Lifting.
The function that lifts normal functions to functions that also take and return
a state value is called arr.

arr (@ — b) = (@~ b)

arr f = SA (f + id)

We will often write f instead of arr f. Function arr is a functor from the cat-
egory of types and functions to the category of types and arrows: it distributes
over composition (and trivially preserves the identity).

T>9=7:4

Arrow composition.

Forward composition of arrows (defined already in Section 3.2) satisfies the
usual laws: it is associative with id as its unit.
d>f =f = f>id

(f>g)>h=Ff> (9> h)

We denote reverse composition with (<), where f < g =g > f.

Arrows between pairs.

Function first applies an arrow to the first component of a pair, leaving the
second component unchanged.

first 2 (a~sb) = ((a,¢) ~s (by0))
first (SA f) = SA (M(a,c),s) — !et (E},s’) =f (a,s)

in (

Function first is a functor, that is, it preserves (arrow) identities and dis-
tributes over (arrow) composition.

first 7 = f - id
first (f > g) = first f > first g

14



The corresponding function, second, that applies an arrow to the second com-
ponent of a pair can be defined in terms of first:

second : (a~b) = ((c,a) ~ (c,b))
second f = swap > first f > swa

swap :: (a,b) = (b, a)
swap (a,b) = (b, a)

Using first and second we can define two candidates for product functors, but
when the arrows simulate side-effects, neither of these are functors because
they fail to preserve composition.

(®>), (<) = (a~c) = (b~ d) = ((a,b) ~ (¢, d))
f#qg = first f>> second g
f<«g = second g>> first f

If one of the two arguments of first and second is side effect free (doesn’t
change the state), then first commutes with second. The canonical form of a
side effect free arrow is j for some function j.

first 7 > second g = second g > first 7
second 7 > first f = first f > second 7)

Arrows with a choice.

We can view the arrow combinators as a very small embedded language. With
the combinators defined thus far we can embed functions as arrows using =, we
can plug arrows together using (>>) and we can simulate a value environment
by using first, second etc. However, we cannot write conditionals — there is
no way to choose between different branches depending on the input.

We lift the operator (v) = (a — ¢) = (b — ¢) — (Fither a b — ¢) to
the arrow level to model a choice between different arrow branches. For state
arrows the implementation is straightforward:

(1)) 2 (a~sc) = (b~gc) = (Either a b~ c)
SAf ||| SA g=SA(Nz,s) = (Aa—f (a,s)) v (Ab— g (b,5))) z)

As a simple exercise in arrow plumbing we define if-expressions:

ifA 2 (a~ Bool) = (a~b) = (a~b) = (a~ D)
ifApte= d_u;; >> first p >> bool2Either >> (t ||| e)
where dup a = (a,a)
bool2Either (b,z) = if b then Left z else Right =

15



The lifted variant of operator (=) for arrows is defined by:

(H+) (@~ c) = (b~ d) — (FEither a b~ Either c d)
f 49 = (f > Left) ||| (g > Right)

Operator (++) is a bifunctor on arrows — it preserves identities and distributes
over composition.

T =7+

g
(fHg)> (f"H4)=(>f)H(g>7)

This requirement is stronger (and thus permits fewer instances) than Hughes’ [9]
requirement.

4.2 A class for arrows

The type SA s a b encapsulates functions from a to b that manipulate a state
of type s. However, most of the programs and laws we want to express don’t
refer to the state. Therefore, we go one step further in the abstraction by intro-
ducing the Haskell constructor class Arrow [9,19]. An arrow type constructor
(~) is any two-parameter type constructor that supports the operations of
the class Arrow. We require a number of laws to hold for the instances of the
arrow class and for documentation purposes, we include these laws in the class
definition although they can’t be directly expressed in Haskell.

class Arrow (~) where
arr :(a—b) — (a~b)
(>):(a~b) = (b~c)— (a~c)
_)

)
first = (@~ b) = ((a,c¢) ~ (b, c))

-- Laws :

T>7 =79

id > f =f = f>id
(f>g)>h =[> (9> h)
ﬁrst? = f = id

first (f > g) = first f > first g

first f > second g = second g > first

These laws are a subset of the laws postulated in Hughes’ arrow paper [9], but
they are sufficient for this paper.

For arrows with a choice operator, (|||), we define the subclass ArrowChoice.
We include both the operator (|||) and (+4+), but it is sufficient to define either
of them in every instance thanks to the defaults. The default declarations are
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part of the Haskell class definition and can be seen as laws with immediate
implementations.

class Arrow (~) = ArrowChoice (~) where
(H) : (@~ ¢) = (b~ d) — (Either a b~ Either ¢ d)
(1) = (a~c) = (b~ c) — (Either a b~ c)

—-— Defaults :

f 4 g = (f > Left) ||| (g > Right)
flllg =(f+rg)>idvid

-— Laws :
Tw7
(fH9)> (f"H-4)=(>f)H (g>7)
(f Il g)>h = (f>h) ||| (g > h)

—
f—+g

This definition of the class ArrowChoice differs from the definition in Hughes’
paper [9] in the following way. Hughes uses left :: (a ~ b) — (Fither a ¢ ~
Fither b c) as the class member and defines (|||) and (++) in terms of left.
Hughes’ laws for left are very similar to the laws for first. For the proofs we
need slightly stronger laws for (|||) and (+4+) than can be derived from the
laws for left and therefore we choose to define this variant of the ArrowChoice
class including the stronger requirement.

The type constructor SA s is made an instance of Arrow and ArrowChoice

by taking the definitions of arr, (>>), first, (|||) and (++) from Section 4.1.
Normal functions are trivially Arrows and they support choice:

instance Arrow (—) where

arr f = f
f>g9=1F:g
first f = f = id

instance ArrowChoice (—) where
fHrg=f—+yg
flllg =fvg

With the definitions from these instances, three of the laws from the Arrow
and the ArrowChoice classes can be rewritten to a form which more clearly
indicates that = lifts composition, first and choice from normal functions to
arrows:

T>9=7>}
ﬁrst? =ﬁrst%
7 =T+
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Many side effecting computations can be captured by the Arrow signature,
including all functions returning monadic results: we can define a Kleisli arrow
for every Haskell Monad [22]:

data Kleisli m a b = Kleisli (a — m b)

instance Monad m = Arrow (Kleisli m) where

arr f = Kleisli (Aa — return (f a))
Kleisli f > Kleisli g = Kleisli (Aa — [ a >= g)
first (Kleisli f) = Kleisli (A(a,c) = f a>= \b — return (b, c))

instance Monad m = ArrowChoice (Kleisli m) where
Kleisli f ||| Kleisli g = Kleisli (f v g)

Examples of type constructors which are monads are Maybe, [] (the list type
constructor) and Bag where a value of type Bag a is an unordered collection
of values of type a.

4.8  An inverse law for arrow products

The two product operators (#>) and (<) are related by a general inverse law,
which will turn out to be useful in the following sections. The law only requires
the side-effects to be inverses. If f > f' = 7, then the arrow f’ un-does the
side-effects of the arrow f, leaving just a side-effect free computation T.Ifids
chosen to be id, then we regain the earlier inverse concept. The more general
inverse concept will be used in the rest of the paper. The generalized inverse
law for the product operators is:

(<) = (a~c¢) = (b~ d)
(#) :: (e~ a) = (d~b)

J

@ f>f=T=2g2gd=7 = fxg>F'®g)=ix])

By symmetry, the law is also true if (<) and (#>) are swapped.

Perhaps a word on notation is appropriate here. We present the types of
the product operators together with the inverse law, to stress that we are not
dealing with just a pair of inverse functions, but rather with a triple containing
two functions and a proof that they are inverses. We take a curried view of
functions with two arguments, that is, they have type a — b — ¢ rather than
(a,b) — c. Similarly, we prefer to write a proof term with two premises as
P = Q) = R, instead of the more traditional P A () = R. Thus we stress
that the components of the triple share the same structure: they take two
arrows (two proofs) and return an arrow (a proof).
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Proof: To prove (2), we assume f > f' = 7 and g> 4 = ? and
calculate as follows:

(f < g)> (' % ¢)
= {Definitions of < and * }
second g >> first f >> first f' >> second ¢’
= {first is a functor}
second g >> first (f > f') > second ¢
= {Assumption 1}
second g > first 7 > second g
= {_z) is side-effect free}
first T > second g > second ¢'
= {second is a functor}
first 7 >> second (9> ¢")
= {Assumption 2}
first 7 > second ?
= {first, second and (>>) preserve =’}
(i = id) ; (id =+ J)
= {(+<) is a bifunctor}

—
1 = ]

4.4 Fized point induction and arrows

Section 5 proves an inverse law (4) for arrow maps. A similar law for normal
maps can be proved with the fusion law for catamorphisms but, unfortunately,
the fusion law does not generalize to arrows. In the proof of the law for arrow
maps we will use instead the following variant of fixed point induction:

Definition 1 A relation P s inclusive if and only if for all chains of tu-

ples (ai, ..., at)

(Vi. P(al,...,a’)) = P (;al,...,L; a)
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Theorem 2 Fized point induction: [21, def. 6.26]

For every inclusive relation P, and for all functions i1 ... ip:

(P (Lo L) AY fies fao P (fr oo fn) = P (it frseoesin fa)
= P (fiz iy, ..., fiz i)

We can instantiate Theorem 2 to a form that is more suitable for our purposes:
let n = 3 and let the (inclusive) relation P(xz,y,2) = > y = 7. Treating
the base case separately, the instance takes the following form:

—
(3) (Vp', o', 7. p'>>>u’:7 = fp>gu=h7)
= fir f> fir g=fix

For the base case (L > 1 = I>) to hold universally we require = and ()
to be strict. This requirement is trivially satisfied in a strict setting (in CPO |
where all functions are strict) but for the proof it is sufficient to require strict-
ness for the embedded language (the arrow class member functions) and not
for the host language (Haskell). In fact, experiments with the implementa-
tion indicate that this requirement can be further weakened, although the full
details remain to be investigated.

5 Traversals as arrow maps

In Section 3, separate and combine were defined using the arrow maps mapAr
and mapAl. The arrow maps can be seen as simple data conversion programs,
which change the contents but leave the shape of the data unchanged. Using
the arrow combinators from Section 4 we can now define the arrow maps, and
prove a generalization of (1): if u is the inverse of p, then a left traversal with u
is the inverse of a right traversal with p.

mapAr :: ArrowChoice (~) = (a~b) — (d a~ d b)
mapAl :: ArrowChoice (~) = (a~b) — (d a~ d b)

4) p>u= T = mapAr, p >> mapAl; v = map, 1
By symmetry the law holds also if mapAr, and mapAl; are swapped. The

definitions of the arrow maps are obtained by a straightforward generalization
of map to arrows.

mapAry p = outy > TRg, p (mapAry p) > ﬁ;
mapAl; v = outy > TLe, u (mapAl; u) > ing
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polytypic Tr; :: (a~¢) = (b~ d) = (fab~f cd)
= \pp — case [ of

g+h — TRypp TRy pp'
g*h — TRy p p' <« TRy p p'
Empty — 1

Par — p

Rec — p

dQg — mapAry (Try p p')

Constt — 1

Figure 4. The definition of the right to left traversal TR.

Functions TR and TL are the corresponding generalizations of map2. All func-
tions used in the definition of map2 are lifted to the arrow level. For all cases
except the product functor case there is only one choice for a reasonable lift-
ing, but when we lift the operator (=) we have two possible choices: (<#)
and (#>). This is the only difference between the two traversal functions: the
right to left traversal, TR, uses (<) and the left to right traversal, TL, uses
(#>). Function TR is defined in Figure 4 but as function TL is almost identical
its definition is omitted. Note that TR and TL are in general not functors,
because (<) and (#>) are not functors. Functions TR and TL satisfy the
following inverse law:

TR it (a~ ¢c) = (b~ d)
TL 2 (¢~ a) = (d~ b)

fab~fcd)

%
= (fcd~fab)

o~~~

—
(5) p>>>u:7> = p’>>>u’=? = Try pp' > Ty u u' = map2; i i
Note the close correspondence between this law and the inverse law for the
product operators (2).

5.1 The arrow maps are inverses

The proof of Equation (4) can be interpreted either as fusing mapAr p with
mapAl u to get a pure arrow map, @ or, equivalently, as splitting the function
map, % into a composition of two arrow maps. The proof is by induction over
the structure of a regular datatype d a. As the grammars for datatypes and
pattern functors are mutually recursive we get two induction hypotheses. The
datatype level hypothesis is, that Equation (4) holds for datatypes defined
earlier, and the pattern functor level hypothesis is, that Equation (5) holds
for the sub-functors. We rewrite the definitions of mapAr, mapAl and map to
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expose the top level fixed points:

mapAr p = fiz (Ap'—)@%>>>TRp p' >>>%)
mapAl u = fir (\u' — oul s> TL u u’>>>m)
map i = fir (AN’ — out; map2 i i’ ; in)

—
We assume p > u = i and calculate as follows:

mapAr p > mapAl u = W

= {Definitions of mapAr, mapAl, fixed point law (3)}
P> = 7 =
m>>>TRpp'>>?%>>>m>>>TLuu'>>>%:

[4

out ; map2 i i ;in
= {7)>>>7:]Tg),in;out=id,f>>>ﬁ=f}

p’>>>u':7=>

m»TRpp'»TLuu'»m:m»W»%
= {Law (5) and the assumption: p >> u=_z>}

True

We prove Law (5) by induction over the structure of the pattern functor f.
Because there are seven constructors for functors, we have to verify seven
cases. Although this is laborious, we want to show at least one complete proof
of a statement about polytypic functions.

The sum case, g + h:
TResn p p' > TLyp u v

= {Definitions}

(TRy p p' # TRy p p') > (TL u v’ H TL, u )
= {(++) is a bifunctor}

(TRg p p' > Tiy u v') #+ (TR, p p' > Tiy u v
= {Indt&ction hypothe§is (5) (twice)}

map2, i ! HE map2y, t i
= {? 4 ¢ = f —+ g, definition of map2,,,}

—
map2,., t 1

The product case, g * h:
TResr p p' > Tlgp u o'

= {Definitions}
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(TRy p p' <« TRy p p') > (TLy u v % TL, u u')
= {Inverse law for products (2), induction hypothesis (5) (twice)}

map2, i i+ map2, i i
= {definition of map2,,,}

—
map2,,, i 0

The empty case, Empty:
TREmpty P P’ > Tlgmpy v '
= {Definitions}
id s> id
= {z?l) is the unit of >}
id
— {Definition of map2g,,,., }

—>
. .,
Map2gppry L

The constant case Const t is proved in exactly the same way as the empty
case — the calculation is omitted.

The parameter case, Par:
TRPar p pl > TLPar w u'

= {Definitions}
P> u
= {Assumption}

— {Definition of map2p,, }
—
mafngar t1

The recursive case, Rec, is proved in exactly the same way as the parameter
case — the calculation is omitted.

The composition case, d Q g:
TRd@g p pl > TLd@g u u

= {Definitions}
mapAry (TRy p p') > mapAl; (T, u u')
The top level induction hypothesis (4) is
f>>>g:ﬁ> = mapArf»mapAlg:W
where we take f = TR, p p', g = TL, u v’ and h = map?2 i i
and induction hypothesis (5) is precisely f > g = 7.
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map, (map2, i i

= {Definition of map?d@g}
-
map2ya, i 0

This completes the proof.

In the conclusions we discuss (how to simplify) proving statements about
polytypic functions.

6 Packing

This section sketches the construction and correctness proof of a polytypic
packing program. The basic idea of the packing program is simple: given a
datatype value (an abstract syntax tree), construct a compact (bit stream)
representation of the abstract syntax tree. For example, the following rather
artificial binary tree, called treeShape in the introductory section,

treeShape :: Tree ()
treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())

can be pretty-printed to a text representation of treeShape requiring 55 bytes.
However, because the datatype Tree a has only two constructors, each con-
structor can be represented by a single bit. Furthermore, the datatype () has
only one constructor, so the single element (also written ()) can be represented
by 0 bits. Thus we get the following representations:

Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())
1 1 0 1 0 0 0

The compact representation consists of 7 bits, so only 1 byte is needed to
store this tree. In fact, the pretty-printed text of a value of type Tree () is
asymptotically 64 times bigger than the compact representation.! Of course,
this is an unusually simple datatype, but the average case is still very compact.

Given a datatype value, the polytypic packing function prepends the compact
representation of the value to a state, on which it side effects. Let Text be the

1 A value of type Tree () with n leaves has n — 1 internal nodes. A leaf is printed as
the seven character string "Leaf ()" and a node as "Bin (", left subtree, ") (",
right subtree, ")" — a total of nine characters per node. Thus the pretty printed
string representation of a tree contains exactly 7n + 9(n — 1) = 16n — 9 bytes while
the compact representation with one bit per constructor contains 2n — 1 bits. The
ratio is then 8(16n — 9)/(2n — 1) = 8(16n — 8)/(2n — 1) = 64.
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type of packed values, for example String or [Bit]. Then the packing function
can be implemented using the state arrow type constructor SA Text, but we
will keep the arrow type abstract and only require that it supports packing of
constructors.

To pack a value of type d a we need a function that can pack values of type a.
We could use separate and combine to reduce the packing problem to packing
the structure and the contents separately, but instead we parametrize on the
element level (un)packing function. Note that with Hinze style polytypism [7],
this parametrization comes for free.

Our goal is to construct two functions and a proof:

e A function pack (‘polytypic packing’) that takes an element level packer to
a datatype level packer.

pack 2 (a~ () = (d a~ ()

For example, the function that packs the tree treeShape :: Tree () is ob-
tained by instantiating the polytypic function pack on Tree and applying
the instance to a (trivial) packing program for the type ().

e A function unpack (‘polytypic unpacking’) that takes an unpacker on the
element level a to an unpacker on the datatype level d a:

unpack = ()~ a) = ()~ d a)

For the Tree () example the element level parsing program is a function
that parses nothing, and returns (), the value of type ().

e A proof that if p and u are inverses on the element level a, then pack p and
unpack u are inverses on the datatype level d a.

Representing constructors.

To construct the printer and the parser we need a little more structure than
provided by the Arrow class — we need a way of handling constructors. Because
a constructor can be coded by a single natural number, we only need operations
for printing and parsing constructor numbers. With Text = [Int] and the
arrow SA Text the operations put and get from Section 3 would work, and the
printing algorithm constructed in the following section would in its simplest
form just output a list of numbers given an argument tree of any type. A better
solution is to code these numbers as bits and here we have some choices on
how to proceed. We could decide on a fixed maximal size for numbers and
store them using their binary representation but, as most datatypes have few
constructors, this would waste space. Instead we determine statically the total
number of constructors in the datatype and pass this number as the first
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argument to packCon and unpackCon.

class ArrowChoice (~) = ArrowPack (~) where
packCon  :: Int — (Int ~ ())
unpackCon :: Int — (() ~ Int)

-— Laws :
packCon n >> unpackCon n = idpy

Functions packCon and unpackCon can then code every single constructor
number in only as many bits as needed. For an n-constructor datatype we use
just [ log, n] bits to code a constructor. An interesting effect of this coding is
that the constructor of any single constructor datatype will be coded using 0
bits!

We obtain slightly better results by using |log, n| bits for some of the con-
structors. Even better results are obtained if we analyze the datatype, and
use Huffman coding with different probabilities for the different constructors.
However, our goal is not to squeeze the last bit out of our data, but rather to
show how to construct the polytypic program. The definitions of packCon and
unpackCon are straightforward and omitted (they can be found in the code
on the web page [13] for this paper.)

In the rest of this section (~») will always stand for an arrow type constructor
in the class ArrowPack but, as with Regular, we often omit the type context
for brevity.

6.1 The construction of the packing function

We construct a printing function pack, which promotes an element level packer
to a datatype level packer, together with a parsing function unpack, which
similarly promotes an unpacker to the datatype level. If the element level
arguments are inverses, then we want unpack to be the inverse of pack:

pack
unpack ::

/\/‘\

a~ () = (d a~ ()
()~ a) = ()~ da)
—

(a7
(6) p>u= i = pack p > unpack u = map 1

In the following proofs we Will> assume that the argument packer p and the
unpacker u satisfy p > u = 1.
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Overview of the construction.

Again, the construction can be interpreted as fusing the ‘printer’ pack with
the ‘parser’ unpack to get a pure arrow map . As we are defining polytypic
functions the construction follows the structure of regular datatypes: a regular
datatype is a fixed point of a pattern functor, the pattern functor is a sum
of products of type terms, and the terms can involve type parameters, other
types, etc.

The arrow pack p prints a compact representation of a value of type d a. It
does this by recursing over the value, printing each constructor by computing
its constructor number, and each element by using the argument printer p.
The constructor number is computed by means of function Ps (‘Pack Sum’),
which also takes care of passing on the recursion to the children. Function
packCon prints the constructor number with the correct number of bits. Fi-
nally, function Pp (‘Pack Product’) makes sure the information is correctly
threaded through the children.

Top level recursion.

We define functions pack and unpack by explicit recursion on the top level,
guided by PT (‘Pack Top-level’) and Ut (‘Unpack Top-level’). As pack decom-
poses its input value, and compactly prints the constructor and the children
by means of a function PT (defined later), unpack must do the opposite: first
parse the components using UT and then construct the top level value:

pack; p = PT noOfCons, p (pack, p) < oul
unpack, v = UT noOfCons, u (unpack, u) >> i

Here (<) is used to reveal the symmetry of the definitions. Thus we need
two new functions, PT and UT, and we can already guess that we will need
a corresponding fusion law:

Pt :: Int = (a~ () = (b~ ()
Ur Int—=()~a)—=(()~b)—=(()~fabd)
=

—
p>u=1 = p>di=1i =
7 ! ! s
Prnpp'>UTnuu =map2i:

Equation (6) follows from (7) and the fixed point law (3).
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Packing constructors.

We want to construct functions PT and UT such that (7) holds. Furthermore,
these functions should do the actual packing and unpacking of the constructors
using packCon :: Int — (Int ~ ()) and unpackCon :: Int — (() ~ Int)
from the ArrowPack class:

Pt npp'" = packCon n << Ps p p'
Ut n u v = unpackCon n > Us u u’

The arrow Ps p p’ packs a value (using the argument packers p and p’ for the
parameters and the recursive structures, respectively) and returns the number
of the top level constructor, by determining the position of the constructor in
the pattern functor (a sum of products). The arrow packCon prepends the
constructor number to the output. As packCon n > unpackCon n = ﬁl) by
assumption, the requirement that function PT can be fused with UT is now
passed on to Ps and Us (‘Unpack Sum’):

Ps :(a~ () = (b~ () = (f a b~ Int)
a) > ()~ b) = (Int~ f ab)
7

—
= p>du= = Pspp' > Usuu =map2 i

The arrow unpackCon reads the constructor number and passes it on to the
arrow Us u o', which selects the desired constructor and uses its argument
parsers u and u’ to fill in the parameter and recursive component slots in the
functor value.

Calculating constructor numbers.

The pattern functor of a Haskell datatype with n constructors is a nested
sum (of products) on the outermost level. We could use a single bit in each
of the nested sums to express the choice between left and right, but that
would result in a unary encoding of the constructor numbers and that would
be expensive for datatypes with many constructors. Instead we first calculate
the constructor number, and then code that number as a bit string (using
packCon). We define PS by induction over the nested sum part of the pattern
functor and defer the handling of the product part to Pp (‘Pack Product’).
(The definitions of ing,; and outp, are in Figure 5.)
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inm = Either () Int — Int
inge = (const 0) v (1+)

OUlp =2 Int — Fither () Int
outp: 0 = Left ()
outy (n+1) = Right n

Figure 5. The definitions of inp; and outp,; as Haskell code.

polytypic Ps; = (a~ () = (b~ () = (f a b~ Int)
= Ap p’ — case f of
g+h —> ing < (PP p p' 4 Ps p p)
g — )\()—>6<<<PPpp’

polytypic Us; = (()~a) = (()~0b) = (Int~ f ab)
= A\u v’ — case f of
g+h — m>>>(UPuu'—H+USuu’)
g — A0 — () > Up u v

The types for PP and UP (‘Unpack Product’) and the corresponding fusion
law are unsurprising:

Pp i (a~ () = (b~ () = (f a b~ ()
Up = (0~ a) > ()~ 8) = (0~ f a b)
4

—
(9) p>>>u:7> =p>u=7 = Pppp>>Urut =maw2ii
The proof of Equation (8) using (9) is by induction over the nested sum
structure of the functor. The proof is very similar to the corresponding proof
for TR and therefore omitted.

Sequencing the parameters.

The last part of the construction of the program consists of the two func-
tions PP and UP defined in Figure 6. The earlier functions have calculated
and printed the constructors, so what is left is “arrow plumbing”. The arrow
PP p p’ traverses the top level structure of the data and inserts the correct
compact printers: p at argument positions and p’ at substructure positions.
The only difference between UP and PP is, as with mapAr and mapAl earlier,
the traversal direction in the product case — visible in the use of (<) and (#>)
respectively. The inverse proof is very similar to that for TR and TL, and is
omitted. The case for Const t is not included as no reasonable definition can
be given that is polymorphic in t. Specific cases for Const Int, Const Bool,
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polytypic Pp; == (a~ () = (b~ () = (f a b~ ())
= Ap p’ — case [ of

gxh  — M(,0) = () < (PPy p p' < PPy p p)
Empty — ﬁ

Par — D

Rec — p'

d@Qg — pack; (PP, pp)

polytypic Up; :: (() ~a) = (() ~b) = ()~ f a b)
= Au u' — case f of

gxh — X)—(0),())> (Up, u v % UPj u u)
Empty —> id

Par — u

Rec —

dQg — unpack; (Up, u u')

Figure 6. The definition of PP (‘Pack Product’) and UP (‘Unpack Product’).

and for other monomorphic types can easily be added.

7 Pretty printing

Modern programming languages allow the user to define new kinds of data.
When testing or debugging a program, the user often wants to see values
of these new datatypes. Many languages support the automatic derivation
of printing functions for user-defined datatypes. For example, in Haskell one
can write deriving (Show, Read) after a datatype definition, and obtain the
function show (which prints values of the datatype) and read (which reads
them back) for free. Thus a Haskell programmer can use (instances of) a few
predefined polytypic functions, but she has no influence over their definitions
nor any means of defining her own polytypic functions.

This section shows how one can define polytypic versions of the functions show
and read. The polytypic functions show and read are each others inverses
by construction. The polytypic parsing function can be used together with
Haskell’s functions for parsing (including proper treatment of operator fixities)
but for technical reasons (involving left recursion), parsing of infix constructors
is not supported.
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7.1 More arrow classes

This subsection introduces a class ArrowReadShow that provides the arrow
operations that are used in pretty printing and parsing. The new opera-
tions are divided into four classes: ArrowZero, ArrowPlus, ArrowSymbol and
ArrowPrec. The two first classes are used for error handling and are present
already in Hughes’ arrow paper [9], but the last two classes are new. The oper-
ations of ArrowSymbol are used to print and parse symbols, and the operations
of ArrowPrec handle operator precedences.

Arrows that can fail

Up to now the data conversion programs did not have to handle failure. The
unpacking algorithm would of course benefit from error handling to allow for
bad input data, but no error handling is essential for expressing the algorithm.
But to parse a text representation of data values we really need to choose
between different parsers (for different constructors) and hence some parsers
must be able to fail. Therefore we define the class ArrowZero for arrows that
can fail:

class Arrow (~) = ArrowZero (~) where
zeroA it a~» b

-- Laws :
? > zeroA = zeroA = zeroA > ?

The arrow zeroA is the multiplicative zero for composition with (at least) pure
arrows and, as we will see later, the additive zero of a plus operator for arrows.

Error handling

The operator (<) in the class ArrowPlus builds a parser that uses a second
arrow if the first one fails. The operator (<>) is a kind of dual to the choice
operator (||[) = (a~ ¢) = (b~ ¢) — (Either a b~ ¢) from ArrowChoice.
The choice operator makes a choice depending on the input, while the operator
(<P>) makes a choice depending on some hidden state and delivers the result

31



in the corresponding summand in the output.

class ArrowZero (~) = ArrowPlus (~) where
(<) :: (@~ b) = (a~ ¢) = (a~> Either b c)
(<) = (a~b) = (a~b) = (a~ D)

—-— Defaults :
f <> g=(f > Left) < (g > Right)
f<g=(f<>g)>idvid

-- Laws :

zeroA > f =f = [ <> zeroA
[ <> zeroA = f> Le

zeroA <> f = f> W

f>@<bh)=((>g9 <> (>h

The default definitions show that only one of (<}>) or (<>) need be defined
— the relation between the ArrowPlus operators is the same as that between
the ArrowChoice operators. The arrow zeroA is the zero of the plus operator
(<)

Reading and writing symbols

Almost all arrow classes thus far have been very general and useful for a wide
variety of applications, but for pretty printing and parsing we need a few more
specific tools. To print and parse symbols (constructor names, parentheses and
spaces) we use the class ArrowSymbol:

class Arrow (~) = ArrowSymbol (~) where
readSym :: Symbol — (a ~> a)
showSym :: Symbol — (a ~ a)

-- Laws :
showSym s > readSym s = ﬁ
showSym s >> readSym s' = zeroA < s#s'

type Symbol = String

The two laws capture the minimal requirements needed to prove that show
and read are inverses: reading a symbol is the inverse of writing the same
symbol but trying to read another symbol back will fail. As examples we give
one arrow for printing and one for parsing parenthesized expressions:

parenthesize, deparenthesize :: ArrowSymbol (~) = (a~> b) — (a ~ b)
parenthesize f = showSym " (" < f & showSym ")"
deparenthesize f = readSym " (" > f > readSym ")"
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Precedence levels

Finally, we define the class ArrowPrec to handle precedence levels and paren-
theses. Our formulation is inspired by the functions showsPrec and readsPrec
in the Haskell classes Show and Read.

showsPrec :: Show a = Prec — a — String — String
readsPrec :: Read b = Prec — String — [(b, String)]

The first argument passed to showsPrec and readsPrec is the precedence level
of the surrounding expression. It is used to determine whether or not the
element of type a should be surrounded by parentheses.

Function showParen (readParen) is used to conditionally enclose its printer
(parser) argument with parentheses. The printer showParen p f, encloses f
with parentheses if and only if p is lower than the precedence of the environ-
ment. The printer (parser) setPrec p f sets the precedence level to p in the
environment of f.

class ArrowSymbol (~) = ArrowPrec (~) where
setPrec  : Prec = (a~b) — (a~b)
readParen :: Prec — (a ~ b) — (a~b)
showParen :: Prec — (a ~ b) — (a~ b)

-— Laws :

T3> y=72 = setPrec p > setPrec py = 7

T3>y =7 = showParen p (showSym n <« z) >
readParen p (readSym n > y) = 7

n#n' = showParen p (showSym n K z) >
readParen p' (readSym n' > y) = zeroA

Show and read
The polytypic functions show and read use operations from ArrowChoice and

from all of the four classes just defined, and to capture this succinctly in the
types, we define the class synonym ArrowShowRead:

class (ArrowChoice (~), ArrowPlus (~), ArrowPrec (~))
= ArrowShowRead (~)

For the rest of this section, all occurrences of (~) will denote an arrow in the
class ArrowShowRead.
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7.2 Definition of show and read

In this section we define a polytypic show function show and a polytypic read
function read and we prove that read is the inverse of show:

show :: (a~ () = (d a~())
read :: (() ~a) = (()~ d a)

— —
(10)s>r=1 = show s> read r = map 1

Note that we embed the precedence level handling in the arrow type, so that
each time s or r is used, the correct precedence level is determined by the local
environment. Compared to the Haskell functions showsPrec and readsPrec for
a specific datatype we make three changes:

e we generalize the types by using arrows,
e we parameterize by the element level show (read) operation,
e and we define polytypic versions that work for all types d a.

The definition is divided into four levels, following the structure of datatype
definitions: the top level (show and read) is a recursive definition, the second
level (Ss and Rs) breaks down the sum structure of the pattern functor, the
third level (Sp and RP) analyzes the product structure and finally the fourth
level (SR and RR) deals with parameters and uses of other datatypes.

The top level calculates the list of constructors of the datatype and passes
them down to the next level. The second level shows (reads) the construc-
tor name and handles parentheses (depending on the precedence levels of
the expressions). The third level inserts spaces between the arguments of the
constructors and marks the arguments as being subexpressions (potentially
needing parentheses). Finally the bottom level just applies the appropriate
show (read) functions passed down as parameters or calls show (read) for
occurrences of other datatypes.

Top level recursion

The built-in polytypic value constructors; :: [Constructor] (introduced in Sec-
tion 2.2) is the list of constructors of the datatype d a. In the following proofs
we use two properties of the constructor list: the list has at least one ele-
ment (there are no 0-constructor datatypes in Haskell) and all the constructor
names are distinct.

Function show uses out to expose the top level structure of the datatype value
and handles the recursion by passing itself as an argument to Ss (‘Show Sum’,
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defined later). Similarly, read calls Rs (‘Read Sum’) and converts the result
to a datatype value using in.

showy s = SSg, constructorsy s (showy s) <K outy
—
ready v = RSg, constructorsy r (readq r) >> ing

The two helper functions Ss and Rs have their own inverse law:

Ss; :: [Constructor] — (a~> () = (b~ () = (f a b~ ()
Rs; i [Constructor] = (() ~ a) = (()~b) = (() ~ f a b)

— -
S>r= 4 :>SI>>>TI=7:>

11 =
( )SSfcsss'>>>R§ccsrr’:map2fii'

Equation (10) now follows from Equation (11) by fixed point induction (3).

Printing constructors

On the top level, every pattern functor is a right associative sum, and this is
mirrored in the definitions of Ss and RS as well as in the corresponding part
of the proof. We use name :: Constructor — String to access the constructor
names and we check the precedence level with prec :: Constructor — Prec to
determine when parentheses are needed.

polytypic Ss; :: [Constructor] — (a~> () = (b~ () = (f a b~ ())
= A(c:cs) s s — case f of
g+h — Ss;le]lss'|||Sshesss
g — showParen (prec c)
(showSym (name c) < SP, s s')

polytypic Rs; :: [Constructor] — (() ~a) = () ~b) = ()~ f a b)
= A(c:cs) rr’" — case f of
g+h — Rs;[c]rr" <>Rsy esrr’
g — readParen (prec c)
(readSym (name c) > Rp, r 1)

Functions Sp (for ‘Show Product’) and RP (for ‘Read Product’) have the
following properties:

Spr i (a~ () = (b~ () = (fab~ ()
Rpp i ()~ a) = ()~ b) = ()~ fab)

(12)5>>>r:_z):>5'>>>7":7:>SPfss’>>>RPfrr':map2fzz'

We prove (11) by induction over the nested sum part of the pattern functor.
We strengthen the induction hypothesis to include also the following law. For
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all p, x and y, and for all ¢ & cs':

(13) Rsy ¢s' r 1’ < showParen p (showSym (name ¢') <K z) = zeroA
(14) Ssf ¢s' s s’ > readParen p (showSym (name ¢') > y) = zeroA

We assume s > r = _z) and s’ > ' = 7 and calculate as follows for
Equation (11):

The sum case, g + h:
We prove the three equations separately, starting with (11):
SSy+n (c:cs) s s' > Rsypp (c:es) rr'
= {Definitions}
(Ssy [c] s 8" ||| Sy cs s s') > (Rsy [¢] 7 ' <> Rsy es r 1)
= {Distribution laws for (|||) and (<>)}
((Ssy [e] s " >Ry [c] rr') < (Ssy [c] s 8" > Rsy esrr')) ||
((Sshcs s s"> Rsy [c] rr') <> (Ssp cs s8> Rs, s r 1))
The first term is identical to the term in the default-case below. Use induc-

tion hypothesis (13) and (14) for the second and third terms, and induction
hypothesis (11) for the fourth term.

— —
(map2, i i <> zeroA) ||| (zeroA <> map2, i i')

= {Laws for zeroA and (<>)}
— —
(map2, i i > Lez’_‘t}) || (map2, i ©' >> Right)

=  {Relation between (|||) and (+#)}

map2, i ! HE map2y, t g
= {(4+) preserves ="}

map2, i i' = map2,, i it

— {Definition of map2,,,}
map2,,, 10
Now we turn to (13):

showParen p (showSym (name c') < ) > RSy cs' r 1’
= {Definition of RS;14, let (c: cs) = c¢s'}

showParen p (showSym (name ¢') K z) >

(Rsy [¢] r ' <> Rsy ¢s r 1)
= {Distribution law for (<t>)}
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(showParen p (showSym (name ¢') < z) > Rs, [¢] r r') <>
(showParen p (showSym (name ¢') < z) > Rs, ¢s r r')

= {The second law of showParen and the induction hypothesis}
zeroA <> zeroA

= {Laws for (<t>) and zeroA}

zeroA

The proof of (14) is very similar and omitted.

The default case, g:
As the constructor list has the same number of elements as the number
of sub-functors in the sum structure of the functor, there will be only one
element left in the constructor list in the base case. Thus we can match
on [c] instead of (c: cs).
Ss, [c] s s> Rsy [¢] r 1’
= {Definitions}
showParen (prec ¢) (showSym (name c¢) < Sp, s s') >
readParen (prec ¢) (readSym (name c) > Rp, r 1)
With p = prec ¢, n = name ¢, x = Sp, s s’ and y =
= Rp, r ' we can apply the first law for showParen as
T >>y = map2, i i is exactly the ind. hyp. (12).
map2, i i

Both (13) and (14) follow immediately from the second law of showParen.

Printing constructor arguments

The function Sp (RP) inserts (reads) a space before each argument of a con-
structor, and sets the precedence level of each argument to high = 10 (to force
parentheses except for atomic subexpressions).

polytypic Sp; :: (a~ () = (b~ () = (f a b~ ()
= )As s’ — case f of

gxh — X(),0)) —( i<< (Spy s 8" < Spy s )
Empty—))\ —>i

— showSym " " < setPrec high (SRy s s')

polytypic Rpy :: (() ~ a) = (() ~b) = (()~ [ a b)
= Ar ' — case f of

g*h —>/\()—>(( i>> (Rp, r ' %> Rpy, 1 1')
Empty — X() )

g — readSym " " >> setPrec high (RR, r r')
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Here functions SR (for ‘Show Rest’) and RR (for ‘Read Rest’) have the follow-
ing properties:

SRy = (a~ () = (b~ ()
R 22 (() ~ a) = (() ~ b)
7

— —
15)s>r=14 =>s>r"=4 =SR s8> Rr ' = map2, i 1
f Ry f

We prove (12) by induction over the product structure of the functor f:

The product case, g * h:
SPgp s 8" > Ry 1 1’

= {Definitions}
(Spy s 8" <SP, s 8') > AN(),() = () >
) = (0,0 > (Rp, r ' %> Rpy, 1 1)
= A0, 0) = 0) 5 A0 = (0, 0)) = id,00}
(Spy s s <« Sp, s s') > (Rp, r ' % Rp, 7 1)
= {Inverse law for (<*1:), induction hypothesis (twice)}

map2, i i s map2, i i
= {Definition of map2,,,}

—
map2g., t 1

The empty case, Empty:
Trivial.

The base case, g:
Sp, s s' > Rp, r 1’
= {Definitions}
setPrec high (SRy s s') > showSym " " >
readSym " " >> setPrec high (RRy 7 r')
= {Law for showSym and readSym}
setPrec high (SR, s s') >> setPrec high (RRy 7 r')
= {Law for setPrec and Equation (15)}

—
map2, i i

Printing the rest

At the bottom level all that is left is to apply the correct printer (parser): Par
and Rec select from the parameters and dQg calls the top level show (read)
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recursively.

polytypic Sry :: (a~ () = (b~ () = (f a b~ ()
= )Xs s’ — case [ of
Par — s
Rec — &
d@Qg — showy (SRy s s')

polytypic RRy :: (() ~a) = (()~b) = ()~ [ ab)
= Ar r' — case [ of
Par — r
Rec — 7'
dQg — ready (RRy 7 1')

As for packing, the case for Const t is not included, but specific cases for
monomorphic types can easily be added.

The only remaining proof obligation is (15) and the proof is once again by
induction on the structure of the functor — the Par and Rec cases follow
immediately from the assumptions, and the d @ g case from the top level
induction hypothesis (10) and the local induction hypothesis (15). This com-
pletes the proof that read is the inverse of show.

8 Generating arrow instances

Most of the code presented in this paper is generic in two ways. We use polytyp-
ism to parametrize our definitions by a regular datatype, and we use Haskell’s
constructor classes to parametrize by the choice of concrete arrow implemen-
tation. Using PolyP, we obtain specific instances of the polytypic functions
automatically, but we do have to write instances for the arrow classes. This
section describes a few general arrow constructors and shows how to combine
them to obtain an example instance for ArrowShowRead that satisfies the
necessary laws.

8.1 Kleisli arrows

We have already presented three arrow instances: the trivial function arrow
a — b, the state arrow a ~, b for any state type s and the Kleisli arrows
Kleisli m a b for every monad m. The Kleisli arrows were defined in Section 4
together with instances for Arrow and ArrowChoice. If the underlying monad
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has a zero and a plus operation (is an instance of the Haskell class MonadPlus),
then we can define instances for ArrowZero and ArrowPlus as well:

data Kleisli m a b = Kleisli (a — m b)

instance MonadPlus m = ArrowZero (Kleisli m) where
zeroA = Kleisli (const mzero)

instance MonadPlus m = ArrowPlus (Kleisli m) where
Kleisli f <> Kleisli g = Kleisli (Az — mplus (f =) (g ))

The Maybe monad and the Bag monad are in MonadPlus, but the the list
monad is not (with the standard Haskell definition) as the order of the al-
ternative parse results depends on how the parser is expressed. To allow for
multiple parse results, we therefore use bags instead of lists.

8.2 State arrow transformers

The state arrow can be generalized to a state arrow transformer that adds
state passing to any other arrow. We follow Hughes’ [9] terminology and call
arrow transformers functors for short.

data StateFunctor s (~) a b = SF ((a,s) ~ (b,s))

With this definition the simple state arrow SA s is equivalent to adding state
passing to the trivial arrow: StateFunctor s (—). The state functor instances
for Arrow, ArrowChoice, ArrowZero and ArrowPlus are in Figure 7. The laws
included in the definition of the different arrow classes are satisfied for these
instances.

8.8 Monad arrow transformers

All the arrow type constructors defined so far were defined also in Hughes’
arrow paper [9], but the following construction is new. The monad arrow
constructor MonadFunctor wraps a monad around the arrow type.

data MonadFunctor m (~) a b = MF (m (a ~ b))

For every monad m and every arrow (~+) this construction gives us a new arrow
MonadFunctor m (~), but for this new arrow to support choice, failure and
error handling we need to restrict the monad to, essentially, a reader monad.
The reader arrow transformer ReaderFunctor is a special case of the monad
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instance Arrow = Arrow (StateFunctor s (~)) where

~) =
? SF (first ) ;
SEFf>SF g=S8F (f>g
first (SF f) SF (swap23 >> first f > swap ?

(
swap23 :: ((a,b),s) — ((a,s),b)
swap28  ((a,b),s) = ((a,s),b)

A

instance ArrowChoice (~) = ArrowChoice (StateFunctor s (~)) where
SFE f ||| SF g = SF (eitherout > (f ||| g))

eitherout :: (Either a d',s) — Either (a,s) (d',s)

eitherout (z,s) = (pairs - pairs) x where pairs a = (a, s)

instance ArrowZero (~) = ArrowZero (StateFunctor s (~)) where
zeroA = SF zeroA

instance ArrowPlus (~) = ArrowPlus (StateFunctor s (~)) where
SF f < SF g=SF (f < 9)

Figure 7. Instance declarations for the state arrow transformer.

arrow transformer:

type ReaderFunctor r = MonadFunctor ((—) r)

The transformer ReaderFunctor r adds an environment of type r to any arrow.
This can also be simulated with StateFunctor but when no update is needed,
ReaderFunctor is more efficient and also simplifies the proofs. We use the
shorthand notation a ~5 b for ReaderFunctor r (~+) a b. (Note the difference
between the notation a ~+, b for the state arrow type and a ~» b for the
reader arrow type.) The instances for MonadFunctor and ReaderFunctor are
in Figure 8.

Two useful operations on ReaderFunctor arrows are getEnv and comapEnuv:

getEnv = Arrow (~) = a1

getEnv = MF (Aenv — Aa — env)

comapEnv :: (s = r) — (a5 b) — (a~b)
comapEnv f (MF envreader) = MF (f ; envreader)

The arrow getEnv ignores its input and returns the value of the environment.
The arrow comapEnv f q adapts ¢ to a different environment by transforming
the environment value by f.
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instance (Monad m, Arrow (~)) = Arrow (MonadFunctor m (~)) where

7 = MF (liftM0 F)
MF f > MF g = MF (liftM2 () f g)
first (MF f) = MF (liftM first f)

instance ArrowChoice (~) = ArrowChoice (ReaderFunctor r (~)) where
MF [ ||| MF g = MF (LiftM2 (|[) f g)

instance ArrowZero (~) = ArrowZero (ReaderFunctor r (~)) where
zeroA = MF (lift M0 zeroA)

instance ArrowPlus (~) = ArrowPlus (ReaderFunctor r (~)) where
MF f <> MF g = MF (liftM2 (<b>) f g)
MF f <= MF g = MF (liftM2 (<>) f ¢)

Lift MO 2 Monad m = a—m a

LiftMo f = return f

liftM :: Monad m = (a — b) —» (m a — m b)

UftM f m = m >= Ax — return (f z)

lift M2 : Monad m = (a—b—¢)— (ma—>mb—mec)

LftM2 f m n =m >= Az — n >= Ay — return (f z y)

Figure 8. Instance declarations for MonadFunctor and ReaderFunctor.

8.4 An instance for ArrowShowRead

We can combine the three general arrow constructors to obtain an arrow RS
that can be made an instance of ArrowShowRead:

type RS = ReaderFunctor Prec (StateFunctor Tokens (Kleisli Bag))
type Tokens = [String|

The transformer ReaderFunctor Prec adds an environment containing an inte-
ger to handle the precedence level, the transformer StateFunctor Tokens adds
a state containing a token list and the inner arrow Kleisli Bag handles the bag
of alternative parses. By unfolding the definitions of the arrow constructors
we get

RS a b= Prec — (a, Tokens) — Bag (b, Tokens) .

This can be compared with the types for showsPrec and readsPrec from the
Haskell prelude.

showsPrec :: Show a = Prec — a — String — String
readsPrec :: Read b = Prec — String — [(b, String)]
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instance ArrowSymbol RS where

showSym s = MF (return (SF (second (s‘j)))
readSym s = MF (return (SF (second (Kleisli (readToken s)))))

readToken t (s : ss) | s ==t = return ss
readToken t _ = mzero

instance ArrowPrec RS where
setPrec p = comapEnv (const p)
showParen p f = ifHighPrec p (parenthesize f) f
readParen p f = ifHighPrec p (deparenthesize f) f

ifHighPrec :: ArrowChoice (~) = Prec — (a Prec b) = (a Prec b) — (a Pree b)
ifHighPrec p = ifA (getEnv > (> pi)

Figure 9. Instances for ArrowSymbol and ArrowPrec.

These types use String where RS uses Tokens, and lists instead of Bags but
are otherwise very similar to RS a () and RS () b, respectively.

The arrow RS is by construction an arrow with choice, zero and plus. Hence,
all we need to make RS an instance of ArrowShowRead are the instances for
ArrowSymbol and ArrowPrec in Figure 9. Function readSym is the standard
item parser and showSym is even simpler (both ignore the precedence). The
functions setPrec, showParen and readParen use the precedence level environ-
ment to determine when to read or write parentheses (using deparenthesize
and parenthesize). The proofs that the instances satisfy the laws of the classes
are long but relatively simple.

9 Results and conclusions

QOverview of the results

We have defined the following pairs of data conversion programs and related
them with inverse laws:

e Shape plus content: (Section 3)
separate 1 d a ~q d ()

combine :: d () ~q d a
separate >> combine = 1
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e Arrow maps: (Section 5)

mapAr :: ArrowChoice (~) = (a~>b) — (d a~ d b)
mapAl :: ArrowChoice (~) = (a~b) — (d a~ d b)
p>>>u:_z'> = mapAr p > mapAl v = map ©

e Packing: (Section 6)

pack  :: ArrowPack (~) = (a~ ()) = (d a~ ()
unpack = ArrowPack (~) = (()~ a) = (() ~ d a)
p>>>u:7> = pack p > unpack u = map 1

e Pretty printing: (Section 7)

show :: ArrowShowRead (~) = (a~ ()) = (d a~ ())
read :: ArrowShowRead (~) = (()~a) = (()~ d a)
s>>>7“=_i) = show s >> read r = map 1

We can combine the last two applications to obtain compression and decom-
pression. The composition of the polytypic read function read with the packing
function pack gives a structured compression algorithm compress that takes a
plain text representation of a datatype value to a bit stream. The correspond-
ing decompression algorithm decompress is a composition of the unpacking
function unpack and the polytypic show function show. Function decompress
is the inverse of compress for all strings that represent a value. This fact follows
from the inverse laws for pretty printing and packing.

Conclusions

We have constructed polytypic programs for several data conversion problems.
As far as we are aware, these are the first implemented generic descriptions of
programs for data conversion problems. Recent work by Hinze [6] also contains
a polytypic show function and a simple packing function, but his language still
lacks an implementation.

For each of the data conversion problems considered in this paper we construct
a pair of functions. These pairs of functions are inverse functions by construc-
tion. Since we started applying the inverse function requirement rigorously
in the construction of the programs, the size and the complexity of the code
have been reduced considerably. Compare for example Bjork’s [3] and Huis-
man’s [10] definitions, with the polytypic read and show functions defined in
this paper. We firmly believe that such a rigorous approach is the only way
to obtain elegant solutions to involved polytypic problems. Another concept
that simplified the construction and form of the program is arrows. In our first
attempts to polytypic programs for packing and unpacking we used monads
instead of arrows. Although it is possible to construct the (un)packing func-
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tions with monads (see Halenbeek [5]), the inverse function construction, and
hence the correctness proof, is simpler with arrows. Loosely speaking, arrows
are more easily inverted as input and output are handled symmetrically.

We have shown how to construct programs for several data conversion prob-
lems. We expect that our programs and proofs will be very useful in the
construction of programs for other data conversion problems.

Although all our data conversion programs are linear, both time and space
efficiency of our programs leave much to be desired. We expect that suffi-
ciently sophisticated forms of partial evaluation will improve the performance
of our programs considerably. We want to experiment with partial evaluation
of polytypic functions in the future.

We have presented a few calculations of polytypic programs. We think that
calculating with polytypic functions is still rather cumbersome, and we hope
to obtain more theory, in the style of Meertens [18] and Hinze [8], to simplify
calculations with polytypic programs. If we take Hinze’s approach to polytypic
programming [7], then we only have 4 constructors for pattern functors instead
of 7, and this should reduce the length of the proofs. In collaboration with
Hinze, we are currently working on an implementation of Generic Haskell as
a successor to PolyP.
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