First-class Rules and Generic Traversal

Eelco Dolstra
Eelco Visser

Institute of Information and Computing Science, Utrecht
University, Box 80089, 3508 TB Utrecht, The Netherlands
{eelco, visser }@Qcs.uu.nl

November 29, 2001

Abstract

In this paper we present a functional language supporting first-class rules
and generic traversal. This is achieved by generalizing the pattern match-
ing constructs of standard functional languages. The case construct that
ties rules together and prevents their reuse, is replaced by separate, first-
class, pattern matching rules and a choice combinator that deals with
pattern match failure. Generic traversal is achieved through application
pattern matching in which a constructor application is generically divided
into a prefix and a suffix, thus giving generic access to the subterms of a
constructor term. Many highly generic term traversals can be defined in
a type-safe way using this feature.

These features support a direct and natural encoding of program trans-
formation rules and strategies. The generalization of pattern matching
subsumes several proposals for extensions of pattern matching such as
views, guarded patterns, and transformational patterns.

1 Introduction

Program transformation techniques are used in a wide variety of applications in-
cluding optimizing compilers, program normalizers, aspect weavers, obfuscation
engines, refactoring browsers, and software renovation tools. The basic archi-
tecture of a transformation system is the same across all these applications.
Parsers translate program text to an internal representation (abstract syntax)
and unparsers translate abstract syntax back to text. In between, a transfor-
mation component modifies the abstract syntax tree to achieve the transforma-
tion. As with all programming, it is desirable to implement transformations at
a high level of abstraction, reusing standard components or generating compo-
nents from specifications. Where parsers and pretty-printers are generated from
specifications, transformation components are usually implemented in general
purpose languages without special support for transformation.

Term Rewriting Term rewrite systems [2] offer a good basis for the declar-
ative specification and implementation of transformation systems. Algebraic
terms are adequate representations for abstract syntax trees. Term rewrite
rules directly encode single transformation steps on abstract syntax trees using
term pattern matching to concisely characterize the subexpressions to trans-
form. Term rewriting consists of exhaustively applying rewrite rules to a term
until it is in normal form, i.e., does not contain any subterms to which a rule
can be applied. Term rewriting systems such as ASF+SDF [(7], ELAN [d], and
Maude [00] implement this operation efficiently, usually employing an innermost
strategy.

The advantage of rewrite systems is that transformation rules can be defined
independently and that their application is automatic, i.e., no traversal over
syntax trees has to be defined. However, sets of transformation rules for a
programming language are usually non-confluent, i.e., different normal forms
can be reached, and/or non-terminating, i.e., infinite reduction chains exist.
This is usually solved by encoding control in auxiliary operators that control
the application of transformation rules. This results in a style of term rewriting
that can be characterized as first-order functional programming in which the
advantages of rewriting are lost, i.e., rules are no longer independent, but tied
to a particular transformation function, and the definition of transformation
functions involves a considerable overhead due to the explicit definition of tree
traversals.

Functional Programming Functional languages such as Haskell [Z1] and
ML [20] offer some of the same ingredients as term rewriting systems, i.e., alge-
braic data types and pattern matching. In addition, higher-order functions and
polymorphism allow the definition of traversal schemas such as folds for specific
data types. However, transformation rules cannot be defined as first-class enti-
ties, but have to be combined using the case construct, thus limiting their reuse.
The existence of several proposals for extensions of pattern matching such as
views [28, 8], guarded patterns and transformational patterns [[4], is an indica-
tion of the limitations imposed by the case construct. Furthermore, traversals
cannot be defined generically across data types, since polymorphism restricts
reuse to one shape. Polytypic extensions of functional languages [I35, 6], allow
the generic definition of functionality across data types, but do not support the
definition of traversals that cross type boundaries and can be instantiated with
different functions.

Rewriting Strategies Several extensions to rewriting have been proposed
that try to combine the independent rules of rewriting with the need for control
over the application of rewrite rules. In TAMPR [5] a transformation is divided
into a sequence of normal form computations with respect to different sets of
rewrite rules. In ASF+SDF traversal functions [@] reduce the overhead of the
definition of traversals over syntax trees.

Rewriting strategies generalize such approaches by making the control over the

application of rewrite rules programmable by means of a language of strategy
combinators. Rewriting strategies were introduced in the language ELAN [d].
Strategies were extended with primitives for term traversal in the program trans-
formation language Stratego [27]. A few primitives allow the definition of a wide
range of generic traversals. Rules are first-class and can be reused in different
transformations and in different combinations. This paradigm supports concise
formulation of transformation systems. Stratego has a few shortcomings, how-
ever. Even though there is a typeful way of defining and using strategies, the
language is untyped, since typing generic traversals is beyond existing type sys-
tems. Although recent work addresses the typing of strategies in a many-sorted
monomorphic setting [I7], no type system for a polymorphic setting exists. Fur-
thermore, the built-in traversal primitives are ad-hoc; a more fundamental way
of defining traversal primitives is desirable. Finally, strategies in Stratego are
not fully higher-order, but only second-order.

RhoStratego In this paper we present RhoStratego, a functional language
supporting first-class rules and generic traversal. The language admits a direct
and natural encoding of transformation rules and strategies. It combines the ad-
vantages of strategic programming (separation of rules and strategies) with the
advantages of lazy higher-order functional programming (abstraction, definition
of control constructs).

This is achieved by generalizing the pattern matching constructs of standard
functional languages such as Haskell and ML. The case construct that ties rules
together and prevents their reuse, is replaced by separate (first-class) pattern
matching rules and a choice combinator that deals with pattern match failure.
Generic traversal is achieved through application pattern matching in which
a constructor application is generically divided into a prefix and a suffix, thus
giving generic access to the subterms of a constructor term. Many highly generic
term traversals can be defined using this feature. The generalization of pattern
matching presented in this paper subsumes several proposals for extensions of
pattern matching such as views [ZR, B, guarded patterns, and transformational
patterns [I4].

The language is fully typed and has a type system in which type preserving and
type unifying traversals can be typed. A prototype compiler for the language
has been built and is available for experimentation.

Outline We start with an informal account of RhoStratego introducing first-
class rules in Section B and generic traversal in Section B. In Section @ we
present a rewriting semantics and a lazy evaluation strategy. The type system
is described in Section H. A brief overview of the implementation is given in
Section . In Section [we discuss related work; in particular the encoding
of extensions to pattern matching. We discuss future work in Section § and
conclude in Section O.

program — decl (top level)
term — wvar (variable)

| constr (constructor)

| fail (failure)

| term term (application)

| “term (cut)

| pat->term (rule)

| term <+ term (choice)

| let decl” in term (let-bindings)

| (term) (parentheses)
pat — wvar (variable)

| constr (constructor)

| pat pat (application)
decl — var = term; (binding)

Figure 1: RhoStratego abstract syntax

2 First-Class Rules

RhoStratego is a non-strict purely functional programming language. It consists
essentially of the A-calculus extended with constructors, pattern matching, let-
bindings, and pattern match failure handling. In this section we introduce the
syntax of the language and show how it supports first-class rules. In the next
section we show how the language admits generic traversal.

The syntax of the language, shown in figure [l in BNF notation, is similar to
that of Haskell. Boldface and italics denote terminals and non-terminals, respec-
tively. The productions are listed in order of decreasing priority. For example,
A -> B <+ C -> Dmeans (A -> B) <+ (C -> D).

2.1 Lambda Rules

A rulez -> tabstracts a variable x from a term ¢. Inspired by the notation used
in term rewriting, there is no symbol that syntactically starts the abstraction
(such as a A or Haskell’s backslash). An application (x -> t1) t3 of a rule x
-> t; to a term t5 amounts to the body ¢; in which the variable z is bound
to the argument t5. Thus, familiar functions such as the identity and constant
functions are defined as follows:

id = x > x;
const = X -> y —-> X;

Naturally, arguments of rules can be other rules, allowing the definition of
higher-order functions such as the composition operator:

.=f > g->x->f (gx);

Var :: String -> Exp

Num :: Int -> Exp

Prim :: String -> Exp

Abs :: String -> Exp -> Exp

App :: Exp -> Exp -> Exp

Let :: String -> Exp -> Exp —-> Exp

Figure 2: Constructor declarations for the abstract syntax of a simple functional
language.

2.2 Pattern Matching Rules

The abstract syntax of programs and other symbolic data can be represented
by means of algebraic data types. For example, Figure] defines constructors
for the abstract syntax of a simple functional language. Following Haskell’s
tradition, constructor names start with capitals. The details of the type system
will be discussed in Section B.

Values built with constructors can be deconstructed using pattern matching
rules. An application ((p -> t1) t2) of a pattern matching rule (p -> t1)
matches the argument ¢, against the pattern p, binding the variables in the pat-
tern to the corresponding terms in t5. As examples of pattern matching rules
consider the simplification rules for expressions in Figure B. Using these defini-
tions, the term plusZero (App (App (Prim "+") (Num 0)) (Var "z")) re-
duces to (Var "z").

2.3 Choosing between Values

An application ((p -> t1) t2) of a matching rule fails if the pattern p does
not match the argument t,. For example, the application plusZero (Var "z")
fails. In general, an expression fails when a pattern match failure occurs some-
where in the evaluation of the expression.

In functional languages pattern match failure is handled by means of a case
construct in which all alternative rules are combined. Alternatives are tried one
by one until a successful match is found. It is generally a fatal error if there
is no alternative that matches the subject value. The case construct ties rules
together and makes it impossible to reuse rules in different contexts or to pass
them on to a function.

RhoStratego inherits Stratego’s left choice operator (<+) to handle pattern
match failure. The term (¢; <+ ¢3) evaluates to the value of ¢; unless its eval-
uation fails, in which case t5 is chosen. For instance, if ¢ stands for (App (App
(Prim "+") (Num 17)) (Num 42)), the term (plusZero ¢t <+ plusFold t) will
first consider the application (plusZero t). Since that fails the application
(plusFold t) is evaluated, which results in (Num 59).

Using the choice operator, individual rules can be combined in various ways to

form composite transformations. For example, the function foldOne performs
one simplification step:

foldOne = x -> (plusZero x <+ plusFold x);

Note that this function fails if neither rule succeeds.

2.4 Choosing between Rules

Rules are first-class values. Therefore, it is also possible to choose between
rules. Extending the semantics of choice suggested above, the choice (r; <+
ro) between two rules trivially evaluates to 1 since r1 is a normal form and does
not fail. However, in RhoStratego a choice between two rules is automatically
lifted into a rule. That is, in the term ((t; <+ t3) t3), the application is
distributed over the choice, yielding (¢1 t3 <+ ty t3). Thus, the choice is made
after evaluating (t; t3). If the application (f; t3) evaluates to a rule, the
process is repeated. That is, the choice is only consumed when the left-hand
side of the choice is a constructed value or failure.

Thus, we can reformulate the one-step simplification function by taking the
choice between the rules plusZero and plusFold:

foldOne = plusZero <+ plusFold;

It is clear that the application-over-choice distribution rule transforms the sec-
ond definition of foldOne, after n-expanding its body, into the first definition.

2.5 Cutting Choice

A choice catches failure anywhere in its left-hand side alternative. This is not
always desirable. For example, suppose that we want to distinguish terms rep-
resenting applications (constructed with App) from other terms, and take a
different action in each case. The formulation

App x y => &1 <+ ig

is not adequate, because if t; fails, after an App term has been matched, the
alternative t5 is still evaluated. Thus, after the pattern match succeeds we want
to commit to the left alternative of the choice and cut off backtracking to its right
alternative. This is achieved using the unary cut operator (~), which indicates
that a function or failure result in the left-hand side of the choice should be left
as-is. Using the cut operator the example above can be reformulated as

App x y —> Tiy <+ iy

Now, after matching an App term, the result of ¢; is produced, even if that is
failure.

plusZero =
App (App (Prim "+") (Num 0)) x -> x;
plusComm =
App (App (Prim "+") x) y ->
App (App (Prim "+") y) x;
plusFold =
App (App (Prim "+") (Num i)) (Num j) ->
Num (i + j);

mulFold =
App (App (Prim "x") (Num i)) (Num j) ->
Num (i * j);
beta =
App (Abs x el) e2 -> Let x e2 el;
letVar =
Let x e (Var x) -> e;
letApp =

Let x el (App e2 e3) —>

App (Let x el e2) (Let x el e3);
letHoist =

Let x (Let y el e2) e3 —>

Let y el (Let x e2) e3;
appLetLl =

App (Let x el e2) e3 -> Let x el (App el e2);
appLetR =

App el (Let x e2 e3) -> Let x e2 (App el e2);

Figure 3: Simplification rules

2.6 Creating and Matching Failure

Since failure is a value that can be produced by a term, it is also possible to
match against it. Although choice allows catching of failure, explicit match-
ing and creation of failure are needed in a few cases. An application ((fail
=> t1) tg) forces the evaluation of ty. If the result is failure, the body ¢; is
returned, otherwise the application fails. The main applications of matching
against failure are strict function application and negation by failure.

Since RhoStratego is a lazy language, the argument of a function is not evaluated
before the function is called. Sometimes it necessary to force the evaluation of
an argument in order to know whether or not it fails. Strict function application
is achieved with the function st, defined as:

st = f -> ((fail -> ~“fail) <+ £f);

It applies a function strictly to its argument. That is, in the application st t¢;
to the evaluation of the argument ¢, of the function ¢; is forced by matching it
against the pattern fail. In case the evaluation of {5 does not fail the right-

hand side of the choice is taken, and ¢; is applied to the value of ¢t5. Note that
we must write “fail in order to prevent fail from being caught immediately
by the choice.

An application of st is the strict sequential composition function | (‘pipe’),
defined as

| =f->g->t >stg (ft);
which allows us to write transformation pipelines s; | s2 |...| s,. Note that

this composition operator applies its left argument first.

The constant fail can be used to create failure outside of a pattern match.
This can be used to turn a value into a failure. In the following definition of
negation by failure, fail is used to force failure when a computation succeeds:

neg = f -> x -> (fail -> x <+ fail) (f x)

An application neg t; to returns the value of to if (t; t3) evaluates to failure,
and fails otherwise.

2.7 Strategy operators

Using this machinery we can define higher-order operators for combining trans-
formations. The combinator try

try = s => (s <+ id);

tries the application of a transformation s, but returns the original term if s
fails. The fixpoint combinator repeat, defined as

repeat = s -> try (s | repeat s);

applies a transformation s repeatedly until it fails. As an application of repeat
consider the strategy

simplifyMany =
repeat (plusZero <+ (plusComm | plusZero)
<+ plusFold);

which repeatedly applies some simplification rules until none applies anymore.

Note that we cannot use regular sequential composition in the definition of
repeat, i.e.,

repeat = s -> try ((repeat s) . s);

as this will cause repeat to get stuck in an infinite recursion: repeat s expands
into try (repeat s . s), which is (repeat s . s) <+ id. Since repeat
s . sisequal tot -> repeat s (s t), and a lazy language first evaluates
the left-hand side of this application — namely repeat s — we have a loop.
We must have some strictness to ensure that progress is made.

3 Generic Traversal

First-class rules and the choice operator enable the specification of a library of
transformation rules that can be combined in many ways. In order to apply
transformation rules to an abstract syntax tree it is necessary to traverse that
tree, i.e., apply rules below the root constructor. Traversal can be accomplished
using pattern matching and recursion. However, this induces overhead: all
constructors that are traversed must be mentioned explicitly. It is desirable to
define traversals generically, using default behavior for most constructors.

Stratego introduced generic traversal primitives such as all and one that cap-
ture schemas for traversing from a constructor application to its arguments [27].
Using a few of such primitives, a wide range of highly generic term traversals
can be defined, avoiding the overhead normally associated with the definition
of traversals.

In RhoStratego the built-in primitive traversal schemas of Stratego can be de-
fined using one single construct: application pattern matching. An application
pattern is a pattern of the form c¢ x, where ¢ and x are both variables. An
application pattern ¢ x matches a constructor application, binding x to the
last argument of the constructor (the suffiz), and binding ¢ to the constructor
applied to the other arguments (the prefiz).

As an example consider the definition of the generic function termSize, which
counts the number of constructor nodes (including basic values) in its argument
term:

termSize =
c X -> termSize ¢ + termSize x <+ x -> 1;

The left alternative is a rule that matches a constructor application and com-
putes the size of the prefix ¢ and the suffix x. The right alternative matches
all terms that are not applications, i.e., constructors and constants. Thus,
termSize (Num 1) equals (termSize Num) + (termSize 1) which equals 2
and termSize (App (Num 1) (Var "x")) equals (termSize (App (Num 1)))
+ (termSize (Var "x")), which eventually evaluates to 5.

In the rest of this section we consider the implementation of the basic traversals
all, one, and crush and their application in the definition of generic traversals.

3.1 Al

The all operator applies a function f to all direct subterms of a term. That is,
all £ (C ty...t,) evaluatesto C (£ t1)...(f t,). It can be implemented as
follows:

all = f -> (c x => “(st (all f ¢c) (f x)) <+ id);

The left-hand side of the choice matches the argument term against the appli-
cation pattern ¢ x. If the match fails, the argument is either a constructor or

some other value (e.g., an integer) without subterms. In this case the term is
left unchanged by applying the identity, id. If the match succeeds, the term
is of the form C ¢;...%,, i.e., a constructor applied to n arguments and c is
bound to its prefix C ¢;...%t,_1, and x is bound to its suffix ¢,,. The function f
is applied to the suffix ¢,,, and, through the recursive call all f c, it is applied
to the subterms in the prefix, resulting in C (f ¢1)...(f t,_1). Applying the
transformed prefix to the transformed suffix completes the construction of the
new term C (£ t1)...(f t,). Since the function £ must be successfully applied
to all subterms, this must be a strict application. Finally, the result must be
cut in order to prevent failure in £ from warping us into id.

Note that all f succeeds on constants, i.e., terms without subterms. Thus, we
can define the generic function isConstant that succeeds on constants and fails
on non-constants as

isConstant = all fail;

Furthermore, note that all forces the evaluation of the arguments of a con-
structor. Thus (all id) has the effect of forcing the evaluation of the direct
subterms of a constructor, and force, defined as

force = all force;

forces the complete evaluation of a constructed value.

Using all, a wide range of full term traversals can be defined. For example, the
function topdown defines a full traversal of a term that applies a transformation
s at every subterm before visiting its children.

topdown = s -> s | all (topdown s);

Its dual is bottomup; it visits the subterms of a term before applying a trans-
formation to it.

bottomup = s -> all (bottomup s) | s;

An application of bottomup is the following constant folding strategy foldConst
for expressions:

foldOne
foldConst

plusFold <+ plusZero <+ mulFold;
bottomup (repeat (fold0One)) ;

The transformation makes a single pass over a term, repeatedly applying folding
rules after transforming the subterms of a term.

Finally, the function alltd tries to apply a transformation s to a term. If that
fails it recursively descends into the subterms.

alltd = s > s <+ all(alltd s);

10

This function applies a transformation along an internal frontier of a term, while
topdown and bottomup apply a transformation to all subterms. An application
of alltd is the substitution function subst

subst env = alltd(Var x -> lookup x env);

which replaces all (Var x) subterms by the value of x in the environment env.
If the lookup in the environment fails, a variable is not replaced. Note that no
substitution takes place in the expression that a variable is replaced with.

3.2 One

The one operator applies a function f to exactly one immediate subterm of a
term and fails if £ cannot be applied to at least one such term. Thus, one f
(C ty1...ty) evaluatesto C t;...(f t;)...t,,if £ t; succeeds and £ t; fails for
j > 1. It can be implemented as follows:

one =f ->cx > (st ¢ (f x) <+ one f ¢ x);

The left alternative of the choice tries to apply f to the suffix x. If that succeeds
the term is reconstructed with the original prefix and the transformed suffix.
Otherwise the right alternative tries to find a subterm in the prefix to apply
f to using the recursive call one f c. If the function hits the constructor, the
application match fails and thus no subterm to apply £ to has been found.
For example, the result of one (A -> B) (C A A B) isC A B B, and the result
of one (A -> B) (C B) is fail. Note that one fails for constructors without
(direct) subterms. Thus, the definition

hasArgs = one id;

defines the generic function hasArgs that succeeds for terms with subterms.

An example application of one is the traversal oncetd that searches a term for
a subterm to which a transformation s can be applied.

oncetd = s => (s <+ one (oncetd s));

This traversal fails if s cannot be applied to any subterm. An application of
oncetd is the following simple beta reduction strategy.

betaReduce =
repeat (oncetd(beta <+ appLetL <+ appLetR));

Another use of oncetd is the function occurs, which checks the occurrence of
a variable in an expression.

occurs = x -> oncetd(Var x -> Var x);

11

3.3 Crush

The traversal primitives all and one preserve term structure (although traver-
sals such as topdown can change the structure of a term). It can also be useful
to reduce a constructor application to a value. The crush operator is a one-
level reduction operator that reduces a constructor application by combining
the reductions of the direct subterms in a uniform way. The crush operator is
implemented as follows:

crush = op -> nul -> £ ->
(c x => op (crush op nul f ¢c) (£ x)
<+ x -> nul);

That is, crush op nul f (C ¢;...t,) evaluatesto (op ... (op (op nul ¢;)
(f t2)) ... (£ t,)). The function f is a generic reduction operator and func-
tions op and nul combine its results.

The generic node counting function termSize can be redefined in terms of crush
as

termSize = crush (+) 1 termSize;

Note that the function is used recursively to reduce the direct subterms of a
term.

A more general application of crush is the function collect, which collects all
outermost subterms on which s succeeds.

collect = s > ((s | (y -> [y]))
<+ crush union [] (collect s));

For example, to collect all variables in an expression, collect is instantiated
with a rule that recognizes variables: collect(Var x -> x). This function
produces the set of all variables occurring in an expression. If we want to collect
only the free variables in an expression we need a refined version of collect in
which the user-defined base case is parameterized with the collect algorithm
itself:

collectR = coll ->
(let ¢ collectR coll;
in coll ¢ <+ crush union [] c¢);

A free variable collection function collects all variables, just as in the instantia-
tion above, but filters out variables bound by the Abs and Let constructs.

freeVars = collectR (fv ->
(Var x —> [x]
<+ Abs x e -> diff (fv e) [x]
<+ Let x el e2 -> union (fv el)
(diff (fv e2) [x])));

12

LETLIFT: e—letine

defs(dsq) Ndefs(dsz) =0

LETLET:
let ds; in let ds; in e — let dsidss in e
VaR: r=e; € ds
' let dsin x — let dsin e
fv
— ' x & defs(ds) . '
let dsin (z — e1) e — let ds in let z=es; in €1
CoNMATCHT: let dsin (C — e)C —letdsine
C1 # Cy
CONMATCH ™ :
let dsin (C; — e) Cy +— let ds in fail
JRE—— (6.1 e2) is a normal form
let dsin (p1 p2 — e3) (e1 e3) —
let dsin (py — ps — e3) eq eo
_ e is a normal form but not an application
APPMATCH™:

let ds in (p; p2 — e3) e1 — let ds in fail
FaiLMarcu®: let ds in (fail — e) fail — let dsine

B eo is a normal form A es # fail
FAILMATCH ™ :

let ds in (fail — e1) es — let ds in fail

Figure 4: RhoStratego evaluation rules

Thus, a specialized collection algorithm is defined that only needs to mention the
constructors that are relevant for the problem at hand. All other constructors
are handled by the generic default case.

4 Semantics

In this section we present the semantics of the RhoStratego language as a set
of rewrite rules on the language, together with a lazy evaluation strategy for
reducing terms to normal form. Integer and string constants have been omitted
for brevity.

4.1 Evaluation Rules

The rewrite rules defining the semantics of RhoStratego are given in Figure f.
We write e; — e to denote that there is a sequence of rewrite steps that
transforms e; into es. A let-expression is in normal form if no rules apply;

13

let ds in e; + let ds’ in €]
EvaLFuNc: " T
let ds in e; e3 — let ds’ in €] e9
let ds in e +— let ds’ in €}
EVALARG: n T
let ds in ey e3 — let ds’ in e; €}
ProPFUNC: let ds in fail e — let ds in fail
let ds in e; + let ds’ in €]
EVALLEFT: - A
let ds in e; <+ eg — let ds in €] <+ e2
e1 is a normal form A e; # fail A
e1 is not a cut or a function
LCHOICE: A T
let dsin e <+ ey +— let ds in ¢;
LCHOICECUT: let dsin “e; <+ e3 — let ds in e
RCHOICE: let ds in fail <+ e — let ds in e
UNcUTFUNC: let dsin “e; e5 — let ds in eq eq
UNCUTARG:
p is a strict pattern
let dsin (p — e1) "ea — let dsin (p — e1) ea
DisTriB: let ds in (e <+ e2) e3 — let ds in e eg <+ ey €3

Figure 4: Continued

that is, if its body is a rule, a constructor applied to zero or more (possibly
unnormalised) arguments, a failure, a cut, or a choice, if the left-hand side of
the choice is a rule.

It is assumed that the left-hand side term has the form let ds in e. The idea is
that the let-environment represents the memory, or heap, of the abstract ma-
chine. This allows us to express certain aspects of the operational semantics,
such as garbage collection and sharing. Since not all RhoStratego terms are
lets, we have the trivial rule LETLIFT to lift these into the canonical form.
Note that a RhoStratego program is a set of declarations; declarations are vari-
able definitions, data type declarations, and type signatures (the latter two not
being discussed here). The semantics of a whole program is obtained by lift-
ing the set of declarations ds into a let and evaluating the variable main, i.e.,
let ds in main.

Lets If the body of a let is a let, we can merge the definitions, provided that
there are no name clashes (the LETLET rule). This rule can be interpreted as

14

allocating closures for the values defined in the let-expression. We implicitly
assume that a-renaming takes place as required.

Variables The VAR rule expresses that a variable may be substituted by its
definition. As stated above, we can use the let-environment to express aspects
of the operational semantics. Here is an alternative VAR rule:

r=e; €ds A let dsin e let ds in ¢
VAR :

let ds in x — let ds’ 1 (z, ¢’) in ¢

where ds’ 1 (z, €') denotes ds’ with the definition for = replaced by = = ¢'s.
The idea is that a variable is evaluated (presumably to normal form), and the
result is written back into the ‘heap’ (removing the old definition for z:). Then,
if x is needed again, we do not need to evaluate it again; it is already done. So
the alternative VAR rule nicely captures the operational notion of sharing; it
corresponds with the implementation technique of preventing work duplication
by updating a closure with its result.

Applications The BETA rule expresses the fundamental axiom of the A-
calculus, S-reduction, by means of explicit substitution [1]: rather than having
a substitution operation, substitutions are expressed in the language itself. We
do this by adding the argument to the let-environment, and then evaluating the
body of the rule. All initial terms are assumed to be closed, i.e., contain no
free variables. As a consequence there is no need to add the restriction that z
should not occur free in e, since the fact that it does not occur in ds implies it
cannot occur free in es.

We can evaluate the left and right sides of a function application using the EvVAL-
Func and EVALARG rules. EVALARG is necessary in strict pattern matches,
i.e., matches against constructors, applications, or failure (CONMATCH™ to
FAILMATCH™). Note that for an application pattern match to succeed, the
argument should be in normal form and an application. This implies that it is a
constructed value. Applying failure to an expression yields failure (PROPFUNC).

From the definition of APPMATCH™T the exact semantics of the application pat-
tern match follows. For example, (¢ x => ¢) (A B C) evaluates to A B, and
(c x => x) (A B C) evaluates to C. In essence, it allows us to look at the im-
mediate subterms of a term in a linear fashion, just like traversing a Cons/Nil
list. The ¢ x pattern corresponds to matching a Cons, and the pattern x (any-
thing else) corresponds to matching with Nil. That is, if the match ¢ x fails,
the argument is either a constructor (without arguments) or another normal
form (such as a function or an integer literal).

Choices The remaining rules deal with the evaluation of choices. We evaluate
choices by first evaluating the left alternative (using EVALLEFT). We can choose
using LCHOICE the left alternative if it is not a failure, a rule or a cut; this
implies that it should have been evaluated to normal form, since otherwise

15

we cannot know that it is not a failure. If it is a cut, we can choose the left
alternative using LCHOICECUT which removes the cut. Note that only one cut is
removed; this allows an expression to escape several choices by applying several
cuts. If it is a function, we can use the DISTRIB rule to distribute arguments
over the alternatives. If it is a failure, we can choose the right alternative using
RCHOICE.

Finally, cuts not occurring as the left argument of a choice ‘disappear’ (the
UNCUTFUNC and UNCUTARG rules; a strict pattern is a pattern that forces
evaluation of the argument, i.e., anything other than a variable). This is to
ensure that for example (7id) C or (C -> D) ~C works. This makes it easier
to reuse functions returning cuts.

The following alternative DISTRIB rule is preferable from an operational point
of view, since it is more efficient:

x & defs(ds)
let ds in (e; <+ e3) e3 —
let dsin let x=e3;ine; x <+ ey x

DISTRIB :

Together with the alternative VAR rule, this prevents e3 from being evaluated
more than once.

4.2 Evaluation Strategy

The rules discussed above define one-step reductions of terms. A complete
evaluation of a term requires repeated application of rules. Depending on the
strategy that is chosen, different effects can be achieved. Bot lazy and strict
interpretations can be achieved using the rules. Lazy and strict evaluation based
on the same set of rules has been implemented in Stratego and is presented in
[I3]. Below we give an informal account of the lazy strategy that is the basis
for the compiler.

Reducing a term to normal form involves applying the rules in Figure fll to the
term to be reduced. We first need to make precise what applying a rule to
a term means. For simple rules such as BETA or CONMATCH" that have no
or only simple conditions, this is unambiguous: we can apply the rules if the
conditions are satisfied. However, the evaluation rules (e.g. EVALFUNC) are
conditional upon some term e; being rewritable into e;. This means that such
a rule must be parameterised with some strategy that reduces e;.

The strategy E evaluates a term e lazily as follows. If e is in normal form, we
are done. Otherwise, we must apply one or more rules. We must be careful
that we always make some progress; for example, the EVALLEFT rule is always
applicable if e is an application. The LETLET or VAR are always safe to apply.
If e is a choice, we must first apply the EVALLEFT rule with strategy E to
normalise the left-hand side of the choice. It is vital that we now make some
more progress, in order to prevent infinite loops (since EVALLEFT will continue
to be applicable): we have to get rid of the choice. We do this by applying the

16

LCHoICE, LCHOICECUT, or RCHOICE rules; exactly one should be applicable.

If none of the above applied, we are dealing with an application. In a lazy
semantics we have to evaluate the left-hand side first. This means that we
have to get rid of any cuts, so we first apply the UNCUTFUNC rule until it
becomes inapplicable. Then we can apply the EVALFUNC rule with strategy F
to normalise the left-hand side. Just as with choices, we must apply some other
rule next to get rid of the application, unless the application is a constructor
application (C e; ... e,), which is a normal form. We can now try one of
the BETA, DISTRIB, or PROPFUNC rules; otherwise, we are looking at a strict
pattern match: a match against a constructor, application, or failure. This
requires that we remove cuts from the argument, so UNCUTARG should be
applied until it becomes inapplicable. Then we can apply the EVALARG rule
with strategy E to normalise the argument, followed by one of the CoNMATCHT
etc. rules to perform the actual reduction.

Afterwards, we can apply the strategy again (i.e., iteratively) to complete the
evaluation of e.

5 Type System

In this section we describe a type system for RhoStratego, which is based on
the Hindley-Milner type system [I9]. The main issue is how to type generic
traversals. To this end, we add rank-2 types and rules for typing application
pattern matches and generic traversals.

5.1 Data Type Declarations

Constructors are defined separately from the data types they construct. This
allows data types to be extended, possibly in separately compiled modules. For
example, lists can be defined as follows:

data List a;
Nil :: List a;
Cons :: a -> List a -> List a;

5.2 Application Pattern Matches

Generic traversal functions such as all and one are implemented using appli-
cation pattern matches. How should this this language construct be typed?

We should first consider what the intended type of a function such as all is.
We can then try to find typing rules to obtain the desired types. All applies
a function to all subterms of a term. Since the subterms can have any type,
the type of the function should be Va.ao — a. Therefore all should have type
Vi.(Va.ce —) — B — (. This is a rank-2 type and hence not supported by the
Hindley-Milner type system, which universally quantifies type variables only at

17

the ‘top’ of a type. As a result RhoStratego needs a rank-n (where n > 2) type
system.

Recall the definition of all:
all = f -> (c x => “(st (all f c) (f x)) <+ id);

The type of id after instantiation is of course 79 — 7¢ (we use 7; to denote fresh
type variables). The left and right arguments to a choice must have the same
type. The left-hand choice, ¢ x — ~(st (all £ c¢) (£ x)), must therefore
also have this type.

In order to derive the type of this expression, we must assign types to the
variables ¢ and x. Since the pattern match only succeeds for a pattern match
against a constructed value of some type 7, ¢ must be a constructor function
which expects an argument of some type 7 and returns a value of type 71, i.e.,
¢ has type 7o — 71 and x has type 7. Hence, the type of ¢ x is 71. (Things are
actually a bit more complicated than that; the exact typing rules for application
pattern matches are given below).

Now we can assign a type to the body of the rule, “(st (all f c) (f x)).
Cuts are irrelevant to the type and st (strict application) has the uninteresting
type Va.¥f3.(a —) — o — 3, so we are left with all £ ¢ (f x). Assuming
that we have the following type judgments:

all :: Vp.(Va.a—a)—0—0
f 0 Yoo — a
Cc To — T1
X T2
we can derive:
all f :: 13 — 713 (after instant. V3 with 73)
all f c it o1 (le, 13 =T — 1)
fx 1Ty (after instant. Vo)
all f c (£ x) :: 7

We conclude that the type of the left choice argument is 73 — 71, which matches
neatly with the right argument.

5.3 Genericity

We have now seen that all can be typed, and that it has the type V3.(Va.ao —
a) — [— 3, and so applies a function of type Va.acc — « to the subterms.
Unfortunately, in most pure languages essentially the only function with that
type is id (i.e., Az.x). Hence, we cannot write the following:

rename = all(try(Var "x" -> Var "y"));

which attempts to rename direct subterms, since the argument to all has type
Exp — Exp which is not polymorphic. Therefore RhoStratego provides a run-
time type check mechanism. We write:

18

rename = all(try(Exp?Var "x" -> Var "y"));

The meaning of a pattern t?p (where ¢ is a type and p a pattern) is that the
argument is first checked — at runtime — to be of type ¢. If it is, we proceed
as usual, matching against p. Otherwise, the result is fail.

We type a pattern t?p by adding guarded types. A guarded type is a type
prefixed by a question mark, e.g., 7Exp. We also define the type of a runtime
type check pattern t7p to be 7t. The type of Exp?Var "x" — Var "y" therefore
is ?Exp — Exp (i.e., (?Exp) — Exp). The trick is that a type match between
a function type a — 7 and 7?79 — 73 is performed by matching o — 71 against
T — T3, but all substitutions found for a are filtered out and are not applied
to the type environment. The rationale is that a function with a runtime type
check pattern really does match anything (i.e., the pattern 7?75 should match
with o without a substitution « := 75 taking place), but since the body of the
function is only reached when the argument is of type 7o, the type of the body
T3 is irrelevant when the argument is not of type 75, and we can just pretend
that it is polymorphic.

In the example above, then, we can successfully match o — « against 7Exp —
Exp (with the substitution « := Exp filtered out), which can be generalized so
that it is a valid argument to all. On the other hand @ — « does not match
against ?Exp — String.

The function all is an example of a type preserving function, in which the type
of the output is the same as the type of the input. We also encounter type
unifying functions, which map everything to the same type. An example is
collect, which has type Va.Vj3.(Vy.y —) — a — [(] (the argument function
maps everything to 3). For example:

varNames = collect (Exp?Var x -> x);

The type of Var x -> x, 7Exp — String, is an instance of Vy.y — 3, with
String substituted for (.

The RhoStratego type system restricts guarded types to constructed types only;
they cannot be functions. Furthermore, the types must be general ([Int] is not
allowed; [a] is). The reason for this is that we do not want to carry runtime
type information for all values. For constructed values, this information must
be carried around in any case, since we must be able to distinguish between
constructors.

5.4 Typing rules

The inference rules of the type system are given in Figures f and B, for terms
and patterns respectively (the rule ABS requires that we can assign a type to a
pattern).

Type assignments for constructor functions are part of the environment I', as
expressed by CoN and PCON rules.

19

VAR:

ConN:

FaiL:

Cur:

ABSs:

APP:

INST:

GEN:

LET:

CHOICE:

WIDEN:

CONTRACT:

z:T7el
I'Fa:7
C:7el
'C:7

't fail: 7
T'ke:r
I'F"e:r
I'=TUl'y AT'Fp:o Al'Fe:T
F'F(p—e):io—T

I'teg:o—7 ATkey:o
I‘I—(eleg):T

I'-e:Va.r
Fke:|a:=o|r

F'Fe:7 AN agtv(l)
I'-e:Va.r

I"=TUT4s ANT'Fe:TA
Vie=c¢es)eds:(I"Fex:ma A x:1p€T)

' (letdsine): T

I'tep:7AT ey T
T'Fe<+ey: 7

F'ke:? — (Jo:=o]7)

I'Fe:a—1T1

I'ke:7[Gen(ag,aq,...,an)] A
(Vi,0<i<mn:a; £ 1v(l)) A
(Vi,1 <i<n:o; &1v(r))

Ik e: 7]ag]

Figure 5: Typing rules for terms

20

PVAR: x:17€el
' 'tx:T
n>0ANC:(c1—...—0,—>7)ETA
I'kop: AN... ANT'Fp,:op
PCon: P10t Pn 7
TE(Cpr...pn):T
I'kp:o
R : -
e 'k (o?p): %0
n>1ANxo: (g —... o a, >a) ETA
a z1:a1 €000 Nz, €T
C:
ENER Tk (zgx1 ... 2p): Gen(ag, ay,...,qn)

Figure 6: Typing rules for patterns

In the ABS and LET rules, I', and 'y, refer to an environment that contains type
assignments for all variables defined in the pattern or let-binding, respectively.

The RTTC pattern typing rule (for ‘runtime type check’) introduces guarded
types. They can be eliminated through the WIDEN rule. For example, the
type 7Id — String can be ‘widened’ to @« — String, and 7Id — Id can be
widened to a — a.

The GENERIC rule assigns a type to an application pattern match zg 1 ... x,.
We assign 1 ...x, types a; ... a,, being fresh type variables. Then xy has type
] — ... — a, — qp, where qq is a fresh type variable. In principle, the type
of the entire pattern is ay. However, we must restrict the substitutions that can
be made against these type variables; otherwise, the result will not be generic.
For example, consider the following definitions:

prefix
suffix cC X —> X;
f=cx->c (x+1);

cC X —-> C;

If application pattern matches are implemented naively, then prefix will have
type Ya.Vf.a — (8 — «), suffix will have type Va.V3.ae — (3, and £ will have
type Va.ae — «. All those types are too general.

We solve this problem by assigning xzo 1 ... x, the type Gen(ag, a1, ..., a,).
Gen is an intermediate construct that must eventually be contracted into oy if
and only if the as do not occur in the environment and «; ..., do not occur
free in the rest of the type. This is expressed by the CONTRACT rule. This, and
the fact that the as are variables, implies that no constraints to the resulting
type can be found later on, and that therefore genericity is ensured. We use the
notation 7[o] to refer to a hole in .

21

6 Implementation

The implementation of RhoStratego consists of a parser, type inferencer, inter-
preter, compiler and standard library.

The interpreter is written in Stratego and based directly on the semantic rewrite
rules given in Section f. Using the same set of rules, but different strategies a
lazy and a strict semantics are provided.

The compiler is also implemented in Stratego and translates RhoStratego pro-
grams to C. C’s setjmp/longjmp exception handling mechanism is used to im-
plement failure and choices. The compiler supports separate compilation of
RhoStratego modules.

The compiler and runtime system support the full untyped semantics of the
language. This implies that constructors can be applied to an arbitrary number
of arguments of any type. We implement this by means of a binary application
constructor. For example, the application C 1 2 is stored in the runtime system
as App (App C 1) 2. This representation is somewhat wasteful in terms of
memory and time usage. However, it makes the efficient implementation of
application pattern matches very easy: a pattern ¢ x binds ¢ and x to the left
and right arguments of the application constructor, respectively. Note that if
all arguments to a constructor were to be stored in the same memory object,
an application pattern match would need to make a copy of its argument due
to sharing issues.

A type inferencer based on the typing rules in the previous section has also
been implemented and integrated with the compiler (the details of the inference
algorithm are given in [[3]). All types are inferred automatically, except that the
programmer must provide type signatures for functions with rank-2 types. A
program that passes the type checker is guaranteed not to create non-wellformed
terms.

The standard library of RhoStratego contains a range of generic functions in-
cluding the ones discussed in Sections B and B. An important feature of the
library is the ability to read and write ATerms [G], a standardised representa-
tion for terms used by Stratego and the XT bundle of program transformation
tools [I[1], amongst others. This ensures easy integration of tools such as parsers,
pretty-printers, and Stratego specifications.

7 Related Work

7.1 Extensions to Pattern Matching

In this section we take a closer look at the choice operator, and its impact
on programming in RhoStratego. It is well known that conventional pattern
matching is not perfect [25, [d]. It turns out that the choice operator eliminates
the need for many of the proposals to extend pattern matching in functional
languages such as Haskell, including views, pattern guards, transformational

22

patterns, and first-class patterns. Furthermore, it makes case-expressions and
sugar such as Haskell’s ‘equational style’ unnecessary.

Case Expressions Case expressions, present in most functional languages,
are unnecessary in the presence of the choice operator, and consequently they
do not exist in RhoStratego. After all, the following Haskell-like construct

f = x -> case x of

A -> 123;
B "foo" -> 456;
v -> 0;

can easily be written in RhoStratego as a set of choices. In fact, the choice
alternatives are first-class and can be defined separately:

a=A -> 123;
b = B "foo" -> 456;
c=y -> 0;
f =a<+ b <+ c;

Similarly, Haskell’s equational style is unnecessary. In the equational style a
function definition consists of a number of pattern-guarded equations which
must be tried one after another. The various definitions for a function can be
written as choice alternatives. The resulting code is in fact shorter than when
written in the equational style.

Views Views [Z8] were proposed to address the problem that regular pattern
matching is rather limited since we can only match with actual constructors.
As a consequence we cannot match against, e.g., the end of a list instead of
the head, nor can we match against abstract data types since there is simply
nothing to match against. Using the views proposal for Haskell [8] we can write
the following view to match against the end of a list:

view Tsil a of [a] = Lin | Snoc y ys where
tsil xs =
case reverse xs of
[-> Lin
(y:ys) -> Smoc y ys

where matching against a Snoc-constructor causes the function tsil to be ap-
plied to the value:

f (Snoc y ys) =y
f Lin = 0

Tt is worth pointing out why views (and transformational patterns) are useful.
The reason is that the equational style can only be used if the non-applicability

23

of an equation can be discovered in the pattern. When that is not possible,
the equational style falls apart, and we have to explicitly write the traversal
through the alternatives (the equations) as a series of ever more deeply nested
case-expressions. The choice operator liberates us from this regime, hence the
main motivation for views and transformational patterns disappears. With the
choice operator, the previous example becomes:

f = reverse | ((y:ys) -> y <+ [1 -> 0);

Views still have the advantage that the transformation to be applied (e.g., tsil)
is implicit in the name of the patterns (e.g., Snoc), but this seems only a minor
advantage.

Pattern Guards In Haskell’s equational notation, we can use boolean guards
to further restrict the applicability of an equation, e.g., £ x | x > 3 = 123 (the
symbol | should not be confused with RhoStratego’s sequential composition
operator). However, there is a disparity between patterns and guards: patterns
can bind variables, whereas guards cannot. For example, if we want to return a
variable from an environment, or 0 if it is undefined, we would write:

f env var | isJust (lookup env var)
= fromJust (lookup env var)
f env var = 0

where lookup has type [(a, 8)] — a — Maybe A. This is awkward because
we now inspect the result of lookup twice. Pattern guards [[4] redefine a guard
as a list of qualifiers, just as in a list comprehension, so that binding can occur:

f env var | Just x <- lookup env var = x
f env var = 0

But when we have a choice operator, we can simply write the above as a choice.
In fact, we could just get rid of the Maybe result of lookup altogether, making
it of type [(a, 8)] — a — f, and arrive at:

f = env -> var -> (lookup env var <+ 0);
Transformational Patterns Transformational patterns [[d] provide a cheap
alternative to views, allowing us to write the previous example as:

f env (Just x)!(lookup env) = x
f env var = 0

Hence, transformational patterns are just view transformations made explicit.
The choice operator allows a similar notation:

f = env -> ((lookup env) | (Just x -> x)
<+ y -> 0);

24

However, it is still desirable to have some mechanism like views or transforma-
tional patterns, if only for reasons of symmetry. It is ugly if patterns can only be
used to match against concrete data types. For this reason RhoStratego offers a
syntactic sugar similar to, but slightly simpler than, transformational patterns.
The snoc-list example given above can be written in RhoStratego as follows:

snoc = reverse | ((x:xs) -> <x, xs>);
lin = [1 -> <>;
f = {snoc} x xs —> x <+ {1lin} -> 0;

The angle brackets denote tuple construction. A pattern {...} with n pattern
arguments specifies an expression which is applied to the argument. The expres-
sion should return a tuple of arity n. The pattern arguments are then matched
against the elements of the tuple. Therefore, f is desugared into:

f= y-> (<x, xs> > x) (snoc y)
<+ y > (> -> 0) (lin y);

First-class Patterns Tullsen [Z5] treats patterns as functions of type a —
Maybe [, and combinators are provided to combine basic patterns into complex
ones. Although conceptually elegant, this approach suffers from the fact that
the syntax is not very attractive. Furthermore, every function that can fail must
have the Maybe type; in our approach, failure is propagated implicitly.

7.2 p-calculus

RhoStratego’s name derives from its origin as an experimental implementation
of the p-calculus. The p-calculus, or rewriting calculus [d) aims to integrate
first-order rewriting, the A-calculus, and non-determinism. Although we have
diverged from that goal and RhoStratego has become a conventional functional
language extended with first-class rules and generic traversals, it is still inter-
esting to compare RhoStratego to the p-calculus.

The syntax of the p-calculus is defined as follows:
t::=war | constant |t —t |tet | null | t,t

t — t represents abstraction, ¢ e t stands for application, ¢, ¢ builds a structure,
and null denotes the empty structure. It is easy to see that the A-calculus and
term rewriting can be encoded in the p-calculus. For example, x — y — x is
exactly the A\-term Az.\y.z, and (F(xz) — x)e F(A) is the rewrite rule F(x) — «
applied to the term F(A).

The principal semantic rule of the calculus is the FIRE rule, which is essentially
a generalized form of G-reduction:

null if Sol(t; <<t3) =0

(tr = t2) o t3 = { o1ta, ..., onts where o; € Sol(t;<<t3)

25

The matching theory T, which is a parameter of the calculus, determines the
solutions and substitutions arising out of a match (Sol(t; <<rt3) returns the set of
substitutions). In addition, the calculus has the distribution rules (t1,ts) e t3 +—
t1 ®t3,to @t3 and null e t — null.

If we view the structure-building operator (,) as a choice operator and null as
failure, then the distribution rules correspond to the DISTRIB and PROPFUNC
rules of RhoStratego. Furthermore, if we take as the matching theory T the
theory of equality modulo a-renaming, then the FIRE rule corresponds to our
choice rules, except that there are no cuts. A rule either succeeds and has
exactly one solution, or it fails and yields failure. Finally, the proper choice
semantics is obtained by defining T such that ¢y, s is equivalent to ¢ if ¢; is
not null, or to t; otherwise.

7.3 Polytypic Programming

Generic or polytypic programming makes it possible to write functions that
operate on different data types. For instance, functions such as termSize can
be readily defined in PolyP [I6] or using derivable type classes [IH].

However, other kinds of generic traversals are more troublesome. Consider
topdown (Exp?Var "x" -> Var "y") (i.e., rename a variable named "x" to
"y"). We can write generic code for this using derivable type classes, for exam-
ple. We create a class together with a generic default method to traverse over
arbitrary data types, and declare all data types we want to traverse over to be
instances of this class, except that we write a specific instance for type Exp to
actually perform the renaming.

The problem with this approach is that there can be at most one class instance
declaration for each type, so if we want to define another topdown traversal,
we have to define a new class, providing different instances for the appropriate
types. And we cannot write a general class Topdown containing a method that is
parameterized with a function applying the transformation, since such a function
would necessarily have type a — « (it must operate on all types), i.e., we can
only pass the function id.

The idea behind type-safe functional strategies [IR] is similar: genericity is
achieved through the use of Haskell type classes (which may be generated au-
tomatically using an external tool).

8 Future Work

There are several ideas for further development. Stratego has been used to
build transformation systems that process real programs (e.g., the Stratego
compiler, a Cobol renovation system, a C++ transformation system [B], gram-
mar engineering tools). We still have to test the scalability of RhoStratego. For
performance reasons, it would be interesting to retarget the compiler to use an

26

existing high-quality back-end. C--[22] is a possibility, since it has substantial
support for exceptions [P4].

Better control over the scope of the choice operator is desirable, i.e., more
powerful exception handling primitives. One way to do this is to have several
kinds of exceptions, but this destroys the confluence of the language unless the
evaluation order is fixed [Z3]. This is because different subexpressions may raise
different exceptions, and so the exception that is actually raised depends on
which subexpression is evaluated first.

There is a tension between rewriting and laziness. A term C fail <+ ... will
always succeed and never go to the right-hand side choice, since fail is evaluated
lazily. Since in rewriting terms are usually consumed (and therefore produced)
in their entirety, a solution is to keep the language lazy, but make constructor
application strict. This means that we lose the ability to make infinite or cyclic
data structures, but we keep the other advantages of laziness (e.g., the ability
to define control structures).

It would be interesting to explore several other Stratego features in a functional
context, such as dynamic rules [26] and an explicit match operator. The latter
would give us first-class patterns, i.e., the ability to name and abstract over
patterns. We are also interested in non-local variable bindings. For example, we
can write {x: fetch(?Foo(x)); !x}in Stratego. That is, walk over a list until
an element is encountered that matches with the pattern Foo(x); then replace
the term with x. Note that x is declared in the scope of the entire strategy, but
it is defined (given a value) as a side-effect of executing fetch. It is not clear
how to implement this cleanly in a pure functional language.

9 Conclusion

We have presented the design of a lazy functional language integrating features
from the paradigm of rewriting strategies.

Application pattern matches are a simple but quite powerful primitive for con-
structing generic traversals. They can be typed using the GENERIC and CON-
TRACT typing rules, and be put to use with the runtime type check mechanism
embodied in the RTTC and WIDEN rules. Together they allow type unifying
and type preserving functions to be written safely.

The choice operator liberates pattern matching from the harness of the case
construct. The combination of rules and choice subsumes language constructs
such as cases, the equational style, views, pattern guards, and transformational
patterns. The cut operator allows fine control over the backtracking behavior
of the choice operator.

The implementation of RhoStratego is available under the terms of the GNU
General Public License for experimentation at http://www.stratego-language.
org/rho/.

27

http://www.stratego-language.org/rho/
http://www.stratego-language.org/rho/

References

1]

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
In 17th ACM Symp. on Principles of Programming Languages (POPL’90),
pages 31-46, San Francisco, California, January 1990. [

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. [I

O. S. Bagge, M. Haveraaen, and E. Visser. CodeBoost: A framework for
the transformation of C++ programs. Technical Report UU-CS-2001-32,
Institute of Information and Computing Sciences, Utrecht University, 2001.

[ps.eZ] . B

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek.
Elan: A logical framework based on computational systems. In J. Meseguer,
editor, FElectronic Notes in Theoretical Computer Science, volume 4. El-
sevier Science Publishers, 1996. Proceedings of the First Workshop on
Rewriting Logic and Applications 1996 (WRLA’96). [,

J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR program
transformation system: Simplifying the development of numerical software.
In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools for Scientific Computing, pages 353-372. Birkhauser, 1997. [

M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software— Practice and Ezxperience, 2000. B

M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with
traversal functions. Draft, March 2001. [

W. Burton, E. Meijer, P. Sansom, S. Thompson, and P. Wadler. Views:
An extension to Haskell pattern matching. http://www.haskell.org/
development/views.html. [I, [, 1]

H. Cirstea, C. Kirchner, and L. Liquori. Matching power. In A. Middeldorp,
editor, Rewriting Techniques and Applications (RTA’01). Springer-Verlag,
May 2001. [-2

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In J. Meseguer, editor, Proceedings of the First International Workshop
on Rewriting Logic and its Applications, volume 4 of Electronic Notes in
Theoretical Computer Science, pages 65-89, Asilomar, Pacific Grove, CA,
September 1996. Elsevier. [l

M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transfor-
mation tools. In M. G. J. van den Brand and D. Perigot, editors, Workshop
on Language Descriptions, Tools and Applications (LDTA’01), volume 44

28

http://www.ii.uib.no/~otto/
http://www.ii.uib.no/~magne/
http://www.cs.uu.nl/people/visser
http://www.cs.uu.nl/people/visser/ftp/BHV00.ps.gz
http://www.haskell.org/development/views.html
http://www.haskell.org/development/views.html

[14]

[15]

[16]

[17]

of Electronic Notes in Theoretical Computer Science. Elsevier Science Pub-
lishers, April 2001. See also http://www.program-transformation.org/
xt/. B

A. Van Deursen, J. Heering, and P. Klint, editors. Language Prototyp-
ing. An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, Singapore, September 1996. [l

E. Dolstra. First class rules and generic traversals for program transforma-
tion languages. Master’s thesis, Utrecht University, 2001. E2, @

M. Erwig and S. Peyton Jones. Pattern guards and transformational pat-
terns. In Haskell Workshop, 2000. [0, [, 71, 1], 71

R. Hinze and S. Peyton Jones. Derivable type classes. In G. Hutton, editor,
Haskell Workshop, Montreal, Canada, September 2000. [0, -3

P. Jansson and J. Jeuring. PolyP — a polytypic programming language
extension. In 24th ACM Symp. on Principles of Programming Languages
(POPL’97), pages 470-482, 1997. [, .3

R. Lammel. Generic type-preserving traversal strategies. In B. Gramlich
and S. Lucas, editors, Proc. International Workshop on Reduction Strate-
gies in Rewriting and Programming (WRS 2001), volume SPUPV 2359,
Utrecht, The Netherlands, May 2001. Servicio de Publicaciones - Universi-
dad Politécnica de Valencia. [I

R. Lammel and J. Visser. Type-safe functional strategies. In Scottish
Functional Programming Workshop, July 2000. [-3

R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978. B

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997. [l

S. Peyton Jones, J. Hughes, et al. Report on the programming language
Haskell 98, 1999. [0

S. Peyton Jones, N. Ramsey, and F. Reig. C--: a portable assembly lan-
guage that supports garbage collection. In International Conference on
Principles and Practice of Declarative Programming (PPDP’99), October
1999. B

S. Peyton Jones, A. Reid, T. Hoare, and S. Marlow. A semantics for impre-
cise exceptions. In ACM Conference on Programming Languages Design
and Implementation, pages 25-36, 1999. B

29

http://www.program-transformation.org/xt/
http://www.program-transformation.org/xt/

[24]

[25]

[26]

[27]

[28]

N. Ramsey and S. Peyton Jones. A single intermediate language that
supports multiple implementations of exceptions. In ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation
(PLDI’00), June 2000. §

M. Tullsen. First class patterns. In 2nd International Workshop on Practial
Aspects of Declarative Languages, volume 1753 of LNCS, pages 1-15, 2000.

1, 1

E. Visser. Scoped dynamic rewrite rules. In M. G. J. van den Brand and
R. Verma, editors, Second International Workshop on Rule-Based Program-
ming (RULE’02), Firenze, Italy, September 2001. B

E. Visser, Z. el Abidine Benaissa, and A. Tolmach. Building program opti-
mizers with rewriting strategies. In International Conference on Functional
Programming (ICFP’98), ACM SIGPLAN, pages 13-26, September 1998.

m, B

P. Wadler. Views: A way for pattern matching to cohabit with data ab-
straction. In 14th ACM Symp. on Principles of Programming Languages
(POPL’87), pages 307-313, Munich, Germany, January 1987. [, [, [-]]

30

	Introduction
	First-Class Rules
	Lambda Rules
	Pattern Matching Rules
	Choosing between Values
	Choosing between Rules
	Cutting Choice
	Creating and Matching Failure
	Strategy operators

	Generic Traversal
	All
	One
	Crush

	Semantics
	Evaluation Rules
	Evaluation Strategy

	Type System
	Data Type Declarations
	Application Pattern Matches
	Genericity
	Typing rules

	Implementation
	Related Work
	Extensions to Pattern Matching
	-calculus
	Polytypic Programming

	Future Work
	Conclusion

