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1 Introduction

Program re�nement has received a lot of attention in the context of stepwise development of correct
programs, since the introduction of transformational programming techniques by [Wir71, Hoa72, Ger75,
BD77] in the seventies. This report presents a new framework of program re�nement, that is based on
a re�nement relation between UNITY programs. The main objective of introducing this new relation
it to reduce the complexity of correctness proofs for existing classes of related distributed algorithms.
It is shown, however, that this relation is also suitable for the stepwise development of programs, and
incorporates most of the program transformations found in existing work on re�nements.

2 Terminology and notation

Function application will be represented by a dot. In de�nitions we shall use
d
= meaning \is de�ned

by". The complement of a set W is denoted by W c. A relation R is bitotal on A and B (denoted by
bitotal:R:A:B), when for every element in A there exists at least one element on B to which it is related,
and similarly for B. A relation � is well-founded over A, when it is not possible to construct an in�nite
sequence of decreasing values in A. Universal quanti�cation will be written like (8x : P x : Q x) meaning
forall x if P holds for x then also Q. If P is true for all x we just write (8x :: Q x). Similar notation is
used for existential quanti�cation.

3 Preliminaries: states, actions, programs

3.1 Variables, values, states

We assume we have a universe Var of program variables and a universe Val of values that these variables
can take. Program states will be modelled as functions that are elements of Var!Val, and the set of
all program states will be denoted by State. A state-predicate is an element of State!bool. We say
that a state-predicate p is con�ned by a set of variables V � Var if p does not restrict the value of any
variable outside V . Let us write s =V t, if all variables in V have the same values in state s and t (i.e.
8v : v 2 V : s:v = t:v). Now we can formally de�ne predicate con�nement as follows:

De�nition 3.1 Confinement CONF DEF

p C V
d
= 8s; t : s =V t : p:s = p:t

The con�nement operator is monotonic in its second argument.

Theorem 3.2 C Monotonicity CONF MONO

8f :: V �W ^ (f C V )) (f C W )

3.2 Actions

Actions can be (multiple) assignments or guarded (if-then) actions. Simultaneous execution of assignments
is modelled by the operator k. For example, x; y := 1; 2 kw; z := 3; 4 equals x; y; z; w := 1; 2; 3; 4.

All actions is this report are assumed to be well-formed, meaning that their guard is a state-predicate,
and the amount of variables at the left hand side of the := is equal to the amount of values at the right
hand side.

We will assume a deep embedding of actions, i.e. the abstract syntax of actions is de�ned by a
recursive data type ACTION, and their semantics is de�ned by a recursive function, e.g. compile, of type
ACTION!(State!State!Bool). As a consequence, we are able to obtain and reason about various
components of actions. For example, we assume that we have functions guard of and assign vars that
given an action returns its guard and the set of variables it assigns to respectively. Examples of these
functions:

guard of(if x > 0 ^ y < 10 then x := x+ 1 k y := y � 1) = x > 0 ^ y < 10
assign vars(if x > 0 ^ y < 10 then x := x+ 1 k y := y � 1) = fx; yg

Moreover, we have functions is assign and is guard that enable us to check the type of an action.
An action that is always ready to make a transition is called always enabled.
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De�nition 3.3 Always Enabled Action ALWAYS ENABLED

�EnA
d
= 8s :: (9t :: compile:A:s:t)

Multiple assignments and guarded if-then actions are always enabled. Note that this means that a guarded
action with a false guard behaves like skip, i.e. the action that does not change the value of any variable.

De�nition 3.4 skip action SKIP DEF

For any action A; skip
d
= if false then A

A set of variables is V ignored-by an action A, denoted by V 8 A, if executing A's executable in any
state does not change the values of these variables. Variables in V c may however be written by A.

De�nition 3.5 variables Ignored-by action dIG BY DEF

V 8 A
d
= 8s; t : compile:A:s:t : s =V t

A set of variables V is said to be invisible-to an action A, denoted by V 9 A, if the values of the variables
in V do not inuence the result of A's executable, hence A only depends on the variables outside V .

De�nition 3.6 variables Invisible-to action dINVI DEF

V 9 A
d
= 8s; t; s0; t0 : s =V c s0 ^ t =V c t0 ^ s0 =V t0 ^ compile:A:s:t : compile:A:s0:t0

Finally, we will de�ne two transformations on actions, namely strengthening guards and augmentation.
Suppose the constructor for guarded actions of the data type ACTION is GUARD. Now we can transform
an action A by strengthening its guard with state-predicate g as follows:

De�nition 3.7 Strengthening guards of actions strengthen guard

strengthen guard:g:A
d
= GUARD:(g ^ guard of:A):(assign of:A)

An action Ac can be combined with an assignment As to yield an augmented action:

De�nition 3.8 Augmenting an action augment DEF

augment:Ac:As
d
= GUARD:(guard of:Ac):((assign of:Ac) kAs)

When an action Ac is transformed by augmentation to yield augment:Ac:As, we say that Ac is augmented
with assignment As, or that As is augmented to Ac. The following properties of strengthening guards
and augmentation can easily be proved using the de�nitions given above.

Theorem 3.9 preservation of 8 streng guard PRESERVES IG BY

V 8 A

V 8 strengthen guard:g:A

Theorem 3.10 preservation of 9 streng guard PRESERVES INVI

V 9 A ^ g C V c

V 9 strengthen guard:g:A

Theorem 3.11 streng augment COMMUTE

strengthen guard:g:(augment:Ac:As) = augment:(strengthen guard:g:Ac):As

Theorem 3.12 preservation of 8 augment PRESERVES IG BY

V 8 Ac ^ V 8 As ^ is assign:As

V 8 augment:Ac:As
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3.3 Programs

UNITY programs P are modelled by a quadruple (aP , iniP , rP , wP ); aP , is the set of actions separated
by the symbol 8; iniP is the initial condition of the program; rP is the set of read variables; and wP the
set of write variables.

A UNITY program must satisfy four syntactic requirements regarding its well-formedness: (1) The
program should have at least one action; (2) A write variable is also readable; (3) The actions of a
program should only write to the declared write variables; (4) The actions of a program should only
depend on the declared read variables.

Using the notions of ignored-by and invisible-to we can de�ne a well-formed \UNITY program" as an
object satisfying the following predicate Unity.

De�nition 3.13 Unity dUNITY

Unity:P
d
= (aP 6= ;) ^ (wP � rP ) ^ (8A : A 2 aP : (wP )c 8 A) ^ (8A : A 2 aP : (rP )c 9 A)

A program execution of such a program is in�nite, in each step an action is selected nondeterministi-
cally and executed. Selection is weakly fair, meaning that every action is selected in�nitely often.

3.4 Speci�cations

As usual, reasoning about actions is done by means of Hoare triples [Hoa69]. If p and q are state-
predicates, and A is an action, then fpg A fqg means that if A is executed in any state satisfying p, it
will end in a state satisfying q:

De�nition 3.14 Hoare Triple HOAe DEF

fpg A fqg
d
= 8s; t : p:s ^ compile:A:s:t : q:t

To reason about programs we will use the UNITY speci�cation and proof logic from [CM89] augmented
by [Pra95]. Safety properties can be speci�ed by the following operators:

De�nition 3.15 Unless (Safety Property) UNLESSe

P` p unless q
d
= 8A : A 2 aP : fp ^ :qg A fp _ qg

De�nition 3.16 Stable Predicate STABLEe

P`�p
d
= P` p unless false

The following is a theorem about unless that we will need later in this report.

Theorem 3.17 Anti-Reflexivity UNLESS ANTI REFL

P` p unless :p

One-step progress properties are speci�ed by:

De�nition 3.18 Ensures (Progress Property) ENSURESe

P` p ensures q
d
= (P` p unless q) ^ (9A : A 2 aP : fp ^ :qg A fqg)

To specify general progress properties we will use Prasetya's [Pra95] reach (�) and convergence ( )
operators. The �-operator is de�ned as the least disjunctive and transitive closure of ensures:

De�nition 3.19 Reach Operator REACHe

(�p; q: J P` p� q) is de�ned as the smallest relation! satisfying:
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Lifting
p C wP ^ q C wP ^ (P`�J) ^ (P` J ^ p ensures q)

p! q

Transitivity
p! q ^ q! r

p! r

Disjunctivity
8i :W:i : pi! q

(9i :W:i : pi)! q

where W 2 �!Val characterises a non-empty set.

Many properties about � can be found in [Pra95], the properties we need in this report are listed in
Appendix A.

The  -operator de�nes a restricted form of self-stabilisation, a notion �rst introduced by Dijkstra
in [Dij74]. Roughly speaking, a self-stabilising program is a program which is capable of recovering
from arbitrary transient failures of the environment in which the program is executing. Obviously such
programs are very useful, although the requirement to allow arbitrary failures may be too strong. A more
restricted form of self-stabilisation, called convergence, allows a program to recover only from certain
failures. In [Pra95], a convergence operator is de�ned in terms of�:

De�nition 3.20 Convergence CONe

J P` p q , q C wP ^ (9q0 :: (J P` p� q0 ^ q) ^ (P`�(J ^ q
0 ^ q)))

Again some properties taken from [Pra95] are listed in Appendix B. Most properties are analogous
to those of �. There is, however, one property that is satis�ed by  but not by � nor 7!, viz.
Conjunctivity.

4 What exactly is a re�nement

Whereas the word re�nement has been used in technical contexts in several related but subtly di�erent
ways, we can only give an overview after we have agreed on what is considered to be a re�nement
and, more important, what re�nements are being considered. In Webster's college dictionary [Inc95],
re�nement is de�ned as:

re�nement n. 1. �neness or elegance of feeling, taste, manners, language, etc. 2. an instance of this.
3. the act or process of re�ning. 4. the quality or state of being re�ned. 5. a subtle point of
distinction. 6. an improved form of something. 7. a detail or device added to improve something.

and all senses but 1 accord with the uses in computer science related contexts. We shall start by making
a clear distinction between program re�nement on the one hand and property re�nement on the other.

Property re�nement occurs within the context of the UNITY methodology for developing distributed
programs. Here, a high level UNITY speci�cation { which, within the UNITY methodology, is a property
and not a program { is re�ned by adding more detail to it (i.e. 7 of Webster's de�nition). The speci�cation
is improved in the sense that, being more detailed by exploiting some solution strategy, it gets easier to
derive the �nal UNITY program that satis�es the initial speci�cation. This kind of property re�nement,
or speci�cation re�nement is in some work also referred to as rei�cation [Jac91].

Program re�nement is the activity of transforming a complete program in order to improve something
(i.e. 6 and 7. of Webster's de�nition). This something can be the program itself (i.e. eÆciency,
costs, representation, etcetera), or the complexity of the correctness proof of the program. Although
the de�nition that states when one program is considered to be a re�nement of another di�ers among
existing work on program re�nements (see the sections below), the type or kind of program re�nements
(or program transformations) that are studied are generally the same. Before we discuss existing work
on program re�nement, we shall give the meanings of these di�erent kinds of re�nements.

data re�nement is a program transformation where a (high-level, abstract) data structure is replaced
by another (lower-level, concrete) data structure. It was �rst introduced in [Hoa72], and is very
useful for improving the eÆciency of programs.

6



atomicity re�nement is a program transformation where a program with a coarse grain of atomicity is
transformed into another program that uses a �ner grain of atomicity. It is a useful transformation
rule. On the one hand, proving algorithms with a coarse grain of atomicity is easier since fewer
interleavings have to be considered. On the other hand, distributed algorithms that use a �ne grain
of atomicity are potentially faster as more processes may execute concurrently.

strengthening guards is a program transformation of which the name speaks for itself.
superposition re�nement is a program transformation that, as we already discussed in Section 6,

adds new functionality to an program in the form of additional variables and assignments to these
variables.

The existing work that shall be discussed in the following sections is concerned with program re�nements
of distributed or concurrent programs.

5 An overview of some existing work on re�nements

5.1 The re�nement calculus

The re�nement calculus originates with Ralph Back [Bac78, Bac80] and was reintroduced by Joseph
Morris [Mor89] and Carrol Morgan [Mor88, MG90, Mor90]. The calculus provides a framework for
systematic program development.

The main idea behind the re�nement calculus is considering both speci�cations and code to be pro-
grams. A notion of re�nement is then de�ned on these programs as a reexive and transitive relation that
preserves total correctness1. More speci�cally, a program P is re�ned by another program P 0 (denoted
by P � P 0 or P v P 0) if, when both P and P 0 are started in the same state:
� if P terminates so does P 0

� the set of �nal states of P 0 is contained in the set of �nal states of P
This notion of re�nement is de�ned using Dijkstra's weakest pre-condition calculus [Dij76]. Note that
this de�nition of re�nement is not a property preserving re�nement. All we know when P � P 0 is that the
input-output correctness is preserved; it does not guarantee that the behaviour of P 0 during execution,
and thus its temporal properties, will be the same as the behaviour of P . Since the re�nement calculus
was originally designed for sequential programs total correctness was suÆcient. The re�nement calculus
has however been lifted to work on both parallel [Bac89, Bac90, Ser90, BS91, Bac93] and reactive (or
distributed) [Bac90, vW92b, BvW94, BS96]. systems, by using action systems [BKS83, BKS84, BKS88]
to model parallel and distributed systems as sequential programs. Although preserving total correctness
is also suÆcient for parallel systems, stepwise re�nement of reactive or distributed systems also requires
preservation of temporal properties. Consequently, in [Bac90, vW92b, BvW94, BS96] the notion of
re�nement was extended such that the preservation of temporal properties was guaranteed.

The development of a program within the re�nement calculus framework consists of a sequence of
correctness (or in the case of distributed systems, temporal properties) preserving re�nement steps,
starting with an initial high-level speci�cation and ending with an eÆcient executable program. These
correctness preserving re�nement steps are formulated as program transformations rules t 2 programs!
programs and added to the re�nement calculus framework by proving theorems of the form:

8P 2 programs ::
Veri�cation Conditions hold for P

P � t:P

In other words if certain veri�cation conditions are satis�ed, then applying rule t to program P is a
correctness (and in the case of distributed systems, temporal properties) preserving re�nement step.
Many transformation rules can be found in [Bac88, Bac89, BvW89, BvW90, Bac90, Ser90, BS91, vW92a,
vW92b, Bac93, BS96, SW97, BvW98, BKS98], concerning among others, data re�nement, guard strength-
ening, superposition re�nement, and atomicity re�nement (or changing the granularity).

Some other references on uses of the re�nement calculus for distributed systems include [SW94a,
SW94b, SW96], where the re�nement steps are applied backwards in order to obtain a formal approach
to reverse engineering distributed algorithms. In [Wal96, BW96, WS96, Wal98a, Wal98b, BW98] action
systems and their re�nements are formalised and applied within the B-method [Abr96].

1In [Bac81] a notion of partial correctness preserving re�nement is studied.
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5.2 Sanders' mixed speci�cations and re�nement mappings

Sanders [San90] has introduced a mixed speci�cation technique (called mspecs) to de�ne a notion of
program re�nement in UNITY. An mspec incorporates both program text and a set of program properties.
More speci�cally, an mspec consists of a declare section that contains a list of variables together with
their types (the Cartesian product of these variables is referred to as the state space of the mspec); an
initially section that contains a predicate that speci�es the allowed initial values of the variables; an assign
section that contains a set of conditional assignment statements that, in an operational view, constrain
the behaviour of the program by specifying allowed state changes; a property section containing a set
of program properties (expressed in a modi�ed2 version of the UNITY logic) that further constrain the
allowed state changes, and for the progress properties, the allowed sequence of state changes.

Consequently, if the assign section is empty, an mspec is a standard UNITY speci�cation, and if the
properties section is empty an mspec is a standard UNITY program. An mspec is called implementable
when all properties in the property section can be proved to hold for the actions in the assign section.

A bene�t of specifying UNITY programs with a mixed speci�cation is the following. Some desired
program properties, like e.g. safety properties, are easier and more intuitively expressed using statements
instead of logic, while others (usually progress properties) are better speci�ed using logics [Lam83, Lam89].
In an mspec one can bene�t from both possibilities, which is good since getting a speci�cation right in
the �rst place is crucial and not always easy.

A notion of re�nement is de�ned on mspecs which is based on a re�nement mapping [Lam83, LS84,
AL88, Lam91, Lam96] M from the state space of the re�nement to the state space of the original. It is
denoted by (G re�nes F )M, and informally means:
� all initial conditions of G are mapped by M to the initial conditions on F
� if a state change from y0 to y1 is permitted by the assignments in the assign section of G, then either
a state change fromM:y0 to M:y1 is permitted by the the assignments in the assign section of F , or
M:y0 equals M:y1.

� all properties of F are implied by the properties of G
Using this de�nition, several theorems are proved that state under which conditions a property that holds
in an mspec can be considered to hold in a re�nement. To give an indication of what these theorems look
like, the 7! preservation theorem is copied below: [San90, page 13]:

F` p 7! q ^ (G re�nes F )M
8i : ( F` ri ensures qi is used in the proof of F` p 7! q) : G` ri ÆM ensures qi ÆM

G` p ÆM 7! q ÆM

Similar theorems are given for preservation of unless , ensures , and �xed points. Moreover, a theorem
is proved that states when the program transformation of replacing a shared variable by a message
communication system is a property preserving (data) re�nement. Stepwise derivation of programs
within this framework now consists of a sequence of re�ned mspecs, starting with an mspec containing a
high level of abstraction, and ending up with an mspec that is implementable.

5.3 A.K. Singh

In [SO89, Sin89, Mis90, Sin91, Sin93] re�nement of UNITY programs is investigated. Notions of property
preserving and total correctness preserving (or �xed-point preserving, as it is called in [Sin93]) re�nements
are de�ned3 as follows: [Sin93, page 511]:

Let F and G be two programs. G is a property-preserving re�nement of F i� for all predicates p; q,
the following two assertions hold:
� F` p unless q ) G` p unless q
� F` p 7! q ) G` p 7! q

Similarly, G is a �xed-point preserving re�nement of F i�
� F` true 7! FPF ) G` true 7! FPG
� (FPG ^ SIG) ) (FPF ^ SIF )

where FPP is the �xed point of a program P , i.e. it characterises the collection of states that are invariant
under the execution of every statement in P ; SIP denotes the strongest invariant of a program P , i.e. it
denotes the set of states reachable from the initial state.

2The modi�ed version was de�ned to eliminate the need of the substitution axiom [San91]
3The de�nitions of unless , ensures , and 7! of Sanders' logic [San91] are used.
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Having de�ned these two notions of re�nement, theorems are proved stating under which conditions
certain program transformations are property-preserving and �xed-point preserving re�nements. To give
an indication of what these theorems look like, a theorem, stating the veri�cation conditions under which
strengthening the guard of a program is a property and �xed-point preserving re�nement, looks like:
[Sin89, page 1] [Mis90] [Sin93, page 519]

Theorem Let F be a program and let s :: A if p be a statement. Let statement t :: A if p^q be obtained
by strengthening the guard of statement s. Then, program F 8t is a property and a �xed-point preserving
re�nement of the program F 8 s if the following two conditions hold.
� F` p 7! q

� There exists a non-increasing function g from the program variables to a well-founded set such that

F` (g = k ^ q) unless (:p _ g < k), for all k

In [Sin93] similar theorems are proved for program transformations like data re�nement and atomicity
re�nement, and applied to to a number of examples.

5.4 Further reading

For some other work on re�nement concepts within the UNITY (or a UNITY-like) framework, the reader
can for example read [ZGK90, Jon90, Kor91, Udi95, UK96, Din97, GKSU98].

6 Re�nement in UNITY

Within the UNITY framework [CM89] two re�nements are distinguished: restricted union superposition,
and augmentation superposition. It is recognised in [CM89] that the lack of appropriate syntactic mech-
anisms limits the algebraic treatment of superposition. Consequently, the description of superposition
re�nement in [CM89] is rather informal. Since in this report we assume a deep embedding of actions,
we have more appropriate syntactic mechanisms which enable us to give a less informal treatment of
superposition.

In [CM89], the restricted union superposition rule states that an action A may be added to an
underlying program provided that A does not assign to the underlying variables. Here we split this into
two parts:

� �rst, de�ning the actual transformation of the program;

� second, proving under which conditions this transformation preserves the properties of the under-
lying program.

Let A be an action from the universe ACTION, and let iA be a state-predicate describing the initial values
of the superposed variables, then a program P can be re�ned by restricted union superposition using the
transformation formally de�ned by:

De�nition 6.1 Restricted union superposition RU superpose DEF

Let A 2 ACTION, iA be a state-predicate, and P be a program:

RU S:P:A:iA = P 8 (fAg; iA; (assign vars:A); (assign vars:A))

Theorems stating that properties are preserved under restricted union superposition are stated below for
arbitrary programs P , actions A, and state-predicates p; q; J . Note that instead of requiring that the
superposed action A does not write to the underlying variables, it is suÆcient to require that the write
variables of the underlying program are ignored by the action A.

Theorem 6.2 preservation of unless and ensures RU Superpose PRESERVES UNLESS

RU Superpose PRESERVES ENSURES

p C wP ^ q C wP ^ wP 8 A

P` p unless q ) RU S:P:A:iA ` p unless q

P` p ensures q ) RU S:P:A:iA ` p ensures q

9



Theorem 6.3 preservation of � RU Superpose PRESERVES REACH

RU Superpose PRESERVES CON

J C wP ^ wP 8 A

J P` p � q ) J RU S:P:A:iA ` p � q

J P` p  q ) J RU S:P:A:iA ` p  q

In [CM89], the augmentation superposition rule states that an assignment As that does not assign to the
underlying variables can be augmented to any assignment or assignment-part of actions of the underlying
program. Again, we �rst de�ne the actual transformation on the program, and second, prove theorems
stating when properties are preserved. Let As be an assignment from the universe ACTION, and let iA
be a state-predicate describing the initial values of the superposed variables, then a program P can be
re�ned by augmentation superposition using the transformation rule formally de�ned by:

De�nition 6.4 Augmentation superposition AUG superpose DEF

Let As 2 ACTION, iA be a state-predicate, ACs � ACTION, and P be a program:

AUG S:P:ACs:As:iA = (fAc j Ac 2 aP ^ Ac 62 ACsg
[

faugment:Ac:As j Ac 2 aP ^ Ac 2 ACsg;
iniP ^ iA;

rP [ (assign vars:As);
wP [ (assign vars:As))

Theorems stating that properties are preserved under augmentation superposition are listed below for
arbitrary As 2 ACTION, state-predicates iA, programs P , and ACs � ACTION. Note again that instead
of requiring that the assignment As does not write to the underlying variables, it is suÆcient to require
that the write variables of the underlying program are ignored by As.

Theorem 6.5 preservation of unless and ensures AUG Superpose PRESERVES UNLESS

AUG Superpose PRESERVES ENSURES

p C wP ^ q C wP ^ wP 8 As ^ is assign:As

P` p unless q ) AUG S:P:ACs:As:iA ` p unless q

P` p ensures q ) AUG S:P:ACs:As:iA ` p ensures q

Theorem 6.6 preservation of � AUG Superpose PRESERVES REACH

AUG Superpose PRESERVES CON

J C wP ^ wP 8 A ^ is assign:As

J P` p � q ) J AUG S:P:ACs:As:iA ` p � q

J P` p  q ) J AUG S:P:ACs:As:iA ` p  q

7 Another notion of re�nement in UNITY

Like Sanders, but unlike Back and Singh, our re�nement relation is not de�ned to be property or correct-
ness preserving, and accordingly additional theorems have to be proved that state conditions under which
properties of a program are preserved in its re�nement. These conditions, however, do not look like the
ones in Sanders, but relate to the veri�cation conditions of the theorems in Back and Singh that argue
about the property preservation of speci�c program transformation rules. The main di�erence between
our re�nement relation and the ones described in the previous sections, is that its purpose it not the
stepwise derivation of correct programs but the reduction of complexity of correctness proofs of existing
classes of related algorithms. The next section shall exemplify this.
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7.1 Why another notion of re�nement?

Guard strengthening and superposition are transformations for the step-wise development of programs,
the formalisation of which was discussed in Section 6. This section exempli�es why these program
re�nements are sometimes insuÆcient to re�ne a program, and hence motivates the introduction of our
new re�nement relation.

Suppose we have a class of similar algorithms that seemingly establish the same progress in various
ways. Most of the time, algorithms in such a class di�er by having di�erent mechanisms or control
structures that inuence their control ow and degree of non-determinism. Sometimes, however, adding
such a mechanism or control structures, does not consist of one transformation, but a sequence (or
composition) of transformations which as a whole are a property preserving transformation but on their
own they are not. Consider, for example the following simple UNITY program which is in the class of
algorithms that, started with initial values x = 0 and y = 0, increments both x and y until they have the
value 10.

prog P

read fx; yg
write fx; yg
init x = 0 ^ y = 0
assign if x � 10 then x := x+ 1 Px
8 if y � 10 then y := y + 1 Py

Figure 1: Program P that increments both x and y until they have the value 10
J

It is easy to prove that true P` x = 0 ^ y = 0  x = 10 ^ y = 10 (see Figure 3). Another algorithm
in this class is one that reduces the non-determinism of P in such a way that the value of x and y are
incremented in an alternating way. Obviously, this more deterministic program also satis�es (for some
J) J ` x = 0^ y = 0 x = 10^ y = 10, and can be constructed by introducing a variable x turn of type
bool { the value of which indicates that it is x's turn { and transforming P as follows:

prog Q

read fx; y; x turng
write fx; y; x turng
init x = 0 ^ y = 0 ^ x turn = true

assign if x < 10 ^ x turn then x := x+ 1 k x turn := :x turn Qx

8 if y < 10 ^ :x turn then y := y + 1 k x turn := :x turn Qy

Figure 2: Program Q; reducing P 's non-determinism
J

The machinery for superposition re�nements in UNITY, formalised in Section 6, is inadequate for prov-
ing that this transformation is a property preserving one. This is because if we augment the Px with
assignment x turn:= :x turn to yield the program AUG S:P:fPxg:(x turn := :x turn):(x turn = true),
then we cannot subsequently augment action Py (of AUG S:P:fPxg:(x turn := false):(x turn = true)) with
the assignment x turn:= :x turn and prove that the properties are preserved, since the write variables of
AUG S:P:fPxg:(x turn := :x turn):(x turn = true) (i.e. wP [fx turng) are not ignored by the assignment
x turn:= :x turn. Consequently, the formalisation of the UNITY superposition rules are not suÆcient to
prove preservation of properties under these kind of non-determinism reducing re�nements. However,
these re�nements are very powerful for reducing the complexity of a correctness proof for a class of dis-
tributed programs. Non-deterministic programs are often easier to prove than more deterministic ones,
since simplicity is gained by avoiding unnecessary determinism. To illustrate this we have displayed the
proof of x = 0 ^ y = 0  x = 10 ^ y = 10 for programs P and Q in Figures 3 and 4 respectively. It is
not hard to see that the proof in Figure 3 is simpler than the proof in Figure 4. One reason for this is
that, because of P 's freedom to increment x and y whenever it wants (i.e. non-determinism), we are able
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true P` x = 0 ^ y = 0 x = 10 ^ y = 10
( ( Conjunction (B.1132),  Substitution (B.231))
true P` x � 10 x = 10 ^ true P` y � 10 y = 10
We continue with the �rst conjunct, the proof of the second conjunct is similar.
true P` x � 10 x = 10
( ( Bounded Progress (B.1232), and P`�x = 10)
true P` x � 10 ^ (10 � x = k) (x � 10 ^ (10� x < k)) _ x = 10
( ( Case distinction (B.632) x = 10 _ x 6= 10,  Reflexivity (B.432), P`�x = 10,
and  Substitution (B.231))

true P` x < 10 ^ (10 � x = k) x � 10 ^ (10� x < k)
( ( Introduction (B.332), and P`�x � 10 ^ (10� x < k))

P` x < 10 ^ (10� x = k) ensures x � 10 ^ (10� x < k)

Figure 3: Proof of true P` x = 0 ^ y = 0 x = 10 ^ y = 10
J

to decompose the proof obligation x = 0 ^ y = 0  x = 10 ^ y = 10 into the simpler proof obligations
x = 0  x = 10 and y = 0  y = 10. For program Q this is an ineÆcacious proof strategy because x
and y cannot be increased independently. Another reason is that, because of Q's restricted freedom to
increase x and y (i.e. determinism), additional case distinctions on whether it is x's turn or not have to
be made in order to be able to prove that progress can indeed be made.

Although this is just a simple example, it suggest that the total proof e�ort can be signi�cantly
reduced if we have a re�nement relation supporting non-determinism reducing re�nement. Since then,
instead of laboriously proving properties directly for a more deterministic program Q, we can reduce the
proof-complexity by proving these properties for the least deterministic variant P of Q, and conclude
that these properties also hold for Q.

7.2 The formal de�nition of our re�nement relation

We start by de�ning the re�nement relation between two actions. Suppose we have two actions Al; Ar 2
ACTION, a state-predicate J , and a set of variables V , we say that Al is re�ned by Ar, or Ar re�nes Al,
with respect to V and J (denoted by Al vV;J Ar), when:

� the conjunction of J with the guard of Ar is stronger then the guard of Al.

� the results of Al and Ar, both executed in the same state s where J:s holds, on the variables in V

are the same.

De�nition 7.1 Action Refinement A ref DEF

Let Al and Ar be two actions from the universe ACTION, J be a state predicate, and V be a set of
variables, then action re�nement is de�ned as follows:

Al vV;J Ar = 8s :: guard of:Ar :s ^ J:s) guard of:Al:s

^
8s; t; t0 :: (compile:Al:s:t ^ compile:Ar:s:t

0 ^ guard of:Ar:s ^ J:s)) t =V t0

The fact that action re�nement is reexive and transitive is captured by the following theorems.

Theorem 7.2 action refinement Reflexivity A ref REFL

For all A 2 ACTION, state-predicates J , and sets of variables V :

A vV;J A

Theorem 7.3 action refinement Transitivity A ref TRANS1

For all A1; A2; A3 2 ACTION, state-predicates J2 and J3, and sets of variables V1; V2 and V3:

J3 ) J2 ^ V3 � V1 ^ V3 � V2 ^ A1 vV1;J2 A2 ^ A2 vV2;J3 A3

A1 vV3;J3 A3
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Take J = (:x turn ) y = x� 1) ^ (x turn ) y = x), and prove that Q`�J .

J Q` x = 0 ^ y = 0 x = 10 ^ y = 10
( ( Substitution (B.231))
J Q` x � 10 ^ y � 10 x = 10 ^ y = 10
( ( Bounded Progress (B.1232), and Q`�x = 10 ^ y = 10)
J Q` x � 10 ^ y � 10 ^ (20� x� y = k) (x � 10 ^ y � 10 ^ (20� x� y < k)) _ (x = 10 ^ y = 10)
( ( Case distinction (B.632) y = 10 _ y 6= 10,  Introduction (B.332), and
 Substitution (B.231) and (J ^ x � 10 ^ y � 10 ^ y = 10)) (x = 10 ^ y = 10))

J Q` x � 10 ^ y < 10 ^ (20� x� y = k) (x � 10 ^ y � 10 ^ (20� x� y < k)) _ (x = 10 ^ y = 10)
( ( Case distinction (B.632) x = 10 _ x 6= 10, and  Substitution (B.231))
J Q` x = 10 ^ y < 10 ^ (20� x� y = k) (x � 10 ^ y � 10 ^ (20� x� y < k))
^
J Q` x < 10 ^ y < 10 ^ (20� x� y = k) (x � 10 ^ y � 10 ^ (20� x� y < k))
The �rst conjunct can be proved by  Introduction (B.332), since (J ^ x = 10 ^ y < 10) implies :x turn, and
thus

Q` J ^ x = 10 ^ y < 10 ^ (20� x� y = k) ensures x � 10 ^ y � 10 ^ (20� x� y < k)
We continue with the second conjunct as follows:
J Q` x < 10 ^ y < 10 ^ (20� x� y = k) x � 10 ^ y � 10 ^ (20� x� y < k)
( ( Case distinction (B.632) (x turn _ :(x turn)))
J Q` x < 10 ^ y < 10 ^ (20� x� y = k) ^ x turn x � 10 ^ y � 10 ^ (20� x� y < k)
^
J Q` x < 10 ^ y < 10 ^ (20� x� y = k) ^ :(x turn) x � 10 ^ y � 10 ^ (20� x� y < k)
( ( Introduction (B.332) on both conjuncts)

Q` J ^ x < 10 ^ y < 10 ^ (20� x� y = k) ^ x turn ensures x � 10 ^ y � 10 ^ (20� x� y < k)
^

Q` J ^ x < 10 ^ y < 10 ^ (20� x� y = k) ^ :x turn ensures x � 10 ^ y � 10 ^ (20 � x� y < k)

Figure 4: Proof of J Q` x = 0 ^ y = 0 x = 10 ^ y = 10
J

Next, we de�ne our relation of program re�nement. P is re�ned by Q, or Q re�nes P , with respect
to some relation R and state-predicate J , (denoted by P vR;J Q), if we can decompose the actions of
program Q into aQ1 and aQ2, such that

� R is a bitotal relation on the two sets of actions aP and aQ1, i.e. for every action AP in aP there
exists at least one action in aQ1 to which aP is related by R, and similarly for every action AQ in
aQ1 there exists at least one action in aP to which AQ is related by R.

� for all actions AP of aP and AQ of aQ1 that are related to each other by R (i.e. AP R AQ holds),
we can prove that AQ re�nes AP with respect to the write variables of P and state-predicate J .

� the actions of Q that are in aQ2 re�ne skip with respect to the write variables of P and J .

For those readers that are geared to pictures, in Figure 5 a depiction of program re�nement is given. The
formal de�nition of program re�nement now reads:

De�nition 7.4 Program Refinement P ref DEF

Let P and Q be two UNITY programs, R be a relation, and J be a state predicate, then program
re�nement is de�ned as follows:

P vR;J Q = 9aQ1; aQ2 :: aQ = aQ1 [ aQ2 ^ bitotal:R:aP:aQ1

^
8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ

^
8AQ : AQ 2 aQ2 : skip vwP;J AQ

Note that P vR;J Q does not say anything about Q inheriting properties or correctness from P . Nor
does it say anything about the explicit program transformations that were (or could have been) applied
to P in order to obtain Q. Moreover note that, opposed to superposition re�nement, P vR;J Q, does
not necessarily imply that wP � wQ. Consider the two programs P and Q in Figure 6. Suppose z and
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aP

P

aQ1

Q

R

vwP;J

aQ2skip vwP;J

Figure 5: Program re�nement in a picture.
J

prog P

read fx; y; zg
write fx; y; zg
init b = true

assign x := x+ 1 aP1
8 y := y + 1 aP2
8 z := z aP3

prog Q

read fx; y; wg
write fx; y; wg
init b = true

assign if x � 15 then x := x+ 1 aQ1

8 if y � 20 then y := y + 1 aQ2

8 w := w + 1 aQ3

Figure 6: Q re�nes P
J

w are di�erent variables, then it can easily be seen that for any state-predicate J , and relation R de�ned
by R = f(aPi; aQi) j i = 1; 2g, it holds that P vR;J Q. However, since z and w are di�erent variables,
wP � wQ does not hold.

The following theorems state that program re�nement is reexive and under certain conditions also
transitive.

Theorem 7.5 Program refinement Reflexivity P ref REFL

For all programs P , and state-predicate J :

P v=;J P

Theorem 7.6 Program refinement Transitivity P ref TRANS

For all programs P1; P2; P3, and state-predicates J2; J3:

J3 ) J2 ^ wP1 � wP2 ^ P1 vR1;J2 P2 ^ P2 vR2;J3 P3

P1 vR1ÆR2;J3 P3

Reexivity, and transitivity are necessary properties of a re�nement relation, in order to make the latter
suitable for the step-wise derivation of programs [Bac88]. However, our de�nition of re�nement is not
purely transitive in the sense that additional requirements on the component programs are demanded in
the premises of Theorem 7.6 stating transitivity of v. Suppose we want to derive program Pn+1 from P1
(n > 1) by the following sequence of re�nements:

P1 vR1;J2 P2 vR2;J3 P3 vR3;J4 P4 : : : vRn;Jn+1 Pn+1

in order to conclude that

P1 vR1Æ:::ÆRn;Jn+1 Pn+1

we have to prove that:
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� the write variables of the program Pi in intermediate step Pi vR1Æ:::ÆRi;Ji+1 Pi+1 are included or
equal to the write variables of program Pi+1

� the predicate Ji+1 (which shall usually correspond to the strongest invariant of the program Pi+1)
must be stronger than the predicate Ji (thus the strongest invariant of program Pi).

Consideration of the fact that the underlying transformations of these intermediate re�nement steps
are superposition, guard strengthening and atomicity re�nement (see Section 7.6), these requirements
are very natural. Consequently, our de�nition of re�nement is very suitable for stepwise derivation and
veri�cation of distributed programs in UNITY.

7.3 Property preservation

Safety properties p unless q, and �J , where p; q and J do not name any superposed variable, are always
preserved under re�nement of two UNITY programs.

Theorem 7.11 unless preservation P ref AND SUPERPOSE WRITE PRESERVES UNLESSe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JQ) ^ (JQ ) J)
9W :: (wQ = wP [W ) ^ (p C W c) ^ (q C W c)

P` p unless q ) Q` (JQ ^ p) unless q

Theorem 7.12 � preservation P ref AND SUPERPOSE WRITE PRESERVES STABLEe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JQ) ^ (JQ ) J)
9W :: (wQ = wP [W ) ^ (p C W c)

P`�p) Q`�(JQ ^ p)

The conditions (p C W c) and (q C W c), in the premises of the two theorems above, state that the values
of state-predicates p and q do not depend on the values of the variables in W . Note that when W is the
set of variables that are superposed up on program P , these conditions are weaker then stating that p
and q do not name any superposed variable.

Preservation of one-step progress properties (i.e. ensures ) cannot be proved under our de�nition of
re�nement. Fortunately, preservation of reach and convergence properties can be proved, and in most
situations these are all that are required.

Figure 7 shows the theorems stating veri�cation conditions under which general progress properties are
preserved by re�nements. Theorem 7.7 is a generalisation of the theorem given in [Sin93] mentioned earlier
in Section 5.3. It states veri�cation conditions for property preservation not only under strengthening the
guard of one action in a program, but under multiple compositions of guard strengthening, superposition
and atomicity re�nements on various actions in the program. Informally this theorem states that when
a UNITY program Q re�nes P with respect to relation R and J , then the progress properties p� q and
p  q under the stability of predicate JP in program P , are preserved under the stability of predicate
JP ^ JQ in program Q, provided that the following veri�cation conditions hold:
� (JP ^ JQ) is stable in Q.
� (JP ^ JQ) implies J
� p nor q depend on the values of the variables in W .
� the guards of those actions AQ of Q that are related by R to one or more actions from P are con�ned
by the write variables of Q.

� for all actions AP of program P ; if the guard of AP holds in Q, then eventually there will exists an
action AQ of Q that is related to AP by R, and the guard of which becomes true in Q. Consequently,
if AP can make progress in P , then eventually there exists at least one action of AQ of Q that, when
executed in Q, can make the same progress on the write variables of P as AP does when executed in
P .

Note that this requirement is not enough to guarantee that AQ indeed makes the same progress
as AP , since between the point in time that the guard of AQ becomes true, and the actual execution
of AQ it is possible that the guard of AQ is prematurely falsi�ed and no progress is made by AQ

whatsoever. The next (and last) veri�cation condition states that this premature falsi�cation of the
guard of AQ cannot happen in�nitely and hence ensures that eventually AQ will make the same
progress as AP on the write variables of program P .
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Let � be a well-founded relation over some set A, and M 2 State!A.

Theorem 7.7 P ref SUPERPOSE AND WF FUNC PRESERVES REACHe GEN

P ref SUPERPOSE AND WF FUNC PRESERVES CONe GEN

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)

8AQ : AQ 2 aQ ^ (9AP :: (AP 2 aP ) ^ (AP R AQ)) : (guard of :AQ C wQ)
8AP : AP 2 aP : (JP ^ JQ) Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)

9M :: (M C wQ) ^ (8k : k 2 A : Q` (JP ^ JQ ^M = k) unless (M � k))
^ 8k APAQ : k 2 A ^AP 2 aP ^AP R AQ :

Q` (JP ^ JQ ^ guard of :AQ ^M = k) unless (:(guard of :AP ) _M � k)

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Theorem 7.8 P ref SUPERPOSE PRESERVES REACHe GEN

P ref SUPERPOSE PRESERVES CONe GEN

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)

8AQ : AQ 2 aQ ^ (9AP :: (AP 2 aP ) ^ (AP R AQ)) : (guard of:AQ C wQ)
8AP : AP 2 aP : (JP ^ JQ) Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)
8AP AQ : AP 2 aP ^AP R AQ : Q` (JP ^ JQ ^ guard of:AQ) unless :(guard of:AP )

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Theorem 7.9 P ref SUPERPOSE AND WF FUNC PRESERVES REACHe

P ref SUPERPOSE AND WF FUNC PRESERVES CONe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP � W c)
8AP AQ : AP 2 aP ^ AP R AQ : (JP ^ JQ) Q` guard of:AP � guard of :AQ

9M :: (M C wQ) ^ (8k : k 2 A : Q` (JP ^ JQ ^M = k) unless (M � k))
^ 8k APAQ : k 2 A ^AP 2 aP ^ AP R AQ :

Q` (JP ^ JQ ^ guard of:AQ ^M = k) unless (:(guard of :AP ) _M � k)

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Theorem 7.10 P ref AND SUPERPOSE WRITE PRESERVES REACHe

P ref AND SUPERPOSE WRITE PRESERVES CONe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)

9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)
8AP AQ : AP 2 aP ^ AP R AQ : (JP ^ JQ) Q` guard of :AP � guard of:AQ

8AP AQ : AP 2 aP ^ AP R AQ : Q` (JP ^ JQ ^ guard of:AQ) unless :(guard of:AP )

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

Figure 7: Preservation of � and  properties.
J
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� for all actions AP of program P and those actions AQ of Q that are related to AP by R, there exists
a function M that is non-increasing with respect to some well-founded relation �, such that: if the
guard of AQ is true and M equals some value k at any point during the execution of Q, then either:
� the guard of AP always holds, the value of M always remains k, and the guard of AQ continues
to hold forever, so both actions can make the same progress;

� eventually M decreases or the guard of AP becomes false, but at least until this happens, M
remains k and the guard of AQ continues to hold.

Consequently, if the guard of AQ is prematurely falsi�ed while the guard of AP still holds, then
we know that the value of M has decreased. By the previous veri�cation condition we know that
eventually the guard of AQ will become true again, and hence given a chance to execute. Again, the
guard of AQ can be prematurely falsi�ed, and we have the same process all over again. However,
the well-foundedness of � guarantees that M cannot decrease in�nitely, and hence that premature
falsi�cation of the guard of AQ cannot happen in�nitely.

Theorem 7.8 states a corollary of theorem 7.7. It can be proved by taking M to be a constant function.
Theorem 7.9 and 7.10 state corollaries of 7.7 and 7.8 respectively. These can be proved by using the
theorem stated below.

Theorem 7.13 BITOTAL IMP GUARD REACH EXIST GUARD

(9A :: bitotal:R:aP:A)
8AP AQ : AP 2 aP ^ AP R AQ : J Q` guard of:AP � guard of:AQ

8AP : AP 2 aP : J Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)

Note that the Theorems in Figure 7 state property preservation in re�nements independently from the
speci�c program transformations that were applied.

7.4 Guard strengthening and superposition re�nement

Strengthening the guard of, or augmenting an assignment on an action A are action re�nements of A.

Theorem 7.14 augment A ref

For all A;As 2 ACTION, state-predicates J , and V a set of variables:

is assign:As ^ V 8 As ^WF action:A ^WF action:As

A vV;J augment:A:As

Theorem 7.15 strengthen guard A ref

For all A 2 ACTION, state-predicates g and J , and V a set of variables:

A vV;J strengthen guard:g:A

Consequently, restricted union superposition and augmentation superposition on a program P are pro-
gram re�nements of P .

Theorem 7.16 RU Superpose P ref

For all programs P , A 2 ACTION, state-predicates J and iA:

wP 8 A

P v=;J RU S:P:A:iA

Theorem 7.17 AUG Superpose P ref

For all programs P , As 2 ACTION, state-predicate iA, and ACs � ACTION:

wP 8 A ^ is assign:As ^ WF action:As

9R :: P vR;J AUG S:P:ACs:As:iA

The witness used to prove this theorem is4: (R = f2r:(�A:(A 2 ACs)! augment:A:As j A)).

4Where the function f2r:f = (�x; y:y = f:x), i.e. converts a function to a relation.
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7.5 Non-determinism reducing re�nement

Our de�nition of re�nement in the previous section incorporates multiple compositions of guard strength-
ening and superposition program transformations, without having to specify these individual transfor-
mations explicitly. The requirement that

8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ

takes care of (possibly multiple compositions of) guard strengthening and augmentation superpositions.
The requirement

8AQ : AQ 2 aQ2 : skip vwP;J AQ

takes care of (possibly multiple compositions of) restricted union superpositions. As a consequence,
non-determinism reducing re�nements like the one presented in Section 7.1, can be handled by our def-
inition of re�nement. Consider again programs P and Q from Figures 1 and 2 respectively. By taking
R = f(Pi; Qi) j i 2 fx; ygg, we can prove that for any J , P vR;J Q holds. The proof of this is displayed
below to give the interested reader an idea of the concepts involved; it may however be skipped.

proof of: P vR;J Q
= (rewriting with De�nition 7.4)
9aQ1; aQ2 :: aQ = aQ1 [ aQ2 ^ bitotal:R:aP:aQ1

^
8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ

^
8AQ : AQ 2 aQ2 : skip vwP;J AQ

( (Reduce goal using witnesses aQ and ; respectively)
aQ = aQ [ ; ^ bitotal:R:aP:aQ
^ (8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ) ^ (8AQ : AQ 2 ; : skip vwP;J AQ)
( (R is a bitotal; properties of [, 2, and ;)
8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ

= (actions of programs P and Q, de�nition of R)
Px vwP;J Qx ^ Py vwP;J Qy

= (We shall prove the one for Px the other is similar; Rewrite with De�nition 7.1)
8s :: guard of:Qx:s ^ J:s) guard of:Px:s

^ 8s; t; t0 :: (compile:Px:s:t ^ compile:Qx:s:t
0 ^ guard of:Qx:s ^ J:s)) t =wP t0

= (guard of:Qx:s = (s:x � 10^ s:x turn), and guard of :Px:s = s:x � 10)
8s; t; t0 :: (compile:Px:s:t ^ compile:Qx:s:t

0 ^ s:x � 10 ^ s:x turn ^ J:s)) t =wP t0

Discharge the antecedents of this goal into the assumptions after rewriting with Px and Qx

A1: if s:x � 10 then t:x := s:x+ 1
A2: if s:x � 10 ^ s:x turn then t:x; t:x turn := s:x+ 1; false
A3: s:x � 10 ^ s:x turn ^ J:s

From these assumptions it is easy to deduce that t =fx;yg t
0 which equals t =wP t0.

end of proof

Proving that the property true P` x = 0^ y = 0 x = 10^ y = 10 of program P is indeed preserved by
its non-determinism reducing re�nement Q can be established using Theorem 7.9. We already have that:

A1: true P` x = 0 ^ y = 0 x = 10 ^ y = 10
A2: R = f(Pi; Qi) j i 2 fx; ygg
A3: J = (:x turn) (y = x� 1)) _ (x turn) (x = y))
A3: Q`�J
A3: P vR;J Q

Now Theorem 7.9, using witnessesW = fx turng and M = 20�x�y, and taking � to be < on numbers,
leaves us with the following proof obligations:

� Q` (J ^M = k) unless (M < k)
� Q` (J ^ y < 10 ^ :(x turn) ^M = k) unless (:(y < 10) _M < k)
� Q` (J ^ x < 10 ^ x turn ^M = k) unless (:(x < 10) _M < k)
� J Q` x < 10� x < 10 ^ x turn
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prog P

read rP

write wP

init iniP

assign if (9i : i 2 S : g:i) then A

prog Q

read rP

write wP

init iniP

assign 8i2S if g:i then A

Figure 8: Q re�nes P
J

� J Q` y < 10� y < 10 ^ :x turn

Proving these obligations is not hard, and left to the reader. This is a small example, and the proof-e�ort
is not signi�cantly reduced when we compare the proof obligations in the bullets above with the ones in
Figure 4. However, we found that this example gives a good insight into the concepts that are involved
when using non-determinism reducing re�nements.

7.6 Atomicity re�nement

Since our de�nition of re�nements is based on a bitotal relation R which can relate one action in the
original program to several actions in its re�nement, our de�nition of re�nement allows for some kind of
atomicity relation. In the rest of this section we shall present how a simple guard simpli�cation (taken
from [Sin93]), that results in a �ner grain of atomicity, can be handled within our framework of re�nement.

Consider the two programs in Figure 8, where S is a �nite set, and i does not occur free in A.
Evidently, programs P and Q keep executing action A until no element in S satis�es predicate g. Let
p = if (9i : i 2 S : g:i) then A and q:i = if g:i then A. It easy to prove that the relation
R = f(p; q:i) j i 2 Sg is bitotal on aP and aQ, and consequently that for any J , P vR;J Q. To determine
the conditions that need to be satis�ed in order to conclude property preservation, Theorem 7.816 can
be used to conclude:

8i : i 2 S : g:i C wQ

8i : i 2 S : Q` (JP ^ JQ ^ g:i) unless :(9i : i 2 S : g:i)

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

for the programs P and Q as displayed in Figure 8. These conditions coincide with the ones required in
[Sin93].

8 Application of the theory

In this section we will show how the theory can be applied to prove the correctness of some relative
complex distributed algorithms taken from [Vos00]. Before we start the proofs we will �rst explain the
algorithms.

8.1 The communication network

The communication networks are assumed to be connected centralised networks employing bi-directional
asynchronous communication.

The networks are modelled by a triple (P, starter, neighs), where: P is a �nite set of processes; starter
is a process in P that distinguishes itself from all other processes (called the followers), in that it can
spontaneously start the execution of its local algorithm (e.g. because it is triggered by some internal
event). The followers can only start execution of their local algorithm after they have received a �rst
message from some neighbour; neighs is a function that given some process p 2 P, gives the set of
neighbours of p. In other words, for p 2 P, neighs.p is the set of processes that are connected to p by a
bi-directional communication link. Obviously, the function neighs should satisfy: 8p 2 P : neighs:p � P.
We will only consider communication between distinct processes and not allow self-loops, thus neighs

must also satisfy: 8p 2 P; q 2 neighs:p : p 6= q. Since communication links are bi-directional it holds
that: 8p; q 2 P : (q 2 neighs:p) = (p 2 neighs:q).

Such a network is connected if every pair of processes is connected by a path of communication links.
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prog plum and echo

init (8p 2 P : (p = starter) 6= (idle:p)) ^ (father:starter = starter) ^ init�

assign

8q2neighs:p if idle.p ^ mit.q:p
(idle)

then receive.p:q:hmesi k father.p := q k idle:p := false

8

8q2neighs:p if : idle:p ^ mit.q:p ^ collecting�.p
(col)

then receive.p:q:hmesi
8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating�.p
(prop)

then send.p.q.hmesi
8

if �nished collecting and propagating:p ^ :reported to father:p
(done)

then send.p.(father.p).hmesi

Figure 9: The the local algorithm of process p 2 P for � 2 fplum, echog.
J

For this paper it is suÆcient to give an abstract model of asynchronous communication, stating the
functionality of the primitives (send and receive) and some additional operations (mit, nr sent to and
nr rec from). send.p.q.m, implements that a process p sends message m to q; receive.p.q.f .v, makes sure
that if there is a message in transit from q to p, process p receives a message from q, and the value of
the received message is assigned to variable v after function f has been applied to it; mit.p.q, the name
of which is an acronym for message in transit, can be used to check for a message in transit from p to q;
p nr sent to q, enables processes to check how many messages they have already sent to a neighbour q;
similarly, p nr rec from q, to check the amount of messages received from q.

8.2 Distributed hylomorphisms

The class of distributed hylomorphisms from [Vos00] consists of 4 algorithms: plum, echo, tarry and
dfs. They are displayed in Figures 9 until 11 respectively. All four algorithms build a rooted spanning
tree (using the father variable) in the connected network of processes and use this tree to let the required
information (e.g. the values of which the sum has to be computed, or the feedback of the information
that has to be propagated through the network) ow from the leaves to the root of the spanning tree.
The similarities of the algorithms are captured by the characterisation of the following predicates:

rec from all neighs:p = 8q 2 neighs:p : p nr rec from q = 1 (1)

sent to all non fathers:p = 8q 2 neighs:p : (q 6= father:p)) (p nr sent to q = 1) (2)

can propagate:p:q = (p nr sent to q = 0) ^ (q 6= father:p) (3)

�nished collecting and propagating:p = rec from all neighs:p ^ sent to all non fathers:p (4)

reported to father:p = (p nr sent to (father:p) = 1) (5)

sent to all neighs:p = 8q 2 neighs:p : p nr sent to q = 1 (6)
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prog tarry

init (8p 2 P : (p = starter) 6= (idle:p)) ^ (father:starter = starter)

^ 8p 2 P : (p = starter) 6= (:le rec:p)

assign

8q2neighs:p if idle.p ^ mit.q:p
(idle)

then receive.p:q:hmesi k father.p := q k idle:p := false

k le rec:p := true

8

8q2neighs:p if : idle:p ^ mit.q:p ^ collecting tarry.p

(col)

then receive.p:q:hmesi k le rec:p := true

8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating tarry.p

(prop)

then send.p.q.hmesi k le rec:p := false

8

if �nished collecting and propagating:p ^ :reported to father:p
(done)

then send.p.(father.p).hmesi k le rec:p := false

Figure 10: The local algorithm of process p 2 P of the Tarry algorithm.
J

done:p = rec from all neighs:p ^ sent to all neighs:p (7)

The di�erences between the algorithms are in the communication protocols, i.e. when they are allowed
to collect messages and propagate them.

The plum algorithm allows a process to freely merge its propagating and collecting actions as long
as it has not yet received messages from all its neighbours, and it has not yet sent to all its neighbours
that are not its father. Consequently:

propagating plum:p = : sent to all non fathers:p (8)

collecting plum:p = : rec from all neighs:p (9)

In the echo algorithm, a non-idle process p can only receive a message, after p has sent messages to
all its non-father-neighbours. So, the propagating activities must be completed before starting collecting
from non-father-neighbours. Consequently:

propagating echo:p = : sent to all non fathers:p (10)

collecting
echo

:p = : rec from all neighs:p ^ :propagating
echo

:p (11)

In the tarry algorithm, a non-idle process p can only propagate to a neighbour if the last event of p was
a receive event; otherwise it has to wait until it receives something. So, the propagating and collecting
activities alternate. From Figure 10 we can see that a boolean-typed variable le rec.p (i.e. last event
was a receive) has been introduced for every process p. The assignments (le rec.p := true) and (le rec.p
:= false) in the then clauses of (col) and (prop) respectively, guarantee that the the value of le rec.p
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prog dfs

init 8p 2 P : (p = starter) 6= (idle:p) ^ (father:starter = starter)
^ 8p 2 P : (p = starter) 6= (:le rec:p)

assign

8q2neighs:p if idle.p ^ mit.q:p
(idle)

then receive.p:q:hmesi k father.p:=q k idle:p:=false

k le rec:p:=true k lp rec:p:=q

8

8q2neighs:p if : idle:p ^ mit.q:p ^ collecting dfs.p

(col)

then receive.p:q:hmesi k le rec:p:=true k lp rec:p:=q

8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating dfs.p ^ q = lp rec:p

(prop lp rec)
then send.p.q.hmesi k le rec:p:=false

8

8q2neighs:p if : idle:p ^ can propagate:p:q ^ propagating dfs.p ^ :(can propagate:p:(lp rec:p))

(prop not lp rec)
then send.p.q.hmesi k le rec:p:=false

8

if �nished collecting and propagating:p ^ :reported to father:p
(done)

then send.p.(father.p).hmesi k le rec:p:=false

Figure 11: The local algorithm of process p 2 P of the DFS algorithm.
J

indicates whether the last event of p was a receive event. Consequently, we characterise the collecting and
propagating predicates as follows:

propagating tarry:p = : sent to all non fathers:p ^ (le rec:p) (12)

collecting tarry:p = : rec from all neighs:p ^ :(le rec:p) (13)

The characterisation of the propagating and collecting predicates for the dfs algorithm are identical to
those of tarry. The di�erence with tarry is in the lesser freedom to choose a neighbour to send a
message to in the propagating phase (see Figure 11). More speci�cally, for a non-idle process p in its
propagating phase (i.e. there are still non-father-neighbours to which p has not yet sent) whose last event
was receiving a message from some neighbour q: if p can propagate a message back to q, i.e. q is not p's
father, and p has not yet sent to q, then p has to send a message back to this process q, otherwise it can
act like in tarry, and just pick any non-father-neighbour to which it has not yet sent a message (i.e. to
which it can propagate). In order to be able to formalise and check these conditions each process in the
dfs algorithm, remembers the identity of the sender of its last incoming message in the variable lp rec.p
(last process of which p has received a message).

propagating dfs:p = propagating tarry:p (14)

collecting dfs:p = collecting tarry:p (15)
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8A 2 fidle, col, prop, doneg, p 2 P, q 2 neighs:p

R plum echo.(Aplum:p:q).(Aecho:p:q)
R plum tarry.(Aplum:p:q).(Atarry:p:q)
R tarry dfs.(Atarry:p:q).(Adfs:p:q)

PLUM

ECHO

Tarry

DFS

(a) (b)

Figure 12: (a) re�nement relation on plum, echo, tarry, and dfs. (b) bitotal relations
J

8.3 A re�nement ordering on the distributed hylomorphisms

The algorithms in Figure 9 until 11 are ordered by our re�nement relation as is visualised with venn-
diagrams in Figure 12(a). The bitotal relations, with respect to which the di�erent re�nements are
proved, are listed in Figure 12(b). Their de�nitions are straightforward, in that they relate all idle, col,
prop and done actions of the original program to the corresponding actions in the re�nement. For the
relation between tarry and dfs this results in propTarry.p:q being related to both prop lp rec:p:q

and prop not lp rec:p:q. Although tedious, proving the bitotality of these relations and subsequently
verifying the re�nement ordering depicted in Figure 12 is reasonably easy. The resulting re�nement
theorems are listed below.

Theorem 8.1 PLUM refines ECHO

8J :: plum vR plum echo; J echo

Theorem 8.2 PLUM refines Tarry

8J :: plum vR plum tarry; J tarry

Theorem 8.3 Tarry refines DFS

8J :: tarry vR tarry dfs; J dfs

8.4 The correctness of plum

Since this example serves to illustrate our re�nement relation we will just state the correctness of the
plum algorithm, the whole proof, however, can be found in [VS01].

Theorem 8.4 HYLO PLUM

Jplum plum` iniplum 8p : p 2 P : done:p

Where the invariant Jplum is de�ned below. The M:p:q variables model the communication channels
between processes p and q.
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De�nition 8.5 plum's invariant Invariant DEF

Jplum =

8p 2 P; q 2 neighs:p : :idle:p ^ q = father:p) :idle:q J 1
plum

^ 8p 2 P; q 2 neighs:p : p nr sent to q = 0 _ p nr sent to q = 1 J 2
plum

^ 8p 2 P; q 2 neighs:p : idle:p) p nr rec from q = 0 J 3
plum

^ 8p 2 P; q 2 neighs:p : (q nr rec from p < p nr sent to q) = mit:p:q J 4
plum

^ father:starter = starter ^ :(idle:starter) J 6
plum

^ 8p 2 P : (p 6= starter) ^ :(idle:p)) (father:p 2 neighs:p) J 7
plum

^ (�s: 8p 2 P : :s:(idle:p)) 9k : depth:(s Æ father):starter:p:k) J 8
plum

^ 8p; q 2 P : :(idle:p) ^ :done:p ^ (q = father:p)) p nr sent to q = 0 J 9
plum

^ 8p; q 2 P : q nr rec from p � p nr sent to q J 10
plum

^ 8p; q 2 P : M:p:q = [] _ (9x : M:p:q = [x]) J 11
plum

^ 8p; q 2 P : idle:p) p nr sent to q = 0 J 12
plum

8.5 Using re�nements to derive the correctness of echo

This section shall describe how termination of the echo algorithm can be proved using our re�nements
framework and the already proved fact that:

8J :: plum vR plum echo; J echo

For echo, the UNITY speci�cation reads:

Theorem 8.6 HYLO ECHO

Jplum ^ Jecho echo` iniecho 8p : p 2 P : done:p

where invariant Jecho captures additional safety properties for echo (if any).
Using � Preservation (Theorem 7.1215), it is straightforward to derive that Jplum is also a stable

predicate in echo.

Theorem 8.7 STABLEe Invariant in ECHO

echo`�Jplum

For readability we introduce the notational convention that:

` and echo` now abbreviate Jplum ^ Jecho echo`

Termination of echo will be proved using the property preserving Theorem 7.1016.

echo` iniecho 8p : p 2 P : done:p

((Theorem 7.1016, 8.423, 8.123)

9W :: (wecho = wplum [W ) ^ (Jplum C W c) ^ (wplum �W c)
^

8AP AE : AP 2 aplum ^ AP R plum echo AE : echo` guard of:AP � guard of:AE

^
8AP AE : AP 2 aplum ^ AP R plum echo AE :

echo` (Jplum ^ Jecho ^ guard of:AE) unless :(guard of:AP )

Since no variables are superimposed on plum in order to construct echo, the �rst conjunct can be proved
by instantiation with ;. Subsequently, using:

� the characterisation of R plum echo (Figure 12)
� the fact that the guards of the idleecho, propecho, and doneecho actions are equal to those of
plum
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� anti-reexivity of unless (Theorem 3.175)
� reexivity of� (Theorem A.431)
� the implicit assumption stating stability of (Jplum ^ Jecho)

the second and the third conjunct can, for arbitrary p 2 P and q 2 neighs:p, be reduced to:

echo` guard of:colplum:p:q� guard of:colecho:p:q
	
reach � part

^

echo` Jplum ^ Jecho ^ guard of:colecho:p:q unless :guard of:col:p:q
	
unless� part

The unless-part is not hard to verify, in order to prove it, the current conjuncts from Jplum suÆce, and
hence no additional safety properties have to be added to Jecho.

Rewriting reach-part the with the guards of the col actions from plum and echo, the correctness of the
echo algorithm comes down to proving that for an appropiate Jecho and arbitrary p 2 P and q 2 neighs:p:

echo` :idle:p ^mit:q:p ^ :rec from all neighs:p
�
:idle:p ^mit:q:p ^ :rec from all neighs:p ^ sent to all non fathers:p

The proof of this reach-part can be found in [VS01], where it turns out that, again, Jplum is enough
and hence Jecho can be substituted for true { meaning that the safety properties of plum and echo are
the same. Although the proof of the reach-part is not trivial, it is considerably less complicated and
laborious than proving 8.6 from scratch without using our re�nement framework.

8.6 Using re�nements to prove the correctness of tarry

This section shall describe how termination of the tarry algorithm is proved using our re�nements
framework, and the already proven fact that:

8J :: plum vR plum tarry; J tarry

The UNITY speci�cation reads:

Theorem 8.8 HYLO Tarry

Jplum ^ Jtarry tarry` initarry 8p : p 2 P : done:p

where invariant Jtarry captures additional safety properties for tarry.
Using �Preservation (Theorem 7.1215), it is straightforward to derive that Jplum is a stable predicate

in tarry.

Theorem 8.9 STABLEe Invariant in Tarry

tarry`�Jplum

For readability we introduce the notational convention that:

` and tarry` now abbreviate Jplum ^ Jtarry tarry`

Termination of tarry is proved using property preserving Theorem 7.916. The reason for using this the-
orem is that Theorem 7.1016 { which is easier and hence preferable { cannot be used since its application
results in the following, not provable, proof obligation:

tarry` Jplum ^ Jtarry ^ guard of:(proptarry:p:q) unless :guard of:(propplum:p:q)

The reason why this cannot be proved is because, during the execution of tarry, it is possible that the
guard of proptarry:p:q is falsi�ed while the guard of propplum:p:q still holds. Consequently, we cannot
prove the unless-property from above. What we need is a function which is non-increasing with respect
to some well-founded relation, and which decreases when a message is sent. Since then, we can ensure
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that this kind of premature falsi�cation of the guard of proptarry:p:q, while the guard of propplum:p:q
still holds, cannot happen in�nitely often. So, since the least complicated property preservation theorem
(7.1016) cannot be used to derive termination of tarry, we move on to the second least complicated one,
i.e. 7.916:

tarry` initarry 8p : p 2 P : done:p

((Theorem 7.916, 8.423, 8.223) For some well-founded relation �:

9W :: (wtarry = wplum [W ) ^ (Jplum C W c) ^ (wplum �W c)
^

8AP AT : AP 2 aplum ^ AP R plum tarry AT :

tarry` guard of:AP � guard of:AT

�
reach � part

^
9M :: (M C wtarry)
^
8k :: tarry` (Jplum ^ Jtarry ^M = k) unless (M � k)
^
8k AP AT : AP 2 aplum ^ AP R plum tarry AT :

tarry` (Jplum ^ Jtarry ^ guard of:AT ^M = k)
unless

(:(guard of:AP ) _M � k)

9>>>>>>>>>>=
>>>>>>>>>>;

unless� part

Since, le rec:p variables are superimposed on plum in order to obtain tarry, the �rst conjunct is instan-
tiated with the set fle rec:p j p 2 Pg. Proving that Jplum is con�ned by the complement of this set is
tedious but straightforward, since the variables le rec do not appear in it.

Veri�cation of the unless-part involves the construction of a function over the variables of tarry, that
is non-increasing with respect to some well-founded relation �. From the discussion above, we can
deduce that we need a function that decreases when a message is sent. However, it turns out [VS01]
that the veri�cation of the reach-part involves an application of � Bounded Progress (A.1031) that
needs a function that decreases not only when a message is sent, but also when a message is received.
Consequently, we shall continue with the construction of a function over the variables of tarry, that is
non-increasing with respect to some well-founded relation �, and that decreases when a message is sent
as well as received. Obviously, this function can then be used for both purposes.

Construction of a non-increasing function

Constructing a non-increasing function that decreases when a message is sent, and when a message is
received is not complicated. Observe the following:

� the sending of a message is always accompanied by incrementing nr sent to

� similarly, receiving a message is always accompanied by incrementing nr rec from

� from Jplum it follows that at most one message is sent over each directed communication link

� consequently, at most one message is received over each directed communication link

� consequently, the total amount of messages sent and received has an upper-bound, that equals twice
the cardinality of the set of directed communication links

From these observations a non-increasing function is constructed as follows. First, we de�ne the upper-
bound on the total amount of messages sent and received.

De�nition 8.10 MAX MAIL

MAX MAIL = 2 � the amount of directed communication links in the network (P, starter, neighs)

Next, we de�ne the total amount of messages that are sent, and respectively received, in the whole
network of processes:
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De�nition 8.11 total number of messages sent in the network TOTAL NR SENT

TOTAL NR SENT:s =
X
p2P

X
q2neighs:p

s:(p nr sent to q)

De�nition 8.12 total number of messages received in the network TOTAL NR REC

TOTAL NR REC:s =
X
p2P

X
q2neighs:p

s:(p nr rec from q)

Now, we de�ne our non-increasing function as follows:

De�nition 8.13 non-increasing function over the variables of Tarry Y DEF

Y:s = MAX MAIL� (TOTAL NR SENT:s+ TOTAL NR REC:s)

The value of Y only depends on write variables of tarry, and so it is easy to verify that:

Theorem 8.14 CONF Y Write Vars Tarry

Y C wtarry

The following lemma states that whenever a message is sent or received { because the guard of one of
tarry's actions is enabled { the value of Y decreases.

Lemma 8.15 A DECR Y

For all processes p 2 P, q 2 neighs:p, and actions A 2 fidletarry;coltarry; proptarry;donetarryg:

8k ::
Jplum:s ^ A:p:q:s:t ^ guard of:(A:p:q):s ^ (Y:s = k)

Y:t < k

Using this lemma, it is straightforward to prove that, during the execution of tarry, Y is non-increasing
with respect to the well-founded relation < on numerals.

Theorem 8.16 DECREASING DECR FUNCTION

For arbitrary characterisations of Jtarry:

8k :: tarry` (Jplum ^ Jtarry ^ Y = k) unless (Y < k)

Veri�cation of the unless-part

Return to page 26 for the unless-part. Instantiating this proof obligation with Y , and rewriting with
Theorems 8.1427 and 8.1627 results in the following proof obligation:

8k AP AT : AP 2 aplum ^AP R plum tarry AT :

tarry` (Jplum ^ Jtarry ^ guard of:AT ^ Y = k) unless (:(guard of:AP ) _ Y < k)

Proving this is straightforward using R plum tarry from Figure 12, and Lemma 8.1527.

Veri�cation of the reach-part

We shall now continue with the reach-part:

8AP AT : AP 2 aplum ^ AP R plum tarry AT : tarry` guard of:AP � guard of:AT

Subsequently, using:

� the characterisation of R plum tarry (Figure 12)

� the fact that the guards of the idletarry, and donetarry actions are equal to those of plum

� reexivity of� (Theorem A.431)

� the implicit assumption stating stability of (Jplum ^ Jtarry)
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we reduce the reach-part for arbitrary p 2 P and q 2 neighs:p, as follows:

tarry` guard of:(colplum:p:q)� guard of:(coltarry:p:q)
	
reach � col� part

^

tarry` guard of:(propplum:p:q)� guard of:(proptarry:p:q)
	
reach � prop� part

Subsequently, rewriting with the characterisations of the guards we can reduce the veri�cation of the
tarry's correctness to the following two proof obligations.

tarry` guard of:(colplum:p:q)� guard of:(colplum:p:q) ^ :le rec:p
^

tarry` guard of:(propplum:p:q)� guard of:(propplum:p:q) ^ le rec:p

Again, their proofs can be found in [VS01]. This time Jplum does not suÆce, because, evidently, we
need to capture the additional safety behaviour about the alternating sending and receiving activities
{by means of le rec{ in Jtarry. Although not trivial, these proofs and the construction of Jtarry are
considerably less complicated and laborious than proving 8.6 from scratch without using our re�nement
framework. More speci�c, the remaining e�orts are a subset of all veri�cation e�orts that had to be done
when proving tarry's correctness from scratch!

8.7 Using re�nements to prove the correctness of dfs

This section shall describe how termination of the dfs algorithm is proved using our re�nements frame-
work and the already proven fact that:

8J :: Tarry vR Tarry dfs; J dfs

The UNITY speci�cation reads:

Theorem 8.17 HYLO DFS

Jplum ^ JTarry ^ Jdfs dfs` inidfs 8p : p 2 P : done:p

where invariant Jdfs captures additional safety properties for dfs (if any). Using�Preservation Theorem
7.1215, it is straightforward to derive:

Theorem 8.18 STABLEe Invariant in DFS

dfs`�(Jplum ^ JTarry)

Again, for readability we introduce the notational convention that:

` and dfs` now abbreviate Jplum ^ JTarry ^ Jdfs dfs`

Termination of dfs is proved using property preserving Theorem 7.716. The reasons for using this
Theorem are twofold. First, since every prop action in Tarry is bitotally related to two actions in dfs
(namely prop lp rec and prop not lp rec), we need to be able to pick one of those dfs prop-actions
when proving that the guards of Tarry's prop-actions eventually implies the guards of related dfs's
prop-actions. Consequently, we cannot use preservation theorems 7.1016 or 7.916. The second reason
for using 7.716 is not because 7.816 cannot be used, but because it reduces proof e�ort. As we have seen
during Tarry's veri�cation, Lemma 8.1527 was very useful when proving unless and ensures properties
that involved Y . A similar lemma can easily be proved for the actions of dfs, and hence veri�cation of
unless and ensures properties involving Y in the context of dfs will be simple too.

Lemma 8.19 A DECR Y

For all p 2 P, q 2 neighs:p, and actionsA 2 fidledfs;coldfs; prop lp rec; prop not lp rec;donedfsg:

8k ::
Jplum:s ^ A:p:q:s:t ^ guard of:(A:p:q):s ^ (Y:s = k)

Y:t < k
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In resumen, to reduce proof e�ort we have decided to use 7.716, although a function that is non-increasing
with respect to some well-founded relation is not needed in order to be able to prove that falsi�cation
of the guards of dfs's prop-actions go hand in hand with the falsi�cation of the guards of Tarry's
prop-actions.

As a result, the initial speci�cation stating termination of dfs is decomposed as follows:

dfs` inidfs 8p : p 2 P : done:p
((Theorem 7.716, 8.825, 8.323)
For some well-founded relation �:

9W :: (wdfs = wTarry [W ) ^ ((Jplum ^ JTarry) C W c) ^ (wTarry �W c)
^

8AD : AD 2 adfs ^ (9AT :: AT 2 aTarry ^ (AT R Tarry dfs AD)) : (guard of:AD C wdfs)
^

8AT AD : AT 2 aTarry

dfs` guard of:AT

�
(9AD :: (AT R Tarry dfs AD) ^ guard of:AD)

9>>=
>>;
reach � part

^
9M :: (M C wdfs)
^
8k :: dfs` (Jplum ^ JTarry ^ Jdfs ^M = k) unless (M � k)
^
8k AT AD : AT 2 aTarry ^ AT R Tarry dfs AD :

dfs` (Jplum ^ JTarry ^ Jdfs ^ guard of:AD ^M = k)
unless

(:(guard of:AT ) _M � k)

9>>>>>>>>>>=
>>>>>>>>>>;

unless� part

Since, lp rec:p variables are superimposed on Tarry in order to obtain dfs, the �rst conjunct is instan-
tiated with the set flp rec:p j p 2 Pg. Proving that Jplum and JTarry are con�ned by the complement of
this set is tedious but straightforward, since the variables le rec do not appear in it. Similarly, proving
that the guards of the actions in dfs are con�ned by dfs's write variables (i.e. the second conjunct) is
not complicated.
The unless-part is now easy to prove by instantiating with Y (De�nition 8.1327):

� proving that Y is con�ned by the write variables of dfs is easy using Theorem 8.1427 and mono-
tonicity of con�nement 3.23

� proving that Y is non-increasing in dfs, can be proved using unless preservation Theorem 7.1115
and Theorem 8.1627.

� proving that falsi�cation of the guards of dfs's actions go hand in hand with the falsi�cation of the
guards of related Tarry's actions is easy using Lemma 8.1928.

For the reach-part, the idle, col, and done cases can be proved using � Introduction (A.331). As
a consequence, we are left with the prop case:

dfs` guard of:(propTarry:p:q)� (9AD :: (propTarry:p:q R Tarry dfs AD) ^ guard of:AD)

This case states that: from a situation in which guard of:(prop:p:q) holds, we will eventually reach a
situation in which either the guard of action prop lp rec.p:q or prop not lp rec.p:q holds. The proof
can be found in [VS01], where it turns out that, Jtarry is enough and hence Jdfs can be substituted for
true { meaning that the safety properties of tarry and dfs are the same.

9 Conclusion

We have de�ned a re�nement relation on programs that incorporates (possibly multiple compositions of)
program transformations like guard strengthening, superposition, and atomicity re�nement. Moreover,
we have given theorems that state property preservation in re�nements independently from the speci�c
program transformations that were applied. Consequently, we have a general framework of re�nements
that, besides being suitable for the stepwise derivation of programs, is also eÆcient for the reduction of
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re�nement framework

P

vR;J

Q

re-usable theory

actual proof

repair & backtrack

Figure 13: Reducing proof-e�ort and complexity.
J

proof-e�ort when proving the correctness of a class of by re�nement related algorithms. To illustrate
the reduction of proof-e�ort we refer to Figure 13. The intuition behind Figure 13 is that the use of
re�nements can shorten the the actual proof of a re�nement (i.e. the solid line) since instead of proving
the program from scratch we prove the simpler veri�cation conditions of one of the theorems in Figure 7.
Moreover, the amount of time spent on repairing and backtracking is reduced since having veri�ed P 's
correctness we have obtained a good feeling about the workings of the algorithms in this particular class,
and hence will it be less likely that we proceed on wrong proof-strategies.

30



A Laws of �

Theorem A.1 � Stable Background and Confinement REACHe IMP STABLE

REACHe IMP CONF

P :
J ` p� q

�J ^ p; q C wP

Theorem A.2 � Substitution REACHe SUBST

P; J :
p; s C wP ^ [J ^ p) q] ^ (q� r) ^ [J ^ r ) s]

p� s

Theorem A.3 � Introduction REACHe ENS LIFT,REACHe IMP LIFT

P; J :
p; q C wP ^ (�J) ^ ([J ^ p) q] _ (J ^ p ensures q))

p� q

Theorem A.4 � Reflexivity REACHe REFL

P; J :
p C wP ^ (�J)

p� p

Theorem A.5 � Transitivity REACHe TRANS

P; J :
(p� q) ^ (q� r)

p� r

Theorem A.6 � Case distinction REACHe DISJ CASES

P; J :
(p ^ :r� q) ^ (p ^ r� q)

p� q

Theorem A.7 � Cancellation REACHe CANCEL

P; J :
q C wP ^ (p� q _ r) ^ (r� s)

p� q _ s

Theorem A.8 � Progress Safety Progress (PSP) REACHe PSP

P; J :
r; s C wP ^ (r ^ J unless s) ^ (p� q)

p ^ r� (q ^ r) _ s

Theorem A.9 � Disjunction REACHe GEN DISJe

P; J :
(8i : i 2W : p:i� q:i)

(9i : i 2W : p:i)� (9i : i 2W : q:i)
if W 6= ;

Theorem A.10 � Bounded Progress REACHe WF INDUCT

For a well-founded relation � over some set W , and metric M 2 State!W :

P; J :
q C wP ^ (8m 2 W : p ^ (M = m)� (p ^ (M � m)) _ q)

p� q

B Laws of  

Theorem B.1 Convergence Implies Progress CONe IMP REACHe

P; J :
p q

p� q

Theorem B.2  Substitution CONe SUBST

P; J :
p; s C wP ^ [J ^ p) q] ^ (q  r) ^ [J ^ r ) s]

p s
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Theorem B.3  Introduction CONe ENSURES LIFT, CONe IMP LIFT

P; J :
p; q C wP ^ (�J) ^ (�(J ^ q)) ^ ([J ^ p) q] _ (p ^ J ensures q))

p q

Theorem B.4  Reflexivity CONe REFL

P; J :
p C wP ^ (�J) ^ (�(J ^ p))

p p

Theorem B.5  Transitivity CONe TRANS

P; J :
(p q) ^ (q  r)

p r

Theorem B.6  Case distinction CONe DISJ CASES

P; J :
(p ^ :r  q) ^ (p ^ r  q)

p q

Theorem B.7 Accumulation CON SPIRAL

P; J :
(p q) ^ (q  r)

p q ^ r

Theorem B.8  Stable Strengthening CONe STAB MONO GEN

P :
q C wP ^ (�(J1 ^ J2)) ^ J1 ` p q

(J1 ^ J2) ` p q

Theorem B.9  Stable Shift CONe STABLE SHIFT

P :
p0 C wP ^ (�J) ^ (J ^ p0 ` p q)

J ` p0 ^ p q

Theorem B.10  Disjunction CONe GEN DISJ

P; J :
(8i : i 2W : p:i q:i)

(9i : i 2W : p:i) (9i : i 2 W : q:i)
if W 6= ;

Theorem B.11  Conjunction CONe CONJ

For all non-empty and �nite sets W :

P; J :
(8i : i 2W : p:i q:i)

(8i : i 2W : p:i) (8i : i 2 W : q:i)

Theorem B.12  Bounded Progress CONe WF INDUCT

For a well-founded relation � over some set A, and metric M 2 State!A:

P; J :
(q  q) ^ (8m 2 A : p ^ (M = m) (p ^ (M � m)) _ q)

p q

Theorem B.13  Iteration Iterate thm CONe

For arbitrary sets W ,

P; J; L :

(�((8x : x 2 L : Q:x) ^ J)) ^ (8x : x 2 L : Q:x C wP )
L �W ) ((f:L) �W ^ (8x : x 2 L : Q:x) (8x : x 2 f:L : Q:x))

8n L : L �W ) (8x : x 2 L : Q:x) (8x : x 2 iterate:n:f:L : Q:x)

C Proofs of the re�nement theorems

This appendix presents detailed proofs of the Theorems 7.1115 and 7.716 stating the conditions under
which unless and � properties are preserved under re�nement. The other theorems in Section 7.3 are
corollaries of these two theorems.
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C.1 Preservation of unless

Theorem 7.11 P ref AND SUPERPOSE WRITE PRESERVES UNLESSe

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JQ) ^ (JQ ) J)
9W :: (wQ = wP [W ) ^ (p C W c) ^ (q C W c)

P` p unless q ) Q` (JQ ^ p) unless q

proof of 7.11

Assume the following:

A1: P vR;J Q
A2: Unity:P ^ Unity:Q

A3: ( Q`�JQ) ^ (JQ ) J)
A4: wQ = wP [W
A5: (p C W c) ^ (q C W c)
A6: P` p unless q

From A5 and the de�nition of con�nement (3.13) we can infer:

A7: 8t; t0 : (t =W c t0)) (p:t = p:t0 ^ q:t = q:t0)

From A6, the de�nitions of unless (3.155), and the de�nition of Hoare triples (3.145) we can infer:

A8: 8AP : AP 2 aP : 8s; t : compile:AP :s:t ^ p:s ^ :(q:s)) (p:t _ q:t)

Now we have to prove the following:

Q` (JQ ^ p) unless q

= (De�nitions of unless (3.155) and Hoare triples (3.145))

8AQ 2 aQ : 8s; t : compile:AQ:s:t ^ JQ:s ^ p:s ^ :(q:s)) ((JQ:t ^ p:t) _ q:t)

Choose an arbitrary AQ, and assume for arbitrary states s and t that:

A9: AQ 2 aQ
A10: compile:AQ:s:t

A11: JQ:s ^ p:s ^ :(q:s)

Now we have to prove that ((JQ:t^ p:t)_ q:t). From A3, we know that Q`�JQ, and consequently, using
assumptions A9, A10, A11 and the de�nition of � (3.165 and 3.155) we can conclude that JQ:t. Thus,
we are left with the following proof obligation:

p:t _ q:t

Case :(guard of:AQ:s)

In this case A10 implies s = t, and thus assumption A10 establishes the validity of p:t _ q:t.

�(:(guard of:AQ:s))

Case guard of:AQ:s

A12: guard of:AQ:s

From A1 it follows that:

A13: aQ = aQ1 [ aQ2 ^ bitotal:R:aP:aQ1
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A14: 8AP AQ : AP 2 aP ^ AP R AQ : AP vwP;J AQ

A15: 8AQ : AQ 2 aQ2 : skip vwP;J AQ

Case AQ 2 aQ1

A16: AQ 2 aQ1

From A13, A14 and A16 we can conclude that there exists an action AP , such that:

A17: AP 2 aP
A18: AP R AQ

A19: AP vwP;J AQ

From A17 and the always-enabledness of actions in the universe ACTION (3.34) we know that there
exists a state t0 such that

A20: compile:AP :s:t
0

and consequently from A19, A20, the de�nition of action re�nement (7.112), and A10, A11, A12 and
A3 we can infer that:

A21: t =wP t0

Moreover, using A2, A10, A20, and the de�nition of a well-formed UNITY program (3.135), and the
de�nition of ignored variables (3.54) we can conclude:

A22: s =wP c t0

A23: s =wQc t

From A21, A22 and A23 we can prove that t =W c t0, which with A7 gives:

A24: p:t = p:t0 ^ q:t = q:t0

From assumptionsA8,A11, A17,A20 we can conclude that p:t
0^q:t0, and thusA24 establishes this case.

�AQ2aQ1

Case AQ 2 aQ2

From A9, A15, the de�nition of action re�nement (7.112), skip (3.44), A3, A10, A11 and A12 and we
can conclude:

A25: s =wP t

Again, using A2 and the de�nition of a well-formed UNITY program (3.135), and the de�nition of
ignored variables (3.54) we can conclude:

A26: s =wQc t

From this we can derive s =W c t, which with A11 gives the desired result.

�AQ2aQ2

�guard of:AQ:s

end of proof 7.11
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C.2 Preservation of �

Theorem 7.7 P ref SUPERPOSE AND DECR FUNC PRSRVS REACHe GEN

P ref SUPERPOSE AND DECR FUNC PRSRVS CONe GEN

Let � be a well-founded relation over some set A, and M 2 State!A.

P vR;J Q ^ Unity:P ^ Unity:Q ^ ( Q`�JP ^ JQ) ^ (JP ^ JQ ) J)
9W :: (wQ = wP [W ) ^ (JP C W c) ^ (wP �W c)

8AQ : AQ 2 aQ ^ (9AP :: (AP 2 aP ) ^ (AP R AQ)) : (guard of:AQ C wQ)
8AP : AP 2 aP : (JP ^ JQ) Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)
9M :: (M C wQ) ^ (8k : k 2 A : Q` (JP ^ JQ ^M = k) unless (M � k))

^ 8k APAQ : k 2 A ^ AP 2 aP ^AP R AQ :

Q` (JP ^ JQ ^ guard of:AQ ^M = k) unless (:(guard of:AP ) _M � k)

((JP P` p� q)) (JP ^ JQ Q` p� q)) ^ ((JP P` p q)) (JP ^ JQ Q` p q))

proof of 7.7 (�-part)

Assume the following for a well-founded relation �:

A1: P vR;J Q
A2: Unity:P ^ Unity:Q

A3: Q`�(JP ^ JQ) ^ (JP ^ JQ ) J)
A4: wQ = wP [W ^ JP C W c ^ wP �W c

A5: 8AQ : AQ 2 aQ ^ (9AP :: (AP 2 aP ) ^ (AP R AQ)) : (guard of:AQ C wQ)
A6: 8AP : AP 2 aP : (JP ^ JQ) Q` guard of:AP � (9AQ :: (AP R AQ) ^ guard of:AQ)
A7: M C wQ

A8: 8k :: Q` (JP ^ JQ ^M = k) unless (M � k)
A9: 8k AP AQ : AP 2 aP ^ AP R AQ :

Q` (JP ^ JQ ^ guard of:AQ ^M = k) unless (:(guard of:AP ) _M � k)

We have to prove that:

JP P` p� q ) (JP ^ JQ Q` p� q)

For this we use the following theorem directly taken from [Pra95]; it states an induction principle for the
� operator that corresponds to the latter's de�nition (3.195):

Theorem C.1 � Induction REACHe INDUCT1

For transitive and disjunctive R:

P; J :
(8p; q :: (p C (wP ) ^ q C (wP ) ^ (�J) ^ (J ^ p ensures q))) R:p:q)

(p� q)) R:p:q

take R = (�p q: JP ^ JQ Q` p� q). Since we already have�-Transitivity, and�-Disjunction, we are
left with the following proof-obligation:

8p q :: (p C wP ^ q C wP^ �JP ^ (JP ^ p ensures q))) (JP ^ JQ Q` p� q)

Choose arbitrary p and q, and assume:

A10: p C wP ^ q C wP

A11: P`�JP
A12: P` JP ^ p ensures q

Theorem 3.23, stating con�nement monotonicity, together with A4 and A10 gives:

A13: p C wQ ^ q C wQ
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Rewriting A12 with the de�nition of ensures (3.185), we know that there exists an action AP , such that:

A14: P` JP ^ p unless q
A15: AP 2 aP
A16: 8s t :: (JP :s ^ p:s ^ :(q:s) ^ compile:AP :s:t)) q:t

Now we have to prove that:

JP ^ JQ Q` p� q

( (� Bounded Progress (A.1031), A7, � is well-founded)

8k :: JP ^ JQ Q` p ^M=k� (p ^M�k) _ q

( (� Case distinction (A.631))

8k :: JP ^ JQ Q` p ^M=k ^ :(guard of:AP )
�
(p ^M�k) _ q

9=
; false-guard-AP -part

8k :: JP ^ JQ Q` p ^M=k ^ guard of:AP

�
(p ^M�k) _ q

9=
; true-guard-AP -part

Before we prove these two conjuncts we �rst prove the following lemma.

lemma 1: 8s :: (JP :s ^ p:s ^ :(guard of:AP :s))) q:s

Choose an arbitrary state s, and assume that:

JP :s ^ p:s ^ :(guard of:AP :s)

Since the guard of AP is false, compile:AP :s:t = (s = t), instantiating A16 with state s and rewriting
with these assumptions gives us:

8t : (:(q:s) ^ s = t)) q:t

which equals q:s.

�lemma1

false-guard-AP -part

Theorem � Introduction (A.331, implication-part), assumptions A3, A7 and A13, and lemma 1

establish this case.

�false-guard-AP -part

true-guard-AP -part

For arbitrary k we have to prove that:

JP ^ JQ Q` p ^M=k ^ guard of:AP � (p ^M�k) _ q
= (logics)
JP ^ JQ Q` p ^M=k ^ guard of:AP � ((p ^M�k) _ q) _ ((p ^M�k) _ q)

( (� Cancellation (A.731), A7, A13)

JP ^ JQ Q` p ^M=k ^ guard of:AP

�
(p ^M�k) _ q _ (p ^M=k ^ (9AQ :: APRAQ ^ guard of:AQ))

9=
;C1

JP ^ JQ Q` p ^M=k ^ (9AQ :: APRAQ ^ guard of:AQ)� (p ^M�k) _ q
	
C2
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Before we continue with the proofs of these conjunct, we shall �rst prove another lemma.

lemma 2: Q` (JP ^ JQ) ^ p unless q

= (logics)

Q` JQ ^ (JP ^ p) unless q
( (preservation of unless (7.1115), A1, A2, A3, A4, A14)
(JP ^ p) C W c ^ q C W c

( (con�nement of binary operators on �rst conjunct, and A4)
p C W c ^ q C W c

( (con�nement monotonicity (3.23) on both conjuncts)
p C wP ^ q C wP ^ wP �W c

Assumption A10 and A4 establishes this case.

�lemma2

proof of C1

JP ^ JQ Q` p ^M=k ^ guard of:AP

�
(p ^M�k) _ q _ (p ^M=k ^ (9AQ :: APRAQ ^ guard of:AQ))

9=
;C1

( (� PSP (A.831), A13, lemma 2)

JP ^ JQ Q`M=k ^ guard of:AP �M�k _ (M=k ^ (9AQ :: APRAQ ^ guard of:AQ))

( (� PSP (A.831), A7)
JP ^ JQ Q` guard of:AP � (9AQ :: APRAQ ^ guard of:AQ)

Q`M = k ^ JP ^ JQ unlessM � k

Assumptions A6, A15 and A8 establish this.

�C1

proof of C2

JP ^ JQ Q` p ^M=k ^ (9AQ :: APRAQ ^ guard of:AQ)� (p ^M�k) _ q
	
C2

( (� Substitution (A.231), A5, A7, and A13)

JP ^ JQ Q` 9AQ :: APRAQ ^ p ^M=k ^ guard of:AQ� 9AQ :: APRAQ ^ ((p ^M�k) _ q)

( (� Disjunction (A.931), A5, A7, and A13)

8AQ : APRAQ : JP ^ JQ Q` p ^M=k ^ guard of:AQ � (p ^M�k) _ q

( (� Introduction (A.331), A3, A5,A7 and A13)

8AQ : APRAQ : Q` JP ^ JQ ^ p ^M=k ^ guard of:AQ ensures (p ^M�k) _ q

Assume:

A18: APRAQ

We are left with the proof obligations (de�nition of ensures (3.185))

Q` JP ^ JQ ^ p ^M=k ^ guard of:AQ unless (p ^M�k) _ q
	
unless-part

9AQ : AQ 2 aQ :
fJP ^ JQ ^ p ^M=k ^ guard of:AQ ^ :((p ^M�k) _ q)gaf(p ^M�k) _ qg

�
exists-part
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proof of the unless-part

Assume for arbitrary actions a, and states s and t:

A19: a 2 aQ
A20: compile:a:s:t
A21: JP :s ^ JQ:s ^ p:s ^ (M:s = k) ^ guard of:AQ:s

A22: :(M:s � k) ^ :(q:s)

We have to prove that:

JP :t ^ JQ:t ^ p:t ^ (M:t = k) ^ guard of:AQ:t

_
p:t ^ (M:t � k)
_
q:t

From lemma 2 and assumptions A19, A20, A21 and A22 we know that:

A23: (JP :t ^ JQ:t ^ p:t) _ q:t

If q:t holds, then the proof has been established. So assume:

A24: :(q:t)

Then assumptions A23 and A24 leave us with the proof obligation:

((M:t = k) ^ guard of:AQ:t) _ (M:t � k)

From A9, A19, A20, A21, A22 and the de�nition of unless (3.155) we can deduce:

A26: guard of:AP :s) (guard of:AQ:t ^ (M:t = k)) _ :(guard of:AP :t) _ (M:t � k)

FromA1,A3,A18,A21, and the de�nition of action re�nement (7.112), we can conclude guard of:AP :s,
and hence assumption A26 gives:

A27: (guard of:AQ:t ^ (M:t = k)) _ :(guard of:AP :t) _ (M:t � k)

Suppose guard of:AP :t holds, then A27 establishes the proof. To reach a contradiction, we assume
that:

A28: :(guard of:AP :t)

Now lemma 1, A28, A23, A24 imply q:t which obviously contradicts A24.

�unless�part

proof of the exists-part:

The action that does the trick is AQ (introduced in A18). From A1 we know that R is bitotal, and
hence using A15, A18, and the de�nition of a bitotal relation we can infer that AQ is indeed an action
in aQ. Assume for arbitrary states s and t that:

A29: JP :s ^ JQ:s ^ p:s ^ (M:s = k) ^ guard of:AQ:s

A30: :(M:s � k) ^ :(q:s)
A31: compile:AQ:s:t
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We are left with the proof obligation:

(p:t ^ (M:t � k)) _ q:t

From A15 and the always-enabledness of actions in the universe ACTION (3.34) we know that there
exists a state t0 such that

A32: compile:AP :s:t
0

and consequently from A1, A18, the de�nition of action re�nement (7.112), and assumptions A3,
A29, A31, A32 we can infer that:

A33: t =wP t0

From assumption A16, A29, and A32 we can conclude that:

A34: q:t
0

Finally from A33, A34, and A10 we can conclude q:t.

�exists�part

� C2

�true-guard-AP -part

end of proof of Theorem 7.7 (�-part)
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