Program refinement in UNITY

P CRr,J Q

T. E. J. Vos and S. D. Swierstra

Informatica Instituut, Utrecht University

e-mail: {tanja, doaitse}@cs.uu.nl

UU-CS-2001-41
December 23, 2001

Contents

1

2

o

Q @ »

Introduction 3
Terminology and notation 3
Preliminaries: states, actions, programs 3
3.1 Variables, values, states L . 3
3.2 Actions 3
3.3 Programs e e e)
3.4 Specifications oL e e e 5
What exactly is a refinement 6
An overview of some existing work on refinements 7
5.1 The refinement calculus L 7
5.2 Sanders’ mixed specifications and refinement mappings oL 8
5.3 AK.Singh e 8
5.4 Furtherreading L 9
Refinement in UNITY 9
Another notion of refinement in UNITY 10
7.1 Why another notion of refinement?o oL oL 11
7.2 The formal definition of our refinement relation 12
7.3 Property preservation e e e 15
7.4 Guard strengthening and superposition refinement, 17
7.5 Non-determinism reducing refinemento Lo oL 18
7.6 Atomicity refinement L. L 19
Application of the theory 19
8.1 The communication network 19
8.2 Distributed hylomorphisms oL o o 20
8.3 A refinement ordering on the distributed hylomorphisms 23
8.4 The correctness of PLUM o o0 ittt s e e e e 23
8.5 Using refinements to derive the correctness of ECHO 24
8.6 Using refinements to prove the correctness of TARRY 25
8.7 Using refinements to prove the correctnessof DFS L. 28
Conclusion 29
Laws of — 31
Laws of ~ 31
Proofs of the refinement theorems 32
C.1 Preservation of unless L 33
C.2 Preservation of »— L 35

1 Introduction

Program refinement has received a lot of attention in the context of stepwise development of correct
programs, since the introduction of transformational programming techniques by [Wir71, Hoa72, Ger75,
BD77] in the seventies. This report presents a new framework of program refinement, that is based on
a refinement relation between UNITY programs. The main objective of introducing this new relation
it to reduce the complexity of correctness proofs for existing classes of related distributed algorithms.
It is shown, however, that this relation is also suitable for the stepwise development of programs, and
incorporates most of the program transformations found in existing work on refinements.

2 Terminology and notation

Function application will be represented by a dot. In definitions we shall use 4 meaning “is defined
by”. The complement of a set W is denoted by W¢. A relation R is bitotal on A and B (denoted by
bitotal.R.A.B), when for every element in A there exists at least one element on B to which it is related,
and similarly for B. A relation < is well-founded over A, when it is not possible to construct an infinite
sequence of decreasing values in A. Universal quantification will be written like (Vz : P z : Q)) meaning
forall z if P holds for z then also Q. If P is true for all z we just write (Vz :: @ x). Similar notation is
used for existential quantification.

3 Preliminaries: states, actions, programs

3.1 Variables, values, states

We assume we have a universe Var of program variables and a universe Val of values that these variables
can take. Program states will be modelled as functions that are elements of Var—Val, and the set of
all program states will be denoted by State. A state-predicate is an element of State—bool. We say
that a state-predicate p is confined by a set of variables V' C Var if p does not restrict the value of any
variable outside V. Let us write s =y ¢, if all variables in V" have the same values in state s and ¢ (i.e.
Yv:v €V :sw=tw). Now we can formally define predicate confinement as follows:

Definition 3.1 CONFINEMENT CONF_DEF
pCV 4 Vs,t:s=y t:p.s=npt
The confinement operator is monotonic in its second argument.

Theorem 3.2 C MONOTONICITY CONF_MONO

Vi VCWA(FCV) = (FCW)

3.2 Actions

Actions can be (multiple) assignments or guarded (if-then) actions. Simultaneous execution of assignments
is modelled by the operator ||. For example, z,y := 1,2 ||w,z := 3,4 equals z,y,z,w := 1,2,3,4.

All actions is this report are assumed to be well-formed, meaning that their guard is a state-predicate,
and the amount of variables at the left hand side of the := is equal to the amount of values at the right
hand side.

We will assume a deep embedding of actions, i.e. the abstract syntax of actions is defined by a
recursive data type ACTION, and their semantics is defined by a recursive function, e.g. compile, of type
ACTION— (State—State—Bool). As a consequence, we are able to obtain and reason about various
components of actions. For example, we assume that we have functions guard_of and assign_vars that
given an action returns its guard and the set of variables it assigns to respectively. Examples of these
functions:

guardof(if t >0 Ay <10thenz:=2+1||ly:=y—1)=2>0Ay <10

assignvars(if c >0 Ay <10thenz:=z+1]|y:=y—1) = {z,y}

Moreover, we have functions is_assign and is_guard that enable us to check the type of an action.

An action that is always ready to make a transition is called always enabled.

Definition 3.3 ArLwAys ENABLED ACTION ALWAYS_ENABLED
Ognd £ Vs (3t :: compile.A.s.t)

Multiple assignments and guarded if-then actions are always enabled. Note that this means that a guarded
action with a false guard behaves like skip, i.e. the action that does not change the value of any variable.

Definition 3.4 SKIP ACTION SKIP_DEF

For any action A, skip L if false then A

A set of variables is V' ignored-by an action A, denoted by V « A, if executing A’s executable in any
state does not change the values of these variables. Variables in V¢ may however be written by A.

Definition 3.5 VARIABLES IGNORED-BY ACTION dIG_BY_DEF
d .
V& A = Vs,t:compileeA.sit:s=yt

A set of variables V is said to be invisible-to an action A, denoted by V' —-» A, if the values of the variables
in V' do not influence the result of A’s executable, hence A only depends on the variables outside V.

Definition 3.6 VARIABLES INVISIBLE-TO ACTION dINVI_DEF
d) .
VasA = Vsts t':s=ypcs At=yct' As' =y t' A compile.A.s.t : compile.A.s".t'

Finally, we will define two transformations on actions, namely strengthening guards and augmentation.
Suppose the constructor for guarded actions of the data type ACTION is GUARD. Now we can transform
an action A by strengthening its guard with state-predicate g as follows:

Definition 3.7 STRENGTHENING GUARDS OF ACTIONS strengthen_guard
strengthen_guard.g. A L GUARD.(g A guard_of.A).(assign_of.A)

An action Ac can be combined with an assignment As to yield an augmented action:

Definition 3.8 AUGMENTING AN ACTION augment_DEF
augment.Ac.As L GUARD.(guard_of.Ac).((assign_of . Ac) || As)

When an action Ac is transformed by augmentation to yield augment.Ac.As, we say that Ac is augmented
with assignment As, or that As is augmented to Ac. The following properties of strengthening guards
and augmentation can easily be proved using the definitions given above.

Theorem 3.9 PRESERVATION OF <~ streng_guard_PRESERVES_IG_BY

V + A
V' « strengthen_guard.g.A

Theorem 3.10 PRESERVATION OF - streng_guard_PRESERVES_INVI

VasAAgCVs©
V' - strengthen_guard.g.A

Theorem 3.11 streng_augment_COMMUTE
strengthen_guard.g.(augment.Ac.As) = augment.(strengthen_guard.g.Ac).As

Theorem 3.12 PRESERVATION OF < augment_PRESERVES_IG_BY

V e+ Ac ANV &+ As A is_assign.As
V « augment.Ac.As

3.3 Programs

UNITY programs P are modelled by a quadruple (aP, iniP, rP, wP); aP, is the set of actions separated
by the symbol [J; iniP is the initial condition of the program; rP is the set of read variables; and wP the
set of write variables.

A UNITY program must satisfy four syntactic requirements regarding its well-formedness: (1) The
program should have at least one action; (2) A write variable is also readable; (3) The actions of a
program should only write to the declared write variables; (4) The actions of a program should only
depend on the declared read variables.

Using the notions of ignored-by and invisible-to we can define a well-formed “UNITY program” as an
object satisfying the following predicate Unity.

Definition 3.13 Unity dUNITY
Unity.P £ (aP #0) A (WP CrP) A (VA: A€ aP: (wP) « A) A (VA:A€aP: (xP)° » A)

A program execution of such a program is infinite, in each step an action is selected nondeterministi-
cally and executed. Selection is weakly fair, meaning that every action is selected infinitely often.

3.4 Specifications

As usual, reasoning about actions is done by means of Hoare triples [Hoa69]. If p and ¢ are state-
predicates, and A is an action, then {p} A {q} means that if A is executed in any state satisfying p, it
will end in a state satisfying ¢:

Definition 3.14 HOARE TRIPLE HOAe_DEF
{p} A {q} 4 Vs,t: p.s A compile.A.s.t : q.t

To reason about programs we will use the UNITY specification and proof logic from [CM89] augmented
by [Pra95]. Safety properties can be specified by the following operators:

Definition 3.15 UNLEss (SAFETY PROPERTY) UNLESSe
- p unless ¢ 2 YA:AcaP: {pA—q} A{pVq}

Definition 3.16 STABLE PREDICATE STABLEe
FOp 4 »F p unless false

The following is a theorem about unless that we will need later in this report.

Theorem 3.17 ANTI-REFLEXIVITY UNLESS_ANTI_REFL
»F punless =p

One-step progress properties are specified by:

Definition 3.18 ENSURES (PROGRESS PROPERTY) ENSURESe

pl= p ensures ¢ 4 (pFpunlessq) A (3A: A€ aP:{pA-q} A {q})

To specify general progress properties we will use Prasetya’s [Pra95] reach (~—) and convergence (~)
operators. The —-operator is defined as the least disjunctive and transitive closure of ensures:

Definition 3.19 ReacH OPERATOR REACHe
(A\p,q. J sF p— q) is defined as the smallest relation — satisfying:

pCwP A qCwP A (oFOJ) A (pF JApensures q)

Lifting
p—q
—qgNqg—
Transitivity p=ang=r
p—r
Vi:Wi:pi—
Disjunctivity ! vipi g

(Fi:Wi:p)—q
where W € a—Val characterises a non-empty set.

Many properties about »— can be found in [Pra95], the properties we need in this report are listed in
Appendix A.

The ~~-operator defines a restricted form of self-stabilisation, a notion first introduced by Dijkstra
in [Dij74]. Roughly speaking, a self-stabilising program is a program which is capable of recovering
from arbitrary transient failures of the environment in which the program is executing. Obviously such
programs are very useful, although the requirement to allow arbitrary failures may be too strong. A more
restricted form of self-stabilisation, called convergence, allows a program to recover only from certain
failures. In [Pra95], a convergence operator is defined in terms of »—:

Definition 3.20 CONVERGENCE CONe
Jebp~q 2 qCwP A 3¢ = (Jobp—d ANq) A (FOTAG AQ)))

Again some properties taken from [Pra95] are listed in Appendix B. Most properties are analogous
to those of —. There is, however, one property that is satisfied by ~~ but not by — nor —, viz.
CONJUNCTIVITY.

4 What exactly is a refinement

Whereas the word refinement has been used in technical contexts in several related but subtly different
ways, we can only give an overview after we have agreed on what is considered to be a refinement
and, more important, what refinements are being considered. In Webster’s college dictionary [Inc95],
refinement is defined as:

refinement n. 1. fineness or elegance of feeling, taste, manners, language, etc. 2. an instance of this.
3. the act or process of refining. 4. the quality or state of being refined. 5. a subtle point of
distinction. 6. an improved form of something. 7. a detail or device added to improve something.

and all senses but 1 accord with the uses in computer science related contexts. We shall start by making
a clear distinction between program refinement on the one hand and property refinement on the other.

Property refinement occurs within the context of the UNITY methodology for developing distributed
programs. Here, a high level UNITY specification — which, within the UNITY methodology, is a property
and not a program — is refined by adding more detail to it (i.e. 7 of Webster’s definition). The specification
is improved in the sense that, being more detailed by exploiting some solution strategy, it gets easier to
derive the final UNITY program that satisfies the initial specification. This kind of property refinement,
or specification refinement is in some work also referred to as reification [Jac91].

Program refinement is the activity of transforming a complete program in order to improve something
(i.e. 6 and 7. of Webster’s definition). This something can be the program itself (i.e. efficiency,
costs, representation, etcetera), or the complexity of the correctness proof of the program. Although
the definition that states when one program is considered to be a refinement of another differs among
existing work on program refinements (see the sections below), the type or kind of program refinements
(or program transformations) that are studied are generally the same. Before we discuss existing work
on program refinement, we shall give the meanings of these different kinds of refinements.

data refinement is a program transformation where a (high-level, abstract) data structure is replaced
by another (lower-level, concrete) data structure. It was first introduced in [Hoa72], and is very
useful for improving the efficiency of programs.

atomicity refinement is a program transformation where a program with a coarse grain of atomicity is
transformed into another program that uses a finer grain of atomicity. It is a useful transformation
rule. On the one hand, proving algorithms with a coarse grain of atomicity is easier since fewer
interleavings have to be considered. On the other hand, distributed algorithms that use a fine grain
of atomicity are potentially faster as more processes may execute concurrently.

strengthening guards is a program transformation of which the name speaks for itself.

superposition refinement is a program transformation that, as we already discussed in Section 6,
adds new functionality to an program in the form of additional variables and assignments to these
variables.

The existing work that shall be discussed in the following sections is concerned with program refinements
of distributed or concurrent programs.

5 An overview of some existing work on refinements

5.1 The refinement calculus

The refinement calculus originates with Ralph Back [Bac78, Bac80] and was reintroduced by Joseph
Morris [Mor89] and Carrol Morgan [Mor88, MG90, Mor90]. The calculus provides a framework for
systematic program development.

The main idea behind the refinement calculus is considering both specifications and code to be pro-
grams. A notion of refinement is then defined on these programs as a reflexive and transitive relation that
preserves total correctness'. More specifically, a program P is refined by another program P’ (denoted
by P < P' or P C P’) if, when both P and P’ are started in the same state:

e if P terminates so does P’

e the set of final states of P’ is contained in the set of final states of P
This notion of refinement is defined using Dijkstra’s weakest pre-condition calculus [Dij76]. Note that
this definition of refinement is not a property preserving refinement. All we know when P < P’ is that the
input-output correctness is preserved; it does not guarantee that the behaviour of P’ during execution,
and thus its temporal properties, will be the same as the behaviour of P. Since the refinement calculus
was originally designed for sequential programs total correctness was sufficient. The refinement calculus
has however been lifted to work on both parallel [Bac89, Bac90, Ser90, BS91, Bac93] and reactive (or
distributed) [Bac90, vW92b, BvW94, BS96]. systems, by using action systems [BKS83, BKS84, BKS88]
to model parallel and distributed systems as sequential programs. Although preserving total correctness
is also sufficient for parallel systems, stepwise refinement of reactive or distributed systems also requires
preservation of temporal properties. Consequently, in [Bac90, vW92b, BvW94, BS96] the notion of
refinement was extended such that the preservation of temporal properties was guaranteed.

The development of a program within the refinement calculus framework consists of a sequence of
correctness (or in the case of distributed systems, temporal properties) preserving refinement steps,
starting with an initial high-level specification and ending with an efficient executable program. These
correctness preserving refinement steps are formulated as program transformations rules ¢t € programs—
programs and added to the refinement calculus framework by proving theorems of the form:

Verification Conditions hold for P
P<tP

VP € programs ::

In other words if certain verification conditions are satisfied, then applying rule ¢ to program P is a
correctness (and in the case of distributed systems, temporal properties) preserving refinement step.
Many transformation rules can be found in [Bac88, Bac89, BvW89, BvW90, Bac90, Ser90, BS91, vW92a,
vW92b, Bac93, BS96, SW97, BvW98, BKS98]|, concerning among others, data refinement, guard strength-
ening, superposition refinement, and atomicity refinement (or changing the granularity).

Some other references on uses of the refinement calculus for distributed systems include [SW94a,
SW94b, SW96], where the refinement steps are applied backwards in order to obtain a formal approach
to reverse engineering distributed algorithms. In [Wal96, BW96, WS96, Wal98a, Wal98b, BW98] action
systems and their refinements are formalised and applied within the B-method [Abr96].

'In [Bac81] a notion of partial correctness preserving refinement is studied.

5.2 Sanders’ mixed specifications and refinement mappings

Sanders [San90] has introduced a mixed specification technique (called mspecs) to define a notion of
program refinement in UNITY. An mspec incorporates both program text and a set of program properties.
More specifically, an mspec consists of a declare section that contains a list of variables together with
their types (the Cartesian product of these variables is referred to as the state space of the mspec); an
initially section that contains a predicate that specifies the allowed initial values of the variables; an assign
section that contains a set of conditional assignment statements that, in an operational view, constrain
the behaviour of the program by specifying allowed state changes; a property section containing a set
of program properties (expressed in a modified? version of the UNITY logic) that further constrain the
allowed state changes, and for the progress properties, the allowed sequence of state changes.

Consequently, if the assign section is empty, an mspec is a standard UNITY specification, and if the
properties section is empty an mspec is a standard UNITY program. An mspec is called implementable
when all properties in the property section can be proved to hold for the actions in the assign section.

A benefit of specifying UNITY programs with a mixed specification is the following. Some desired
program properties, like e.g. safety properties, are easier and more intuitively expressed using statements
instead of logic, while others (usually progress properties) are better specified using logics [Lam83, Lam89].
In an mspec one can benefit from both possibilities, which is good since getting a specification right in
the first place is crucial and not always easy.

A notion of refinement is defined on mspecs which is based on a refinement mapping [Lam83, LS84,
AL88, Lam91, Lam96] M from the state space of the refinement to the state space of the original. It is
denoted by (G refines F') o1, and informally means:

e all initial conditions of G are mapped by M to the initial conditions on F'

e if a state change from g to y; is permitted by the assignments in the assign section of GG, then either
a state change from M.yy to M.y is permitted by the the assignments in the assign section of F', or
M.y equals M.y;.

e all properties of F' are implied by the properties of G

Using this definition, several theorems are proved that state under which conditions a property that holds
in an mspec can be considered to hold in a refinement. To give an indication of what these theorems look
like, the — preservation theorem is copied below: [San90, page 13]:

rFp—= g A (G refines F)pm
Vi : (gk r; ensures g; is used in the proof of ;- p+— q) : s r; o M ensures ¢; o M
FpoM = qoM

Similar theorems are given for preservation of unless, ensures, and fixed points. Moreover, a theorem
is proved that states when the program transformation of replacing a shared variable by a message
communication system is a property preserving (data) refinement. Stepwise derivation of programs
within this framework now consists of a sequence of refined mspecs, starting with an mspec containing a
high level of abstraction, and ending up with an mspec that is implementable.

5.3 A.K. Singh

In [SO89, Sin89, Mis90, Sin91, Sin93] refinement of UNITY programs is investigated. Notions of property
preserving and total correctness preserving (or fixed-point preserving, as it is called in [Sin93]) refinements
are defined® as follows: [Sin93, page 511]:
Let F and G be two programs. G is a property-preserving refinement of F iff for all predicates p, g,

the following two assertions hold:

e . Fpunlessq = s punlessq

e sFpg= Fpg
Similarly, G is a fized-point preserving refinement of F' iff

e .true— FPp = (F true—~ FPg

e (FP¢ ASlg) = (FPr ASlp)
where FPp is the fixed point of a program P, i.e. it characterises the collection of states that are invariant
under the execution of every statement in P; Slp denotes the strongest invariant of a program P, i.e. it
denotes the set of states reachable from the initial state.

2The modified version was defined to eliminate the need of the substitution axiom [San91]
3The definitions of unless, ensures, and + of Sanders’ logic [San91] are used.

Having defined these two notions of refinement, theorems are proved stating under which conditions
certain program transformations are property-preserving and fixed-point preserving refinements. To give
an indication of what these theorems look like, a theorem, stating the verification conditions under which
strengthening the guard of a program is a property and fixed-point preserving refinement, looks like:
[Sin89, page 1] [Mis90] [Sin93, page 519]

Theorem Let F' be a program and let s :: A if p be a statement. Let statement ¢ :: A if pAg be obtained
by strengthening the guard of statement s. Then, program F'[|¢ is a property and a fixed-point preserving
refinement of the program F [s if the following two conditions hold.
o Fp=yg
e There exists a non-increasing function g from the program variables to a well-founded set such that
=(g=k A q) unless (=p V g < k), for all k

In [Sin93] similar theorems are proved for program transformations like data refinement and atomicity
refinement, and applied to to a number of examples.

5.4 Further reading

For some other work on refinement, concepts within the UNITY (or a UNITY-like) framework, the reader
can for example read [ZGK90, Jon90, Kor91, Udi95, UK96, Din97, GKSU98].

6 Refinement in UNITY

Within the UNITY framework [CM89] two refinements are distinguished: restricted union superposition,
and augmentation superposition. It is recognised in [CM89] that the lack of appropriate syntactic mech-
anisms limits the algebraic treatment of superposition. Consequently, the description of superposition
refinement in [CM89] is rather informal. Since in this report we assume a deep embedding of actions,
we have more appropriate syntactic mechanisms which enable us to give a less informal treatment of
superposition.

In [CM89], the restricted union superposition rule states that an action A may be added to an
underlying program provided that A does not assign to the underlying variables. Here we split this into
two parts:

e first, defining the actual transformation of the program;

e second, proving under which conditions this transformation preserves the properties of the under-
lying program.

Let A be an action from the universe ACTION, and let iA be a state-predicate describing the initial values
of the superposed variables, then a program P can be refined by restricted union superposition using the
transformation formally defined by:

Definition 6.1 RESTRICTED UNION SUPERPOSITION RU_superpose_DEF

Let A € ACTION, 7A be a state-predicate, and P be a program:

RUS.PAGA = P [({A},iA, (assign_vars.A), (assign_vars.A))

Theorems stating that properties are preserved under restricted union superposition are stated below for
arbitrary programs P, actions A, and state-predicates p,q,JJ. Note that instead of requiring that the
superposed action A does not write to the underlying variables, it is sufficient to require that the write
variables of the underlying program are ignored by the action A.

Theorem 6.2 PRESERVATION OF unless AND ensures RU_Superpose_PRESERVES_UNLESS
RU_Superpose_PRESERVES_ENSURES

pCwP AgCwP AWwWP«+ A

pFp unless ¢ = ruspaial p unless g
s p ensures ¢ = Ry spaial P ensures q

Theorem 6.3 PRESERVATION OF — RU_Superpose_PRESERVES_REACH
RU_Superpose_PRESERVES_CON

JCwP A wP «+ A
JpobEp o — g = J ruspaiabp — ¢
JpbEp ~ q = J rspaiabDp g

In [CMR9], the augmentation superposition rule states that an assignment As that does not assign to the
underlying variables can be augmented to any assignment or assignment-part of actions of the underlying
program. Again, we first define the actual transformation on the program, and second, prove theorems
stating when properties are preserved. Let As be an assignment from the universe ACTION, and let 74
be a state-predicate describing the initial values of the superposed variables, then a program P can be
refined by augmentation superposition using the transformation rule formally defined by:

Definition 6.4 AUGMENTATION SUPERPOSITION AUG_superpose_DEF

Let As € ACTION, 74 be a state-predicate, AC's C ACTION, and P be a program:

AUGS.P.ACs.AsiA = ({Ac|AceaP A Ac¢ ACs}
U
{augment.Ac.As | Ac € aP A Ac € AC's},
iniP A iA,
rP U (assign.vars.As),
wP U (assign_vars.As))

Theorems stating that properties are preserved under augmentation superposition are listed below for
arbitrary As € ACTION, state-predicates 74, programs P, and AC's C ACTION. Note again that instead
of requiring that the assignment As does not write to the underlying variables, it is sufficient to require
that the write variables of the underlying program are ignored by As.

Theorem 6.5 PRESERVATION OF unless AND ensures AUG_Superpose_PRESERVES_UNLESS
AUG_Superpose PRESERVES_ENSURES

pCwP A qCwP A WP &+ As A is_assign.As

pE D unless ¢ = aic_s.p.acs.asial- p unless ¢
P D ensures ¢ = .y s.p.acs.asia - D €NSUrES @

Theorem 6.6 PRESERVATION OF — AUG_Superpose_PRESERVES_REACH
AUG_Superpose PRESERVES_CON
JCwP A wP «+ A A is_assign.As

JobEp = ¢ = J sespacsasiamP — g
JpbEp ~ q = J aespacsasiam D~ g

7 Another notion of refinement in UNITY

Like Sanders, but unlike Back and Singh, our refinement relation is not defined to be property or correct-
ness preserving, and accordingly additional theorems have to be proved that state conditions under which
properties of a program are preserved in its refinement. These conditions, however, do not look like the
ones in Sanders, but relate to the verification conditions of the theorems in Back and Singh that argue
about the property preservation of specific program transformation rules. The main difference between
our refinement relation and the ones described in the previous sections, is that its purpose it not the
stepwise derivation of correct programs but the reduction of complexity of correctness proofs of existing
classes of related algorithms. The next section shall exemplify this.

10

7.1 Why another notion of refinement?

Guard strengthening and superposition are transformations for the step-wise development of programs,
the formalisation of which was discussed in Section 6. This section exemplifies why these program
refinements are sometimes insufficient to refine a program, and hence motivates the introduction of our
new refinement relation.

Suppose we have a class of similar algorithms that seemingly establish the same progress in various
ways. Most of the time, algorithms in such a class differ by having different mechanisms or control
structures that influence their control flow and degree of non-determinism. Sometimes, however, adding
such a mechanism or control structures, does not consist of one transformation, but a sequence (or
composition) of transformations which as a whole are a property preserving transformation but on their
own they are not. Consider, for example the following simple UNITY program which is in the class of
algorithms that, started with initial values = 0 and y = 0, increments both z and y until they have the
value 10.

prog P

read {z,y}

write {z,y}

init r=0Ay=0

assign ifz <10 thenz:=z+1 P,
[ify <10 then y:=y+1 P,

Figure 1: Program P that increments both = and y until they have the value 10
<

It is easy to prove that true ,.F 2 =0Ay =0~ z = 10 Ay = 10 (see Figure 3). Another algorithm
in this class is one that reduces the non-determinism of P in such a way that the value of z and y are
incremented in an alternating way. Obviously, this more deterministic program also satisfies (for some
J)JEFz=0Ay =0~ 2 =10Ay = 10, and can be constructed by introducing a variable z_turn of type
bool — the value of which indicates that it is ’s turn — and transforming P as follows:

prog Q

read {z,y,z_turn}

write {z,y,z_turn}

init r=0Ay=0A2_turn = true

assign if £ < 10 A z_turn then z :=z + 1 || z_turn := —~z_turn Q-
[ify <10 A —z_turn then y :=y + 1 || z_turn := —z_turn @,

Figure 2: Program @); reducing P’s non-determinism
<

The machinery for superposition refinements in UNITY, formalised in Section 6, is inadequate for prov-
ing that this transformation is a property preserving one. This is because if we augment the P, with
assignment z_turn:= —z_turn to yield the program AUG.S.P{P,}.(z_turn := —a_turn).(z_turn = true),
then we cannot subsequently augment action P, (of AUG_S.P.{P,}.(z_turn := false).(z_turn = true)) with
the assignment z_turn:= —z_turn and prove that the properties are preserved, since the write variables of
AUG.S.PAP, }.(z_turn := —z_turn).(z_turn = true) (i.e. wPU{z_turn}) are not ignored by the assignment
x_turn:= —x_turn. Consequently, the formalisation of the UNITY superposition rules are not sufficient to
prove preservation of properties under these kind of non-determinism reducing refinements. However,
these refinements are very powerful for reducing the complexity of a correctness proof for a class of dis-
tributed programs. Non-deterministic programs are often easier to prove than more deterministic ones,
since simplicity is gained by avoiding unnecessary determinism. To illustrate this we have displayed the
proof of z = 0Ay =0~ x =10 Ay = 10 for programs P and () in Figures 3 and 4 respectively. It is
not hard to see that the proof in Figure 3 is simpler than the proof in Figure 4. One reason for this is
that, because of P’s freedom to increment = and y whenever it wants (i.e. non-determinism), we are able

11

truep- 2 =0Ay=0~z=10Ay =10

< (~ CONJUNCTION (B.1133), ~» SUBSTITUTION (B.231))

true p £ <10~ x =10 A true p- y <10~y =10

We continue with the first conjunct, the proof of the second conjunct is similar.

true p £ <10~z =10

< (~ BOUNDED PROGRESS (B.1232), and »FOz = 10)

true pk 2 <10A (10 —z=k) ~» (2 <10AN(10—2z < k))Vz =10

< (~ CASE DISTINCTION (B.632) z =10V = # 10, ~» REFLEXIVITY (B.432), pFOz = 10,
and ~» SUBSTITUTION (B.231))

true pk 2 <10A (10 —z =k) ~» 2z <10A (10 —z < k)

< (~ INTRODUCTION (B.332), and pFOz < 10A (10 —z < k))

pF o <10A (10 —x =k) ensuresz < 10 A (10 — z < k)

Figure 3: Proof of true ;- 2 =0Ay=0~2=10Ay =10

|

to decompose the proof obligation x = 0 Ay = 0 ~ z = 10 Ay = 10 into the simpler proof obligations
=0~ x=10and y = 0 ~ y = 10. For program @) this is an inefficacious proof strategy because x
and y cannot be increased independently. Another reason is that, because of @’s restricted freedom to
increase ¢ and y (i.e. determinism), additional case distinctions on whether it is z’s turn or not have to
be made in order to be able to prove that progress can indeed be made.

Although this is just a simple example, it suggest that the total proof effort can be significantly
reduced if we have a refinement relation supporting non-determinism reducing refinement. Since then,
instead of laboriously proving properties directly for a more deterministic program (), we can reduce the
proof-complexity by proving these properties for the least deterministic variant P of @), and conclude
that these properties also hold for Q.

7.2 The formal definition of our refinement relation

We start by defining the refinement relation between two actions. Suppose we have two actions A;, A, €
ACTION, a state-predicate J, and a set of variables V', we say that A; is refined by A,, or A, refines A;,
with respect to V and J (denoted by 4; Cy, s A;), when:

e the conjunction of J with the guard of A, is stronger then the guard of A;.

e the results of A; and A,, both executed in the same state s where J.s holds, on the variables in V
are the same.

Definition 7.1 AcTiON REFINEMENT A_ref_DEF
Let A; and A, be two actions from the universe ACTION, J be a state predicate, and V be a set of
variables, then action refinement is defined as follows:

A Cyg A = Vs :: guardoof.A,.s A J.s = guard_of . A4;.s
A
Vs, t,t" :: (compile.A;.s.t A compile.A,.s.t' Aguard_of . A..s A Js) =t =yt

The fact that action refinement is reflexive and transitive is captured by the following theorems.

Theorem 7.2 ACTION REFINEMENT REFLEXIVITY A_ref REFL
For all A € ACTION, state-predicates J, and sets of variables V:

ACy A

Theorem 7.3 ACTION REFINEMENT TRANSITIVITY A_ref_TRANS1
For all Ay, A5, A3 € ACTION, state-predicates .Jo and J3, and sets of variables V7, V5 and V3:

J3=>Jo ANV CVi ANVaC Vo AALCyy g, A2 A A3 Ty, g, As
A Ty, As

12

Take J = (—z-turn = y = x — 1) A (z-turn = y = x), and prove that oFOJ.

JoF e=0Ay=0~2x=10Ay =10
< (~ SUBSTITUTION (B.231))
JoF t<10Ay<10~wz=10Ay =10
< (~ BOUNDED PROGRESS (B.1232), and oFOxz = 10 A y = 10)
JoF e<10ANy<10A(20—z—y=k)~» (x<10Ay<10A(20—z—y <k))V (z=10Ay = 10)
< (~ CASE DISTINCTION (B.632) y =10V y # 10, ~» INTRODUCTION (B.332), and
~» SUBSTITUTION (B.231) and (JAz <10Ay <10Ay =10) = (z = 10 Ay = 10))
JoF t<10ANy<10A(20—z—y=k)~> (x<10Ay<10A(20—z—y <k))V (z=10Ay = 10)
< (~ CASE DISTINCTION (B.632) z =10 V = # 10, and ~~ SUBSTITUTION (B.23;))
JoF 2=10Ay<10A(20—z—y=k)~> (z<10Ay<10A(20 —z —y < k))
A
JoF <10ANy<10A(20—2z—y=k)~ (2 <10Ay<10A(20—z—y < k))
The first conjunct can be proved by ~» INTRODUCTION (B.332), since (J A x = 10 A y < 10) implies —z_turn, and
thus
FJAZz=10Ny<10AN(20—z—y=k)ensuresz <10Ay<10A(20—z —y < k)
We continue with the second conjunct as follows:
JoF <10ANy<10A(20—2z—y=k)~»2<10Ay<10A(20—z—y < k)
< (~ CASE DISTINCTION (B.632) (z_turn V = (z_turn)))
JoF 2 <10ANy<10A(20—z—y=k)Azturn~z < 10Ay<10A (20 —z —y < k)
A
JoF z<10Ay<10A(20—z—y=k)A—-(zturn) 2z <10Ay<10A (20— 2z —y < k)
< (~ INTRODUCTION (B.332) on both conjuncts)
oF JAz2<10Ay<10A(20—2z—y=k)Azturnensuresx <10Ay <10A(20—z —y < k)
A
oF JAzZ<10Ay<10A(20—o2 —y=k)A—zturnensureszt <10 ANy <10A (20 —z —y < k)

Figure 4: Proof of J oF 2 =0Ay=0~2=10Ay =10

<

Next, we define our relation of program refinement. P is refined by @, or @ refines P, with respect
to some relation R and state-predicate J, (denoted by P Cr 5 @), if we can decompose the actions of
program (into a@); and a@)-, such that

e R is a bitotal relation on the two sets of actions aP and a(@)q, i.e. for every action Ap in aP there
exists at least one action in a); to which aP is related by R, and similarly for every action Ag in
a(); there exists at least one action in aP to which Ag is related by R.

e for all actions Ap of aP and Ag of a@); that are related to each other by R (i.e. Ap R Ag holds),
we can prove that Ag refines Ap with respect to the write variables of P and state-predicate .J.

e the actions of) that are in a@), refine skip with respect to the write variables of P and J.

For those readers that are geared to pictures, in Figure 5 a depiction of program refinement is given. The
formal definition of program refinement now reads:

Definition 7.4 PROGRAM REFINEMENT P_ref_DEF
Let P and @ be two UNITY programs, R be a relation, and J be a state predicate, then program
refinement is defined as follows:

PCrs@ = Ja@Qi,aQ::: a@ =aQ;Ual> A bitotal. R.aP.a@,
A
VAPAQ :Ap€aP A APRAQ :Ap EwP,JAQ
A
VAg : Ag € aQ2 :skip Cwp,s AgQ

Note that P Cr s @ does not say anything about () inheriting properties or correctness from P. Nor
does it say anything about the explicit program transformations that were (or could have been) applied
to P in order to obtain (). Moreover note that, opposed to superposition refinement, P Tz ; @), does
not necessarily imply that wP C w(@. Consider the two programs P and @ in Figure 6. Suppose z and

13

P Q
R
aP - a()
Ewp,J

skip

EwP7

J

Figure 5: Program refinement in a picture.

<
prog P prog (@
read {z,y,z} read {z,y,w}
write {z,y,z} write {z,y,w}
init b = true init b = true
assign zx:=z+1 aP; assign ifz <15thenz:=z+1 a@;
[y:=y+1 abs [ify<20theny:=y+1 a@Q-
[z:=z aPs [wi=w+1 aQs
Figure 6: @ refines P
<

w are different variables, then it can easily be seen that for any state-predicate J, and relation R defined
by R = {(aP;,aQ;) | i = 1,2}, it holds that P Cg, ; Q. However, since z and w are different variables,

wP C w(does not hold.

The following theorems state that program refinement is reflexive and under certain conditions also

transitive.

Theorem 7.5 PROGRAM REFINEMENT REFLEXIVITY
For all programs P, and state-predicate J:

PC_, P

Theorem 7.6 PROGRAM REFINEMENT TRANSITIVITY
For all programs P, P», P, and state-predicates Jz, J3:

Js=> o ANwWwPLCwWP, A PLCR, 7, Po AN P, CRr, g, Ps

Py CRioRrs, 05 B3

P_ref REFL

P_ref_TRANS

Reflexivity, and transitivity are necessary properties of a refinement relation, in order to make the latter
suitable for the step-wise derivation of programs [Bac88]. However, our definition of refinement is not
purely transitive in the sense that additional requirements on the component programs are demanded in
the premises of Theorem 7.6 stating transitivity of C. Suppose we want to derive program P, from P,
(n > 1) by the following sequence of refinements:

Pl E'R,h.]z P2 ER2,J3 P3 ER;;,.L; P4 .. ERn,Jn+1 Pn+1

in order to conclude that

Pl ERlo...ORn,Jn+1 PTL+1

we have to prove that:

14

e the write variables of the program P; in intermediate step P; Cr,o...0R;,J;1; £it1 are included or
equal to the write variables of program P;

e the predicate J;11 (which shall usually correspond to the strongest invariant of the program Pjy;)
must be stronger than the predicate J; (thus the strongest invariant of program P;).

Consideration of the fact that the underlying transformations of these intermediate refinement steps
are superposition, guard strengthening and atomicity refinement (see Section 7.6), these requirements
are very natural. Consequently, our definition of refinement is very suitable for stepwise derivation and
verification of distributed programs in UNITY.

7.3 Property preservation

Safety properties p unless ¢, and O J, where p,q and J do not name any superposed variable, are always
preserved under refinement of two UNITY programs.

Theorem 7.11 unless PRESERVATION P_ref_AND_SUPERPOSE_WRITE_PRESERVES_UNLESSe

P Cgr.y QAUnity.P AUnity.Q A (oFOJg) A (Jg = J)
AW = (wQ =wPUW)A(pC W) A(qC We)
F punless g = oF (Jg Ap) unless ¢

Theorem 7.12 () PRESERVATION P_ref_AND_SUPERPOSE_WRITE_PRESERVES_STABLEe
P Cr.g QA Unity.P AUnity.Q A (oFOJg) A (Jg = J)
AW (wQ =wPUW) A (pC We)
FOp = oFO(Jo Ap)

The conditions (p C W¢) and (¢ C W*), in the premises of the two theorems above, state that the values
of state-predicates p and ¢ do not depend on the values of the variables in W. Note that when W is the
set of variables that are superposed up on program P, these conditions are weaker then stating that p
and ¢ do not name any superposed variable.

Preservation of one-step progress properties (i.e. ensures) cannot be proved under our definition of
refinement. Fortunately, preservation of reach and convergence properties can be proved, and in most
situations these are all that are required.

Figure 7 shows the theorems stating verification conditions under which general progress properties are
preserved by refinements. Theorem 7.7 is a generalisation of the theorem given in [Sin93] mentioned earlier
in Section 5.3. It states verification conditions for property preservation not only under strengthening the
guard of one action in a program, but under multiple compositions of guard strengthening, superposition
and atomicity refinements on various actions in the program. Informally this theorem states that when
a UNITY program @) refines P with respect to relation R and J, then the progress properties p — ¢ and
p ~ q under the stability of predicate Jp in program P, are preserved under the stability of predicate
Jp A Jg in program (), provided that the following verification conditions hold:

(Jp A Jg) is stable in Q.

(Jp A Jg) implies J

p nor g depend on the values of the variables in W.

the guards of those actions Ag of () that are related by R to one or more actions from P are confined
by the write variables of ().

for all actions Ap of program P; if the guard of Ap holds in @, then eventually there will exists an
action Ag of @ that is related to Ap by R, and the guard of which becomes true in ¢). Consequently,
if Ap can make progress in P, then eventually there exists at least one action of Ag of @ that, when
executed in @), can make the same progress on the write variables of P as Ap does when executed in
P.

Note that this requirement is not enough to guarantee that Ag indeed makes the same progress
as Ap, since between the point in time that the guard of Ay becomes true, and the actual execution
of Ag it is possible that the guard of Ag is prematurely falsified and no progress is made by Ag
whatsoever. The next (and last) verification condition states that this premature falsification of the
guard of Ag cannot happen infinitely and hence ensures that eventually Ag will make the same
progress as Ap on the write variables of program P.

15

Let < be a well-founded relation over some set A, and M € State—A.

Theorem 7.7 P_ref_SUPERPOSE_AND_WF_FUNC_PRESERVES_REACHe_GEN
P_ref_SUPERPOSE_AND_WF_FUNC_PRESERVES_CONe_GEN

P Cr,s Q AUnity.P AUnity.Q A (oFOJp AJQ) A (Jp A Jg = J)
IV (wQ=wPUW)A(Jp C WA (WP C WF)

VAg:Ag €aQ A (3Ap :: (Ap € aP) A (Ap R Ag)) : (guardof. Ao C wQ)
VAp : Ap € aP : (Jp A Jg) ot guard_of . Ap — (JAg :: (Ap R Ag) A guard_of.Aq)
IM (M CwQ)A(VEk:keA: oF (Jp AJg AM =k) unless (M < k))

/\Vk‘APAQ:kEA/\Ap EaP/\ApRAQz
oF (Jp A Jg A guardof.Ag A M = k) unless (—~(guard_of.Ap) V M < k)

((JppEp—q)= (JpANJg oFp—q)) A ((Jp pkp~ q) = (Jp AJg oFp~ q))

Theorem 7.8 P_ref_SUPERPOSE_PRESERVES_REACHe_GEN
P_ref_SUPERPOSE_PRESERVES_CONe_GEN

P Cr,s Q AUnity.P AUnity.Q A (oFOJp AJQ) A (Jp A Jg = J)
IW : (wQ=wPUW)A (Jp C W) A (WP C W)
VAg:Ag €aQ A (3Ap :: (Ap € aP) A (Ap R Ag)) : (guardof. Ag C wQ)
VAp:Ap € aP : (Jp A Jg) ot guard_of . Ap — (JAqg :: (Ap R Ag) A guard_of.Ap)
VAp Ag : Ap € aPANAp R Ag : oF (Jp A Jg A guard_of.Ap) unless =(guard_of.Ap)

((Jp pEp—q) = (Jp ANJg oFp—q)) A ((Jp pkp~ q) = (Jp A Jg oFp~ q))

Theorem 7.9 P_ref_SUPERPOSE_AND_WF_FUNC_PRESERVES_REACHe
P_ref_SUPERPOSE_AND_WF_FUNC_PRESERVES_CONe

P Cr,s Q AUnity.P AUnity.Q A (oFOJp AJQ) A(Jp AJg = J)
IW = (wQ=wPUW)A(Jp C W) A (WP C W)
VAp Ag : Ap€aP N Ap R Ag : (Jp A Jg) of guard_of Ap — guard_of.Aqg
IM (M CwQ)A(VEk:keA: oF (Jp AJo AM =k) unless (M < k))
/\Vk,‘ApAQ:k,‘EA/\AP €aPAAp RAQ:
oF (Jp A Jg A guard_of. Ag A M = k) unless (—~(guard_of . Ap) V M < k)

((JpeFp—q)= (Jp ANJg ok p—q)) A ((Jp pFp~ q) = (Jp A Jg o P~ q))

Theorem 7.10 P_ref_AND_SUPERPOSE_WRITE_PRESERVES_REACHe
P_ref_AND_SUPERPOSE_WRITE_PRESERVES_CONe

P Cr,s @ AUnity.P AUnity.Q A (oFOJp A JQ) A (Jp Adg = J)
IV (wQ=wPUW)A(Jp C W) A (WP C WF)
VAp Ag : Ap €aP N Ap R Ag : (Jp N Jq) of guard_of Ap — guard_of.Ag
VAp Ag : Ap €aP A Ap R Ag : oF (Jp A Jg A guard_of.Ag) unless —~(guard_of.Ap)

((JppFp—q)= (JpANJg okp—q)) A ((Jp pkp~ q) = (Jp AJg oFp~ q))

Figure 7: Preservation of ~— and ~» properties.

16

o for all actions Ap of program P and those actions Ag of () that are related to Ap by R, there exists
a function M that is non-increasing with respect to some well-founded relation <, such that: if the
guard of Ag is true and M equals some value k at any point during the execution of @), then either:

e the guard of Ap always holds, the value of M always remains &, and the guard of Ag continues
to hold forever, so both actions can make the same progress;
e eventually M decreases or the guard of Ap becomes false, but at least until this happens, M
remains k and the guard of Ag continues to hold.
Consequently, if the guard of Ag is prematurely falsified while the guard of Ap still holds, then
we know that the value of M has decreased. By the previous verification condition we know that
eventually the guard of Ag will become true again, and hence given a chance to execute. Again, the
guard of Ag can be prematurely falsified, and we have the same process all over again. However,
the well-foundedness of < guarantees that M cannot decrease infinitely, and hence that premature
falsification of the guard of Ag cannot happen infinitely.
Theorem 7.8 states a corollary of theorem 7.7. It can be proved by taking M to be a constant function.
Theorem 7.9 and 7.10 state corollaries of 7.7 and 7.8 respectively. These can be proved by using the
theorem stated below.

Theorem 7.13 BITOTAL_IMP_GUARD_REACH_EXIST_GUARD
(34 :: bitotal.R.aP.A)
VAp AQ : ApecaP AN Ap R AQ - J Q|— guard_of.Ap — guard_of.AQ
VAp:Ap € aP:J oF guardof. Ap — (JAg :: (Ap R Ag) A guard_of.Ag)

Note that the Theorems in Figure 7 state property preservation in refinements independently from the
specific program transformations that were applied.

7.4 Guard strengthening and superposition refinement

Strengthening the guard of, or augmenting an assignment on an action A are action refinements of A.

Theorem 7.14 augment_A_ref
For all A, As € ACTION, state-predicates J, and V a set of variables:

is_assign.As AV «+ As AN WF _action.A A WF _action. As
A Cy,y augment.A.As

Theorem 7.15 strengthen_guard_A_ref
For all A € ACTION, state-predicates g and J, and V' a set of variables:

A Cy, j strengthen_guard.g. A

Consequently, restricted union superposition and augmentation superposition on a program P are pro-
gram refinements of P.

Theorem 7.16 RU_Superpose_P_ref
For all programs P, A € ACTION, state-predicates J and iA:

wP «+ A
PC_;RUS.P.AA

Theorem 7.17 AUG_Superpose_P_ref
For all programs P, As € ACTION, state-predicate ¢4, and AC's C ACTION:

wP «+ A A is_assign.As A WF_action.As
dR = PLCgr,j AUGS.P.ACs. AsiA

The witness used to prove this theorem is*: (R = f2r.(AA.(A € ACs) — augment.A.As | A)).

4Where the function f2r.f = (Az,y.y = f.z), i.e. converts a function to a relation.

17

7.5 Non-determinism reducing refinement

Our definition of refinement in the previous section incorporates multiple compositions of guard strength-
ening and superposition program transformations, without having to specify these individual transfor-
mations explicitly. The requirement that

\V/APAQ :Ap €aP A APRAQ :Ap EwP,JAQ

takes care of (possibly multiple compositions of) guard strengthening and augmentation superpositions.
The requirement

VAQ : AQ S aQQ : Skip EWRJ AQ

takes care of (possibly multiple compositions of) restricted union superpositions. As a consequence,
non-determinism reducing refinements like the one presented in Section 7.1, can be handled by our def-
inition of refinement. Consider again programs P and () from Figures 1 and 2 respectively. By taking
R ={(P;,Q;) | i € {z,y}}, we can prove that for any J, P Cr s Q holds. The proof of this is displayed
below to give the interested reader an idea of the concepts involved; it may however be skipped.

proof of: PCx ; Q
= (rewriting with Definition 7.4)
Ja@q,aQ2 1 a@ =a@:Ua@: A bitotal. R.aP.a@Q):
A
VAp Ag : Ap €aP AN Ap R Ag : Ap Cwr,g Ag
A
VAg : Ag € aQ> :skip Cwp,y Ag
< (Reduce goal using witnesses a@Q and) respectively)
a@ =aQUD A bitotal. R.aP.aQ
A (VAP Ag :Ap€aP N Ap RAg : Ap Cwrp,s AQ) A (VAQ :Ag € 0 :skip Cwp,g AQ)
< (R is a bitotal; properties of U, €, and 0)
VAp Ag : Ap €aP AN Ap R Ag : Ap Cwr,g Ao
= (actions of programs P and @, definition of R)
Pz EwP,J Qz A Py EwP,J Qy
= (We shall prove the one for P, the other is similar; Rewrite with Definition 7.1)
Vs :: guardof.Q..s A J.s = guard_of .P,.s
AVs,t, t' : (compile.P,.s.t A compile.Q;.5.t" A guard_of Q.5 A J.s) =t =wp t'
= (guard_of.Q.s = (s.x < 10A s.z_turn), and guard_-of.P,.s = s.x < 10)
Vs, t,t' i (compile.P,.s.t A compile.Q..5.t' A s.x < 10A s.zturn A J.s) =t =wp t'
Discharge the antecedents of this goal into the assumptions after rewriting with P, and @,
A;: if sse <10thent.x:=s.x+1
As: if s.x <10 A s.z_turn then t.z,t.x_turn := s.x + 1, false
Ajs: s.x <10 A s.z_turn A J.s
From these assumptions it is easy to deduce that ¢ =, ,1 ¢ which equals t =wp t'.

end of proof

Proving that the property true o, © = 0Ay =0~ z = 10 Ay = 10 of program P is indeed preserved by
its non-determinism reducing refinement) can be established using Theorem 7.9. We already have that:

A truepk 2=0Ay=0~2=10Ay =10

A R={(F;,Q:) i€ {z,y}}

As: J=(—zturn= (y =2 — 1))V (zturn = (z = y))
Ay k0T

As;: PCr @

Now Theorem 7.9, using witnesses W = {a_turn} and M = 20—z —y, and taking < to be < on numbers,
leaves us with the following proof obligations:

o (JAM = k) unless (M < k)

oF (J Ay <10 A =(z_turn) A M = k) unless (—=(y < 10) V M < k)

oF (JAz <10A z_turn A M = k) unless (—~(z < 10) V M < k)

JoFz <10 — 2 <10 A z_turn

18

prog P prog @

read rP read rP

write wP write wP

init iniP init iniP

assign if (3i :i€ S: g.i) then A assign [ics if g.i then A

Figure 8: () refines P

o Joby<10—y <10 A —z_turn
Proving these obligations is not hard, and left to the reader. This is a small example, and the proof-effort
is not significantly reduced when we compare the proof obligations in the bullets above with the ones in
Figure 4. However, we found that this example gives a good insight into the concepts that are involved
when using non-determinism reducing refinements.

7.6 Atomicity refinement

Since our definition of refinements is based on a bitotal relation R which can relate one action in the
original program to several actions in its refinement, our definition of refinement allows for some kind of
atomicity relation. In the rest of this section we shall present how a simple guard simplification (taken
from [Sin93]), that results in a finer grain of atomicity, can be handled within our framework of refinement.

Consider the two programs in Figure 8, where S is a finite set, and i does not occur free in A.
Evidently, programs P and @) keep executing action A until no element in S satisfies predicate g. Let
p=1if (3 :4i € S : gi)then A and gqi = if g.i then A. It easy to prove that the relation
R ={(p,q.i) | i € S} is bitotal on aP and a@, and consequently that for any J, P Cg j Q. To determine
the conditions that need to be satisfied in order to conclude property preservation, Theorem 7.8;4 can
be used to conclude:

Vi:ieS:giCwQ
Vi:ieS: ok (JpAJg Ag.i)unless—(Ji:ie€S:g.i)
(Jpebp—a) = (JpANJg ok p—) A ((Jp ok p~q) = (Jp A Jg ok p~ q))

for the programs P and @ as displayed in Figure 8. These conditions coincide with the ones required in
[Sin93].

8 Application of the theory

In this section we will show how the theory can be applied to prove the correctness of some relative
complex distributed algorithms taken from [Vos00]. Before we start the proofs we will first explain the
algorithms.

8.1 The communication network

The communication networks are assumed to be connected centralised networks employing bi-directional
asynchronous communication.

The networks are modelled by a triple (P, starter, neighs), where: P is a finite set of processes; starter
is a process in P that distinguishes itself from all other processes (called the followers), in that it can
spontaneously start the execution of its local algorithm (e.g. because it is triggered by some internal
event). The followers can only start execution of their local algorithm after they have received a first
message from some neighbour; neighs is a function that given some process p € P, gives the set of
neighbours of p. In other words, for p € P, neighs.p is the set of processes that are connected to p by a
bi-directional communication link. Obviously, the function neighs should satisfy: Vp € P : neighs.p C P.
We will only consider communication between distinct processes and not allow self-loops, thus neighs
must also satisfy: Vp € P, ¢ € neighs.p : p # ¢. Since communication links are bi-directional it holds
that: Vp,q € P: (¢ € neighs.p) = (p € neighs.q).

Such a network is connected if every pair of processes is connected by a path of communication links.

19

prog PLUM and ECHO

init (Vp e P: (p = starter) # (idle.p)) A (father.starter = starter) A initg
assign

lgeneighs.p if idle.p A mit.g.p

(IDLE)
then receive.p.q.(mes) || father.p := ¢ || idle.p := false
[
lyeneighs.p if —idle.p A mit.g.p A collectingr.p
(coL)
then receive.p.q.(mes)
[
lgcneighs.p if = idle.p A can_propagate.p.q A propagatingr.p
(PROP)
then send.p.q.(mes)
[
if finished_collecting_and_propagating.p N\ —reported_to_father.p
(DONE)
then send.p.(father.p).(mes)
Figure 9: The the local algorithm of process p € P for I € {PLUM, ECHO}.
<

For this paper it is sufficient to give an abstract model of asynchronous communication, stating the
functionality of the primitives (send and receive) and some additional operations (mit, nr_sent_to and
nr_rec_from). send.p.q.m, implements that a process p sends message m to g¢; receive.p.q.f.v, makes sure
that if there is a message in transit from g to p, process p receives a message from ¢, and the value of
the received message is assigned to variable v after function f has been applied to it; mit.p.q, the name
of which is an acronym for message in transit, can be used to check for a message in transit from p to g;
p nr_sent_to ¢, enables processes to check how many messages they have already sent to a neighbour g;
similarly, p nr_rec_from ¢, to check the amount of messages received from g.

8.2 Distributed hylomorphisms

The class of distributed hylomorphisms from [Vos00] consists of 4 algorithms: PLUM, ECHO, TARRY and
DFS. They are displayed in Figures 9 until 11 respectively. All four algorithms build a rooted spanning
tree (using the father variable) in the connected network of processes and use this tree to let the required
information (e.g. the values of which the sum has to be computed, or the feedback of the information
that has to be propagated through the network) flow from the leaves to the root of the spanning tree.
The similarities of the algorithms are captured by the characterisation of the following predicates:

rec_from_all_neighs.p = Vq € neighs.p : p nr_rec_from ¢ = 1 (1)
sent_to_all_non_fathers.p = Vq € neighs.p : (¢ # father.p) = (p nr_sent_to ¢ = 1) (2)
can_propagate.p.q = (p nr_sent_to ¢ = 0) A (q # father.p) (3)
finished_collecting_and_propagating.p = rec_from_all_neighs.p N\ sent_to_all_non_fathers.p (4)
reported_to_father.p = (p nr_sent_to (father.p) = 1) (5)
sent_to_all_neighs.p = Vq € neighs.p : pnrsenttoq =1 (6)

20

prog TARRY

init (Vp e P: (p = starter) # (idle.p)) A (father.starter = starter)
A ‘Vp € P: (p = starter) # (—le_rec.p) ‘

assign

lgeneighs.p if idle.p A mit.g.p

(IDLE)
then receive.p.q.(mes) || father.p := ¢ || idle.p := false
|
lgeneighs.p if = idle.p A mit.g.p A ‘ collectingTARRy.p‘
(coL)
then receive.p.q.(mes) ||
[
lgeneighs.p if = idle.p A can_propagate.p.q A ‘pmpagatingTARm.p
(PROP)
then send.p.q.(mes) || ‘ le_rec.p := false‘
[
if finished_collecting_and_propagating.p A\ —reported_to_father.p
(DONE)
then send.p.(father.p).(mes) || ‘ le_rec.p := false‘
Figure 10: The local algorithm of process p € P of the TARRY algorithm.
<
done.p = rec_from_all_neighs.p A sent_to_all_neighs.p (7)

The differences between the algorithms are in the communication protocols, i.e. when they are allowed
to collect messages and propagate them.

The PLUM algorithm allows a process to freely merge its propagating and collecting actions as long
as it has not yet received messages from all its neighbours, and it has not yet sent to all its neighbours
that are not its father. Consequently:

Propagating p ., -p = — sent_to_all_non_fathers.p (8)
collecting py .y -p = — rec_from_all_neighs.p (9)

In the ECHO algorithm, a non-idle process p can only receive a message, after p has sent messages to
all its non-father-neighbours. So, the propagating activities must be completed before starting collecting
from non-father-neighbours. Consequently:

Propagating youo-p = — sent_to_all_non_fathers.p (10)
collecting gy -p = — rec_from_all_neighs.p A —propagating youe-p (11)

In the TARRY algorithm, a non-idle process p can only propagate to a neighbour if the last event of p was
a receive event; otherwise it has to wait until it receives something. So, the propagating and collecting
activities alternate. From Figure 10 we can see that a boolean-typed variable le_rec.p (i.e. last event
was a receive) has been introduced for every process p. The assignments (le_rec.p := true) and (le_rec.p
:= false) in the then clauses of (coL) and (PROP) respectively, guarantee that the the value of le_rec.p

21

prog DFS

init Vp e P: (p = starter) # (idle.p) A (father.starter = starter)
A Vp € P: (p = starter) # (—le_rec.p)

assign

lyeneighs.p if idle.p A mit.g.p

(IDLE)
then receive.p.q.(mes) || father.p:=q || idle.p:=false
|| le_rec.p:=true ||
[
lyencighs.p if = idle.p A mit.g.p A
(coL)

then receive.p.q.(mes) || le_rec.p:=true || | Ip_rec.p:=¢q

lgeneighs.p if - idle.p A can_propagate.p.q A ‘pmpagatingms .p‘ A ‘ q = lp_rec.p

(PROP_LP_REC)
then send.p.q.(mes) || le_rec.p:=false

lgcneighs.p if = idle.p A can_propagate.p.q A | propagatingpes .p‘ A ‘ =(can_propagate.p.(Ip_rec.p)) ‘
(PROP_NOT_LP_REC)

then send.p.q.(mes) || le_rec.p:=false

[

if finished_collecting_and_propagating.p N\ —reported_to_father.p
(DONE)
then send.p.(father.p).(mes) || le_rec.p:=false

Figure 11: The local algorithm of process p € P of the DF'S algorithm.

|

indicates whether the last event of p was a receive event. Consequently, we characterise the collecting and
propagating predicates as follows:

Propagating pypey-p = — sent_to_all_non_fathers.p A\ (le_rec.p) (12)
collecting pupny-p = — rec_from_all_neighs.p A —(le_rec.p) (13)

The characterisation of the propagating and collecting predicates for the DFs algorithm are identical to
those of TARRY. The difference with TARRY is in the lesser freedom to choose a neighbour to send a
message to in the propagating phase (see Figure 11). More specifically, for a non-idle process p in its
propagating phase (i.e. there are still non-father-neighbours to which p has not yet sent) whose last event
was receiving a message from some neighbour ¢: if p can propagate a message back to ¢, i.e. ¢ is not p’s
father, and p has not yet sent to ¢, then p has to send a message back to this process g, otherwise it can
act like in TARRY, and just pick any non-father-neighbour to which it has not yet sent a message (i.e. to
which it can propagate). In order to be able to formalise and check these conditions each process in the
DFS algorithm, remembers the identity of the sender of its last incoming message in the variable lp_rec.p
(last process of which p has received a message).

Propagating pes.p = Propagating ey P (14)

collecting pps-p = collecting ppppy-P (15)

22

PLUM

TARRY

VA € {IDLE, COL, PROP, DONE}, p € P, ¢ € neighs.p

R-PLUM_ECHO.(ApLom-P-q)-(Agcuo -p-q)
R-PLUM_TARRY.(Apron-P-q)-(Ararry-P-q)
R_-TARRY _DFS.(Ararry-P-q)-(Aprs-p-q)

(a) (b)

Figure 12: (a) refinement relation on PLUM, ECHO, TARRY, and DFS. (b) bitotal relations

8.3 A refinement ordering on the distributed hylomorphisms

The algorithms in Figure 9 until 11 are ordered by our refinement relation as is visualised with venn-
diagrams in Figure 12(a). The bitotal relations, with respect to which the different refinements are
proved, are listed in Figure 12(b). Their definitions are straightforward, in that they relate all IDLE, coL,
PROP and DONE actions of the original program to the corresponding actions in the refinement. For the
relation between TARRY and DFS this results in PROPTagry-p-g¢ being related to both PROP_LP_REC.p.q
and PROP_NOT_LP_REC.p.q. Although tedious, proving the bitotality of these relations and subsequently
verifying the refinement ordering depicted in Figure 12 is reasonably easy. The resulting refinement
theorems are listed below.

Theorem 8.1 PLUM_refines_ECHO
VJ :: PLUM CR_prum_scno, J ECHO

Theorem 8.2 PLUM_refines_Tarry
VJ :: PLUM CR_prom_tarry, J TARRY

Theorem 8.3 Tarry_refines DFS

VJ :: TARRY CR_rarry_prs, J DFS

8.4 The correctness of PLUM

Since this example serves to illustrate our refinement relation we will just state the correctness of the
PLUM algorithm, the whole proof, however, can be found in [VSO01].

Theorem 8.4 HYLO_PLUM

JpLum pLum INIPLUM ~ Vp : p € P : done.p

Where the invariant Jp,yy is defined below. The M.p.q variables model the communication channels
between processes p and q.

23

Definition 8.5 PLUM’S INVARIANT Invariant_DEF

Jorom =

Vp € P, q € neighs.p : —idle.p A ¢ = father.p = —idle.q JPILUM
AVp €P,q € neighs.p: pnrsenttoqg=0 V pnrsenttog=1 JPQLUM
A ¥p € P,q € neighs.p : idle.p = p nr_rec_from ¢ =0 JPBLUM
A Vp € P, q € neighs.p : (g nr_rec_from p < p nr_sent_to q) = mit.p.q J
A father.starter = starter A —(idle.starter) JS
AVp e P: (p# starter) A —(idle.p) = (father.p € neighs.p) I o
A (As.Vp € P: —s.(idle.p) = Tk : depth.(s o father).starter.p.k) IS
A Vp,q € P : =(idle.p) A ~done.p A (¢ = father.p) = p nr_sent_to g =0 I3 o
A Vp,q € P: gnrrecfrom p < pnrsent_toq JPIL%M
AVp,g€P:Mp.g=][V (3z: Mp.q=]z] T
AVp,q € P:idlep = pnrsenttoqg=0 JPIL%M

8.5 Using refinements to derive the correctness of ECHO

This section shall describe how termination of the ECHO algorithm can be proved using our refinements
framework and the already proved fact that:

VJ :: PLUM CR_pLom_scno, 7 ECHO

For EcHO, the UNITY specification reads:

Theorem 8.6 HYLO-ECHO
Jprom A Jecno scnot INIECHO ~» Vp : p € P : done.p

where invariant Jgeno captures additional safety properties for ECHO (if any).

Using O PRESERVATION (Theorem 7.12;5), it is straightforward to derive that Jeuy is also a stable
predicate in ECHO.

Theorem 8.7 STABLEe_Invariant_in_ECHO

ECHO|_ O JPLUM

For readability we introduce the notational convention that:
F and gepok now abbreviate Jprum A Jecuo scnot
Termination of ECHO will be proved using the property preserving Theorem 7.104¢.
scnol INIECHO ~~» Vp : p € P : done.p
<(Theorem 7.1014, 8.423, 8.123)

IW :: (WECHO = WPLUM U W) A (oo C W) A (wPLUM C W)
AN
VAp Ag : Ap € aPLUM A Ap R_rrom_ecio Ag : momok guard_of.Ap — guard_of.AE
AN
VAp A : Ap € aPLUM A Ap R_prum_ecuo Ag
sorol (Jprum A Jecno A guard_of . Ag) unless —~(guard_of.Ap)

Since no variables are superimposed on PLUM in order to construct ECHO, the first conjunct can be proved
by instantiation with (). Subsequently, using:

e the characterisation of R_rLum_rcno (Figure 12)
e the fact that the guards of the IDLEgcyo, PROPgeno, and DONEgqy, actions are equal to those of
PLUM

24

e anti-reflexivity of unless (Theorem 3.175)
e reflexivity of — (Theorem A.43;)
e the implicit assumption stating stability of (JeLym A Jrcro)

the second and the third conjunct can, for arbitrary p € P and ¢ € neighs.p, be reduced to:

sco guard_of .COLpLyy-p-g — guard_of .COLgcuo-p-q }reach — part
A
wonot Jevom A Jecno A guard_of .COLgeyo . p.q unless —guard_of.COL.p.¢ } unless — part

The unless-part is not hard to verify, in order to prove it, the current conjuncts from Jp,yy suffice, and
hence no additional safety properties have to be added to Jycuo-

Rewriting reach-part the with the guards of the COL actions from PLUM and ECHO, the correctness of the
ECHO algorithm comes down to proving that for an appropiate Jgcno and arbitrary p € P and g € neighs.p:

gcaor —idle.p A mit.q.p A —rec_from_all_neighs.p

—

—idle.p A mit.q.p A —rec_from_all_neighs.p A sent_to_all_non_fathers.p

The proof of this reach-part can be found in [VSO01], where it turns out that, again, JeLuy is enough
and hence Jgcro can be substituted for true — meaning that the safety properties of PLUM and ECHO are
the same. Although the proof of the reach-part is not trivial, it is considerably less complicated and
laborious than proving 8.6 from scratch without using our refinement framework.

8.6 Using refinements to prove the correctness of TARRY

This section shall describe how termination of the TARRY algorithm is proved using our refinements
framework, and the already proven fact that:

VJ :: PLUM CR_prom_tarry, J TARRY
The UNITY specification reads:
Theorem 8.8 HYLO_Tarry
Jorum A Jrarry Tarry™ INITARRY ~» Vp :p € P : done.p
where invariant Jragry captures additional safety properties for TARRY.

Using O PRESERVATION (Theorem 7.1215), it is straightforward to derive that Jpyy is a stable predicate
in TARRY.

Theorem 8.9 STABLEe_Invariant_in_Tarry
TARRYI_ O JPLUM
For readability we introduce the notational convention that:

F and tarryE now abbreviate Jppuy A Jrarry Tarry™

Termination of TARRY is proved using property preserving Theorem 7.915. The reason for using this the-
orem is that Theorem 7.101¢ — which is easier and hence preferable — cannot be used since its application
results in the following, not provable, proof obligation:

rarryt Jenum A Jrarry A guard_of .(PROPraggy-p-q) unless —guard_of .(PROPpryy-D-q)
The reason why this cannot be proved is because, during the execution of TARRY, it is possible that the
guard of PROPrrpy.p-q is falsified while the guard of PROPpyy-p-¢ still holds. Consequently, we cannot

prove the unless-property from above. What we need is a function which is non-increasing with respect
to some well-founded relation, and which decreases when a message is sent. Since then, we can ensure

25

that this kind of premature falsification of the guard of PROPapry.p.¢q, while the guard of PROPpLyy.p-q
still holds, cannot happen infinitely often. So, since the least complicated property preservation theorem
(7.101¢) cannot be used to derive termination of TARRY, we move on to the second least complicated one,
i.e. 7-916:

rarryl INITARRY ~» Vp : p € P : done.p
<(Theorem 7.9, 8.423, 8.223) For some well-founded relation <:
IW :: (WTARRY = WPLUM U W) A (Jorou C WE) A (wPLUM C W©)

VAp Ar : Ap € aPLUM A Ap R_rrum_tarry A7 : h— "
rarryl guard_of . Ap »— guard of Ap reac par
M :: (M C WTARRY))
AN
Yk = arevt (Jprom A Jrarey A M = k) unless (M < k)
AN
Vk Ap Ar : Ap € aPLUM A Ap R_prum_tarry A7 :
TARRY|_ (JPLUM N JTARRY N guard_of.AT N M - k)
unless
(—(guard_of Ap) VM < k)

Since, le_rec.p variables are superimposed on PLUM in order to obtain TARRY, the first conjunct is instan-
tiated with the set {le_rec.p | p € P}. Proving that Jppuy is confined by the complement of this set is
tedious but straightforward, since the variables le_rec do not appear in it.

unless — part

/

Verification of the unless-part involves the construction of a function over the variables of TARRY, that
is non-increasing with respect to some well-founded relation <. From the discussion above, we can
deduce that we need a function that decreases when a message is sent. However, it turns out [VS01]
that the verification of the reach-part involves an application of > Bounpep Procress (A.1031) that
needs a function that decreases not only when a message is sent, but also when a message is received.
Consequently, we shall continue with the construction of a function over the variables of TARRY, that is
non-increasing with respect to some well-founded relation <, and that decreases when a message is sent
as well as received. Obviously, this function can then be used for both purposes.

Construction of a non-increasing function

Constructing a non-increasing function that decreases when a message is sent, and when a message is
received is not complicated. Observe the following:

e the sending of a message is always accompanied by incrementing nr_sent_to

e similarly, receiving a message is always accompanied by incrementing nr_rec_from

e from Jp yy it follows that at most one message is sent over each directed communication link
e consequently, at most one message is received over each directed communication link

e consequently, the total amount of messages sent and received has an upper-bound, that equals twice
the cardinality of the set of directed communication links

From these observations a non-increasing function is constructed as follows. First, we define the upper-
bound on the total amount of messages sent and received.

Definition 8.10 MAX_MAIL
MAX_MAIL =2 x the amount of directed communication links in the network (P, starter, neighs)

Next, we define the total amount of messages that are sent, and respectively received, in the whole
network of processes:

26

Definition 8.11 TOTAL NUMBER OF MESSAGES SENT IN THE NETWORK TOTAL_NR_SENT

TOTALNRSENT.s =Y) s.(pnrsenttoq)
pEP gEneighs.p

Definition 8.12 TOTAL NUMBER OF MESSAGES RECEIVED IN THE NETWORK TOTAL_NR_REC

TOTAL_NR_REC.s = Z Z s.(p nr_rec_from q)

pEP gEneighs.p
Now, we define our non-increasing function as follows:
Definition 8.13 NON-INCREASING FUNCTION OVER THE VARIABLES OF TARRY Y_DEF
Y.s = MAX_MAIL — (TOTAL_-NR_SENT.s + TOTAL_NR_REC.s)
The value of Y only depends on write variables of TARRY, and so it is easy to verify that:
Theorem 8.14 CONF_Y_Write_Vars_Tarry
Y C WTARRY

The following lemma states that whenever a message is sent or received — because the guard of one of
TARRY’s actions is enabled — the value of Y decreases.

Lemma 8.15 A_DECR_Y
For all processes p € P, ¢ € neighs.p, and actions A € {IDLEragry, COLrarry , PROPraRRY ; DONErARRY }

Jorum-S A A.p.q.s.t A guard_of.(A.p.q).s A (YV.s = k)
Yi<k

VEk

Using this lemma, it is straightforward to prove that, during the execution of TARRY, Y is non-increasing
with respect to the well-founded relation < on numerals.

Theorem 8.16 DECREASING-DECR_FUNCTION
For arbitrary characterisations of Jrappy:

Yk = parevt (Jorom A Jrarey AY = k) unless (Y < k)

Verification of the unless-part
Return to page 26 for the unless-part. Instantiating this proof obligation with Y, and rewriting with
Theorems 8.1457 and 8.1627 results in the following proof obligation:

Vk Ap A1 : Ap € aPLUM A Ap R_rLum_tarry A7 :
rarryE (Jonum A Jrarey A guard_of Ay AY = k) unless (—(guard_of . Ap) VY < k)

Proving this is straightforward using R_rrum_tarry from Figure 12, and Lemma 8.1527.

Verification of the reach-part
We shall now continue with the reach-part:

VAp At : Ap € aPLUM A Ap R_prum_tarry A7 : taprvb guard_of.Ap — guard_of.AT
Subsequently, using:

e the characterisation of R_rLum_rarry (Figure 12)
e the fact that the guards of the IDLEprry, and DONEprry actions are equal to those of PLUM
e reflexivity of — (Theorem A.43)

e the implicit assumption stating stability of (JeLum A Jrarry)

27

we reduce the reach-part for arbitrary p € P and ¢ € neighs.p, as follows:

rarryt guard_of .(COLppuy.p.q) — guard_of .(COLsray.p.q) } reach — COL — part
A
rarryt guard_of .(PROPpLyy-p.q) — guard_of .(PROPrarry-p-q) }reach — PROP — part

Subsequently, rewriting with the characterisations of the guards we can reduce the verification of the
TARRY’s correctness to the following two proof obligations.

rarryt guard_of .(COLpryy.p-q) — guard_of.(COLpym-p-q) A —le_rec.p
A
rarryt guard_of .(PROPpLyy.p.q) — guard_of .(PROPpLuy.p-q) A le_rec.p

Again, their proofs can be found in [VSO01]. This time Jpyyy does not suffice, because, evidently, we
need to capture the additional safety behaviour about the alternating sending and receiving activities
—by means of le_rec— in Jpspry. Although not trivial, these proofs and the construction of Jpzpey are
considerably less complicated and laborious than proving 8.6 from scratch without using our refinement
framework. More specific, the remaining efforts are a subset of all verification efforts that had to be done
when proving TARRY’s correctness from scratch!

8.7 Using refinements to prove the correctness of DFS

This section shall describe how termination of the DFS algorithm is proved using our refinements frame-
work and the already proven fact that:

VJ :: TARRY CR_Tarrv_prs, J DFS
The UNITY specification reads:

Theorem 8.17 HYLO_DFS

Jovom A JTarry A Jprs prst INIDFS ~» Vp : p € P : done.p

where invariant Jprg captures additional safety properties for DFS (if any). Using O PRESERVATION Theorem
7.1215, it is straightforward to derive:

Theorem 8.18 STABLEe_Invariant_in_DFS

DFS|_ O (JPLUM A JTARRY)

Again, for readability we introduce the notational convention that:
F and prsk now abbreviate Jorpw A JTarry A Jors prst

Termination of DFS is proved using property preserving Theorem 7.714. The reasons for using this
Theorem are twofold. First, since every PROP action in TARRY is bitotally related to two actions in DFS
(namely PROP_LP_REC and PROP_NOT_LP_REC), we need to be able to pick one of those DFs PROP-actions
when proving that the guards of TARRY’s PROP-actions eventually implies the guards of related DFS’s
pROP-actions. Consequently, we cannot use preservation theorems 7.1016 or 7.914. The second reason
for using 7.716 is not because 7.814 cannot be used, but because it reduces proof effort. As we have seen
during TARRY’s verification, Lemma 8.1557 was very useful when proving unless and ensures properties
that involved Y. A similar lemma can easily be proved for the actions of DFS, and hence verification of
unless and ensures properties involving Y in the context of DFS will be simple too.

Lemma 8.19 A_DECR.Y

For all p € P, ¢ € neighs.p, and actions A € {IDLEpgs, COLpgs, PROP_LP_REC, PROP_NOT_LP_REC, DONEpgs }:

Jorom-S A A.p.g.s.t A guard_of (A.p.q).s A (Y.s =k)
Yi<k

VEk

28

In resumen, to reduce proof effort we have decided to use 7.716, although a function that is non-increasing
with respect to some well-founded relation is not needed in order to be able to prove that falsification
of the guards of DFS’s PROP-actions go hand in hand with the falsification of the guards of TARRY’s
PROP-actions.

As a result, the initial specification stating termination of DFS is decomposed as follows:

prsk INIDFS ~»Vp : p € P : done.p
<:(Theorem 7.716, 8.825, 8.323)
For some well-founded relation <:

AW :: (wDFS = WTARRY U W) A ((Jppum A Jrarey) C W) A (WTARRY C W©)

AN
VAp : Ap € aDFS A (JA7 :: A7 € aTARRY A (A7 R_Tarrv_ors Ap)) : (guard_of . Ap C wDFS)
AN
VAr Ap : Ar € aTARRY
prsk guard_of . Ap reach — part
—
(HAD i (AT R _TaRRY_DFs AD) A guard_of.AD)
AN
M :: (M C wDFs))
A
VE :: pest (Jorom A JTarey A Jors A M = k) unless (M < k)
A

Vk A1 Ap : AT € aTARRY A AT R_Tarrv_ors Ap : unless — part

prst (JeLom A JTarey A Jors A guard_of . Ap A M = k)
unless
(—(guard_of Ap) V M < k) J

Since, Ip_rec.p variables are superimposed on TARRY in order to obtain DFS, the first conjunct is instan-
tiated with the set {Ip_rec.p | p € P}. Proving that Jergw and Jragey are confined by the complement of
this set is tedious but straightforward, since the variables le_rec do not appear in it. Similarly, proving
that the guards of the actions in DFs are confined by DFs’s write variables (i.e. the second conjunct) is
not, complicated.
The unless-part is now easy to prove by instantiating with ¥ (Definition 8.1327):
e proving that Y is confined by the write variables of DFS is easy using Theorem 8.1457 and mono-
tonicity of confinement 3.23
e proving that Y is non-increasing in DFS, can be proved using unless PRESERvATION Theorem 7.11;5
and Theorem 8.1657.
e proving that falsification of the guards of DFS’s actions go hand in hand with the falsification of the
guards of related TARRY’s actions is easy using Lemma 8.192g.
For the reach-part, the IDLE, COL, and DONE cases can be proved using > INTRODUCTION (A.331). As
a consequence, we are left with the PROP case:

prst guard_of .(PROPTarpy-p-q) — (FAp :: (PROPTARRy-P-¢ R-Tarry_ors Ap) A guard_of.Ap)

This case states that: from a situation in which guard_of.(PROP.p.q) holds, we will eventually reach a
situation in which either the guard of action PROP_LP_REC.p.q or PROP_NOT_LP_REC.p.q holds. The proof
can be found in [VS01], where it turns out that, Jrarry is enough and hence Jpps can be substituted for
true — meaning that the safety properties of TARRY and DFS are the same.

9 Conclusion

We have defined a refinement relation on programs that incorporates (possibly multiple compositions of)
program transformations like guard strengthening, superposition, and atomicity refinement. Moreover,
we have given theorems that state property preservation in refinements independently from the specific
program transformations that were applied. Consequently, we have a general framework of refinements
that, besides being suitable for the stepwise derivation of programs, is also efficient for the reduction of

29

refinement framework

, l 0

N Cr,J

[re-usable theory
— actual proof

--- repair & backtrack

Figure 13: Reducing proof-effort and complexity.

|

proof-effort when proving the correctness of a class of by refinement related algorithms. To illustrate
the reduction of proof-effort we refer to Figure 13. The intuition behind Figure 13 is that the use of
refinements can shorten the the actual proof of a refinement (i.e. the solid line) since instead of proving
the program from scratch we prove the simpler verification conditions of one of the theorems in Figure 7.
Moreover, the amount of time spent on repairing and backtracking is reduced since having verified P’s
correctness we have obtained a good feeling about the workings of the algorithms in this particular class,
and hence will it be less likely that we proceed on wrong proof-strategies.

30

A Laws of —

Theorem A.1 — STABLE BACKGROUND AND CONFINEMENT

JEpr—gq
oJ A p,gCwP

Theorem A.2 >— SUBSTITUTION

p,sCwP A [JAp=q] A (g—1) A [JAT = 5]
pr—s

P, J:

Theorem A.3 — INTRO