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Abstract

In this paper, we introduce the ICE frame-
work in which crossover from genetic al-
gorithms (GAs) is incorporated in iterated
density estimation evolutionary algorithms
(IDEAs). We focus on permutation opti-
mization problems and show how pure con-
tinuous IDEAs can be applied using the ran-
dom keys representation. The problems that
are hereby encountered, motivate the use of
ICE As a result, permutation linkage infor-
mation is effectively processed, resulting in
efficient optimization of deceptive permuta-
tion problems of a bounded order. Experi-
ments show that ICE outperforms pure con-
tinuous IDEAs. Furthermore, we show that
ICE gives insight into how new IDEAs can
be designed that efficiently work directly in
the permutation search space.

1 Introduction

Finding and using the structure of the fitness land-
scape can aid evolutionary algorithms (EAs) in opti-
mization. One approach to doing so, is by learning a
probabilistic model from the selected samples and by
using it in sampling new solutions. Such algorithms
have been successfully applied to various problems in
the case of discrete (binary) variables [9, 14, 15, 16, 17]
and continuous (real) variables [4, 7, 13].

In this paper, we focus on the class of permutation
optimization problems. This class of problems is very
interesting. On the practical side, important real life
problems such as scheduling and the traveling sales-
man are within this class. On the theoretical side, the
search space grows factorially as the amount of de-
cision variables increases. Furthermore, the solution
space consists of permutations, which is fundamentally

different from that of the binary or real space that
most EAs have been designed for. EAs that directly
work on permutations are usually equipped with spe-
cialized crossover operators that ensure feasibility of
the solutions. An exception is the RKGA by Bean [1]
in which the solutions are coded in the real space in
such a way that all crossover operators generate fea-
sible solutions. The RKGA has obtained good results
especially in the field of scheduling.

With the exception of the OmeGA by Knazjew and
Goldberg [12], no attempts have been made to learn
and use the structure of permutation optimization
problems. The OmeGA is essentially a fast messy
GA [8] (fmGA) that has been adapted to work with the
same coding as used in the RKGA. The OmeGA has
been shown to effectively solve deceptive problems of
bounded difficulty [11]. Furthermore, it significantly
outperforms the RKGA, indicating the usefulness of
finding and using problem structure.

The IDEA by Bosman and Thierens [4] is a framework
for EAs in which probabilistic models are used. It has
mostly been used to focus on continuous representa-
tions and optimization problems. Since the RKGA
introduces a real coding of permutations, continuous
IDEAS can be directly applied. However, since the per-
mutation space is discrete, such an application is likely
to encounter problems. In this paper, we investigate
the performance of continuous IDEAs on permutation
problems as a first attempt to design efficient proba-
bilistic model building EAs for permutation problems.
Furthermore, we explain the problems with such an
approach and propose a solution for them by introduc-
ing crossover. The resulting algorithm shows efficient
scaling behavior on problems of bounded complexity.
The results indicate that IDEAs can be designed that
efficiently work directly in the space of permutations.

The remainder of this paper is organized as follows.
In section 2 we discuss the IDEA framework. Next,



we go over the coding that is used in the RKGA in
section 3 and present the permutation problems that
we test the algorithms on. Subsequently, we test the
continuous IDEAs in section 4. In section 5, we pro-
pose to use crossover in the IDEA to overcome some
of the problems of the continuous IDEA on permuta-
tion problems. We test the resulting EAs in section 6.
In section 7 we reflect on the computational require-
ments of learning and using probabilistic models in
evolutionary optimization. We discuss future research
in section 8 and present our conclusions in section 9.

2 The IDEA framework

The IDEA framework is a general definition of Iter-
ated Density Estimation Evolutionary Algorithms that
has mostly been used to focus on continuous rep-
resentations and optimization problems. Let £ =
(0,1,...,1—1). The rationale behind the framework
can be explained by assuming to have an [-dimensional
optimization problem C(y(L)) = C((yo,¥1,---,Yi—1))-
Without loss of generality, we assume that we want
to minimize C(y(L)). With every problem vari-
able y;, we associate a continuous random variable
Y;. Without any prior information on C(y(L)), we
might as well assume a uniform distribution over
Y = (Yy,Y1,...,Y,—1). Therefore, we generate an
initial (population) vector of n samples at random.
Now we let P?()) be a probability distribution that
is uniform over all vectors y(L) with C(y(L)) < 4.
Sampling from P?(Y) gives more samples that eval-
uate to a value below 8. Moreover, if we know 6* =
min, £y {C(y(L))}, a single sample gives an optimal
solution. To use this in an iterated algorithm, we select
| 7n] samples in each iteration ¢ and let 6; be the worst
selected sample cost. We then estimate the distribu-
tion of the selected samples and obtain an estimate
PP (Y) as an approximation to the true distribution
P? (). New samples can then be drawn from P% ()
and be used to replace some of the current samples. A
formal definition and more details on the IDEA frame-
work can be found elsewhere [4].

A special instance of the IDEA framework is obtained
if selection is done by taking the best |7n] samples,
the amount of new samples is set to n — |n] and
all of these new samples are used to replace the worst
n—|7n] samples. This results in the use of elitism such
that the search for §* is conveyed through a monoton-
ically decreasing series 6 > 61 > ... > 6; .. We call
the resulting algorithm a monotonic IDEA.

One of the most important parts in the IDEA is the es-
timation of the probability distribution of the selected
samples. One way of achieving this, is by finding a

factorized probability distribution, which is a product
of probability density functions (pdfs).

If only multivariate joint pdfs are used, the factoriza-
tion becomes a marginal product model. We also call
this an unconditional factorization. For the factoriza-
tion to be valid, each multivariate joint pdf must de-
scribe a unique set of variables. To this end, we define
the node vector v to be a vector of mutually exclusive
vectors that each hold the indices of the variables that
are contained in a single multivariate joint pdf. The
union of all of these mutually exclusive vectors is ex-
actly equal to L. For example, a valid unconditional
factorization for | =5 is v = ((0,4), (1), (3,2)).

If multivariate conditional pdfs are used, the prod-
uct consists of exactly [ factors. For each variable
Y;, we have exactly one factor P(Y;|Y(n(i))). The
parent variables Y (m(7)) that Y; is conditioned on,
are indicated by a function 7(-) that returns a vec-
tor w(i) = (w(i)o,m(i)1,.-.,m(i)|x(s)|—1)- This can
be identified with a directed graph by introducing a
node i for every random variable Y;. Furthermore,
an arc Y; — Y; in the graph represents the fact that
i € w(j). To be able to sample from the resulting
factorized probability distribution, values must have
been sampled for the parents of Y; before sampling a
value for Y; itself. To ensure this, we use a vector
of ordering variable indices w = w(L). We can now
enforce that while scanning the variables in the or-
der Y,, ,,Y., ,,..-,Y,,, the variables that some vari-
able is conditioned on, will already have been regarded.
This ordering can be found by performing a topologi-
cal sort on the factorization graph. A valid conditional
factorization for I = 5 is V; [w; = i] ,7(0) = (2),#(1) =
(2,3,4), 7(2) = (3,4). 7(3) = (4),7(4) = (0).

To find a good factorization, we use an incremental
algorithm that starts from the univariate factoriza-
tion in which each variable is independent from the
others. For unconditional factorizations this means
v = ((0),(1),...,(I —1)). For conditional factoriza-
tions we have |7(i)] = 0,7 € L. Each iteration, a
single operation is performed on the factorization that
increases some metric the most. In the unconditional
case, the only operation we allow is merging two vec-
tors. In the conditional case, we only allow the ad-
dition of a variable to the vector of parents of an-
other variable. This corresponds to adding arcs to
the factorization graph. However, to ensure that the
conditional factorization is still valid, an arc is only
allowed to be added if it does not introduce any cy-
cles. If no operation that increases the metric can
be performed anymore, the factorization search algo-
rithm stops. In this paper, we use two metrics that



should be minimized, which are the Akaike Informa-
tion Criterion (AIC) and the Bayesian Information
Criterion (BIC). For a derivation of these metrics in
the IDEA context, we refer the reader to a more de-
tailed report [5]. The metrics are intended to provide a
useful tradeoff between complexity and goodness of fit.
Both metrics initially score a factorization by the neg-
ative log-likelihood of the factorized probability dis-
tribution. The AIC metric penalizes complexity by
adding the amount of parameters |@| that has to be
fit. Note that the operations on factorizations that
we have proposed, always increase the amount of pa-
rameters. The BIC metric is parameterized by a reg-
ularization parameter A\ that determines the amount
of penalization of more complex models in order to fa-
vor more simple models. The penalization in the BIC
metric increases logarithmically with the size of the
sample vector Aln(|S])|@]. In this paper, we have used
A= % As the size of the sample vector increases, the
BIC metric has a stronger penalization than does the
AIC metric. Since we have fixed A to 1, this is the
case for any practical population size.

3 Random keys and permutation
problems

Permutations can be encoded in the real space using
random keys. In this section, we briefly go over this
encoding and present some permutation problems of
tunable bounded difficulty.

3.1 Permutation encoding

The encoding of permutations by random keys was in-
troduced by Bean [1]. The main advantage of random
keys is that no crossover operator can create unfea-
sible solutions since each encoding represents a per-
mutation. To encode a permutation of length [, each
integer in L is assigned a value (key) from some real
domain, which is usually taken to be [0,1]. Subse-
quently, the numbers in £ are sorted on the keys to
get the resulting permutation. For example, the ran-
dom key string (0.25,0.1,0.9) represents the ordering
(1,0,2). This decoding requires O(llog!) time.

3.2 Problems of bounded order

Knazjew [11] has introduced a general deceptive per-
mutation problem. The advantage of this problem over
most test problems is that the interactions between
the random keys are restricted to be of a certain or-
der Ipp. A further advantage is that it is defined for
any I gpg, unlike for instance the deceptive permutation
problems by Kargupta, Deb and Goldberg [10].
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Figure 1: Amount of evaluations for the continuous
IDEA, Ipp = 4.

Knazjew’s deceptive permutation problem is defined
using a distance between two permutations. This dis-
tance is defined as the minimum number of elements
in one string to be moved to obtain the other string.
Furthermore, the optimum is the trivial permutation
(0,1,...,lgs — 1). The distance from any permuta-
tion y to the optimum equals igpg — |LI1S(y)|, where
LIS(y) is the longest increasing subsequence in y. For
example, if y = (4,0,3,1,2), then Lis(y) = (0,1,2)
and Ipp — |LIS(y)| = 5 — 3 = 2. The two elements
to move are of course 4 and 3. Note that the reverse
permutation (Igg — 1,lpg — 2,...,0) is the only per-
mutation with a distance of Igg — 1. The deceptive
ordering problem for a single building block (BB) of
length Ipp, is defined as follows:

1 Lt |Lis(y)| < Ups
_ 15:3:} '
fB(Y) {1 s =l

A building block is a subsequence of the complete ran-
dom key string. The actual fitness function that we
use, has length | = npplpp, where ngp is the amount
of building blocks. The locations of the individual
building blocks have been coded loosely. This implies
that building block 0 < i < npp consists of the ran-
dom keys found at locations (i,i+ngp,...,i+ (Ilpg —
1)ngp). The fact that the problem is fully deceptive,
means that all schemata of an order smaller than & lead
to the suboptimum of the reverse permutation [10].
This makes the problem hard for any optimizer that
doesn’t identify which random key positions together
constitute a building block [3]. Furthermore, because
of the loose coding, simple crossover schemes such as
one point crossover are not effective either.

4 IDEAs based on normal pdfs for
permutation problems

Since random key strings are real numbers, we can di-
rectly apply continuous IDEAs to permutation prob-
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Figure 2: Required population size for the continuous
IDEA, Igp = 4.

lems. In this paper, we use the normal pdf for the
pdfs implied by the factorization. We refer the reader
to previous work [4] for implementation details.

In all our testing, we used monotonic IDEAs. We used
the rule of thumb by Miihlenbein and Mahnig [14] for
FDA and set 7 to 0.3. All results were averaged over 30
independent runs. As a measure of efficiency, we use
the average amount of required function evaluations.

In figures 1 and 2, the average amount of evaluations
and the required population size are shown respec-
tively on a logarithmic scale for npp € {1,2,...10}
and Igp = 4. Tt is clear that using the univariate fac-
torization in which each variable is taken independent
of all of the others, scales up significantly worse than
when problem structure is exploited. The structure
of the problem is best represented in an unconditional
factorization in which the building blocks are perfectly
separated in the node vector v. We call this perfect
mizing information. Using this structure can be seen
to scale up polynomially. There is no obvious differ-
ence between the AIC or BIC search metric here.

Note that the amount of instances for a permutation
of lgg = 4 is 4! = 24, which still tractable. If we move
to Ipp = 5 however, the amount of instances already
becomes 120, which significantly increases the prob-
lem difficulty. This is reflected by the fact that the
continuous IDEAs are unable to solve the deceptive
problems for npp € {3,4,...10} with n < 1.0-105. In
the case of perfect mixing information, we got 2.0 BBs
on average using 3.1-10° evaluations and n = 3.0-10%.
The OmeGA significantly outperforms the continuous
IDEA, which points out that the continuous IDEA ap-
proach less efficiently processes the building blocks.

5 The ICE framework

The results of the continuous IDEA cannot compete
for instance with the OmeGA. Both algorithms how-
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Figure 3: Optimization performance of the continuous
IDEA for increasing 7, lpp = ngp = 5, |[™n]| = 250.
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Figure 4: Function evaluations of the continuous IDEA
for increasing 7, lpp = ngp = 5, |Tn] = 250.

ever attempt to find and use the relations between
the random keys. The main problem with the con-
tinuous IDEA is the density estimation of and sam-
pling from a normal pdf. It has some limitations with
respect to non-linearity and multimodality. Further-
more, the permutation space is inbedded in the real
space, meaning that the actual search space is a (spe-
cial) discretization of [0,1]!. For an lpp—dimensional
fBB function, the optimum and the suboptimum are
contained in a convex region consisting of %% of

the [0,1]'#2 hypercube. Furthermore, these two re-
gions are separated by the single line on which ev-
ery random key has an identical value. Finally, the
other types of building blocks have the highest fitness
in the neighborhood of the suboptimal block. This
means that, especially as Igp goes up, the geometri-
cal approximation of the normal distribution will have
great difficulty to represent for instance the trade—off
between the suboptimal block and the optimal block.
To increase their separability, the selection pressure
should increase or the population size should increase.
For instance, in order to isolate the optimal building
block in a random population, a selection percentage
of 7 = %% is required. The performance for differ-
ent values of 7 is displayed in figures 3 and 4. In these
figures, the selection size |7n| is kept constant. The



rationale for this is that the goodness of a normal pdf
fit does no longer significantly increase if the amount
of samples increases. The optimization performance
increases if the selection pressure increases. However,
this comes at the expense of the amount of required
evaluations. Therefore, there must be some range for
the best choice for 7 in the sense of required amount
of evaluations to reach the optimum. In section 7, we
investigate this further.

To overcome the problems with the normal pdf in the
real space with respect to fitting the embedded per-
mutation space, the random key strings should be in-
terpreted in the permutation space. By sampling from
the continuous normal pdf, we introduce a lot of re-
dundancy, since the random key string (0.1,0.2,0.3)
codes the same permutation as (0.91,0.99,0.999). To
cope with this redundancy, instead of sampling new
building blocks from a normal pdf, we propose to miz
them using crossover. Only combinations of the initial
strings are thereby generated, just as is done in GAs.

The way in which crossover is done, determines the
rate of success. First, we note that if the building
blocks are exchanged between parents as a whole, the
information is mixed in the most efficient mixing man-
ner, resolving the redundancy problem. However, on
beforehand we generally don’t know the location and
size of the building blocks. This information is called
linkage information. To find this information, we rely
on the remainder of the IDEA framework to find a
structure that contains this linkage information. For
instance, if we have an unconditional factorization, we
are given groups of random keys that should be pro-
cessed in a multivariate joint pdf. Therefore, these
random keys should be processed together as a block.
We hope that these blocks are a good approximation
of the true building blocks in the problem.

Before copying a block to the offspring, each block may
be transformed using a function p(-). This function
rescales the random keys to a subinterval of [0, 1] with
probability p,. If we for instance scale (0.1,0.2,0.3)
to [0.9,0.95], we get (0.9,0.925,0.95). Note that this
doesn’t change the permutation that is encoded. The
optimization problem can require a relative ordering
of the building blocks. Without rescaling, we have to
rely on the random key combinations that are gener-
ated initially. Rescaling the blocks increases the prob-
ability that they will be combined properly. To ensure
a large enough amount of intervals so that the blocks
themselves can be ordered, we set this amount to [.

We call the framework for the resulting algorithms ICE
(IDEA Induced Chromosome Elements Exchanger).
Its definition equals that of the IDEA, with the ex-

ception of the creation of offspring. In ICE, this is not
done by sampling, but by randomly selecting two par-
ents from the selected samples and crossing over blocks
in the solutions. Which blocks we actually perform
crossover with, is determined by the type of factoriza-
tion. Since the resulting algorithm uses crossover, it
can validly be argued that we have designed a GA. The
specialty of this GA is that it attempts to learn link-
age information for permutations and use this linkage
information in a linkage preserving crossover operator.

ICE

parg < RaNnpOM({0,1,...,|mn] —1})
pary < RaNDOM({0,1, ..., |mn] — 1} —{paro})
B+ CROSSOVERBLOCKS(S)
for i+ 0to|B|—1do
4.1 par <+ RANDOM({parg, par;})
42 for j+ 0to|B;|—1do

4.2.1 of f(s,), < o(yP*")(5,);)
5 RETURN(of f)

N R

6 Specific crossover operators in ICE

Having introduced the ICE framework, we test it on
the deceptive permutation functions. First however,
we elaborate on how we have selected the blocks to be
crossed over in our experiments.

6.1 Crossover operators

Conditional factorizations allow for more precise prob-
abilistic modelling because unconditional factoriza-
tions can be expressed using conditional factorizations,
but not vice versa. Therefore, it is interesting to base
crossover operators on both types of factorizations.

6.1.1 Unconditional: block mixing

By crossing over the random keys based on the node
vector v, we attempt to directly exchange and mix
the important blocks of information. This results in
an approach similar to the ECGA by Harik [9].

CROSSOVERBLOCKS(v)
1 RETURN(v)

6.1.2 Conditional: position biased TPX

To use conditional factorizations, we learn a chain of
dependencies in which random keys that are important
together, are placed close to each other. Subsequently,
we can apply for instance two point crossover such that
the linkage information in the chain is respected. This
approach was recognized earlier [3] to be interesting
for processing linkage information. To find a chain,
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the greedy entropy algorithm in MIMIC [2] can be
used. The entropy, which equals the average negative
log-likelihood for normal pdfs [6], can be computed
using the normal pdf as we have done for all continu-
ous IDEAs, but we can also use permutation entropy.
This amounts each time to finding the unselected node
Yi+1 that occurs more often in one ordering than in the
other with respect to the lastly selected node Y; (max-
imize |P(Y; < Yi11) — P(Yiz1 < Yi)|). The resulting
blocks to be exchanged, can now be found as follows:

CROSSOVERBLOCKS((7, w))

1 posg < RanpoM({0,1,...,1})

2 posy + Ranpom({0,1,...,1})

3 1f pos; > posg then
3.1 posg < posy

4 RETURN(((wo,w1; - - - ,W(poso—1))s

(wp(JSO s W(posg+1)s - - - aw(poslfl))a

(wpos1 s W(posi+1)s - - - ;wlfl)))

6.2 Results

ICE gives significantly better results (figures 5 and 6).
All tested algorithms, with the exception of uncon-
ditional factorizations in combination with the AIC
metric, were able to solve all tested problems up to
npgp = 10 for Igp = 5, with population sizes (well)
below 1-10°. The entry of the permutation IDEA is
explained in section 8. Because the deceptive problem

is better separable if the selection pressure increases,
it was again observed that the performance increases
if 7 decreases for a fixed |7n] in a similar fashion as
observed for continuous IDEAs (figures 3 and 4).

Since the AIC metric did not penalize the likelihood
effectively, it resulted in unconditional factorizations
that combined entire building blocks to sometimes
form the complete joint factorization, which does not
lead to efficient exploration of the permutation space.
In this case there is thus a preference for the BIC met-
ric. All approaches can be seen to scale up polyno-
mially. However, the chain approaches that use search
metrics scale up significantly worse. There is not much
to choose between the normal entropy or the permu-
tation entropy. If the right structure is found (fixed
chain), the building blocks are propagated effectively
using position biased TPX. However, it is hard to find
the right second order linkage information, as these
approaches clearly scale up a lot worse for increasing
npp. We conclude in a similar fashion as has been
done for binary spaces [3], that finding and using lower
order linkage information is less efficient than finding
and using higher order linkage information.

From the results shown so far, it seems that the best
approach is to use an unconditional factorization with
the BIC information criterion. However, we have not
tested it yet on problems with conditional dependen-
cies. To test this, along with the influence of random
rescaling, we have used a difficult permutation problem
with overlapping building blocks. All of the building
blocks are now coded sequentially instead of loosely.
For ngp = 3 and lgp = 4, the individual building
blocks are found at positions (0, 1,2, 3), (3,4,5,6) and
(6,7,8,9), giving I = 10. Note that the sole optimal
solution is the complete trivial permutation of length
l. We tested the algorithms on a problem with [ = 40,
giving ngp = 13 at Igg = 4. We tested population
sizes up to n = 10° and allowed for a maximum of 10°
evaluations. The results are shown in figure 7. It be-
comes clear that using conditional dependencies in a
chain can be efficient, especially when random rescal-
ing is used. However, the results also show again that
learning the chain to use for position biased TPX does
not lead to the best results. Furthermore, introduc-
ing random rescaling does improve the results of the
unconditional factorization. The best reported results
of the OmeGA are approximately BBs = 9.60 after
300 - 10® evaluations.

7 A note on the running times

Algorithms that build and use probabilistic models
take up more time every iteration as the complexity



Unconditional
f | Po | n - 10* | BBs | Ewval - 10°
BIC 0 7.5 8.23 2.0
BIC | 0.5 10.0 10.61 481.1
Conditional
f | Po | n - 10* | BBs | Ewval - 10°
NE 0 9.5 7.60 3.2
NE | 0.5 4.5 7.23 3.9
FIX 0 8.5 11.17 2.9
FIX | 0.5 0.1 13.00 0.023

Figure 7: Results on the overlapping deceptive permu-
tation problem, lgp = 4, ngp = 13, (Il = 40, NE =
normal pdf entropy, FIX = fixed optimal chain).
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Figure 8: ICE, Igg = 5, npp = 10, 100% successrate.

of the models increases. It is therefore important to
be aware of the running time next to the amount of
function evaluations. If we have a very costly eval-
uation function, this is of less importance. However,
there are plenty practical optimization problems, such
as knapsack and traveling salesman, that can be eval-
uated efficiently and easily result in a very large di-
mensionality /. Since the learning of higher order fac-
torizations often scales as O(I%), exploiting problem
structure by learning factorizations will not result in
fast algorithms as ! increases.

In this paper, we have used the rule of thumb by
Miihlenbein and Mahnig [14] for FDA. However, this
rule of thumb is based on observations on non—
deceptive binary problems. Furthermore, the elitism
in FDA is restricted to the single best solution of the
previous generation. In figure 8, we have plotted the
most efficient result of ICE using the BIC search metric
on unconditional factorizations for different values of
7 when each of 30 independent runs reached all build-
ing blocks correct. When only the amount of evalu-
ations or the actual complete running time is impor-
tant, 7 = 0.3 is clearly not optimal. Since the separa-
bility of the deceptive problem becomes easier when a
greater selection pressure is applied, this is not surpris-
ing. For the best memory—computation time trade—off,

7 € [0.15,0.25] seems to be an effective choice. Con-
cluding, we suggest from empirical observervations to
use 7 < 0.25 in future experiments.

8 Discussion and future research

In this paper, we have used penalization metrics to
guide the search for a good factorization. The dif-
ficulty with such an approach is choosing the right
amount of regularization. The amount of regulariza-
tion can be seen as a parameter that defines how much
time the algorithm is allowed to spend on model build-
ing. In a way, this is a substitute for limiting the max-
imum order of interactions in the factorizations. How-
ever, using a metric in addition influences the decision
of which operations on the factorization are beneficial.
Seen in this way, a penalization metric is a practical
approach to using exact statistical hypothesis tests to
determine whether some operation is truly beneficial.
Even though the use of statistical hypothesis tests is
exact, it is also of less practical use because of its com-
putational requirements [6]. Therefore, it is practically
more interesting to use a metric as an approximation.
Still, it should be noted that selecting the settings for
such a metric is always subject to user experience.

We note that in this paper we have only run tests
over a limited amount of problems. Even though the
results are encouraging, verification on other problems
is desired. It would for instance be interesting to see
how ICE algorithms perform on real life scheduling
problems as opposed to other EA approaches.

The ICE framework has pointed out that effective EAs
for permutation problems can be constructed if we find
and use linkage information in the permutation space
directly. Since crossover on permutations is used in
ICE, this is evidence that efficient IDEAs can be de-
signed by making them process the permutation space
directly. To do so, we need a way to estimate the multi-
variate joint distribution of a set of random keys. This
is sufficient to also process conditional factorizations,
since a conditional probability is a quotient of two mul-
tivariate joint probabilities. In order to estimate the
probability of a set of £ random keys, we can count
the frequency of a certain permutation instance. This
means that we require a frequency table of minimum
size k!l. To generate such a table of minimum size,
we need to map permutations onto integers. This can
be done in O(klogk) time whereas a new random key
sequence can be made from an integer in O(k) time.
Given this correspondence, the frequencies of the pos-
sible permutations can be counted from the selected
samples. Subsequently, new samples can be drawn in
a similar fashion as is done for binary variables.



In figures 5 and 6, the results of testing a permuta-
tion based IDEA with the best possible fixed uncon-
ditional factorization, are plotted. At this point, the
development of the permutation based IDEA only al-
lows fixed factorizations as input as is the case for the
FDA [14]. However, the results in this section indicate
that IDEAs may be constructed by learning factoriza-
tions and thereby no longer assuming a priori knowl-
edge on the optimization problem. The results of the
permutation IDEA are slightly better than those of
ICE with perfect mixing information. However, we
have provided the permutation IDEA with the perfect
a priori structure information. It would be interesting
to see if a permutation IDEA that learns this structure
can outperform ICE on various problems.

9 Conclusions

Finding and using problem structure can aid EAs. We
have shown that this is also the case when random
keys are used to tackle permutation problems. Fur-
thermore, finding and using a structure in which a
multiple of variables interact, is superior to using only
second order linkage information when the optimiza-
tion problem contains higher order interactions.

We have shown by introducing ICE that by mix-
ing blocks of random keys, permutation problems of
a bounded difficulty can be solved efficiently. To
this end, we have used continuous IDEAs to find the
structure of the optimization problem together with
crossover from GAs to mix the building blocks. By
doing so, the EA directly explores the permutation
space, which significantly increases its efficiency. This
is an indication that IDEAs that are designed to work
directly in the space of permutations may effectively
find and use the structure of permutation problems.
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