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Abstract

Solving permutation optimization problems
is an important and open research question.
Using continuous iterated density estimation
evolutionary algorithms (IDEAs) in combina-
tion with crossover from genetic algorithms
(GAs) has recently [5] been shown to give
promising results. In IDEAs, the probabil-
ity distribution of the solutions is estimated
based upon a selection of solutions. So far,
only continuous probability theory has been
applied to a continuous encoding of permu-
tations. In this paper, we show how we can
estimate and use unconditional factorization
distributions in the space of permutations di-
rectly. We show that the resulting IDEAs
process the permutation linkage information
more effectively than previously used contin-
uous IDEAs. As a result, deceptive permu-
tation optimization problems of a bounded
order can be solved more efficiently.

1 Introduction

In the field of evolutionary computation, three algo-
rithms have been proposed so far to learn and use
the structure of permutation optimization problems
in order to achieve more efficient optimization. The
first algorithm to appear was the OmeGA by Knaz-
jew and Goldberg [11]. This algorithm is essentially a
fast messy GA [7] that has been adapted to work with
random keys. The random keys encoding is a real
representation of permutations. An algorithm based
upon a continuous IDEA was proposed by Bosman and
Thierens [5]. In the IDEA framework, a probabilistic
model is estimated over a selection of the available
solutions in each generation. Subsequently, new so-
lutions are drawn from the estimated probability dis-

tribution. Since the random keys provide a real en-
coding of permutations, continuous probability theory
in IDEAs can be directly applied. This approach was
also used by Robles, de Miguel and Larranaga [17].
However, in the work by Bosman and Thierens, it
was shown that continuous IDEAs do not scale up by
far as efficiently as for instance does the OmeGA. To
overcome the problems with directly applying continu-
ous IDEAs, the ICE algorithm was proposed in which
probabilistic sampling of new solutions is replaced by
a specialized crossover operator to mix the building
blocks. By doing so, the evolutionary algorithm (EA)
directly explores the permutation space, which signifi-
cantly increases its efficiency. The results obtained by
ICE are comparable to those of the OmeGA. This is
an indication that an IDEA designed to work directly
in the space of permutations may even more effectively
find and use the structure of permutation problems as
opposed to continuous IDEAs and continuous ICE

Our goal in this paper is to investigate how such a per-
mutation IDEA can be designed. However, the permu-
tation space is fundamentally different from the binary
or the real space that most EAs have been designed for.
We therefore require new definitions, which we provide
in this paper. So far, we are able to learn uncondition-
ally factorized probability distributions. This results
in new EAs for permutation optimization problems.

The remained of this paper is organized as follows. In
section 2 we discuss probabilistic models, IDEA and
ICE Next, we go over the random keys encoding of
permutations in section 3 and present the permutation
problems that we will use for testing. Subsequently,
we present new tools for the probabilistic modeling of
permutations represented by random keys in section 4.
In section 5 we discuss how these tools can be used to
learn unconditional factorizations. We test the result-
ing EAs in section 6. We discuss future research in
section 7 and present our conclusions in section 8.



2 Probabilistic models, IDEA and ICE

In the following, we assume a continuous domain and
write the problem variables as y;. Assume that we
have an [ dimensional cost function C(yo, y1,-- -, Yi—1),
which without loss of generality we seek to minimize.
For each y;, we introduce a random variable Y;. We
let P?(Y) = P%(Yy,Y1,...,Y; 1) be a probability dis-
tribution that is uniform over all y with C(y) < 4
and 0 otherwise. Sampling from PY(Y) gives more
samples that evaluate to a value below 4. Moreover,
if we know 6* = min, {C(y)}, sampling from P? ()
gives an optimal solution. This rationale underlies the
IDEA (lterated Density Estimation Evolutionary Al-
gorithm) framework [3] and other variants in both bi-
nary [8, 13, 14, 15, 16] and continuous spaces [6, 12].

The interactions between the problem variables are at-
tempted to be inferred from the given sample vector
to find a suitable probabilistic model M. The notion
of a probabilistic model is used as a computational
implementation of a probability distribution Pa ().
A probabilistic model can be seen to consist of some
structure ¢ and a vector of parameters 6. The el-
ementary building blocks of the probabilistic model
are taken to be probability density functions (pdfs).
A structure ¢ describes what pdfs are used and the
parameter vector @ describes the values for the pa-
rameters of these individual pdfs. An example of a
structure ¢ is the notion of a factorization. A factor-
ization factors the probability distribution over Y into
a product of pdfs. In this paper, we focus on uncon-
ditional factorizations. In the binary and real case,
an unconditional factorization is a product of multi-
variate joint pdfs. This product is represented by a
vector of mutually exclusive subvectors, which we call
the node vector v. An example in the case of [ = 3
is P,(Y) = P(Yp,Y1)P(Y2), meaning v = ((0,1), (2)).
Once a structure ¢ is given, the parameters that have
to be estimated can be derived from the multivariate
pdfs that have to be fit. Since the way in which the
parameters @ are fit, is predefined on beforehand, we
denote the parameter vector that is obtained in this
manner by @ <t ¢. This implies that whereas we for-
mally define a probabilistic model to be M = (s, 0), in
our practical case, we can write M = (¢, 0 <L ¢). As
a probability distribution can therefore be identified
using only the structure ¢, we denote it by P.(Y).

These definitions are used in the IDEA by selecting
| 7n| samples in each iteration ¢ and by letting 6; be the
worst selected sample cost. The probability distribu-
tion of the selected samples is then estimated, resulting
in I:’fi (Y) as an approximation to the true probability
distribution P% ()?). New samples can then be drawn

from P% () and be used to replace some of the cur-
rent samples. A formal definition and more details on
the IDEA framework can be found elsewhere [3]. A
special instance of the IDEA framework is obtained
if selection is done by taking the best |7n] samples,
the amount of new samples is set to n — |7n| and
all of these new samples are used to replace the worst
n—|7n] samples. This results in the use of elitism such
that the search for §* is conveyed through a monoton-
ically decreasing series 6 > 61 > ... > 6; .. We call
the resulting algorithm a monotonic IDEA.

Since the random keys representation for permuta-
tions is essentially a continuous domain, continuous
IDEAs can directly be applied to permutation prob-
lems. However, a recent study [5] showed that this
does not lead to very effective optimization algorithms.
The main problem with this approach is that this in-
troduces a large overhead because the solutions are not
processed in the permutation space but in the contin-
uous space. To overcome this problem, a crossover
operator was proposed. This crossover operator re-
spects the information learned in a factorization. Two
parents are first selected at random. In the case of
an unconditional factorization, the crossover operator
then copies the values at the positions indicated by a
subvector in v from one of the two parents. This is
repeated until all subvectors in v have been regarded.
Thus, whereas the IDEA is used to find the uncondi-
tional factorization, crossover is used instead of prob-
abilistic sampling to generate new solutions. The re-
sulting algorithm is called ICE (IDEA Induced Chro-
mosome Elements Ezchanger). Using ICE instead of a
pure continuous IDEA gave significantly better results.

3 Permutation optimization problems
and random keys

The random keys encoding of permutations was intro-
duced by Bean [1]. The main advantage of random
keys is that no crossover operator can create unfea-
sible solutions since each encoding represents a per-
mutation. To encode a permutation of length [, each
integer in {0,1,...,1 — 1} is assigned a value (key)
from some real domain, which is usually taken to be
[0,1]. Subsequently, the integers are sorted on the keys
to get the corresponding permutation. This decod-
ing requires O(llogl) time. The random key string
0.61 0.51 0.62 0.31 is for instance mapped to 3 1 0 2.

In this paper, we test our algorithms on the general
deceptive permutation problem introduced by Knaz-
jew [10]. The optimum for this problem is the trivial
permutation (0,1,...,lgg — 1). To define the fitness



o(n)
INTEGERTORANDOMKEYS( n, length )

1 o + new array of integer with size length
2 p + new array of integer with size length
3 k < new array of real with size length
4 for i<+ 0tolength—1do

4.1 ofi] « i

4.2 k[i] + Ranpom([0, 1])
5 fac < (length — 1)!
6 for i<+ 0tolength—1do

6.1 pos + ﬁ

6.2 n <+ n—pos- fac

6.3 pli] < o[pos]

6.4 o[pos] < o[length — 1 — i

6.5 ¢f i <length—1 then

6.5.1 fac — m%

7 p2 < SORTKEYS( k, length )
8 for i+ 0tolength—1do

8.1 keys[pli]] « k[p2[i]]
9 RETURN(keys)

Figure 1: Converting integers to random keys.

function, a distance measure is used. The distance
from any permutation p to the optimum equals Igg —
|L1S(p)|, where LI1S(p) is the longest increasing subse-
quence in p. For example, if p = (4,0,3,1,2), then
L1s(p) = (0,1,2) and Ipp — |L1S(p)| = 5 — 3 = 2. Note
that the reverse permutation (I — 1,lp —2,...,0)
is the only permutation with a distance of Igp — 1.
The deceptive ordering problem for a single building
block (BB) of length Igpg, is defined as follows:

1 LSt Lis(p)| < g
_ 15:3:} '
fBB(P) {1 if |LIS(P)| =lIBB (1)

A building block is a subsequence of the complete ran-
dom key string. The actual fitness function that we
use, has length | = ngplpp, where npp is the amount
of building blocks. The fitness value is the sum of
the fitness values of the individual building blocks.
The resulting optimization problem is therefore addi-
tively decomposable. The locations of the individual
building blocks have been coded loosely. This implies
that building block 0 < ¢ < npp consists of the ran-
dom keys found at locations (i,i+npp,...,i+ (g —
1)npp). The fact that the problem is fully deceptive,
means that all schemata of an order smaller than &
lead to the suboptimum of the reverse permutation [9].
This makes the problem hard for any optimizer that
doesn’t identify which random key positions together
constitute a building block [2]. Furthermore, because
of the loose coding, simple crossover schemes such as
one point crossover are not effective either.

|Perm.|N| |Perm. | N| |Perm. | N|
032110 1302 | 8 2301 |16
03121 1320 9 2310 | 17
01321 2 1203 |10 3021118
01231 3 1230 |11 3012119
02311 4 2031 |12 3102120
021315 2013 |13 3120121
1023 | 6 2103 | 14 3201122
1032 |7 2130115 3210 23

Figure 2: The mapping as defined by function p(n)
(after the conversion of random keys to permutations).

4 Probability theory for permutations
and random keys

The better results obtained by using ICE are evidence
that efficient IDEAs can be designed by making them
process the permutation space directly. To do so, we
need a way to estimate the multivariate joint distribu-
tion of a set of random keys. Since we are interested
in the distribution of the permutations that are repre-
sented by the random keys, we have to count the fre-
quencies of the permutations. This means that for &
random keys, we require a frequency table of minimum
size k!. To generate the minimum size table, we need
to map permutations onto integers and vice versa. If
we have a number n that represents a random key with
length k, we know that the number lies in the range
{0,1,...k! — 1}. Therefore, Lﬁj lies in the range
{0,1,...,k—1}. Furthermore, n rem (k—1)! lies in the
range {0,1,...,(k—1)!—1}. We can generate the cor-
responding permutation in k steps by first creating an
initial dummy permutation. Then, in each step i, we
take the final permutation element at position ¢ to be
the element at position Lﬁj in the dummy permu-
tation. To ensure that no elements from the dummy
permutation are used twice, the (k — ¢)—th element in
the dummy permutation replaces the used element at
position i. To finally create a random key string from
the so constructed permutation, k£ random numbers
are drawn and sorted. Using the sorting information,
the keys are placed in the positions indicated by the
integer permutation that was computed from n. The
resulting algorithm runs in O(k log k) time and is given
in figure 1. In figure 2 the function results are given
for £ = 4. For mathematical convention, we denote
this function by g(n) and assume that the length of
the random key is clear from the context.

To define the inverse function o~ !(keys), we have to
know in each iteration at which position the i—th per-
mutation element was located in the dummy permu-
tation array. To this end, we make a second dummy



0 '(keys)
RANDOMKEYSTOINTEGER( keys, length )

1 ol + new array of integer with size length
2 02 + new array of integer with size length
3 p < SorTKEYS( keys, length )
4 for i<+ 0tolength—1do
4.1 ol[i] « i
42 o2li] « i
5 n+0
6 fac <+ (length —1)!
7 for i<+ 0tolength—1 do

7.1 pos < o2[p[i]]
7.2 n < n+pos- fac
7.3 02[ol[length — 1 —i]] < pos
7.4 ol[pos] < ol[length — 1 — 1]
7.5 1f i <length —1 then
7.5.1 fac — leng‘tf%
8 RETURN(n)

Figure 3: Converting random keys to integers.

array in which this information is stored. Before the
first dummy array is altered in the same way as is done
in function g(n), we update the location information
in the second dummy array. The resulting algorithm
runs in O(klogk) time and is given in figure 3.

Even though the random keys are actually continuous
values, they represent discrete permutations. There-
fore, we write a single solution string (sample) as
(ro,m1,-..,7—1) instead of (yo,¥y1,...,¥1—1). Simi-
larly, we introduce a random variable R; for each
problem variable r;. Since the random keys encode
permutations, the symantics of the R; are essentially
different from those of binary or continuous random
variables. We define R = (R, Ry,...,R;—1) and
write the selected sample vector in the IDEA as & =
(rO, e, rISI=Y) i = (rd ot ..7i_;). The mul-
tivariate joint pdf over a subset of the random keys
R(v) = (Ryy, Ry, - -, Ro|,,_,) is defined by the prob-
ability at a certain random key subsequence r{v). It
can be computed by counting frequencies in S:

> {1 if 0 (1 (v)) = 07 (r(0))

0 otherwise

Defining the unconditionally factorized probability
distribution over all random keys is not as straight-
forward as is the case for binary or continuous rep-
resentations. For instance, regard the case in which
[ =4 and v = ((0,1),(2,3)). The frequency tables
of the 2 individual multivariate joint pdfs are of size
2! = 2. Assume that P(rg < 1) = P(ry < r3) = I
Unlike in the binary and continuous cases, we have

P(0,1),(2,3))(Ro, B1,R2, R3) # P(Ro, R1)P(Rs, R3),

because the righthandside is not a probability distri-
bution over the 4 random variables combined. The
reason for this is that the amount of possible permu-
tations for all 4 random keys is 4! = 24. Therefore, the
summation of the wrongly factorized probabilities over
all of these 24 permutations equals 24 - % - % =6#1.
In the case of binary variables, the amount of possible
combinations would be 2* = 16 and the individual fre-
quency tables would have been of size 22 = 4. If each
individual probability would then have been % for ex-
ample, the summation over all possible combinations
would be 16- % -% = 1. The reason why there is a differ-
ence with permutations is that if rg < ry and 5 < r3,
then there are a multiple of permutations in which this
is so instead of a single one. Two examples are 9 <
rn <19 <713 andrg < ry <r3 <ry. There are 6 of
such “indistinguishable” permutations since the total
amount of possible permutations is 4! = 24 and the to-
tal amount of groups of permutations that can be made
with the 2 shorter permutations is 2! - 2! = 4. This
means that the correct factorization of the probability
distribution is given by P((0,1),(2,3))(Ro, R1, Ra, R3) =
%P(RO,Rl)p(RQ, R3). In general, the uncondition-
ally factorized probability distribution is capable of ex-
pressing Hll';l(; "v;i|! different groups of permutations.
On the other hand, the total amount of possible per-
mutations equals [!. Therefore, the unconditional fac-
torized random key probability distribution becomes:

1 lv|-1

P, (R)(r(£)) T [[P@®Rw) e  3)

i=0
5 Learning unconditional permutation
factorizations

To find a good unconditional factorization, often an
incremental greedy algorithm is used to minimize
the negative log—likelihood of the estimated proba-
bility distribution. Furthermore, the negative log—
likelihood is usually penalized with increasing com-
plexity. This results in a penalization metric to be
minimized. A simple but often effective greedy learn-
ing algorithm starts from the univariate factorization
in which each variable is independent of the others,
v = ((0),(1),...,(l —1)). Each iteration, the eligible
operations to be performed on the factorization are
the splicing (joining) of two vectors v, and vy, . The
splice operation that decreases the penalized negative
log—likelihood the most, is actually performed. This
process is repeated until there are no splice operations
left that further improve the metric. In this paper,
we use the Akaike Information Criterion (AIC). For
a derivation of this metric in the IDEA context, we
refer the reader to a more detailed report [3]. This



metric should be minimized. It scores a factorization
by its negative log—likelihood, but adds the term ||
as a penalization of more complex models. For var-
ious applications, the AIC penalization is not strong
enough [3, 5]. However, since in this case |8 grows fac-
torially, this is most likely not the case. Furthermore,
since the frequency tables also grow factorially, it is of
no use to allow very large subvectors in the node vec-
tor. Therefore, we limit the size of each vector in the
node vector to k = 7. This is a limit on the maximum
allowed order of interaction that can be processed.

In order to use the greedy algorithm, we can search
for the largest value of the negative log—likelihood of
the current factorization ® minus the negative log—
likelihood of the candidate factorization vl. Since
the penalization is additive to this difference, it can
be shown [3] that for the AIC metric, this differ-
ence should be penalized by adding |0 <“t v, | +
|0 Lv, | — |0 v, |. Before we derive the re-
quired difference, we first note that the likelihood of
the multivariate joint pdf from equation 2 equals:

|S|-1

£(S|P(R H P(R () (4
Since the multivariate joint pdf from equation 2 is esti-
mated from a discrete frequency table, the estimate is
of a maximum likelihood, just as is the case for binary
variables. Therefore, it can be shown [4] that the neg-
ative log—likelihood of the multivariate joint pdf equals
|S| times the entropy of the multivariate joint pdf:

~In (S(SIP(R(v)))) = (5)

|S|—1
=Y i (P(R@) (' (v))) =
|v|t—1
~IS1 Y P(R())(e(m) In(P(R(w))(e(n))) =

|S|H (P(R(v)))

The likelihood that we want to work with, is that of
the factorized probability distribution over all of the
variables R. The negative log-likelihood of this prob-
ability distribution can be written as follows:

(S|P (R)) = ~In (S(SIB(R)) = (6)

|S|-1

~In| [ AR | =
i=0

IS|-1|v|-1

=303 m (PR 0 ()

=0 =0

S| In(11)

The difference between the negative log-likelihood of
v% minus the negative log-likelihood of v! can now
be expressed in terms of the entropy for multivariate
joint random keys pdfs:

—In(&(S|P,o(R

In(¢(S|P,1(R))) M=

IS|-1

> [ (s Uva PR, Uve )0 e Uvs,)))

i=0

=10 (o | PR w,))
1 (|, PR ) (v:,)) ] =

|S]| [H(p(R(stJ))) + H(P(R{vs,)) -
H(P(R(vs, Uv,,)) +1n (Mﬂ

Given the above definitions, there is a problem with us-
ing only the splice operator in the greedy search algo-
rithm. Consider two building blocks (b3, bbY, . .., bb})
and (bb}, bbi, ..., bb}) of length 5 that are already con-
verged optimally. Furthermore, without loss of gen-
eralization, assume that the optimal permutation is
Topi < Topi < .. < 1ypi, @ € {0,1}. It is then quite
likely that ryp0 < ryp; also holds for every solution in
S. If this is so, a splicing algorithm in its first stages
is just as likely to choose to join positions bbJ and bb3,
which we want, and positions bb] and bb}, which we
do not want. When the splicing algorithm has mixed
up the building blocks in this way, using function g to
generate new random key sequences is very unlikely to
generate new correct building blocks. This is a prob-
lem that does not occur for binary variables, because
once all 10 bits have for instance fully converged to 1, it
doesn’t matter for reproduction whether we use a full
joint factorization! or a univariate factorization®. The
reason why this problem occurs, is that at a lower level
of interaction, decision errors are made. These lower
order errors cannot be avoided and only become visible
at a higher level of interaction. When regarding inter-
actions of level 5 for instance, it does become clear that
the building blocks should be separated. The reason
for this is that the individual random key sequences
of the building blocks are converged to a single per-
mutation, but other combinations of length 5 lead to
random key sequences that represent different permu-
tations throughout S. By definition, the likelihood of
the correct factorization is therefore larger.

((bb3, b, . .., bbY, bby, bb!, ..., bbL))
(BBS), (BBY), (-, (BB2), (BB, (BBY), (..

), (bb1))



To overcome this problem, either the size of the sample
vector has to increase significantly to reduce the prob-
ability of ry0 < rypp Or we require a way to correct
for lower order decision errors. The problem can be
avoided by the splice algorithm if we allow the splic-
ing of more than 2 vectors at once. However, by al-
lowing the splicing of k vectors, we get a running time
complexity of O(I¥*1) for the greedy search algorithm.
Since this significantly influences the scaling behav-
ior of the algorithm, we propose to extend the greedy
search algorithm by allowing a second operator. This
operator allows to correct for lower order decision er-
rors that were made at an earlier stage. This is en-
forced by allowing two subvectors of the node vector
to exchange an element. We call this the swap oper-
ator. The swap operation that decreases the negative
log-likelihood the most is performed first. Since the
complexity of the factorization does not increase, no
penalization is required for this operation. To ensure
that splice operations are only performed when lower
order decision errors are no longer visible at the cur-
rent stage of the greedy algorithm, a swap operation
is always preferred over a splice operation.

6 Experiments

We have tested the new approaches on the deceptive
permutation problems with Igg = 5. In all our test-
ing, we used monotonic IDEAs. We used the rule of
thumb by Miihlenbein and Mahnig [13] for FDA and
set 7 to 0.3. All results were averaged over 30 indepen-
dent runs. Each run was allowed a maximum of 10°
evaluations. We have applied both pure IDEAs as well
as hybrid versions in the form of ICE. We compare the
results of the new permutation based algorithms with
the recently tested variant of ICE in which the nor-
mal pdf was used to find unconditional factorizations.
To observe the usefulness of using normal pdfs to de-
tect useful factorizations, we have also used an IDEA
in which unconditional factorizations are learned by
using normal pdfs but in which new random key se-
quences are generated by function p. Finally, we have
also computed the best possible result by using a fixed
factorization. The structure of the problem is best rep-
resented when the building blocks are perfectly sepa-
rated in v. We call this perfect mizing information.

Figures 4 and 5 show the average required amount of
function evaluations and the minimal required popula-
tion size n respectively. Three of all tested algorithms
have only been tested with ngp up to 4. They have
not been investigated further because of their very bad
scaling behavior. Two of those algorithms are the
IDEA variants that use normal pdfs for finding uncon-
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ditional factorizations. The other algorithm is also a
pure IDEEA, but uses the permutation probability the-
ory. However, this algorithm does not use the swap
operator. The bad performance is therefore due to the
lower order decision errors that are not corrected as
we explained earlier in section 5. The only pure IDEA
that does scale up competitively, uses the swap oper-
ation and permutation pdfs. We therefore state that
using normal pdfs on the real random keys to find the
dependencies between the problem variables is less ef-
fective than using permutation pdfs.

The most successful algorithms are all variants of [CE
One of the most important reasons for this is that the
crossover operator is less disruptive than using func-
tion p. This is especially true if we have an additively
decomposable fitness function. Assume for a building
block of length 4, that the factorization has spliced no
further than ((bbg, bb1), (bba,bbs)). If only one of the
parents has a good solution for the building block, the
probability that it is crossed over to the offspring is
%. But even if the block has fully converged in S, the
probability that the optimal block will be constructed
using the factorization given above, isonly Z2 = 1. A
similar argument holds when lower order decision er-
rors have found their way into the final factorization.

Using the swap operator as well as crossover in permu-
tation ICE significantly outperforms all other tested
algorithms in terms of the required amount of eval-
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uations and population size. It shows a much bet-
ter scaling behavior that is quite close to the optimal
performance when perfect mixing information is used.
There is however a negative side to the use of permu-
tation pdfs. Because the permutation frequency ta-
bles are of maximum size k! and because we require
O(klogk) time to convert random keys to integers,
the actual running time of the permutation based al-
gorithms is much larger than when the normal pdfs
are used. This can be seen in figure 6 in which the
running times scaled to [0, 1] are shown on a logarith-
mic scale. Because of the O(I?) factorization learning
algorithm, the performance of the permutation based
algorithms in this graph is much worse. At [ = 50,
the best performing normal ICE runs at a factor of
27.13 times faster than the best performing permuta-
tion ICE Because of the better scaling behavior in
evaluations, if I goes up far enough, permutation ICE
will eventually outperform normal ICE Furthermore,
if the fitness function is a highly time consuming sim-
ulation, permutation ICE is preferable.

7 Discussion

We have seen that the swap operator is an effective
way to correct for lower order decision errors when op-
timizing additively decomposable problems. However,
this operator will only be successful if the building
blocks are decomposable. Assume that the building
blocks of the deceptive permutation problem are fully
overlapping such that the last random key of block 4
is the first random key of block i + 1. In this case, the
optimal permutation is only encoded by completely
ascending random key strings. Now assume that a
few neighbouring building blocks have converged opti-
mally. This means that all of the involved random keys
will always occur in a fully ascending fashion. In order
to generate new correct building blocks with probabil-
ity 1 using function g, all of the involved random key
positions will have to be placed in a single joint pdf.

However, as the amount of converged building blocks
increases, the amount of positions will surely surpass «.
Even if the building blocks are correctly separated at
their boundaries, the probability that the right combi-
nation of building blocks is sampled, becomes smaller
for an increasing amount of building blocks. To over-
come this problem, ICE must clearly be used. An
additional problem is that once multiple overlapping
building blocks have converged, using the greedy learn-
ing algorithm will not be able to separate the building
blocks at any level. Lower order decision errors can-
not even be corrected at a higher level by using the
swap operator since there is only one permutation for
all the converged building blocks. Therefore, all splice
operations of subvectors regarding the converged in-
dices give equally good results according to the neg-
ative log-likelihood. Again, using ICE may overcome
this problem since the probability at survival of build-
ing blocks is larger. However, since building blocks
can still be destroyed, the ICE strategy is not optimal
for such difficult overlapping problems.

Once the building blocks have converged, separating
them is difficult, especially for overlapping problems.
One possible way to overcome this problem, may be by
using the distance between the random keys. The need
for such information becomes clear especially when we
regard conditional factorizations. The definitions in
this paper readily allow us to search for conditional
factorizations. Sampling a new solution for a node v
in such a factorization can be done by observing the
already sampled values for the parents that v is con-
ditioned on. The value for v will either be smaller or
larger than all parent random key values, or it will lie
between two subsequent values. For these options, fre-
quency tables can be used to select an option just as is
done in the binary case. This can lead to very efficient
solving of both the additively decomposable deceptive
trap functions as well as the fully overlapping ones
because random key values can be sampled relatively
to the already sampled values in a solution. If we
model each building block (bg, b1, ...,bz5—1) by the
conditional factorization in which Ry, is conditioned
on |}, , (£;), the permutation IDEA results in a
population size of n = 750 and an average amount of
evaluations of 6745 for the additive deceptive problem
with length | = 50. For the fully overlapping deceptive
problem of length I = 40 and lgp = 4, we get n = 350
and 2884 evaluations, which is extremely much better
than the best obtained results by normal ICE so far of
10.61 building blocks correct (out of 13), n = 10* and
481.1 - 105 evaluations. However, it can be expected
that the use of a greedy learning algorithm that intro-
duces one conditional dependency at a time, will also
have lower order decision error problems. To overcome



these problems, new operators will be required or some
effective means of using the random key distance.

We note that in this paper we have only tested the
newly proposed approaches on a limited amount of
problems. Even though the results are encouraging,
verification on other problems is desired. None of the
ICE algorithms have so far been tested on real-life
problems such as scheduling. It would be interesting
to investigate the performance of the new algorithms
and compare them with other EA approaches.

8 Conclusions

In a previous study [5], it was shown that finding
and using the structure of permutation problems can
aid EAs in optimization. In this paper, we have en-
hanced the tools for finding this structure by learning
it in the space of permutations instead of an embed-
ding real encoding space. By using this structure to
exchange the building blocks, we get the ICE algo-
rithm. ICE has been shown to efficiently solve permu-
tation problems of a bounded difficulty. With respect
to the requirements on the population size and the
amount of evaluations, the resulting algorithms out-
perform previously proposed EAs. However, the time
requirements for probabilistic modelling have signifi-
cantly increased. For lower order to moderate order
dimensional permutation optimization problems with
non-time consuming fitness functions, normal ICE is
preferable over permutation ICE

Although good results have been obtained for addi-
tively decomposable problems, unconditional factor-
izations are not well suited for problems with overlap-
ping building blocks. To this end, conditional factor-
izations seem more appropriate. Preliminary results
indicate that IDEEAs based on conditional permutation
factorizations may yet more effectively find and use the
structure of a wider range of permutation problems.
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