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Abstract

For continuous optimization problems, evolutionary algorithms (EAs)
that build and use probabilistic models have obtained promising results.
However, the local gradient information of the fitness function is not used
in these EAs. In the case of optimization of continuous differentiable func-
tions, it may be less efficient to disregard this information. In this paper, we
therefore hybridize pure continuous iterated density estimation evolutionary
algorithms (IDEAs) by using the conjugate gradient algorithm on a selection
of the solutions. We test the resulting algorithm on a few well known dif-
ficult continuous differentiable function optimization problems. The results
indicate that exploiting gradient information in probabilistic model building
EAs leads to more efficient continuous optimization.

1 Introduction

Finding and using the structure of the fitness landscape can aid EAs in optimiza-
tion. One approach to doing so, is by learning a probabilistic model from the
selected solutions and by using it in sampling new solutions. The solutions are
regarded as being representative of some probability distribution. Estimating this
probability distribution and sampling more solutions from it, is a global statis-
tical type of inductive iterated search. Such algorithms have been successfully
applied to various optimization problems in the case of discrete (binary) vari-
ables [7, 9, 10, 12] as well as continuous (real) variables [1, 3, 6]. In the estimation
of a probability distribution of a set of samples, no assumption is made on the
source of the samples. This implies that for continuous, differentiable functions
that we seek to optimize with IDEAs, gradient information is disregarded.

It has been shown [3] that continuous IDEAs can efficiently process interac-
tions between the problem variables, even for problems of very large dimension-
ality. Furthermore, IDEAs have also given promising results on a variety of diffi-
cult continuous differentiable function optimization problems [5]. In these IDEAs,
density estimation is based upon either the normal pdf or on the normal mix-
ture pdf. Although both pdfs have lead to good results, IDEAs based on them



have outperformed each other on different types of optimization problems. The
normal mixture pdf enables IDEAs to better cope with non-linear interactions
between the problem variables. However, to prevent overfitting, many more sam-
ples are often required. One problem with repeatedly drawing new samples from
a probability distribution, is that gradient information is ignored in continuous
differentiable function optimization. As a result, once the search has located an
interesting basin of attraction, efficiently finding the optimum is prohibited. To
speed up convergence, it therefore appears to be a good idea to hybridize the IDEA
to exploit gradient information. Our goal in this paper is to verify whether this is
the case for continuous differentiable function optimization.

The remainder of this paper is organized as follows. In section 2, we define the
notion of probabilistic models and point out how these can be used in EAs. In
sections 3 and 4, we go into probabilistic model selection. Next, we take a look at
what pdfs we can use in section 5. We discuss hybridization of IDEAs by adding
gradient search in section 6 and present our experiments in section 7. Further
research is discussed in section 8 and our final conclusions are drawn in section 9.

2 Probabilistic models and IDEAs

The IDEA is a framework that uses probabilistic models in evolutionary opti-
mization. We take the elementary building block of probabilistic models to be the
probability density function (pdf). We define a probabilistic model M to consist of
some structure ¢ that describes a composition of pdfs, and a vector of parameters
0 for the pdfs implied by ¢, M = (¢,0). The pdf to fit over every factor implied
by ¢ is chosen on beforehand, such as the normal pdf. The way in which the
parameters @ are fit, is also predefined on beforehand. With these assumptions,
we denote the resulting probability distribution by P..

We assume that we have an [-dimensional continuous optimization problem
C(yo0,Y1, - - -,yi—1) which without loss of generality we seek to minimize. A pop-
ulation of n samples is maintained. We select |7n| samples (7 € [%,1]) in each
iteration ¢ and let 6; be the worst selected sample cost. We then estimate the dis-
tribution of the selected samples and thereby find Pget ) = I:’ff (Yo, Y1,...,Y )
as an approximation to the true uniform distribution P% () over all points y
with C(y) < 6;. New samples can then be drawn from 1351 (¥) and be used to
replace some of the current samples. If we select by taking the best |7n] samples,
draw n — |7n] new samples from I:’ff ()), and finally replace the worst n — |7n]
samples in the population with these new samples, we have that ;1 = 6; —e with
€ > 0. This assures that 8y > 6, > ... > 6, d We call an IDEA so constructed
monotonic. For a more detailed algorithmic description of the IDEA framework,
we refer the reader to previous work [3].

3 Factorization selection

To estimate the probability distribution of the selected samples in the IDEA, we
first search for a model structure. In this section, we only focus on the specific



Figure 1: A non-linear dependency in the sample set (left) and the contour lines
of the density estimation using two normal pdfs after clustering (right).

structure of a conditional factorization. The use of this structure has resulted in
successful and promising applications of IDEAs [3, 5]. A conditional factorization
is a product of multivariate conditional pdfs Hi;(l] P(Y;|Yi)). By identifying a
vertex with each variable Y; and an arc (Y;,Y}) if and only if Y; is conditionally
dependent on Y; (Y; € n(Y;)), we get the conditional factorization graph. A
conditional factorization is valid if and only if its factorization graph is acyclic.

We have to learn such a conditional factorization from the vector of selected
samples. To this end, a variety of approaches can be taken [11]. We use an incre-
mental algorithm that starts from the empty graph with no arcs. Each iteration,
the arc to add is selected to be the arc that increases some metric the most. If
no addition of any arc further increases the metric, the final factorization graph
has been found. The metric that we use in this paper, is commonly known as
the Bayesian Information Criterion (BIC). This metric should be minimized. Tt
scores a factorization by its negative log-likelihood, but adds a penalty term that
increases with the complexity of the factorization and the size of the sample vec-
tor. Let 8 = (y°,y*,...,y!SI=1) be the selected vector of I-dimensional samples.
The BIC metric is parameterized by a regularization parameter A that determines
the amount of penalization:
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4 Factorization mixture selection

The structure of the sample vector may be highly non-linear. This non-linearity
can force us to use probabilistic models of a high complexity to retain some of this
non-linearity. However, especially using relatively simple pdfs such as the normal
pdf, the non-linear interactions cannot be captured even with higher order models.
The use of clusters allows us to efficiently break up non—linear interactions so that
we can use simple models to get an adequate representation of the sample vector.
An example of this is depicted in figure 1. Furthermore, computationally efficient
clustering algorithms exist that provide useful results.



A factorized probability distribution is estimated in each cluster. By doing
80, we obtain a mizture distribution. We let k be the amount of clusters and let
K=(0,1,...,k—1). We write f for a factorization. For a mixture of factorizations,
we write fx = (fo,f1,- .., fx—1). The resulting probability distribution is a weighted
sum of the individual probability distributions over each cluster:

k—1
Pre(¥) = 3 BiPL() (2)

For function optimization, the (3; are usually set proportional to the size of
cluster i. In order to perform clustering, we use the randomized leader algorithm.
This algorithm has been observed to be a fast and flexible adaptive clustering
algorithm that gives useful results in IDEAs [5]. The first sample to make a new
cluster is appointed to be its leader. The leader algorithm goes over the sample
vector exactly once. For each sample, it finds the cluster with the closest leader. If
this leader is closer than a given threshold ¥4, the sample is added to that cluster.
Otherwise, a new cluster is created with this single sample as its leader.

5 Probability Density Functions

The normal pdf has received the most attention in continuous probabilistic model

building EAs and has led to good results [3, 5]. The sample average in dimension j

L S|—1, 3 . .. . .
isY; = ﬁ ZL.:‘O (y*);. Given a vector of indices a, the sample covariance matrix

over variables Y, is X, = \é_l S8 i — Vo) (5 — Ya)T. To compute the BIC
measure, we require to compute the negative log—likelihood of each conditional pdf
in the factorization. However, the entropy h(-) is equal to the average negative
log—likelihood of the sample set if the pdfs were fitted to be of a maximum likeli-
hood [4]. The entropy of the normal pdf can be evaluated significantly faster than
the negative log-likelihood. The required conditional pdf and the entropy are [3]:
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By clustering we obtain an approximation to the maximum likelihood normal
mixture distribution. An attempt to fit a normal mixture pdf with a maximum
likelihood, leads to the expectation mazimization (EM) algorithm [2]. Even though
the EM algorithm is theoretically rigorous, it can easily get stuck in local minima,
resulting in a sub optimal fit. This is especially true in higher dimensions. Finding



a factorization with the normal mixture pdf is far too time consuming to be of
practical use because of the repeated application of the costly EM algorithm [5].
When a univariate factorization is used, each normal pdf in the mixture has a
diagonal covariance matrix. The resulting IDEA requires less function evalua-
tions to optimize epistatic functions with many local optima, but is less efficient
than a clustering approach for non-linear problems [5]. Furthermore, the time
requirements for the clustering approach are significantly smaller.

6 Hybridization using local gradient information

In order to use the local gradient information of a function, a straightforward
manner is to perform gradient descent (in the case of minimization). This is an
iterative approach that alters a point by moving it a short distance in the direction
of the greatest rate of decrease in the optimization function. By using line mini-
mization, the distance that is moved in the direction of the steepest descent, takes
the search to a point at which the gradient in that direction is 0. Subsequently, a
new direction is taken until the search converges. However, following the direction
of steepest descent in each step is in general not optimal. The reason for this is
that each subsequent search direction is orthogonal to the previous one. This can
cause the search to oscillate around the optimal direction towards the optimum.
The conjugate gradient algorithm [8] overcomes this problem. In this algorithm,
each subsequent search direction is conjugate with the previous one. This means
that the new direction is chosen so that the component of the gradient in the
direction of the previous step remains zero along the new direction, resulting in
more efficient local optimization.

In order to apply the conjugate gradient algorithm, we require to be able to
approximate the gradient. At a single point, this requires ! evaluations. For
higher dimensional functions, using gradient search therefore becomes much more
expensive. To construct the hybrid IDEA, we apply the conjugate gradient al-
gorithm to |7gn| randomly selected solutions at the end of each generation. We
do not suggest that this hybridization approach is optimal, but it will point out
whether a gradient search algorithm can help us in the optimization of continuous
differentiable functions. We refer to the resulting hybrid IDEA as the GLIDE
EA (Gradient Leveraged Iterated Density Estimation Evolutionary Algorithm) or
GLIDE for short:

| GLIDE |

1 Create n random solutions of dimensionality [
2 Repeat until termination
2.1 Create new population using IDEA
2.2 Perform conjugate gradient search on 74n randomly selected solutions

7 Experiments

The continuous optimization problems we used for testing are the following:
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Function Cy is Griewank’s function, C; is Michalewicz’s function and Cs is
Rosenbrock’s function. Both Cy and C; are highly epistatic functions with many
local optima. However, given a fixed precision, Cy becomes easier as [ increases.
Function Cs is highly non—linear. It has a curved valley along which the quality
of the solutions is much better than in its neighborhood. Furthermore, this valley
has a unique minimum of 0 itself. In all our testing, we used monotonic IDEAs.
We used the rule of thumb by Miihlenbein and Mahnig [9] for FDA and set 7
to 0.3. We ran tests so as to find the best results within a maximum of 107
evaluations and a maximum population size n of 10°. If all of the solutions differed
by less than 5- 1077, termination was enforced. All results were averaged over 10
runs. We tested GLIDE using the normal distribution by searching for conditional
factorizations using the BIC metric with A = % We also tested GLIDE using
the normal mixture distribution by applying clustering to get approximately 10
clusters. The mixture coefficients 3; were set to the proportional cluster sizes. We
allowed the conjugate gradient algorithm to run for 10 iterations each time it was
called. We set 75 € {0,0.1,0.5}. Note that for 7o, = 0, we get a pure IDEA. We
computed the gradient information by using Ay; = 1073, Furthermore, we have
used the Polak—Ribiere variant of the conjugate gradient algorithm [13].

In figure 2, we present the minimum required population size n.,;,, the average
best solution, the average amount of evaluations and the Relative Run Time RRT.
Let FT(z) be the time to perform z random evaluations and let TRT be the Total
Run Time on the same processing system. Then, RRT(z) = TRT/FT(z). We
determined RRT as RRT(10%). The RRT index is a processing system independent
fair comparison measure. We sort the results by this index secondarily instead of
the amount of evaluations, as it ¢truly reflects the required amount of time. We have
tested GLIDE variants that use the normal distribution (indicated by f) as well
as the normal mixture distribution obtained by clustering (indicated by fx). For
comparison, we have also tested a Random Restart Conjugate Gradient (RCQ)
algorithm in which only the conjugate gradient algorithm is repeatedly started
a random starting point. The maximum amount of iterations in the conjugate
gradient algorithm in the case of RCG was taken to be 107.

For lower dimensional problems, GLIDE outperforms the pure IDEAs. How-
ever, as [ increases, IDEAs without gradient information obtain better results on
Co and Cy. The reason for this is twofold. On the one hand, gradient search
requires many evaluations as [ increases just to evaluate the gradient. As this is
done many times, the maximum amount of evaluations limit is reached sooner. On
the other hand, at the beginning of the EA, we have not much of a clue about the
locations of the interesting basins of attraction in the fitness landscape. There-
fore, it is not yet of much use to start using a gradient search algorithm. As the
search progresses towards one or more attractors of the function, it becomes more
interesting to use gradient search. So it is to be expected that the results obtained
by GLIDE can be improved by postponing gradient search until it becomes more



[ alg [ 7 min | C [ evals | RRT |[ Alg. [ ngin | C [ evals | RRT |
Co.l=5 Ci1,l=5
(7, 0.5) 50 0.000000 50928 0.0547 (7, 0.5) 50 ~4.687658 89085 0.1986
(f,0.1) 50 0.000000 52093 0.0605 (f,0.1) 100 -4.687658 134549 0.3170
(), 0.1) | 525 0.000000 331374 | 0.4674 || (jxc,0.1) | 400 -4.687658 187996 0.4574
(fsc.0.5) | 425 0.000000 484342 | 0.5313 || (jxc,0.5) | 300 -4.687658 340929 0.7681
(7, 0.0) 175 0.000000 1112144 | 2.5253 || (jxc,0.0) | 19500 -4.687658 1095199 7.3141
ECG — 0.013304 5307754 5.5496 (f,0.0) 24000 -4.676699 107 58.2003
(jzc.0.0) | 17000 0.015748 107 51.1732 RCG — -4.672658 3685044 7.9689
Cg.l =25 Cy1,l =25
(7, 0.0) 200 0.000000 12410 0.0334 (7, 0.0) 150 ~24.135704 2396333 21.4501
(f, 0.5) 25 0.000000 27233 0.0438 (f, 0.5) 25 -21.112268 2032662 8.6118
(f,0.1) 25 0.000000 14751 0.0675 (f,0.1) 25 -20.901198 2734527 18.5832
(fxc.0.5) 25 0.000000 24637 0.0907 || (fxc,0.5) | 700 -19.839100 4652799 11.7873
(f3c,0.1) 75 0.000000 20454 0.2482 || (fxc,0.1) | 800 -18.579309 1608802 6.7266
ECG — 0.000000 4072119 | 3.6863 ECG — -16.063736 5203679 10.6908
(jsc,0.0) 3000 0.000000 197343 10.6522 (fx,0.0) | 19000 -15.070724 107 97.2095
Cq. 1l = 100 Cy,1 = 100
(y,0.0) 400 0.000000 49884 0.5102 (7, 0.0) > 100 | < -76.314818 | > 4669486 | > 1351.6456
(701 | 30 | ooooono | imeres | omass || 0| 175 | -eTTie2e2 | 107 58.6790
, 0. . - 7
(x,0.0) | 1500 | 0.000000 | 168609 | 16.0661 || (I-0-5) 50 -59.859316 o 29.5821
(f3c.0.5) | 300 0.000000 2703191 | 16.4785 || (Jxc»0.1) | 1500 -59.849551 107 50.0092
(fxc.0.1) 500 0.000000 2071105 | 24.2137 (§,0.1) 50 -59.579408 10 65.2234
RCG — 1390.943857 | 3414982 3.0439 BCG — -44.887450 5502399 11.2490
(igc,0.0) | > 100 | < -23.433810 | > 136349 | > 462.4847
— (A performance lowerbound is indicated by > and <)
[CAle. [ngg c evals RRT _| (For these results, the time limit was exceeded)
Co,l=5
(7, 0.1) 25 0.000000 6150 0.0218
(isc.0.1) 50 0.000000 10432 0.0296
(i1c. 0.5) 25 0.000000 15599 0.0322
(7, 0.5) 25 0.000000 14157 0.0330 | Alg. [ npgp [ C [ evals | RRT ]
(fxc.0-0) | 5500 | 0.000000 | 150683 1.8107 T, =100
: — 0-000000 | 5584752 | 11.7180 EXelel - 0.000000 | 3713514 6.7658
(§,0.0) | 50000 | 1.253981 10 159.9769 (§,0.1) 50 0.000000 | 994431 12.0070
Co.l=25 (j,0.5) 25 0.000000 | 1405699 15.6587
7,05 55 0.000000 | 154307 04823 (j5c.0.1) 25 0.000000 | 409042 73.3926
(j. 0.1) 25 0.000000 49924 0.6339 (j3c.0.5) 25 0.000000 | 1442753 76.8516
(isc.0.1) 25 0.000000 52053 1.2719 (§,0.0) | 19000 | 96.509540 107 352.1634
(i1c. 0.5) 25 0.000000 | 175624 1.3690 (f5,0.0) | 105 | 96.664236 107 656.6042
ECG — 0.000000 | 5206170 | 8.6328
(fsc. 0.0) | 70000 | 20.365538 107 338.8301
(j,0.0) | 70000 | 22.272674 107 241.4619

Figure 2: Results for all algorithms on Cy, Cy and Cs.

beneficial to use it. These two issues are also demonstrated by the results obtained
by RCG, since they are worse on Cy and C; as [ goes up. For C,, all algorithms
that use gradient search outperform the pure IDEAs. The reason for this is that
there are no local optima. The non-linear valley is efficiently located by the IDEA
and the gradient search procedure finds the unique minimum. The combination of
continuous IDEAs and gradient search is indeed effective. Furthermore, the use of
the single normal distribution in GLIDE seems preferable over the normal mixture
distribution obtained by clustering.

8 Discussion

The use of gradient search in IDEAs has resulted in an improvement over the
results obtained so far for problems of low dimensionality I. From the results,
it has however become unclear what value for 7. is better. It is to be expected
that for different optimization problems, different values for 7. give better results.
Furthermore, we have already argued that better results can probably obtained if
gradient search is postponed until it is really beneficial to use it. It would therefore
be interesting to see whether the results can be improved by setting 7, adaptively.
One way to do so is to look at the rate of success of the IDEA and the gradient
search procedure and increase 74 if the latter performs better than the former.
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We

Conclusions

have proposed a hybrid iterated density estimation evolutionary algorithm

that uses the conjugate gradient algorithm to obtain more efficient optimization
of continuous differentiable functions. The results in this paper indicate that such a
hybridization can improve the results of both algorithms separately. These results
may yet be further improved by altering the hybridization scheme to only use
gradient search at times when it is really beneficial to use it.
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