
 
 
Abstract – Computing the accurate localization of objects often requires a two-step approach. First, the coarse object 
detection is performed followed by accurate object localization. A widely used estimate of the object center with sub-pixel 
precision is the weighted center of gravity (COG). We derive a maximum-likelihood estimator for the variance of the (2D 
and 3D) COG, and an approximation to the estimate, as a function of the noise in the image. We assume that the noise in 
the image is additive, Gaussian distributed and independent between neighboring pixels. 
Experiments using 2,500 generated markers with a cosine profile and superimposed with Gaussian noise with different 
noise levels were performed. The experiments indicate that misplacing the window that indicates which pixels contribute 
to the COG computation causes a bias and a larger variance in the estimated COG. This bias can be reduced by applying 
a threshold on the intensities comprised by the window. The chosen weighing scheme influences the accuracy and 
precision of the estimated COG, as thresholding results in a higher accuracy, but a worse precision. The desired trade-off 
between accuracy and precision can be chosen using the derived formula for the variance of the center of gravity. 
The difference between our estimate and the true variance was always less than 5‰ of the true variance and this 
deviation decreases with increasing signal-to-noise ratio. Our approximation to the estimate performed better than the 
one presented by Oron et al. [1] by up to a factor §�� IRU D ZLQGRZ PLVSODFHPHQW RI ��� SL[HOV� 
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I. INTRODUCTION 

Object detection plays an important role in many image 
processing problems. Examples from medical imaging are 
marker recognition [2, 3] and leukocyte tracking [4]. In 
remote sensing, tasks like automatic target recognition [5-
7] and delineation of particular areas [8, 9] are essential 
object recognition tasks. Also in radar imaging, objects like 
ships [10], oil spills [11] and synthetic objects [12] need to 
be detected automatically. In such applications, it is 
important to determine the position of each detected object 
with the highest possible accuracy and precision.  

Detection of objects can be performed by approaches 
such as the Hough Transform [13], (non-) linear filters [14], 
or by pattern recognition techniques such as neural 
networks [3, 4] or support vector machines [15]. Object 
recognition can also be performed by detecting the object 
boundaries, e.g., by dynamic programming [16] or snakes 
[17]. Most of these methods give as a result the most likely 
central pixel of each detected object, either directly by 
means of a filter response or indirectly by means of the 
centroid of all points on the boundary contour. 

When the positions of the objects need to be known with 
sub-pixel precision, an accurate and robust estimate can be 
obtained by computing its center of gravity [18]. In case the 
recognition algorithm results in a binary output (pixel 
belonging to the object or not), the center of gravity of each 
object is reduced to computing the average coordinate 
along the (x,y and possibly z) axes among the pixels or 
voxels that are associated with the recognized object. 
When, on the other hand, the detection results in a set of 
output values distributed in a neighborhood around the 
object center (e.g., a filter response) and the output value is 
linearly related to the distance to the object center,  the 
weighted center of gravity [18] may result in a more exact 
object location. Another application of the weighted center 
of gravity is in the computation of statistical moments such 
that the moments of Hu [19] and Zernike [20].  

 
We will present a framework for analyzing the accuracy 

(bias) and precision (variance) of the weighted center of 
gravity in the presence of noise, see Fig. 1. For the 
weighted center of gravity, the distribution of the weights 
(intensities) among the pixels that belong to the object 
determines the accuracy of the center of gravity estimate as 
well as its precision as a function of the noise level. We use 
our framework to introduce a distinction between bias and 
variance. It is well known from the literature [21] that the 
weighted center of gravity may be a biased estimator for 
the true object center. We show − theoretically and through 
experiments − that the influence of background clutter on 
the calculation of the center of gravity of an object can be 
reduced by applying a threshold to a neighborhood that 
encompasses the detected object. This entails setting the 
weights associated with the gray values of all pixels of 
which the gray value is below some fixed value (the 
threshold) to zero, leaving all other gray values in the 
window intact.  It is furthermore shown that application of 
a threshold may increase the accuracy of the estimated 
object center but that it can also lead to a larger variance, 
i.e., an increased sensitivity to noise. Moreover, the 

application of a threshold induces a discretization error,  
which biases the estimated center. The size of this bias 
depends on the threshold level and the intensity profile of 
the object under investigation [21]. 

In this paper, we first review different noise generating 
processes. Subsequently, we derive a novel formula for the 
variance of the weighted center of gravity measure as a 
function of the noise level in 2D and 3D images, along with 
two approximations of this formula. The validity of the 
approximative formulas and the circumstances under which 
these approximations suffice are investigated. Simulations 
illustrate the influence of the weighting scheme and the 
application of a threshold on the variance and bias of the 
calculated center of gravity. The applicability of the 
weighted center of gravity and its variance is illustrated by 
examples from calibration in radiographs. 

In this paper, we first review different noise generating 
processes (section II). In section III, the center of gravity 
measure is introduced, while in section IV its variance is 
sub-divided into a bias of the mean and the variance around 
this mean center of gravity. Subsequently, we derive a 
novel formula for the variance of the weighted center of 
gravity measure along with two approximations. In section 
V, the validity of the formulas and the circumstances under 
which these approximations suffice are investigated 
experimentally. 

II.  BACKGROUND 

Define a noise-free image as a two-dimensional sampled 
function F(x,y) of the discrete coordinates x=1,…,xmax and 
y=1,…,ymax. Assume that the intensity of the pixels in a 
noisy image is the the result of successive realizations of a 
random variable ε(x,y). The noise-generating process is 
defined by the class of stochastic functions G: ℜ1+d→ℜ 
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with � the d-dimensional parameter vector describing the 
stochastic model of the noise generating process, G. We 
distinguish between three (external) general noise 
generating processes: 
• Additive noise, f(x,y)=F(x,y)+ε(x, y) 
• Multiplicative noise, f(x,y)=F(x,y)⋅ε(x, y) [23] 
• Impulsive (Salt-and-Pepper) noise,  

f(x,y)=F(x,y)+G( F(x,y),θθ) [22] 
The most simple stochastic process is that of additive 

noise. In fact, the linearity of the weighted center of gravity 
is justified in a situation with additive noise. Impulsive 
noise occurs in, e.g., transmission of images from remote 
satellites where the limited capacity of the very long 
communication lines has to be utilized optimally [24].  

We demarcate our analysis of the weighted center of 
gravity to the situation with additive noise. Additive noise 
can be generated by several different underlying processes. 
A frequently occurring process in image formation is that 
of Gaussian noise, because according to the central limit 
theorem the average of many measurements under mild 
conditions converges towards the Gaussian distribution as 
their number approaches infinity. In radiography, the 
emission of electromagnetic radiation is characterized by a 



Poisson distribution [25] whereas, e.g., the reconstructed 
signals in Magnetic Resonance Images have a Rician 
distributed noise component [26]. Both the Poisson and the 
Rice distributions can be approximated by a Gaussian 
distribution; the approximations become better with a 
decreasing signal-to-noise ratio. 

 
In the following, we assume that the noise in different 

pixels is uncorrelated. Pixels belonging to an object often 
have intensities, which are (inversely) proportional to their 
distance to the object center. Take as an example a 
convolution of an image with a linear filter of which the 
kernel resembles the object to be detected [3]. The 
convolution operation results in an output image in which 
the brightest spots indicate the most likely central 
coordinates of the objects to be detected. Fig. 2b illustrates 
the output of a convolution with a kernel that resembles a 
radiopaque marker (Fig. 2a). Often, a threshold is applied 
to this output image and bright “islands” are taken to 
indicate detected objects (Fig. 2c).  

III. CENTER OF GRAVITY 

Let us define a detection function d(x, y) (e.g., a filter), 
whose output is related to the probability that the 
coordinate (x ,y) is the central pixel of the object to be 
detected. In the sequel, we assume that the value d(x, y) ∝ 
P(center=(x, y)) for (x, y) being in some neighborhood, (x, 
y) ∈  Ω, in the vicinity of the true object center. In other 
words, it is only assumed that the detection algorithm 
results in a local maximum of d(x, y) around the center of 
each detected object. If a global maximum were required, 
only objects with the same, maximal probability 
P(center=(x, y)) could be detected in an image whereas all 
objects with a lower output from the detection algorithm 
would be missed. 

In a (two-dimensional) binary image, the binary center of 
gravity of the neighborhood Ω is defined as 
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with Ω the (possibly connected) area containing True pixels 
which belong to the object to be detected, card(Ω) denotes 
the number of True pixels in the neighborhood. In a gray-
level image, the weighted center of gravity of the object is 
defined as [18] 
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with w(x,y) a function that weighs the coordinates defined 
as 
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parameter a>0, the center of gravity is attracted to the 
brighter pixels in Ω whereas for a<0, darker pixels attract 
c(x,y).  
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(e.g. 0.01) and a=1 for bright-center objects, whereas 
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 and a = −1 for dark-

center objects. 
It is clear that the binary center of gravity "(x,y) is highly 

dependent on which pixels are regarded as belonging to the 
object. A proper identification of the local neighborhood of 
the object, Ω, which is an indication for the placement of a 
window within which the centroid computation is 
performed, is crucial for the accuracy and precision of the 
estimated object center. The (estimated) binary center of 
gravity "(x,y) is moreover sensitive to the chosen threshold 
value. The weighted center of gravity c(x,y) is a remedy to 
this problem in the sense that the object centers estimated 
with Eq. (3) are less sensitive to the chosen threshold value, 
compare Figs. 2c and 2d. Application of a threshold also 
reduces the number of weights that contribute to the center 
of gravity estimate, but causes a larger variance. In fact, the 
choice of the threshold level imposes a trade-off between 
accuracy and precision, see Fig. 1. 

The center of gravity results in a sub-pixel estimate of 
the central position of an object. However, working with 
sub-pixel precision can introduce the necessity of 
interpolation of gray values, because these are used as 
weights in the weighted center of gravity estimation. 
Interpolation entails smoothing and introduces errors into 
the final object detection result [21]. 

In the following, we will derive three estimators for the 
variance of the center of gravity. The variance is separated 
into a genuine variance term and a bias term. 

IV.  THE VARIANCE OF THE CENTER OF GRAVITY 

When the estimated center of gravity is seen as a 
realization of a noisy measurement, the level of the noise 
determines the uncertainty of the measured value. For the 
binary center of gravity " (x,y), a variance formula has been 
derived in [27]. In the sequel, we derive a maximum-
likelihood estimate for the variance of the weighted center 
of gravity as a function of the noise level in the image, σ2. 

Equation (3) shows that the noise is propagated to the 
weighted center of gravity through the weights w(x,y). 
However, both the numerator and the denominator in Eq. 
(3) contain the same weight factors for each coordinate, so 
they are dependent stochastic variables. 

Define the variance of the center of gravity for n→∞ as 
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with (γx(x, y), γy(x, y)) denoting the true and  
(cx(x, y), cy(x, y)) the estimated center of gravity and n the 
number of observations. We propose to divide the variance 
component of the weighted center of gravity into the 
variance of the estimates c(x, y) in relation to the estimated 
mean ),( yxc  and the (squared) bias component [28], 

2)),(),(( yxyxc γ− , which yields (see Appendix A) 
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The weighted center of gravity c(x, y) is only an unbiased 
estimator of the true center γ(x, y) when 

)0,0()),(),(( 2 →− yxyxc γ  for n→∞. On the other hand, 

the variance around the mean remains in the presence of 
noise. In the sequel, we derive a formula for var(x, y). 
Possible causes for a bias are investigated experimentally. 
We have identified three different causes for a biased center 
of gravity estimation: 
• quantization bias 
• discretization bias 
• averaging bias 
The quantization bias is caused by the sampling of the 
intensity function into a finite number of gray levels and is 
considered in detail by Morgan et al. [29]. The 
discretization bias is caused by sampling of the continuous 
spatial dimension into a discrete grid. This bias has been 
investigated thoroughly by Patwardhan [21]. The averaging 
bias is caused by misplacing the window Ω in relation to 
the underlying object. This bias will be explored 
experimentally in this paper. 

In order to find an expression for the variance of the 
quotient of two stochastic terms, Eq. (3), we start off with 
the delta-method, which states that for a stochastic variable 
Z [30] 
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Let Z denote the quotient of two entities X and Y and �Z its 
mean, so Eq. (8) can be rewritten as 
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Applying Eq. (8) to each of the terms in Eq. (9) yields 
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It should be noticed that Eq. (10) is based on the delta-
method and as such remains an approximation to var(X/Y). 
The approximation holds well when all observations of the 
stochastic variables X and Y are positive and their first two 
moments are well-defined. Moreover, the coefficients of 
variation of X and Y and X/Y should be less than 1, where 
the coefficient of variation (CV) of X is defined as 
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Now we define X as the numerator and Y as the 
denominator in Eq. (3) 
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Inserting Eq. (12) and (13) into Eq. (10) yields 
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Because the centers of the x- and y-coordinates are 
independent, we will continue the derivation for the x-
coordinate only; for the y-coordinate, the same derivation 
will hold. 



Above, we defined ε(x,y) in Eq. (1) as a normally 
distributed random variable, ε(x,y) ~ g(0,σ2). From this 
definition and from the part in Eq. (12) related to the x-
coordinate, we can estimate the average and variance in X 
as [30] 
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with N = card (Ω), wµ̂ the estimated average of the weights 

in Ω, and COGx̂  the coordinate of the estimated center of 

gravity along the x axis, in the neighborhood Ω. 
Similarly, the average and variance of the denominator, 

Y, in Eq. (13) become 
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Let the center of the area Ω be the origin of the coordinate 
system such that the covariance term in Eq. (10) can be 
omitted [1]. This yields the following approximation to the 
variance of the center of gravity 
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If the object is positioned centrally inside the 

neighborhood Ω of the marker’s center of gravity (i.e., xCOG 
and yCOG are very close to zero) the second terms inside the 
 
brackets in Eq. (19) (i.e.          ) can also be neglected  
 
and, thus, Eq. (14) simplifies to 
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which is the approximation derived by Oron et al. [1]. The 
two variance Eqs. (19) and (20) will be compared 
experimentally. 

V. EXPERIMENTS 

Simulations with synthetic objects were carried out to 
investigate the accuracy of the derived variance estimators, 
Eqs. (10), (19) and (20). The effect of applying a threshold 
to the noisy object images before computing the center of 
gravity was investigated as well.  

A. Experimental set-up 

We conducted a number of simulations in which 2,500 
markers with a circular (in x and y) cosine shape [3] and a 
size of 10x10 pixels were generated (Fig. 3a). The gray 
values of the centers of the markers were set close to 2 
whereas the values at the edges were close to 0. Gaussian 
noise with a zero mean and a standard deviation ranging 
from σ = 0.0 to σ = 0.50, with steps of 0.05 was 
superimposed on the marker images (Fig. 3b). Five 
experiments using a 10x10-sized window as the 
neighborhood Ω were performed. The centers of gravity of 
the markers in the first three experiments were translated by 
∆x ∈ {0, 0.5, 1.0, 1.5, 2.0} pixels from the center of the 
window Ω, before adding the Gaussian noise. In the fourth 
experiment, the marker centers were shifted by ∆x ∈ {0, 
1.5, 3.0} pixels. 

Additionally, a sixth experiment was performed in which 
a radiograph of a rectangular calibration grid was used to 
study image deformations. The distances between crossing 
points spanned by the horizontal and vertical cords on the 
grid were computed in order to decide whether de-warping  
the images makes sense in the presence of pincushion 
distortion. For all experiments, the conditions next to Eq. 
(10) were met. 

 

B. Experiment 1 – Misplacing the window 

In the first experiment, the influence of translating the 
object away from the center of the window (being 5.5) on 
the center of gravity measure was investigated (bias due to 
window misplacement). Figure 4a shows the results from 
the first experiment. The weighted center of gravity has an 
intrinsic bias towards the center of the window. Adding 
noise to the objects increases this bias towards the center of 
the window Ω. Consequently, the shape of the objects has 
less influence for an increasing amount of noise. Figure 4b 
shows that applying a threshold to the marker images 
before calculating the centers of gravity reduces the bias. 
This improvement is caused by excluding pixels that do not 
belong to the marker. The threshold was applied such that 
the center of gravity was always based on the 16 largest 
gray values in the window Ω, approximately the size of the 
marker. It is clear from this experiment that the bias caused 
by  misplacing the window can be reduced by application 
of a threshold.  

C. Experiment 2 – Variance of the center of gravity 

In the second experiment, the influence of adding noise 
to the markers on the variance of the center of gravity was 
investigated. The variance in the center of gravity was 
calculated directly from the simulated data and also 
estimated by Eq. (14). The markers were translated within 
the window along the x-direction as was described in 
experiment 1. The results of the second experiment show 
that the relation between the variance of the calculated 
centers of gravity and the standard deviation of the noise in 
the marker images is almost linear (Figure 5a). Figure 5b 
shows that the true variance and the variance estimated by 
Eq. (14) deviate less than 2.5‰. So the approximation in 
Eq. (14) is almost exact. Translating the markers within the 

22 ˆ/ wN µσ ⋅



window results in larger variances of the center of gravity. 
This translation introduces areas with lower average gray 
values into the window but with the same noise component. 
This explains the deviating curves in Fig. 5a. Thus, pixels 
with a high SNR are replaced with pixels with a low SNR, 
which enlarges the resulting variance in the estimated 
center of gravity. 

D. Experiment 3 – Variance of the center of gravity 
with threshold 

The purpose of the third experiment was twofold. First, 
we investigated the effect thresholding has on the variance 
of the estimated center of gravity. Secondly, we studied the 
behavior of the variance estimator when translating the true 
object center. This experiment was similar to the second 
one, except from the fact that a threshold was applied to 
each marker image before calculating the center of gravity 
and estimating its variance. The threshold was applied such 
that the center of gravity was always based on the 16 
largest gray values in the window Ω. The remaining 
weights were set to zero.  

This experiment shows the relation between the 
application of the threshold and the increasing dispersion in 
the resulting center of gravity measures as a function of a 
poorer signal-to-noise ratio. An almost linear relation is 
seen between the variance of the calculated centers of 
gravity and the standard deviation of the noise in the 
marker images (see Fig. 5c). However, the order of 
magnitude of the resulting variances in the centers of 
gravity is approximately twenty times as large as those 
observed in the second experiment (see Fig. 5a). This is the 
result of the smaller number of pixels (N=16) that 
contribute to the center of gravity calculation as compared 
to the set-up in the second experiment (N=100).  

The effect of translating the object center – with and 
without application of a threshold – is clearly visible by 
comparing Fig. 5a and 5c. Noticing the difference in the 
order of magnitude of the y-axes in the two figures, it is 
apparent that the application of a threshold implies that the 
variance becomes independent of the position of the true 
object center with respect to the window (Fig 5c). When 
this threshold is not applied, the variance of the center of 
gravity becomes dependent of the object center. 
Consequently, the certainty of the estimated object center 
will depend on where in the window the object is 
positioned. 

The differences between the estimated (Eq. (14)) and 
true variances increase with the amount of noise in the 
marker images, but they are always less than 5‰ of the true 
variance (Figures 5c and 5d). 

E. Experiment 4 – Precision of the approximative 
variance estimators 

In the fourth experiment, the true variance in the center 
of gravity measures was compared to the approximations 
from Eqs. (19) and (20). Again, 2,500 markers were 
generated and superimposed with Gaussian noise. The 
markers were similar to those used in the previous three 
experiments, also the same noise levels were used. No 
threshold was applied in this experiment, but the markers 
were translated along the x-direction. The variances 

estimated with the Eqs. (19) and (20) were compared with 
the true variance, for markers that were translated by 0, 1.5 
and 3.0 pixels along the x-direction. 

The simulations show that Eq. (19) is a good 
approximation to the true resulting variance of the center of 
gravity measure (Figure 6a), and Eq. (20) is a good 
approximation only if the marker is positioned centrally in 
the window. For situations where the true center of gravity 
differs from the center of the window (see Figures 6b and 
6c) the results from Eq. (20) deviate considerably from the 
true variances. From this experiment, it is clear that Eq. 
(19) outperforms Eq. (20), the approximation derived by 
Oron et al. [1]. The poorer performance of Eq. (20) is a 
result of ignoring the second term (i.e. var (Y)/µY 

2) in Eq. 
(10). Additional simulations indicated that if the origin of 
the coordinate system was not positioned in the expected 
center of gravity, both Eqs. (19) and (20) result in biased 
variance estimates. This can be explained by the fact that in 
Eqs. (19) and (20), the variance depends on the coordinates 
in the neighborhood of the object. Equations (19) and (20) 
require the origin of the coordinate system to be placed in 
the center of gravity of the marker. Additionally, Eq. (20) 
requires the center of the window to be positioned in the 
center of gravity of the marker. Both requirements entail 
pixel interpolation. The actual variance in the center of 
gravity does not depend on how the coordinate system is 
positioned. The covariance term in the almost exact 
formula Eq. (10) accounts for the translation of the origin. 

F. Experiment 5 – Inversion of intensity distributions 

In the fifth experiment, we investigated the influence of 
the value of m in Eq. (4) on the center of gravity measure 
and its variance, without translating the markers within the 
window. In this experiment, sets of 2,500 markers, similar 
to those used in the first experiments were generated, but 
the markers were inverted, so the center of the marker was 
the minimum and the peaks were on the verge between 
marker and background (like the situation sketched in Fig. 
2a). The marker intensities still ranged from 0 to 2, before 
noise was added. The value of m ranged from 2.3 to 15, but 
was always chosen such that )),((max

,
yxfm

yx Ω∈
>  with f(x,y) 

the intensity of a marker image at coordinate (x, y).  
 
The maximum gray values within the window ranged 

from 2.0 for the markers without noise to 3.95 for the 
markers with noise added with a standard deviation of 0.50. 
The results indicate that for all noise levels, increasing the 
value of m biases the center of gravity measure towards the 
center of the window (Fig. 7a). Figure 7b shows that the 
variance in the center of gravity decreases (for all noise 
levels) as a function of m.  According to Figs. 7a and 7b, a 
larger value of m (with a<0) causes the influence on the 
COG of the gray values in the window Ω in Eq. (4) to 
decrease, i.e., m operates as a smoothing operator besides 
inverting the intensity distribution. That explains why the 
center of gravity moves towards the center of the window 
with an increasing value of m (with a<0). Moreover, a 
larger value of m results in a smaller variance in the center 
of gravity measure. For very large values of m, the variance 
in the center of gravity tends to zero. In order to minimize 
the influence of the parameter m, its value should be chosen 



close to the largest gray value, always applying the 
conditions specified in relation to Eq. (4) for m. 

G. Experiment 6 – Classification of image deformation 

In this experiment, we used a radiograph of a rectangular 
calibration grid (see Fig. 8a.) to determine the amount of 
image deformation caused by e.g. pincushion distortion. An 
image of the grid was acquired with a tube voltage of 60 
kV. This image was convolved with the LoG (Laplacian of 
the Gaussian kernel) [32] in order to find the crossings of 
the horizontal and vertical bands, see Fig. 8b. The crossings 
appear as dots in the result image, from which their 
locations were estimated using the Hough Transform. 
Precise locations for the band crossings were calculated 
using the center of gravity formula, Eq. (3).  

Before calculating each center of gravity from the 
radiograph itself, the neighborhood Ω was superimposed 
with additive Gaussian noise of specific noise levels, σ. 
The resulting signal-to-noise-ratios (SNR) were 12.3 dB, 
18.3 dB and 24.3 dB, respectively, and ∞, when no noise 
was superimposed. 

For all situations, we calculated three horizontal and 
three vertical distance cords between designated pairs of 
crossings. The length of each cord was the average of 10 
repeated measurements, see Fig.  8b. 

The variance in the resulting distances was calculated 
from the variances in the centers of gravity for the 
crossings, which were estimated using Eq. (19). We 
assumed that the noise we superimposed on the crossing 
areas was uncorrelated. Consequently, the variance of each 
cord length was calculated as the sum of the variances in 
two crossings which span the cord.  

Finally, using Student’s T-test, we tested the hypothesis 
H0 that the parallel (vertical or horizontal) cords have the 
same length 

For the cases with a SNR of ∞ this test could not be 
performed, because the resulting estimated variances in the 
measured distances were zero.  

 
Table I shows the test results for the hypothesis H0: two 

parallel cords have the same length. We used the critical 
value for Student’s double-sided T-test with α=0.05 and the 
degrees of freedom ν=18 (2 times 10 repetitions minus 1) 
which is 2.101. From Table I, it appears that when the  
SNR deteriorates the number of significantly different cord 
lengths decreases, i.e., the hypothesis H0 cannot be rejected 
for an increasing number of distance pairs. This means that 
with a higher amount of noise, it becomes increasingly 
difficult to determine whether local image deformation is 
present. This experiment shows an application of our 
variance estimator Eq. (19). 

VI.   DISCUSSION 

We investigated the accuracy and precision of the 
estimated center of gravity of detected objects (e.g. 
radiopaque markers or leukocytes) in an image as estimate 
for the central object position. Initial experiments indicated 
that thresholding should be applied when the window from 
which the object center is computed, is translated in 
relation to the true object center. Without previous 

thresholding, the computed center of gravity becomes a 
biased estimate of the true center.  

We derived three formulas for the variance of the center 
of gravity estimate as a function of the signal-to-noise ratio 
in the image, Eq. (14), Eq. (19) and Eq. (20), respectively. 
Our simulations indicate that all three give good variance 
estimates when the window is positioned centrally on the 
marker. When the true marker center is translated in 
relation to the center of the window, before the center of 
gravity is estimated, the approximation derived by Oron et 
al. (Eq. (20)) [1] underestimates the true variance of the 
center of gravity significantly. Hence, Eq. (20) is a biased 
estimator of the variance in the center of gravity. Our more 
exact approximation, Eq. (19), estimates the true variance 
within a margin of 8% for a marker shift with respect to the 
window center ∆x = 0, a margin of 5.7% for ∆x = 1.5 and 
of 4.2% for ∆x = 3.0. For ∆x = 0, Eqs. (19) and (20) give 
the same results; for ∆x = 1.5, Eq. (20) estimates the true 
variance within a margin of 24% and for ∆x = 3.0 within a 
margin of 52%. 

Both the estimated center of gravity and its variance 
depend on the size of the window that encompasses the 
pixels that are regarded as belonging to the object. It is 
clear from both Eq. (19) and Eq. (20) that a larger N leads 
to a decrease in the variance as N occurs in the 
denominators of both variance formulas. Decreasing the 
size of the window, on the other hand, diminishes the 
probability that pixels that do not belong to the particular 
object enter the calculation. Hence, the center of gravity 
may be estimated more accurately, because this decreases 
the averaging bias.  

As already stated, our simulations indicate that a 
threshold should in general be applied. Several automatic 
methods have been developed for optimal threshold 
selection, for a discussion, see e.g. [33]. Which threshold 
value is optimal for estimating the center of gravity, 
depends on the intensity pattern surrounding the object 
center, the chosen window size, the level of the noise 
present and the preferred trade-off between the (inversely 
related) averaging bias and discretization bias, and 
variance. A high threshold implies that only a few pixels 
enter the computation. A low threshold results in more 
averaging, because more pixels enter the center-of-gravity 
calculation, such that noise has less influence on the center 
of gravity estimate. However, this compromises the 
accuracy (averaging bias) in the sense that the center of 
gravity estimate becomes biased by the positioning of the 
window. Conclusively, both the choice of the optimal 
window size and threshold value entail a trade-off between 
bias (averaging over many pixels, discretizing the 
underlying continuous signal) and variance (including only 
a few pixels in the computation). 

The theoretical results and the results obtained from the 
simulation experiments can be summarized in table form. 
Table II indicates the effects of varying parameters such as 
window size, shifting the object, increasing the noise level 
and the application of a threshold on the bias and variance 
of the estimated center of gravity. Patwardhan [21] showed 
that the application of a threshold to the neighborhood Ω 
introduces a discretization bias, the size of which depends 
on the radius of the object and the number of pixels that 
contribute to the center of gravity estimate. So, changing 



the threshold level causes coordinates to be used or 
discarded in the center of gravity computation. 
Consequently, the discrepancy between the continuous and 
the discrete center of gravity shows a jagged pattern when 
the object is shifted with sub-pixel precision. The 
discretization bias cannot exceed 0.5 pixel assuming a 
connection criterion is applied. The discretization bias 
decreases when more pixels enter the center of gravity 
computation. So, lowering the threshold leads to a decrease 
in the discretization bias (see Table II). 

 
To avoid errors caused by window misplacement, an 

iterative center of gravity calculation could be used, 
relocating the window between iterations. As always, an 
iterative approach brings about the subject of convergence. 
This could be a subject for further research. 

In the case that the center of gravity of an elongated 
object (which is non-isotropic) is to be determined, 
different optimal window sizes in the x- and y-directions 
apply. As a consequence, the trade-offs between bias and 
variance are different for the two directions. The number of 
contributing pixels will be the same for the calculation of 
the center of gravity estimates for all directions, i.e., the 
number N of pixels inside the window Ω. Assuming that 
the variance in the underlying coordinate distribution is 
larger in the direction in which the object is larger, the 
resulting variance in the center of gravity and its estimates 
will also be larger in this direction. 

The center of gravity, Eq. (3), and variance formula, Eq. 
(19), can easily be extended to 3-dimensions which can be 
useful when determining object centers in, e.g., CT- and 
MR-images. The window Ω becomes 3-dimensional, 
resulting in the following center of gravity formula 
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as based on Eq. (19). 

We investigated the influence of Gaussian distributed 
additive “white” noise on the accuracy and precision of the 
estimated center of gravity. The noise inherent in some 
imaging modalities is known not to be Gaussian. An 
example is radiography where the number of particles in an 
X-ray emitted in the time interval during exposure follows 
a Poisson distribution. In many cases, the Gaussian 
distribution will be a sufficient approximation for the 
slightly skew Poisson distribution. 

With the last experiment we showed that our variance 
estimator in Eq. (19) can be applied to detect image 
deformations in the presence of noise. 

 

VII.  CONCLUSION 

In this paper, we have studied the behavior of the 
(weighted) center of gravity measure as a function of 
additive noise present in the gray value image. 
Furthermore, we analyzed the influence of applying a 
threshold to the gray value image (which determines the 
weighing scheme) for a possible bias and variance of the 
center of gravity measure. The decision whether to apply a 
threshold to the gray value image or not, is basically a 
choice between accuracy and precision. Application of a 
threshold before the center of gravity is computed, results 
in general in a better accuracy (smaller bias) but a worse 
precision. For a specific application where the exact object 
centers should be known, we recommend that experiments 
are being conducted as to establish the desired trade-off 
between bias and variance. The factors that should be 
varied are listed in Table II. 

We have compared two formulas for the estimation of 
the variance of the center of gravity measure with the true 
variance. Our approximation (Eq. (19)) performs much 
better than the one presented by Oron [1] (Eq. (20)) when 
the evaluation window Ω is not centered on the true center 
of gravity. Because the true center of gravity is generally 
unknown beforehand, a misplacement of the evaluation 
window Ω might easily occur. In this case, if an estimation 
of the precision of the center of gravity measure is 
requested, our novel estimator (Eq. (19)) should be applied. 

When an image is affected by multiplicative noise, the 
natural logarithm should be applied on the image, before 
the center of gravity is computed. The natural logarithm 
operation converts multiplicative noise to additive noise, 
for which our formulas hold. 

It is clear that caution should be taken with respect to 
how the pixel intensities are weighed. The condition next to 
Eq. (4) has to be obeyed to avoid weights smaller than or 
equal to zero. A weight equal to zero means that the 
corresponding coordinate is excluded from the center of 
gravity calculation; negative weights cause the center of 
gravity to be pulled in the wrong direction. Both situations 
cause a bias in the resulting center of gravity measure and 
therefore have to be avoided. 

In conclusion, we can state that in order to find the best 
estimate for the center of gravity in a gray level image, a 
threshold should in general be applied to (the local 
neighborhood in) the image before calculating a center of 



gravity measure. Our variance formula makes it possible to 
estimate the trade-off between accuracy and precision, in 
the presence of noise.  

 
APPENDIX A 

 
In section IV, we define the variance of the center of 

gravity for n→∞ as 
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with (γx(x, y), γy(x, y)) denoting the true and  
(cx(x, y), cy(x, y)) the estimated center of gravity and n the 
number of observations. Next, we propose to divide the 
variance component of the weighted center of gravity into 
the variance of the estimates c(x, y) in relation to the 
estimated mean ),( yxc  and the (squared) bias component 

[28], 2)),(),(( yxyxc γ− . 

 
In order to achieve this, we add (only x-components are 
shown, y-components are identical) ),( yxcx  to the term 

2)),(),(( yxyxc xx γ−  in Eq.(5). This yields 
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Expanding the quadratic term, gives us 
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In this last equation (Eq. (A.2)) the term )),(),(( yxyxc xx γ−  

is a constant and because of the definition of ),( yxc in Eq. 

(7) the term )),(),((
1

1 yxcyxcn
n

i
xx∑

=

− −  is equal to zero.  

Substituting this finding in Eq. (A.2), results in 
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which is equal to the x-component of Eq. (6). 
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FIGURES AND TABLES 
 
 

 
Fig. 1. (a) Estimated center of gravity is biased, but successive realizations (in the presence of noise) show a small dispersion. (b) 
Estimated center of gravity is unbiased, but highly dispersed. (c) Estimated center of gravity is biased, and highly dispersed. (d) 
Optimal situation, where the estimated center of gravity is unbiased and successive realizations show a small dispersion. 
 
 
 

    
(a) (b) (c) (d) 
Fig. 2  (a) Output image resulting from a convolution with a kernel for detection of radiopaque markers. (b) shows the pixels of 
which the intensity exceeds the chosen threshold. (c) indicates the center of gravity (black cross) computed from the binary image 
(which results from a thresholding operation) using Eq. (2). (d) indicates the center of gravity (black cross) computed from the 
gray level image (after thresholding) using Eq. (3). 
 
 
 

  
(a) (b) 
Fig. 3. (a) Artificial marker with a cosine profile. Gray levels range from 0 to 2. (b) the same marker superimposed with Gaussian 
noise with a standard deviation of 0.15.
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(a) (b) 
Fig. 4. Bias in the mean of the center of gravity (for the x-coordinate) of a marker cf. Fig. 3 as a function of the standard deviation 
of the noise in the gray levels. The different series indicate different window misplacements (x = 5.5 means that the window was 
placed centrally on the marker). (a) without application of a threshold. (b) with application of a threshold. 
 
 
 

TRUE VARIANCE OF THE COG

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

0 0.1 0.2 0.3 0.4 0.5 0.6

STD.DEV. OF THE NOISE

V
A

R
IA

N
C

E
 O

F
 T

H
E

 C
O

G

x=5.5

x=5.0

x=4.5

x=4.0

x=3.5

 

DIFFERENCES BETWEEN THE TRUE VARIANCE AND THE ESTIMATED VARIANCE OF 
THE COG

-4.00E-06

-2.00E-06

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

0 0.1 0.2 0.3 0.4 0.5 0.6

STD.DEV. OF THE NOISE

V
A

R
IA

N
C

E
 D

IF
F

E
R

E
N

C
E

X=5.5

X=5.0

X=4.5

X=4.0

X=3.5

 
(a) (b) 

TRUE VARIANCE OF THE COG (WITH THRESHOLD)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6

STD.DEV. OF THE NOISE

V
A

R
IA

N
C

E
 O

F
 C

O
G

x=5.5

x=5.0

x=4.5

x=4.0

x=3.5

 

DIFFERENCES BETWEEN THE TRUE VARIANCE AND THE ESTIMATED VARIANCE OF THE COG 
(WITH THRESHOLD)

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

0 0.1 0.2 0.3 0.4 0.5 0.6

STD.DEV. OF THE NOISE

V
A

R
IA

N
C

E
 D

IF
F

E
R

E
N

C
E

x=5.5

x=5.0

x=4.5

x=4.0

x=3.5

 
(c) (d) 
Fig. 5. Variances of the center of gravity of the marker cf. Fig. 3 as a function of the standard deviation of the noise in the gray 
levels. The different series indicate different window misplacements (x = 5.5 means that the window was placed centrally on the 
marker). (a) true variance of the center of gravity from simulation data (no threshold). (b) errors of the estimated (cf. equation 
(11)) center of gravity with respect to the true variances (no threshold). (c) same as (a) but with threshold. (d) same as (b) but 
with threshold. 
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(c) 
Fig. 6. Comparison of the true variance of the center of gravity from simulation data with values from equations (19) and (20). 
The origin of the coordinate system was placed at the center of gravity. (a) window was placed centrally on the marker. (b) 
window was misplaced along the x-direction by 1.5 pixels. (c) window was misplaced along the x-direction by 3.0 pixels. 
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(a) (b) 
Fig. 7. The center of gravity and its variance as a function of the weighing parameter m (equation (4)). The window was 
positioned centrally on the marker. Different series indicate different standard deviations of the noise in the gray values in the 
marker image. (a) center of gravity is more biased with larger difference between the maximum gray value and m. (b) the 
variance of the center of gravity (log-scale) decreases with increasing difference between the maximum gray value and m. 



  
(a) (b) 
Fig. 8. (a) Radiograph of the rectangular grid used in experiment 6. The band crossings used to measure the horizontal and 
vertical distances are indicated with black dots. All the distances measured were distances over 4 cells (white arrow illustrates the 
cord). (b) image indicating the detected grid crossings. 
 
 
 
Table I. Results of two-sided Student’s T- test with hypothesis H0 that two horizontal or vertical distances are equal. The critical 
value for T, with 1-α=0.975 and ν=18, was 0.2101. In the table, d1 is the uppermost, d2 the middle and d3 the lowest horizontal 
distance and d4 is leftmost, d5 the middle and d6 the rightmost vertical distance. With decreasing SNR the hypothesis H0 can be 
rejected in a decreasing number of tests. 
Horizontal distances 

 SNR=24.3 dB SNR=18.3 dB SNR=12.3 dB 

H0 T-value Reject H0? T-value Reject H0? T-value Reject H0? 

d1 = d2 -3.53 Yes -1.82 No -1.03 No 

d2 = d3 3.83 Yes 2.17 Yes 1.24 No 

d1 = d3 0.51 No 0.47 No 0.29 No 

Vertical distances 

 SNR=24.3 dB SNR=18.3 dB SNR=12.3 dB 

H0 T-value Reject H0? T-value Reject H0? T-value Reject H0? 

d4 = d5 -3.59 Yes -2.21 Yes -0.94 No 

d5 = d6 0.43 No 0.27 No -0.51 No 

d4 = d6 -3.02 Yes -1.85 No -1.31 No 

 
 
 
Table II. This table summarizes the results found in our simulation studies. The up-arrow in cell (1,1), which combines bias with 
increasing window size, indicates a larger window will increase the bias in the center of gravity estimate compared with the true 
object center. The down-arrow in cell (2,1), which combines variance with increasing window size, will decrease the variance in 
the estimated center of gravity. A 0, e.g. in cell (5,1), indicates that shifting the object has not effect on the bias when 
thresholding is applied before the center of gravity is computed. 

Factor Increasing 
window size 

Thresholding Poorer signal-to-
noise ratio 

Shifting object 
(no threshold) 

Shifting object 
(with threshold) 

Bias ↑ ↓*↑** ↑ ↑ ≈0 
Variance ↓ ↑ ↑ ↑ ≈0 
* Increasing the threshold leads to a smaller averaging bias 
**  Increasing the threshold leads to a larger discretization bias 

 
 


