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Abstract

In this paper, we will evaluate the power and usefulness
of Bayesian network classifiers for credit scoring. Various
types of Bayesian network classifiers will be evaluated and
contrasted including unrestricted Bayesian network clas-
sifiers learnt using Markov Chain Monte Carlo (MCMC)
search. The experiments will be carried out on three real
life credit scoring data sets. It will be shown that MCMC
Bayesian network classifiers have a very good performance
and by using the Markov Blanket concept, a natural form of
input selection is obtained, which results in parsimonious
and powerful models for financial credit scoring.

1. Introduction

The problem of financial credit scoring is a very chal-
lenging and important financial analysis problem. Many
techniques have already been proposed to tackle this prob-
lem, ranging from statistical classifiers to decision trees,
nearest-neighbour methods and neural networks. Although
the latter are powerful pattern recognition techiques, their
use for practical problem solving (and credit scoring) is
rather limited due to their intrinsic opaque, black box na-
ture. Recently, Bayesian network classifiers have been in-
troduced in the literature as probabilistic white-box classi-
fiers with the capacity of giving a clear insight into the struc-
tural relationships in the domain under investigation. In this
paper, we will investigate the performance and complexity
of various kinds of Bayesian network classifiers for finan-
cial credit scoring. The experiments will be carried out on
three real life credit scoring data sets.

This paper is organised as follows. Section 2 discusses
several types of Bayesian network classifiers. The experi-

mental setup and the results are presented in section 3. Con-
clusions are drawn in section 4.

2. Bayesian network classifiers

A Bayesian network (BN) represents a joint proba-
bility distribution over a set of discrete attributes. It
is to be considered as a probabilistic white-box model
consisting of a qualitative part specifying the conditional
(in)dependencies between the attributes and a quantitative
part specifying the conditional probabilities of the data set
attributes [8]. Formally, a Bayesian network consists of
two partsB = hG;�i, the directed acyclic graphG con-
sisting of nodes and arcs and the conditional probability
tables� = (�x1 ; :::; �xn). The nodes are the attributes
X1; :::; Xn whereas the arcs indicate direct dependencies.
The graphG then encodes the independence relationships
of the domain. Each conditional probability table has the
form �xij�xi = PB(xij�xi) for each possible valuexi of
Xi, and�xi of �Xi

, where�Xi
denotes the set of direct

parents ofXi in G. The networkB then represents the fol-
lowing joint probability distribution:

PB(X1; :::; Xn) =

nY
i=1

PB(Xij�Xi
) =

nY
i=1

�Xij�Xi
: (1)

The first task when learning a Bayesian network is to find
the structureG of the network. Once we know the network
structureG, the parameters� need to be estimated. In this
paper, we will use the empirical frequencies from the data
D to estimate these parameters1:

�̂xij�xi = P̂D(xij�xi): (2)

1Note that we hereby assume that the data set is complete, i.e., no miss-
ing values.



It can be shown that these estimates maximise the log like-
lihood of the networkB given the dataD [4].

A Bayesian network is essentially a statistical model that
makes it feasible to compute the (joint) posterior probabil-
ity distribution of any subset of unobserved stochastic vari-
ables, given that the variables in the complementary subset
are observed. This functionality makes it possible to use a
Bayesian network as a statistical classifier by applying the
winner-takes-all rule to the posterior probability distribution
for the (unobserved) class node [3].

2.1. The Naive Bayes Classi�er

A simple Bayesian network classifier, which in practice
often performs surprisingly well, is the Naive Bayes classi-
fier [3]. This classifier basically learns the class-conditional
probabilitiesP (Xi = xijC = cl) of each attributeXi given
the class labelcl. A new test case(X1 = x1; :::; Xn = xn)
is then classified by using Bayes’ rule to compute the poste-
rior probability of each classcl given the vector of observed
attribute values:

P (C = cljX1 = x1; :::; Xn = xn) =
P (C=cl)P (X1=x1;:::;Xn=xnjC=cl)

P (X1=x1;:::;Xn=xn)
:

(3)

The simplifying assumption behind the Naive Bayes clas-
sifier is that the attributes are conditionally independent,
given the class label. Hence,

P (X1 = x1; :::; Xn = xnjC = cl) =Qn

i=1 P (Xi = xijC = cl):
(4)

This assumption simplifies the estimation of the class-
conditional probabilities from the training data. Notice that
one does not estimate the denominator in Eq. (3) since it is
independent of the class. Instead, one normalises the nomi-
nator term to 1 over all classes.

2.2. The Tree Augmented Naive Bayes
Classi�er

In [4] Tree Augmented Naive Bayes Classifiers (TANs)
were presented as an extension to the Naive Bayes Classi-
fier. TANs relax the conditional independence assumption
by allowing arcs between the attributes. An arc from at-
tributeXi to Xj implies that the impact ofXi on the class
variable also depends on the value ofXj . In a TAN net-
work, the class variable has no parents and each attribute
has as parents the class variable and at most one other at-
tribute. The attributes are thus only allowed to form a tree
structure. In [4], a procedure was presented to learn the
optional arrows in the structure that forms a TAN network.
This procedure is based on an earlier algorithm suggested
by Chow and Liu [1].

2.3. Unrestricted Bayesian network classi-
�ers

Several different approaches exist for learning the
structure of an unrestricted probabilistic network, for an
overview, see, e.g., [6]. In this paper, we use a Bayesian
approach to structure learning [5]. The motivation behind
this approach is to obtain samples from a (posterior) distri-
bution of probabilistic network structures (the modelsM )
given the (discrete) dataD, rather than learning a particular
probabilistic network structure that maximizes a certain cri-
terion such as the maximum likelihood. The posterior dis-
tribution of the (finite number of)modelsis given by Bayes’
formula:

P (M jD) =
P (DjM)P (M)

P (D)
; (5)

with
P (D) =

X
M2M

P (DjM)P (M): (6)

The probability distributionP (DjM) is the likelihood
of the dataD given the modelM , which has a closed form
given certain assumptions [6]. The termP (M) is the prior
of the network structure (we assume a uniform prior). The
posterior probabilityP (M jD) allows us to account for the
uncertainty of every model. Once we account for the un-
certainty of the models, it is possible to weigh competing
quantities of interest by averaging over all the models in the
following way:

P (�jD) =
X
M2M

P (�jM;D)P (M jD); (7)

where� refers to the quantity of interest andP (�jD) is its
posterior density given the dataD. For our current purpose,
� will correspond to a restriction regarding conditional in-
dependence. For a given query nodeC (the class labelin
classification problems), define the two disjoint subsetsZ

andY , X = Z [ Y [ fCg, for which it holds thatC is
independent ofZ, when all variables inY are observed,
C??ZjY . The setY is uniquely defined by the graphical
structureG, and is called theMarkov Blanketof nodeC. If
the direct parents of a nodeC is denoted by�C and the di-
rect children by�C , the markov blanket of nodeC is given
by�C [ �C [ ��C .

The method of Markov chain Monte Carlo (MCMC
hereafter) samples directly from the posterior distributions
P (M jD) andP (�jD), so the summation (Eq. (7)) is per-
formed implicitly. The Metropolis-Hastings algorithm was
first adapted for structural learning of Bayesian and Markov
Networks by Madigan and York [7]. LetM denote the
whole class of DAGs given by the complete set of variables
X . For each DAGM � G 2 M, letN (G) be the set of
neighbourmodels ofM . Let q be a transition matrix such



that for some otherM 0 �M(G0) 2 M, q(M ! M 0) = 0
if M 0 62 N (G) andq(M ! M 0) > 0 if M 0 2 N (G). Us-
ing the transition matrixq we build a Markov chainM(t; q),
t = 1; 2; : : : ; n, with state spaceM.

Let the chainM(t; q) be in stateM and let’s draw a can-
didate modelM 0 from q(M ! M 0). The proposed model
M 0 is accepted with probability

�(M 0;M) = min

�
1;
jN (G)jP (M 0jD)

jN (G0)jP (M jD)

�
; (8)

wherejN (G)j refers to the cardinality of the set of neigh-
bors of the modelM . If M 0 is not accepted,M(t; q)
remains in stateM . Such a Markov chainM(t; q) has
P (M jD) as its equilibrium distribution which means that,
after the chain has ran forenoughtime, the draws can be
regarded as a sample from the target distributionP (M jD),
and one says that the chain hasconverged.

The convergenceof the Markov chain to the target dis-
tribution P (M jD) is guaranteed under the regularity con-
ditions of Irreducibility and Aperiodicity. In our particular
case, we should take care on how a new candidate graph
is proposed, in order to retain those regularity conditions.
For Bayesian Networks [7], it reduces to pick randomly an
ordered pair of vertices and propose the addition of an arc
if the vertices are non-adjacent and the addition keeps the
digraph acyclic. If the vertices are adjacent then the algo-
rithm proposes the removal of the arc, which depends of
no further condition as removal always leaves the digraph
acyclic.

When the Markov chainM(t; q) converges, the draws
from the Markov chain mimic a random sample from
P (M jD). Therefore, in order to get an estimate of
P (M jD), it suffices to account for the frequency of visits
of each modelM and divide it by the number iterationsn.
After all these iterations have been performed, the obtained
graphs can be grouped according to their markov blankets
in relation to the node of interest,C.

Although the MCMC learning algorithm results in a set
of directed acyclic graphs, it is by no means trivial to com-
pare the resulting independence relations that follow from
a particular graph. The domain knowledge we have is con-
fined to the correct classification of each case. Assuming
a symmetric loss function, this classification should corre-
spond to the most likely outcome of the query node (winner-
takes-all rule). Therefore, we decided to use the percent-
age of correctly classified training cases as criterion for as-
sessing the appropriateness of a particular model. The only
drawback of this approach is that inference - computation of
the posterior probability distribution of the query node - is
required. Inference is known to be computationally com-
plex. Moreover, in the MCMC learning paradigm, each
graph in the chain needs to be triangulated before the de-

sired posterior probabilities can be computed.

3. Experiments

All Bayesian network classifiers were applied to three
real life credit scoring data sets. The Bene1 and Bene2 data
set were obtained from major Benelux financial institutions
whereas the German credit data set is publicly available at
the UCI repository2. After discretisation, Bene1 has 3123
observations with 23 inputs, Bene2 7190 observations with
28 inputs and German credit 1000 observations with 15 in-
puts. Each data set was randomly split into two-third train-
ing set and one-third test set. We compare the performance
of the Bayesian network classifiers with the performance of
C4.5, which is a well-known decision tree classifier. For the
MCMC net classifier, we did 10 runs of each 15000 itera-
tions for the Markov Chain and chose the network with the
best training set accuracy.

The performance is quantified using both the percent-
age of correctly classified (PCC) observations and the area
under the receiver operating characteristic curve (AUROC).
The receiver operating characteristic curve (ROC) is a 2-
dimensional graphical illustration of the sensitivity on the
Y-axis versus 1-specificity on the X-axis for various values
of the classification threshold [9]. It basically illustrates the
behaviour of a classifier without regard to class distribution
or misclassification cost. The AUROC then provides a sim-
ple figure-of-merit for the performance of the constructed
classifier. We will use McNemar’s test to compare the PCCs
of different classifiers and the nonparametric chi-squared
test of De Long, De Long and Clarke-Pearson to compare
the AUROC values [2].

Table 1 depicts the PCC and AUROC values for all clas-
sifiers on the test set. The best absolute PCC and AUROC
performances per data set are underlined. The MCMC net
classifier obtained the best PCC performance on both Bene1
and German credit. For the Bene2 data set, its PCC perfor-
mance was statistically different from C4.5 at the5% level
but not at the1% level. The AUROC values of the MCMC
classifier were not statistically different from the best AU-
ROC value at the1% level for all three data sets.

Besides the classification accuracy, we also want to eval-
uate the Bayesian network classifiers on their complexity.
To this end, we will look at the number of nodes and links
in the network. For C4.5, we will look at the number of
leaf nodes and total number of nodes (leaves and internal
nodes) of the tree to assess its complexity. Table 2 displays
the complexity of the Bayesian network and C4.5 classi-
fiers. The Naive Bayes and TAN classifiers do not prune
any inputs because they all remained in the Markov Blanket
of the classification node for all three data sets. However,

2http://kdd.ics.uci.edu/



Bene1 Bene2 German credit
PCC Test AUROC Test PCC Test AUROC Test PCC Test AUROC Test

Naive Bayes 69.54 76.58 69.09 74.15 71.52 76.64
TAN 68.67 75.63 73.47 77.27 67.88 59.60
MCMC net 71.29 75.39 72.06 75.34 73.03 73.24
C4.5 69.74 71.73 73.75 72.64 71.21 68.25

Table 1. Performance of the Bayesian network classifiers and C4.5.

Bene1 Bene2 German credit
Naive Bayes 24 nodes and 23 links 29 nodes and 28 links 16 nodes and 15 links
TAN 24 nodes and 45 links 29 nodes and 55 links 16 nodes and 29 links
MCMC net 4 nodes and 5 links 12 nodes and 23 links 6 nodes and 6 links
C4.5 110 leaves and 157 nodes287 leaves and 423 nodes37 leaves and 53 nodes

Table 2. Complexity of the Bayesian network classifiers and C4.5.

the Markov Blanket concept allowed the MCMC net clas-
sifier to prune a lot of inputs for all data sets. This resulted
in parsimonious yet powerful networks for decision mak-
ing. E.g., for the Bene1 data set, 20 inputs could be pruned
leaving only 3 input nodes and the classification node in the
network. Note that the decision trees induced by C4.5 are
rather complex because of the large number of leaves and
nodes. Figure 1 presents the MCMC net that was trained
for the German credit data set.

Class

Duration

Checking Account Credit Amount

Savings Account Foreign Worker

ClassClass

DurationDuration

Checking Account Credit AmountChecking AccountChecking Account Credit AmountCredit Amount

Savings Account Foreign Worker

Figure 1. MCMC net for German credit.

4. Conclusions

In this paper, we have evaluated and contrasted several
types of Bayesian network classifiers for credit scoring. The
evaluation was done by looking at the performance (in terms
of classification accuracy and area under the receiver oper-
ating characteristic curve) and the complexity of the trained

classifiers. We used Markov Chain Monte Carlo (MCMC)
search to learn unrestricted Bayesian network classifiers. It
was shown that MCMC Bayesian network classifiers have
a very good performance and by using the Markov Blanket
concept, a natural form of input selection is obtained, which
results in parsimonious and powerful models for financial
credit scoring.
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