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Abstract

Naive Bayes classi�ers tend to perform very well on a large number

of problem domains, although their representation power is quite limited

compared to more sophisticated machine learning algorithms. In this pa-

per we study combining multiple naive Bayes classi�ers by using the hierar-

chical mixtures of experts system. This system, which we call hierarchical

mixtures of naive Bayes classi�ers, is compared to a simple naive Bayes

classi�er and to using bagging and boosting for combining multiple clas-

si�ers. Results on 19 data sets from the UCI repository indicate that the

hierarchical mixtures architecture in general outperforms the other meth-

ods.

Keywords: Naive Bayes Classi�ers, Hierarchical Mixtures of Experts,

Bagging, Boosting, Machine Learning.

1 Introduction

Despite their simpleness, naive Bayes classi�ers (Duda and Hart, 1973) in gen-

eral obtain highly competitive results compared to decision trees (Quinlan,

1993), neural networks trained with backpropagation (Rumelhart et al., 1986),

instance-based learning algorithms, and other inductive learning algorithms,

see (Domingos and Pazzani, 1997) for a comparison study. Recently there is

a lot of interest from the automatic text categorization community to use the
naive Bayes classi�er because of its advantages of learning speed, simpleness,

memory usage, incrementality, and good results (McCallum et al., 1998). The

naive Bayes classi�er (NBC) works well on a wide range of problems, and is

optimal when attributes are independent given the class. However, in real data

sets, the independency assumption is often violated, but Domingos and Pazzani

(1997) show that even if that is clearly the case, the naive Bayes classi�er may

still be optimal under the zero-one loss function. E.g. NBCs can optimally

learn data sets described by conjunctions or disjunctions of literals, although

these domains violate the independency assumption. However, the simple NBC

learns a linear discriminant function and is therefore unable to learn linearly

inseparable data such as the exclusive OR problem. Some approaches to over-
come this problem combine attributes (Pazzani, 1996), but when there are

many attributes, the algorithm needs to be executed many times, resulting in
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slow learning in case multiple attributes need to be combined. Furthermore,
combining too many attributes results in large representations and worse gen-

eralization performance. Instead, we opt for an algorithm which can deal with

non-linearly separable data in a more principled way.

Hierarchical models. To solve the exclusive OR problem, we can use

hierarchical architectures, just like linear networks have led to multi-layer per-

ceptrons. Our current work is similar to the hierarchical mixtures of experts

(HME) algorithm (Jacobs et al., 1991; Jordan and Jacobs, 1992). The HME

architecture can consist of linear networks and is still able to learn non-linear

functions. Instead of using linear networks as models, we use naive Bayes classi-

�ers. Thus, we have an architecture consisting of gating NBCs which partition

the data and weight the expert NBCs predicting the class probabilities. This
results in a much more powerful classi�er which is able to deal with non-linearly

separable data.

Combining models. There exist a number of general algorithms which

also learn multiple models (classi�ers) and combine them to produce the �nal

result. One method is stacked generalization (Wolpert, 1992) which combines

induced models from the bottom layer to the top-layer, where independent

model errors are used to select models for predicting the answer to a query.

Stacked generalization can be seen as a meta-theory for combining models,

but it is not entirely clear how it can be used for combining NBCs. Another

algorithm is bagging (Breiman, 1996) which learns a set of independent models

by �rst bootstrapping the data to get a training set and then inducing a new
NBC on this data set. This is then repeated a number of times. The models are

then combined by using majority voting of the predicted classes. This method

can improve generalization performance, but does not lead to more powerful

representations. Another method which receives a lot of attention is boosting
(Freund and Schapire, 1996; Schapire et al., 1997) which sequentially induces

a set of models where the data is reweighted after inducing each new classi�er.

This is done so that misclassi�ed examples get higher weight in the training

data for the next classi�er. By combining multiple classi�ers through voting,

individual errors are corrected by the other classi�ers. Some experiments (Bauer

and Kohavi, 1999) have shown boosting to work better than bagging with NBCs

(and also with decision trees) on a variety of data sets and to improve NBC
classi�cation accuracy substantially on a number of data sets from the UCI

repository (Merz et al., 1997). A problem with these methods, however, is

that the single NBCs still have to be able to learn the training data, which

they cannot in case of the exclusive OR problem. Although boosting theory

predicts that the training data can be perfectly loaded, it cannot perfectly load

all data sets with NBCs (Bauer and Kohavi, 1999). Therefore, the additional

representation power when using the hierarchical mixtures of NBCs can be

bene�cial for particular data sets.

Contents. In section 2, we describe naive Bayes classi�ers (NBCs). In

section 3, we describe hierarchical mixtures of NBCs. In section 4, we compare

the single NBC to bagging, boosting and using the novel hierarchical mixtures
of NBCs on 19 supervised data sets from the UCI repository. In section 5, we

discuss related work. Finally, section 6 concludes this paper.
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2 Naive Bayes Classi�ers

Naive Bayes classi�ers make an independency assumption to make full Bayesian

learning feasible. A representation in which full dependency is modelled be-

tween the attributes would require an exponential amount of space to store and

an exponential amount of time and data to learn. Other statistical learning

algorithms use a set of independency relations to construct a compact Bayesian

network (Heckerman et al., 1995), although exact inference is still an NP-hard

problem (Dagum and Luby, 1993). Naive Bayes classi�ers make a full inde-

pendency statement and this makes them very fast to train and compact to

store. This means that storing a large number of examples with many features

becomes an easy task with such methods. Although the full independency as-

sumption makes the model less powerful, NBCs still tend to perform very well
on real world data sets. Domingos and Pazzani (1997) analyse why this is the

case, and their �ndings are that although the bias (component of the error for

an in�nite sample) of NBCs is larger than the bias of more powerful learning

algorithms, the variance (component of the error due to the sample's �nite size)

of NBCs is smaller. Since the variance decreases with a growing number of ex-

amples, NBCs may outperform other algorithms when the data sets are quite

small. Furthermore, since the discriminant power of NBCs increases with a

growing number of attributes, the NBC should be particularly favoured when

the sample size is small and the number of attributes is large. These are also

exactly the kind of problems for which more powerful inductive learners tend

to over�t the data resulting in poor generalization performance.

2.1 Naive Bayes Classi�ers

The learning problem is to map a set of features D = ff1; f2; : : : ; fng de-

scribing an instance to its correct class-label C. For this the learning al-

gorithm �rst induces a model (classi�er) by learning on the training data
(D1; C1); (D2; C2); : : : ; (DT ; CT ).

Statistical learning algorithms perform the classi�cation by �rst computing

class probabilities P (Cjf1; f2; : : : ; fn) of all output classes C given the input

features, and then selecting the class with maximal probability. We cannot

store these probabilities directly 1, since it would require an exponential amount

of storage space and the result would not be useful for generalization. Instead,

we �rst use Bayes' rule to compute:

P (Cjf1; f2; : : : ; fn) =
P (f1; f2; : : : ; fnjC)P (C)

P (f1; f2; : : : ; fn)

and to decrease the size of this model we use the naive Bayes hypotheses of

mutual independency among the features given the class:

P (f1; f2; : : : ; fnjC) = �i P (fijC)

Now we have

P (Cjf1; f2; : : : ; fn) = �P (C) �i P (fijC)

1This would resemble root learning.
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where � is a normalization constant to sum all class probabilities given the fea-
tures to 1.0. Basically the naive Bayes classi�er can also be seen as a product

network, where the bias is the class probability and weighted inputs are now

modelled as features probabilities which are determined by a tabular represen-

tation. Thus, for nominal features the simple naive Bayes classi�er can learn a

linear decision boundary2, and therefore has the same representational power

as a perceptron.

2.2 Learning Algorithm

The learning algorithm is simple and uses a set of counters3 to store all infor-

mation. We de�ne:

P (C) =
c(C)

tot
; and Pi(fijC) =

ci(fi; C)

ci(C)

To deal with the problem of having unobserved (feature-value, class) pairs in
the training data, we use some parametrized Laplace correction. For this, we

initialize the counters to some small value 
, and sum over them to get the

totals. Now on each learning example (ff1; f2; : : : ; fng; C
�), we use the following

algorithm to update the parameters:

Updating NBC(ff1; f2; : : : ; fng; C
�; weight):

1) c(C�) += weight

2) tot += weight

3) For all k = 1 : : : n

3a) ck(fk; C
�) += weight

3b) ck(C
�) += weight

Here the weight will be useful for de�ning the forthcoming algorithms. For the

single naive Bayes classi�er we use a weight of 1.0. Note that the algorithm

is just using frequency counting, and a small prior (
) is used to initialize the
model.

3 Hierarchical Mixtures of Naive Bayes Classi�ers

The hierarchical mixtures of experts system of Jordan and Jacobs (1992) con-

sists of a number of gating networks and expert networks. The gating networks

learn to gate the predictions of experts to the top layer network which makes the
�nal prediction. We use the same system, but now we use naive Bayes classi�ers

(NBCs) instead of linear neural networks as gating and expert networks.

3.1 Architecture

We will explain a 2-layer architecture. Extensions to higher layer architectures

are trivial. The system consists of 1 root gating NBC m0, N gating NBCs m1
1

2For numeric attributes decision boundaries could be non-linear due to the discretization
method used.

3The counter variables c(C) etc. are represented as real numbers.
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to mN
1 , and N �M expert networks m11

2 to mNM
2 . Have a look at �gure 1

which depicts a two-layer architecture in which the gating networks have two

sub-models (children).
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Figure 1: The 2-layer architecture consisting of naive Bayes classi�ers (shown
by the product signs). The gating networks weight the outputs of their sub-
models and propagate the weighted sum to the gating network one layer above.
Expert networks estimate the class probabilities �ij given the features.

Expert networks m
ij
2 output class probabilities given the input features de-

scribing the instance D. The class probabilities can be modelled as a vector

~�ij = (�C1

ij ; �
C2

ij ; : : : ; �
CK

ij ), where:

�Cij = P
ij
2 (CjD) = �P

ij
2 (C)�kP

ij
2 (fkjC)

Here � is again a renormalization constant. The top-layer gating network m0

computes the following gating values for its sub-models Mi:

gi = P0(MijD) = �P0(Mi)�kP0(fkjMi)

and gating networks mi
1 compute output gating values by:

gjji = P i
1(Mj jD) = �P i

1(Mj)�kP
i
1(fkjMj)

So the gating networks essentially treat the expert networks as classes.
Our architecture now consists of counters for all models. For model mij

2 we

use totij2 etc. as counter variables. The complete model should be initialized

with some symmetry breaking counter generator (e.g. by adding a small random

value to the initialization value 
).

We want to compute the class probabilities of the root network given the

input data D = ff1; f2; : : : ; fNg. For this we have to compute class probabilities
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by propagating the predictions of the experts to the top. The output of the
complete architecture can be computed as:

~� =
X

i

gi
X

j

gjji ~�ij

For training this system, the gating networks have to predict how well their

sub-models perform given some input data, and let the gating weight of the

best model converge to the highest value among the models.

3.2 Learning by Expectation Maximization

Expectation Maximization (Dempster et al., 1977) is a well known method for

multiple model �tting in which mixture coeÆcients of the local mixture models

are learned. The weights for selecting each model are latent variables, since

they cannot be estimated directly from the data. Instead a couple of iterations

can be performed in which the latent variables can be estimated by monitoring

the error of individual models. The total probability of generating the output

class probabilities is computed by mixing the expert class probabilities through
the gating networks given the parameters:

P0(CjD) =
X

i

gi
X

j

gjjiP
ij
2 (CjD)

Posterior probabilities. To develop the learning algorithm, we need to

compute posterior probabilities that each model has generated the right output

class C�. For this we compute:

hi =
gi
P

j gjji
^
P
ij
2 (C

�jD)
P

i gi
P

j gjji
^
P
ij
2 (C

�jD)

and

hjji =
gjji

^
P
ij
2 (C

�jD)
P

j gjji
^

P
ij
2 (C

�jD)

where we use a Gaussian regression model for computing the probability that

expert network m
ij
2 generated C�:

^
P
ij
2 (C

�jD) = e��(1:0�P
ij
2
(C�jD))

We could also have used other distributions such as the Bernoulli distribution,

but selected the Gaussian regression model due to its general applicability to

multiple classes. Furthermore, using this model gives us more in
uence to

control the learning speed in which models start to deviate from each other. For

this we can set � which in our experiments was set to a small value (0.1) so that

one model would not immediately learn much faster on data of a particular class

(for which the local model may have learned a higher a-priori class probability).
We �rst compute the posterior values (Expectation step), and then we up-

date the gating models so that the best model will get a higher weight on the
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example, and we update the class probabilities of experts to the real class ac-
cording to their posterior probabilities (Maximization step). We will not use

gradient descent learning here, since we expect it to learn slow due to the

product networks (the gradient would be computed by multiplying all P (fijC)
values, some of which may be very small). Instead we use the naive Bayes clas-

si�er update scheme. Note that we perform the EM step after each example,

thus we have an online stochastic learning algorithm. Also, since we use the

naive Bayes classi�er, the algorithm does not really maximize the probability of

generating the correct class label, but rather makes a small step to increase this

probability. The algorithm is therefore a generalized EM or GEM algorithm

(Jordan and Jacobs, 1992).

Updating the expert models. After having computed the class proba-
bilities for each model and having computed the posterior probabilities for all

models (except the root model), we can adapt the models.

We update the expert networks using the NBC updating scheme. Here

expert network m
ij
2 has parameters

P
ij
2 (C) =

c
ij
2 (C)

tot
ij
2

; and P
ij
2k(fkjC) =

c
ij
2k(fk; C)

c
ij
2k(C)

We update the counter variables given an example X = (D;C�) by using the

NBC updating scheme. To do this we call Update-NBC(D;C�; hihjji) for

each modelmij
2 . Thus, the weight of the update equals the posterior probability

that the expert network could have generated the correct class. Updating in

this way, causes expert networks with the largest posterior probability (hihjji)

to learn the example fastest and to bias its function more to this example. All

expert networks learn on each example.

Updating the gating models. For updating the gating networks, we

make use of the best predictive sub-model as the desired output of the classi-

�er, so that the update causes this model to be selected with a higher prob-

ability. The best sub-model Mb has the largest probability of generating C�.

For the top-layer model we update the model parameters by calling: Update-

NBC(D;Mb; 1:0). Thus, the best sub-model is now the correct class, and the

weight of updating towards this model on this example is 1.
For the sub-gating networks, we multiply the learning weight of 1.0 by the

posteriori probability hi to obtain the learning weight. We again compute the

best sub-model of each sub-gating network, and call this Mb. Then we update

the parameters of model mi
1 by calling: Update-NBC(D;Mb; hi).

Solving the exclusive OR problem. Before running experiments on real

world data sets, we �rst analysed whether the hierarchical mixtures of NBCs was

able to learn the exclusive OR problem and the 4-bit parity problem. Learning

the exclusive OR problem was no problem at all for a one layer architecture |

it was always able to load the training patterns. For learning the 4-bit parity

problem, we had to use higher layer architectures. The smallest architecture

which can represent the 4-bit parity problem is a 4-layer architecture in which
there are always two submodels for each gating network. However, this minimal

model could not learn the 4-bit parity problem with the parameters we used.
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Then we tried 6 and 7-layer architectures, and these were able to reliably learn
the 4-bit parity problem. Thus, these experiments showed that the hierarchical

mixtures of NBCs is able to learn non-linearly separable data sets.

4 Experiments

We have tested the hierarchical mixtures of naive Bayes classi�ers on 19 data
sets from the UCI repository. We preprocessed continuous (and nominal data

with large values) by using the mean and standard deviance and computing sig-

ni�cance classes using 1 standard deviation as a separator between two feature

values.4 The data sets are given below in table 1.

Data Set Nr. of Classes Nr. of Features Nr. of Instances

Abalone 14 9 4177

W. Breast Cancer 2 9 699

Car 4 6 1728

Chess kr-vs-kp 2 36 3196

Contraceptive 3 9 1473

Ecoli 8 7 336

Glass 8 9 214

Hepatitis 2 19 155

Housing 5 13 506

Ionosphere 2 34 351

Iris 3 4 151

Liver Bupa 2 6 345

Pima Indians 2 8 768

Segmentation 7 19 210

Servo 5 4 167

Soybeans 20 35 675

Spam 2 57 4601

Vote 2 16 435

Yeast 10 8 1484

Table 1: The nineteen data sets from the UCI repository.

Experimental setup. We compare the hierarchical mixtures of naive

Bayes classi�ers (HM) to the simple naive Bayes classi�er, bagging and boost-

ing. For the HM architectures, we used a single layer architecture consisting

of 4 expert networks, and a 2-layer architecture consisting of 2 � 2 expert

networks. We performed experiments with bagging and boosting in which the

number of models was 10. We did not explore whether using more models (e.g.

4Comparing our results to published results of possibly better approaches for discretizing
the features such as entropy-based discretization, shows that there is usually only a slight
decrease in learning performance. See also the comparison study in (Domingos and Pazzani,
1997). This will not a�ect our current comparison study, however.
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50) worked better for two reasons: (1) The hierarchical systems would be much
smaller and therefore faster to use, (2) We also did not use results of larger

hierarchical architectures which may sometimes have worked better. Finally,

we expect the sign of signi�cant di�erences between the methods to remain the

same in case a much larger number of models would have been used.

Our algorithms for bagging and boosting were similar to the ones described

in (Bauer and Kohavi, 1999), but di�ered in some aspects. For bagging, we

did not always bootstrap a new data set which was equal in size to the original

data set. We rather experimented with using percentages of the original data

set, and found that sometimes bagging worked best when only 20% was used

for each data set. Most often, however, we used about 90% of the original data

set size for bootstrapping (with replacement).
For boosting, Bauer and Kohavi (1999) used bootstrapping on the original

data set in case the error of a classi�er was larger than 50%. Instead, we

reweighted the original data set with values between 0.9 and 1.1, and used

the new reweighted data set for learning the next classi�er. Thus instead of

resampling we used reweighting, which should not di�er a lot.

We performed 50 simulations per data set in which always half of the data

set was used for learning and the other half was used for testing. We used 5 EM

iterations for each hierarchical system, in which during 1 iteration the complete

training data was learned in an online fashion. We kept all learning parameters

constant for all data sets: 
 = 0:1 + rand(0; 0:01), � = 0:1.

Test results. Table 2 shows the test results on the 19 data sets. The table
indicates the percentages of correct classi�cations with the standard deviance,

and signi�cance of the results. Here (++) indicates a signi�cant improvement

(t-test, p < 0:01) and (+) a signi�cant improvement (p < 0.05) compared to

the simple NBC. The win-loss row indicates how often the mixtures of NBC,

bagging or boosting signi�cantly (p < 0:05) work better or worse than the

simple naive Bayes classi�er. The average error reduction (Bauer and Kohavi,

1999) is computed by �rst computing the error reduction (ea�eb)
ea

, where ea is

the error of the simple NBC, for each data set and then computing the average.

The results show that the hierarchical mixtures of NBCs signi�cantly out-

perform the simple NBC on 9 data sets and loses on 2 data sets. Furthermore,

they increase the average accuracy with more than 1%, and reduce the aver-

age error with about 7%. Although the di�erences may seem quite small, they

are signi�cant, and for some data sets the simple NBC already seems to reach

the highest possible test performance5, so that it is diÆcult to improve on this.
However, for particular data sets the improvements are quite large and for some

of these data sets we found that larger HM architectures even worked better.

When we examine bagging, we can see that it sometimes works better than

the NBC, but as many times works worse (especially for data sets with few

features), so there is no real improvement in combining bagging with NBCs in

general. This can be expected, since NBCs are quite stable classi�ers, so that

combining multiple classi�ers is not so e�ective, and can sometimes even reduce

5In other comparison studies with other learning algorithms, there also seems to be the
same maximal accuracy for these particular data sets.
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Data Set NBC 1-4 HM 2-2 HM Bagging Boosting

Abalone 68.6�1.2 71:8 � 1:3++ 71:7 � 1:0++ 68:9 � 1:2= 68:5 � 1:5=

Breast Cancer 97.2�0.6 97:0 � 0:7= 96:6 � 0:8�� 97:3 � 0:7= 95:8 � 0:9��

Car 84.8�1.6 89:4 � 1:2++ 88:3 � 1:6++ 83:3 � 1:6�� 89:9 � 1:2++

Chess 87.1�1.1 91:6 � 1:8++ 92:7 � 1:7++ 87:2 � 1:5= 94:5 � 0:8++

Contraceptive 51.4�1.2 51:8 � 1:4= 51:5 � 1:5= 50:9 � 1:6= 51:0 � 1:5=

Ecoli 73.8�2.8 73:1 � 3:8= 73:5 � 3:5= 73:8 � 3:2= 73:3 � 3:2=

Glass 48.5�5.1 51:0 � 5:3+ 51:9 � 5:2++ 50:9 � 4:9+ 51:0 � 5:7+

Hepatitis 85.5�2.8 83:2 � 3:6�� 82:8 � 3:5�� 84:4 � 3:2= 82:2 � 3:6��

Housing 59.3�2.3 63:5 � 3:8++ 67:7 � 2:5++ 61:4 � 3:5++ 59:7 � 2:7=

Ionosphere 90.0�1.8 91:3 � 1:4++ 91:0 � 2:2+ 90:1 � 1:5= 90:2 � 2:3=

Iris 90.2�3.5 90:1 � 2:9= 90:1 � 3:5= 89:2 � 2:6= 90:0 � 2:4=

Liver Bupa 60.0�3.0 60:8 � 3:0= 60:3 � 3:1= 58:4 � 2:9�� 60:5 � 3:1=

Pima Indians 75.0�1.4 74:2 � 2:3� 75:0 � 1:6= 75:2 � 2:0= 73:3 � 2:1��

Segmentation 78.7�4.0 79:3 � 5:6= 79:7 � 6:4= 78:6 � 4:8= 77:8 � 5:4=

Servo 82.3�4.2 83:0 � 3:8= 82:1 � 3:3= 80:2 � 4:9� 82:6 � 3:7=

Soybeans 89.5�2.2 91:6 � 2:4++ 91:5 � 2:6++ 90:1 � 1:9= 91:3 � 1:9++

Spam 83.3�0.6 84:4 � 0:5++ 84:5 � 0:6++ 84:4 � 0:5++ 82:7 � 0:6��

Vote 90.6�1.7 92:7 � 1:7++ 93:3 � 2:3++ 90:4 � 1:5= 94:1 � 1:5++

Yeast 56.6�1.1 57:1 � 1:4= 57:0 � 1:3= 56:2 � 1:5= 56:5 � 1:5=

Average : 76.4 77.7 77.9 76.4 77.1

Av. error red. - 7.0 6.9 -1.0 3.4

Sign. Win-loss : - 9 : 2 9 : 2 3 : 3 5 : 4

Table 2: The Training results on the 19 data sets.

learning performance since less data of the original data set may be e�ectively

used for learning each classi�er.

Boosting outperforms the NBC signi�cantly in a number of domains such

as Car, Chess, and Vote6, but on many other data sets does not lead to an im-

provement. In some domains, boosting even results in a larger error. We have

found that this is caused by 2 problems: (1) Boosting sometimes leads to over-

�tting the data, where the training data is perfectly loaded, but generalization

performance is reduced (which happened for e.g. Breast Cancer and Hepati-

tis), (2) Boosting has problems with some domains such as Spam, because after
inducing 1 classi�er, the next one always has a weighted error sum larger than

50% on the reweighted data. Therefore, boosting on such data sets does not

lead to a collaboration between voting classi�ers, but stand-alone classi�ers are

learned.

If we look at the domains in which boosting outperforms the simple NBC, we

observe that the hierarchical mixtures systems also outperform the simple NBC.

This is remarkable and is probably caused by the fact that for these domains a

smaller error on the training data also means a smaller error on the test data.

Since boosting and the hierarchical mixtures always reduce the training error

6A comparison with other published results shows that decision trees often outperform
NBCs in these domains.
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compared to the simple NBC, their generalization performance depends on the
actual domain (and the limited training data we used). Boosting improves

the average accuracy, but performs on average less well than the hierarchical

mixtures systems.

We also experimented with boosting hierarchical mixtures of NBCs. Al-

though, for some domains this worked very well, the average accuracy for all

data sets was the same as for the hierarchical mixtures of NBCs alone. Fi-

nally, we also tried to learn the gating values after a number of expert networks

were learned by boosting. Since boosting weights each induced classi�er by

their average error, this does not indicate for what kind of data the classi�er

works well. Learning to weight these classi�ers for each example might therefore

be useful. The preliminary experiments indicated that using the hierarchical
mixtures of NBCs after learning each classi�er by boosting, did not result in

improved average performance compared to boosting, however.

5 Related Work

There have been a number of approaches to extend the naive Bayes classi�er

or to combine models. Domingos (2000) describes Bayesian model averaging,

where �rst a set of classi�ers are induced, and then weights for combining the
models are estimated by computing the error probability of each classi�er. This

method does not use di�erent weights for di�erent examples, however. The

experiments showed that this often led to over�tting the data.

Bauer and Kohavi (1999) used the NBC and combined it with bagging,

boosting and some variants such as arcing (Breiman, 1998). They showed that

bagging NBCs could slightly improve the results on the data sets they used,

and that boosting NBCs signi�cantly reduced the test error. Our experiments

show much less advantage for using bagging and boosting, but this may be

caused by the fact that Bauer and Kohavi used di�erent data sets with much

more examples (all data sets they used had at least 1000 examples). Further-

more, naive Bayes classi�ers are stable learning algorithms, and that is why we
cannot expect a great bene�t from using bagging. We also found that boosting

sometimes leads to over�tting the data, where the algorithm could perfectly

load the training data, but an increase in test error occurred.

Kohavi (1996) studies using decision trees with naive Bayes classi�ers at the

leave nodes (NBTree). The experiments showed that the combination worked

better than either algorithm alone. Ting and Zheng (1999) also combined de-

cision tree learning with naive Bayes classi�ers at the leave nodes, but found

that inducing trees with more than one node, worked less well than the simple

NBC alone. Then they applied boosting to the NBC and to NBTree, and found

that boosting NBCs did not result in any improvement of the average accuracy

over all data sets they used. Boosting NBTree worked very well, however, and
signi�cantly outperformed the simple NBC. They explain these results by the

fact that NBTree increases instability (the bias is smaller and the variance is

larger) so that boosting may result in better performance. It would be inter-

esting to compare the boosted NBTree to the hierarchical mixtures of NBCs
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described in this paper, or to combine both algorithms.
Zheng (1998) uses a committee of naive Bayes classi�ers in which each dif-

ferent NBC has a di�erent subset of attributes. His method selects attributes

so that attributes used by one classi�er which performs well on the data set

are also used with higher probability by the next classi�er. The results show

that the committee can signi�cantly outperform the simple NBC on particular

data sets from the UCI repository. These committees cannot learn to classify

non-separable data sets, however.

Zheng, Webb and Ting (1999) developed lazy Bayesian rules, a classi�er

system which evaluates test examples in a lazy way. Instead of building a

general classi�er on the training data, the training data is stored in memory,

and if an example needs to be classi�ed a new classi�er is constructed. This is
done by using a conjunctive rule on attribute values. Di�erent conjunctive rules

are constructed and from the training data which obey the rule, a naive Bayes

classi�er in constructed. To choose among the possible conjunctive rules, N-fold

cross validation is used. The lazy Bayesian rules system is shown to outperform

the simple NBC and performs on average as well as boosting decision trees.

Since for each test example, a new classi�er should be induced, the method

uses more computation time, however, than boosting 100 decision trees in case

many test examples need to be classi�ed.

McCallum et al. (1998) use a hierarchical model of NBCs for text classi�-

cation problems. The hierarchy which was used came from the used internet

provider (e.g. Yahoo), and a form of expectation maximization was used to
�t a set of mixture coeÆcients to select sub-models responsible for generat-

ing a document. Furthermore, they used shrinkage as a statistical technique

to deal with expert NBCs which receive only few examples. The experiments

on three real-world data sets showed improved performance compared to the

simple naive Bayes classi�er.

Stewart (1998) developed an algorithm which includes hidden variables to

the naive Bayes classi�er. The latent variables are learned by a maximum like-

lihood algorithm, but he does not use hidden variables to select or combine

models. Instead, the hidden variables are used to approximate the joint distri-

bution of a set of variables. This method outperforms the simple NBC on some

data sets from the UCI repository.
Meila and Jordan (2000) describe an algorithm which learns mixture coef-

�cients for combining a set of tree distributions. Tree distributions (Chow and

Liu, 1968) are special cases of graphical models in which both parameter and

structure learning are tractable. The mixture-of-trees model provides an e�ec-

tive generalization of tree distributions in which di�erent dependencies between

the variables can be modelled by di�erent trees. Like graphical models, this

method can be used for density estimation and classi�cation, but due to its

wider applicability, the mixture coeÆcients were not conditioned on the input

of an example, which may contain many unknown values.7 The experiments

7Note that the hierarchical mixtures of NBCs still works if particular features values are
unknown. In general NBCs are quite robust against missing values, which are usually just not
used in the classi�cation and learning process.
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show that the algorithm outperforms a large number of other algorithms such
as the hierarchical mixtures of experts and the simple NBC.

6 Conclusion

We introduced the hierarchical mixtures of naive Bayes classi�ers which is based

on the hierarchical mixtures of experts system where all networks are naive

Bayes classi�ers. We have shown that the hierarchical extension can learn to

classify non linearly separable data, which a simple naive Bayes classi�er can-
not. In the experiments we compared the novel hierarchical system to the 
at

naive Bayes classier and two other techniques for combining multiple classi�ers

| bagging and boosting. The experimental results on 19 data sets from the

UCI repository show that the hierarchical mixtures of naive Bayes classi�ers in

general outperforms the simple naive Bayes classi�er, and also achieves better

average results than bagging and boosting with naive Bayes classi�ers. In our

current work, the hierarchical architecture had to be designed a-priori. In fu-

ture work we want to study growing architectures online using cross-validation

to test the appropriateness of an architecture. In this way we want to circum-

vent using architectures which can under�t or over�t the learning data and

thus perform poorly on the test data. Finally, we want to combine variants of
the HME architecture with other algorithms such as decision trees, K-nearest

neighbors, locally weighted regression, and support vector machines.
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