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Abstract

Two or more Bayesian Networks are Markov equivalent when their
corresponding acyclic digraphs encode the same set of conditional inde-
pendence (≡ CI) restrictions. Therefore, the search space of Bayesian
Networks may be organized in classes of equivalence, where each of
them consists of a particular set of CI restrictions. The collection
of sets of CI restrictions obeys a partial order, the graphical Markov
model inclusion partial order, or inclusion order for short.

This paper discusses in depth the role that inclusion order plays in
learning the structure of Bayesian networks. We prove that under very
special conditions the traditional hill-climber always recovers the right
structure.

Moreover, we extend the recent experimental results presented in
(Kočka and Castelo, 2001). We show how learning algorithms for
Bayesian Networks, that take the inclusion order into account, per-
form better than those that do not, and we introduce two new ones in
the context of heuristic search and the MCMC method.
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1 Introduction

A probability distribution P is Markov over a graph G if and only if every
CI restriction encoded in G is satisfied by P . A graphical Markov model (≡
GMM) M(G) is the family of probability distributions that are Markov over
G. One also says that G determines the GMM M(G). Bayesian Networks
form a class of GMMs where the graph G that determines the model is an
acyclic digraph (≡ DAG). More concretely, a Bayesian Network is a GMM
D(G) whose set of probability distributions satisfies the directed global
Markov property (≡ DGMP) relative to G. The DGMP is the sharpest
possible graphical criterion that allows to read off CI restrictions from a
given DAG (Pearl and Verma, 1987; Lauritzen et al., 1990).

Let G = (V,E) be a DAG whose vertex set V indexes a set of categorical
random variables XV . Let p(XV ) be a joint probability distribution over
XV . Lauritzen et al. (1990) show that by using the conditional probability
distributions of every Xi given Xpa(i) (the parent set of vertex i ∈ V in G),
p(XV ) admits a recursive factorization as follows:

p(XV ) =
∏
i∈V

p(Xi|Xpa(i)). (1)

The fact that the vertices {i} ∪ pa(i) form a complete subgraph in the
moralized version of G, i.e. in Gm, implies this factorization and the more
interesting fact that p(XV ) obeys the global directed Markov property rel-
ative to Gm (Lauritzen et al., 1990).

The recursive factorization in (1) allows to obtain a closed formula for
the likelihood of the data D given a Bayesian Network M ≡ D(G), p(D|M),
under a certain set of assumptions about D (Cooper and Herskovits, 1992;
Buntine, 1991; Heckerman et al., 1995). The logarithm of the likelihood
log p(D|M) is often used as a scoring metric for Bayesian Networks. One
uses this score metric to efficiently rank many Bayesian Networks in a short
time, allowing to devise learning algorithms that work in a systematic way.
Throughout this paper we have used the BDeu score metric, which cor-
responds to the BDe metric from Heckerman et al. (1995) with uniform
hyper-dirichlet priors (Buntine, 1991). We have also considered a uniform
prior distribution p(M) over the space of Bayesian Networks.
A learning algorithm for Bayesian Networks usually consists of three com-
ponents:

1. A scoring metric that in the light of data ranks two or more alternative
Bayesian Networks.

2. A traversal operator that by means of local transformations of the
Bayesian network structure creates a set of neighbors.
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3. A search strategy that repeatedly applies the traversal operator to a
particular subset of Bayesian Networks. The members of this partic-
ular subset are considered in relation to the ranking that the scoring
metric provides, and some policy that the search strategy follows.

The search space of Bayesian Networks corresponds, in principle, to the
space of DAGs, which grows exponentially in the number of vertices. An
equivalence class of Bayesian Networks comprises one or more DAGs that, as
we already mentioned, encode the same set of CI restrictions. Each equiv-
alence class has a canonical representation in form of an acyclic partially
directed graph, where the edges may be directed and undirected and satisfy
some characterizing conditions (Spirtes et al., 1993; Chickering, 1995; An-
dersson et al., 1997). This representation has been introduced independently
by several authors under different names as, completed PDAG (Chickering,
1995), pattern (Spirtes et al., 1993) and essential graph (Andersson et al.,
1997). We will adopt here the term essential graph. An essential graph
equivalent to a DAG has the same underlying graph and each edge in the
essential graph is directed iff this edge has the same orientation in all equiv-
alent DAGs.

From a non-causal perspective one is interested in learning equivalence
classes of Bayesian Networks from data, and for that purpose one uses a
scoring metric that gives equal scores to equivalent networks. In such a
situation it makes sense to use the space of essential graphs (≡ EG-space)
instead of the space of DAGs (≡ DAG-space). This argument is supported
further by several advantages (Heckerman et al., 1995; Madigan et al., 1996):

1. The cardinality of EG-space is smaller than in DAG-space.

2. The prior laws for the parameters are no longer constrained to yield a
score equivalent metric.

3. Quantities computed from Bayesian model averaging outputs cannot
be biased by the size of the equivalence classes of Bayesian Networks.

Algorithms using the EG-space have been already developed (Spirtes
and Meek, 1995; Chickering, 1996; Madigan et al., 1996; Chickering, 2001)
and some of them are able to learn much better Bayesian Networks than the
standard algorithms on DAG space. However, the computational overhead,
with respect to DAG space, is far from being satisfactory for the first three of
them. This extra computational cost is produced mainly by either the need
to switch between EG-space and DAG-space to compute the score (Spirtes
and Meek, 1995; Chickering, 1996) or the need to consider transformations
on two adjacencies at a time (Madigan et al., 1996) to fulfill irreducibility
of the Markov chain in Markov Chain Monte Carlo (≡ MCMC) procedures.

In this paper we argue that the better results obtained by the use of
EG-space are not merely a consequence of using essential graphs only but
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by the side-effect that essential graphs respect better the inclusion order.
Therefore, a sensible approach is to try to devise a way to use DAG-space,
which is computationally cheaper, and account for the inclusion order.

This paper provides three major contributions. First, a thorough study
of the inclusion order and the reasons of its relevance to the learning prob-
lem. Second, the introduction of a new traversal operator that (partially)
accounts for the inclusion order. Third, the implementation of the previous
ideas within two of the main model-based learning paradigms in Bayesian
Networks: heuristic learning and the MCMC method. This last contribu-
tion will be illustrated by a set of experiments that comprises and extends
those already presented in (Kočka and Castelo, 2001).

In the next section we introduce the basic concepts regarding DAGs,
their equivalence relation, their inclusion order relation and a discussion of
the sizes of DAG-space and EG-space.

2 Preliminaries

2.1 Graphical Terminology

The terms and notation about graphs within the context of GMMs have
been borrowed mainly from (Lauritzen, 1996). A directed graph G is a pair
(V,E) where V is the set of vertices and E is the set of directed edges or
arcs. Since in this paper we deal only with directed graphs we will often use
the shorter form edge to denote directed edge or arc.

A sequence of vertices a = v0, v1, . . . , vn = b forms a path between ver-
tices a and b if for every pair (vi, vi+1), there is either an arc vi → vi+1 or
vi ← vi+1. The path is directed if the arc is always vi → vi+1. A directed
cycle is a directed path, as the previous one, where a = b. An acyclic di-
graph, or DAG1, is a directed graph where its set of arcs E does not induce
directed cycles nor has loops (arcs where the two endpoints are the same
vertex) nor has multiple edges.

Given a vertex v, the set of vertices reachable from v by directed paths is
known as the set of descendants of v, and noted de(v). Consequently, the set
of non-descendants of v is defined as nd(v) = V \{de(v) ∪ {v}}. For a given
vertex v, the set of vertices that can reach v by directed paths (including
the vertex v itself) form the ancestor set of v, and noted an(v). The set
of vertices with arcs pointing to a common vertex v is the parent set of v,
noted pa(v).

1Sometimes also referred as ADG.
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2.2 The directed global Markov property and the d-
separation criterion

In the introduction we already mentioned that a Bayesian Network codes a
set of CI restrictions through a particular graphical criterion, the directed
global Markov property (≡ DGMP).

Definition 2.1. Directed global Markov property (DGMP)
Let G = (V,E) be a DAG, a probability distribution P is said to satisfy
the directed global Markov property (DGMP) if, for any triple (A,B, S) of
disjoint subsets of V , where A,B are non-empty, such that S separates A
from B in the moralized version of the subgraph induced by the vertices in
An(A ∪B ∪ S), i.e. in GmAn(A∪B∪S), P satisfies

A ⊥⊥ B |S[P ].

The DGMP means that two non-empty subsets of vertices A,B are con-
ditionally independent given a third subset S if and only if S separates A
and B in the moralized subgraph induced by the smallest ancestral set of
A ∪B ∪ S.

An alternative way of reading conditional independencies in a DAG is
using the d-separation criterion of Pearl and Verma (1987), which we review
now. A node vi in a path v0, v1, . . . , vn is collider if vi−1 → vi ← vi+1. A
node in the path which is not collider is non-collider. Given two vertices
u, v ∈ V and a subset S ⊆ V where u, v 6∈ S, one says that a path between
u and v is active with respect to S if

1. every non-collider in the path is not in S, and

2. every collider in the path is in S or has a descendant in S.

When a path between two vertices u, v is not active with respect to S, one
says that the path is blocked by S. Given these notions of active and blocked
path, the d-separation criterion is defined as follows.

Definition 2.2. d-separation
Let G = (V,E) be a DAG. For any triple (A,B, S) of disjoint subsets of
V , where A,B are non-empty, A and B are d-separated by S if every path
between the vertices in A and B is blocked by S.

Lauritzen et al. (1990) prove that the d-separation criterion encodes in
a DAG exactly the same CI restrictions as the DGMP.

2.3 Markov Equivalence

Let D(G) be a Bayesian Network that belongs to an equivalence class with
two or more members. Then G will have at least one edge which can be
reversed such that the resulting DAG remains in the same equivalence class.
Chickering (1995) characterized such edges in the following way.
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Definition 2.3. Covered Edge (Chickering, 1995)
Let G = (V,E) be a DAG. An edge a → b ∈ E is covered in G if pa(b) =
{a} ∪ pa(a).

This characterization allows to describe more formally the notion of
Markov equivalence among Bayesian Networks.

Lemma 2.1. Let D(G) and D(G′) be two Bayesian Networks. The follow-
ing three conditions are equivalent:

1. D(G) = D(G′) i.e. G and G′ are equivalent.

2. G and G′ have the same skeleton (underlying undirected graph) and
contain the same immoralities.

3. There exists a sequence L1, . . . , Ln of DAGs such that L1 = G and
Ln = G′ and Li+1 is obtained from Li by reversing a covered arc in Li
for i = 1, . . . , n− 1.

The equivalence (1) ⇔ (2) was proven in (Verma and Pearl, 1990), and
in the more general framework of chain graphs in (Frydenberg, 1990). The
equivalence (1) ⇔ (3) was proven in (Chickering, 1995; Heckerman et al.,
1995).

The relationship of Markov equivalence organizes the DAG-space into
classes of equivalence which form what we called the EG-space. Each mem-
ber of EG-space has a graphical representation as an essential graph. From
the asymptotic number of DAGs given by Robinson (1973) it follows that
DAG-space grows more than exponentially in the number of vertices. One
may think that EG-space departs substantially from such rate but recent
empirical investigation gives a quite different perspective.

Observation 2.1. (Gillispie and Perlman, 2001)
The average ratio of DAGs per equivalence class seems to converge to an
asymptotic value smaller than 3.7. This was observed up to 10 vertices.

In Figure 1 we may see plotted the cardinalities of DAG-space and EG-
space up to 10 vertices.

2.4 Concepts of Neighborhood

The transformations on a single adjacency of a DAG, that learning algo-
rithms for Bayesian Networks perform, are usually addition, removal and
reversal of the arc such that acyclicity in the directed graph is preserved. Us-
ing these transformations we may formalize the following concepts of neigh-
borhood:
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Figure 1: Cardinalities of DAG-space and EG-space.

• NR (No Reversals) All DAGs with one arc more or one arc less that
do not introduce a directed cycle.

• AR (All Reversals) The NR neighborhood plus all DAGs with one arc
reversed that does not introduce a directed cycle.

• CR (Covered Reversals) The NR neighborhood plus all DAGs with
one covered arc reversed2.

• NCR (Non-Covered Reversal) The NR neighborhood plus all DAGs
with one non-covered arc reversed that does not introduce a directed
cycle.

For any given DAG G upon which we build its corresponding neigh-
borhood, the previously described neighborhoods will be noted as NNR(G),
NAR(G), NCR(G) andNNCR(G), respectively. The NR neighborhood is used
in MCMC search by the MC3 algorithm from Madigan and York (1995). The
NR neighborhood may lead easily to local maxima in heuristic search, or to
an extremely small probability of reaching the most probable model given
the data in MCMC search. This problem may be alleviated by using an AR
neighborhood, which is quite common in many other learning algorithms.
The CR and NCR neighborhoods are variations of the AR neighborhood
that are not intended to enhance the AR neighborhood but are used here,
as we shall see later, for comparison purposes.

2The reversal of a covered edge cannot introduce a directed cycle (Kočka et al., 2001).
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3 Graphical Markov Model Inclusion

By graphical Markov model inclusion we denote a particular relation of par-
tial order among GMMs. A relation of partial order is irreflexive, asymmet-
ric and transitive, and some pairs of elements may not be related, otherwise
it would be a total order. The intuition behind the inclusion order is that
one GMM M(G) precedes another GMM M(G′) if and only if all the CI
restrictions encoded in G are also encoded in G′.

The complete DAG Gc that encodes no CI restriction at all, determines
a Bayesian Network D(Gc) that consists of all possible discrete probability
distributions over the corresponding set of random variables, due to the fact
that any of such distributions is always Markov over the complete DAG Gc.

On the opposite side, we find the empty DAG G∅, with no edges, un-
der which all random variables are marginally independent, such that it
encodes all possible CI restrictions among these random variables under the
closure of the semi-graphoid axioms (Pearl, 1988). The DAG G∅ determines
a Bayesian Network D(G∅) that consists of “only” those discrete probability
distributions under which all the random variables are marginally indepen-
dent. Clearly, the set of probability distributions that are Markov over Gc
includes those that are Markov over G∅, therefore

D(G∅) ⊆ D(Gc). (2)

However, the CI restrictions encoded by Gc (none!) are included into
those encoded by G∅ (all!), and this latter notion is the one that determines
the inclusion order. The notation used in (2) might be somewhat counterin-
tuitive with the idea that D(Gc) precedes D(G∅) under the inclusion order.
Therefore, we will explicitly express the set of the CI restrictions encoded
by a graph G (validity of each CI in the graph can be decided using d-
separation criterion (Pearl, 1988) or moralization criterion (Lauritzen et al.,
1990)) that determines the GMM M(G) as:

MI(G) = {(A,C,B) : A,B 6= ∅ ∧ A ⊥⊥ B|C[G]}.

Now, in order to note the inclusion relationship between the fully re-
stricted Bayesian Network D(G∅) and the unrestricted Bayesian Network
D(Gc) we may simply write it as:

DI(Gc) ⊆ DI(G∅).

Unfortunately, to characterize the inclusion order between two arbitrary
Bayesian network using some graphical or transformational rules (like the
characterization of equivalence) is still an open problem3. The first attempt
to provide necessary and sufficient conditions to characterize the inclusion

3To the best knowledge of the authors at the moment.
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order among DAG Markov models was done in (Verma and Pearl, 1988),
and in (Kočka, 2001) it is shown that these conditions are necessary but not
sufficient. Later, Meek (1997) conjectured the following operational criterion
to decide Bayesian Network inclusion.

Conjecture 3.1. Meek’s conjecture Meek (1997)
Let D(G) and D(G′) be two Bayesian Networks determined by two DAGs G
and G′. The conditional independence model induced by D(G) is included in
the one induced by D(G′), i.e. DI(G) ⊆ DI(G′), if and only if there exists a
sequence of DAGs L1, . . . , Ln such that G = L1, G′ = Ln and the DAG Li+1

is obtained from Li by applying either the operation of covered arc reversal
or the operation of arc removal for i = 1, . . . , n.

Very recently, Chickering (2002) has proved Meek’s conjecture, and prior
to that work, Kočka et al. (2001) proved Meek’s conjecture for the partic-
ular case in which G and G′ differ in at most one adjacency, providing the
following operational criterion.

Lemma 3.1. Kočka et al. (2001)
Let D(G) and D(G′) be two Bayesian Networks determined by two DAGs G
and G′ such that their skeletons differ in at most one edge. DI(G) ⊂ DI(G′)
iff there exists a sequence of DAGs L1, . . . , Ln such that G = L1, G′ = Ln
where the graph Li+1 is obtained from Li by applying the operation of covered
arc reversal for i = 1, . . . , j − 1, the operation of arc removal for i = j
and the operation of covered arc reversal for i = j + 1, . . . , n − 1 where
j ∈ {1, . . . , n− 1}.

It is easy to realize that the collection of sets of CI restrictions MI(G) ∈
M whereM is any given class of GMMs, forms a poset that we can represent
by means of a Hasse diagram. In Figure 2 we may see this representation
for the EG-space over three variables.

From the perspective of the search space that the Hasse diagram in
Figure 2 provides, the concept of inclusion boundary follows. This concept
applies to every type of GMM. As we shall see throughout the paper, this
concept is the key to understanding the relevance of the inclusion order in
the learning task.

Definition 3.1. Inclusion Boundary (Kočka, 2001)
Let M(H),M(L) be two GMMs determined by the graphs H and L. Let
MI(H) ≺ MI(L) denote MI(H) ⊂ MI(L) and for no MI(K), MI(H) ⊂
MI(K) ⊂MI(L).
The inclusion boundary of the GMM M(G), noted IB(G), is

IB(G) = {M(H) : MI(H) ≺MI(G)} ∪ {M(L) : MI(G) ≺MI(L)}
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Figure 2: Hasse diagram of the EG-space for Bayesian Networks over three
variables.

Intuitively, the inclusion boundary of a given GMM M(G) consists of
those GMMs M(Gi) that induce a set of CI restrictions MI(Gi) which im-
mediately follow or precede MI(G) under the inclusion order. In the Hasse
diagram of Figure 2, the inclusion boundary for a given node is formed by
those nodes adjacent to it.

We will say that a sequence of GMMs M(G1), . . . ,M(Gn) forms an in-
clusion path, or are in inclusion, if MI(G1) ⊃ . . . ⊃ MI(Gn). We will say
that inclusion path is a longest inclusion path between M(G1) and M(Gn)
if each GMM from the sequence MI(Gi) has its neighbors in its inclusion
boundary i.e. MI(Gi+1),MI(Gi−1) ∈ IB(Gi). Obviously for each pair of
GMMs in inclusion MI(G) ⊃MI(H) there is at least one longest inclusion
path which starts with MI(G) and ends with MI(H). The existence follows
from the definition of inclusion boundary.

The following definition of inclusion boundary condition establishes a
necessary condition that a traversal operator (used for local search) must
satisfy in order to avoid local maxima. Later we will show that under some
additional assumptions this condition is sufficient.

Definition 3.2. Inclusion Boundary Condition (Kočka, 2001)
A learning algorithm for GMMs satisfies the Inclusion Boundary Condition
if for every GMM determined by a graph G, the traversal operator creates
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neighborhood N (G) such that N (G) ⊇ IB(G).

Note that some computational performance may be gained if the traver-
sal operator creates neighborhood N (G) = IB(G), since it is the smallest
N (G) satisfying the inclusion boundary condition.

current

NR neighborhood

true

initial

Figure 3: Example of getting stucked in a local maxima because the concept
of neighborhood employed (NR) does not contain the inclusion boundary.

In Figure 3 we find a situation, in the context of DAG models, in which
the model highlighted with a thick line is our current model. The model
highlighted with a dashed line is the one that reflects the data (the true
model).

The rest of the models are the NR neighborhood of the current one.
All models around the current one form its inclusion boundary. As we
may appreciate, because the current neighborhood does not entirely include
the inclusion boundary, it is not possible to reach the true model from the
current one in a single step. In this situation, it may become very difficult for
the learning algorithm to reach the true model. Note that starting from the
empty model it may easily happen that we select the current model, provided
that a score equivalent metric would score equally in either direction the
addition of a single isolated edge.

From the previous example, it is clear that the concepts of neighborhoods
introduced for Bayesian Networks so far (NR, AR, CR and NCR) do not
retain the property N (G) ⊇ IB(G). In Figure 4 we may find this problem
more clearly illustrated. In the center we have a circle that represents an
equivalence class of DAG models with 16 members determined by the graphs
G0 to G15. Surrounding this circle we have other equivalence classes, where
those that are shaded represent its inclusion boundary. Given any of the
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Figure 4: Every member G0, . . . , G15 of an equivalence class cannot reach
the entire inclusion boundary (shaded classes) by a transformation of a single
adjacency.

sketched classes, its immediate neighbors are reachable by a transformation
in a single adjacency of the graph.

Consider the equivalence class in the inclusion boundary that is darker
shaded. As it is clear from the figure, only G9, G10 and G11 can reach
this neighboring equivalence class by a transformation in a single adjacency.
Therefore, if our learning algorithm does not consider any of G9, G10 or G11,
it will not be able to reach that neighbor class in a single move.

We are going to define a neighborhood that that coincides with the in-
clusion boundary. Later, by using the partial characterization in Lemma 3.1
we will provide an efficient implementation of this neighborhood.

Let D(G) be any given DAG Markov model that belongs to some equiv-
alence class C = {D(G1), . . . ,D(Gn)}, i.e. D(G1) = D(G2) = . . . = D(Gn).
Consider the following two neighborhoods for D(G):

• ENR (Equivalence class No Reversals) All DAGs with one arc more
or one arc less than any DAG Gi where D(Gi) ∈ C.

• ENCR (Equivalence class Non-Covered Reversals) All DAGs with one
arc more or one arc less or one non-covered arc reversed than any DAG
Gi where D(Gi) ∈ C.

Now, we will investigate the relationships among the ENR and ENCR
neighborhoods, and the other neighborhoods previously defined. We begin
by recalling the directed pairwise Markov property (Lauritzen et al., 1990;
Lauritzen, 1996):
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Definition 3.3. Directed pairwise Markov property (DPMP)
Let G = (V,E) be a DAG. A probability distribution P is said to satisfy
the directed pairwise Markov property (DPMP) if, for any pair u, v ∈ V of
non-adjacent vertices such that v ∈ nd(u), P satisfies

u ⊥⊥ v |nd(u)\{v}[P ].

Lauritzen et al. (1990) prove that all CI restrictions implied by the
DPMP are implied by the DGMP and the d-separation criterion as well.

The following two lemmas provide insight into the relationship between
the inclusion order and the graphical structure of Bayesian Networks.

Lemma 3.2.
Let D(G) and D(G′) be two Bayesian Networks. If G and G′ have the same
number of edges then either the two Bayesian networks are equivalent, i.e.
D(G) = D(G′), or the two Bayesian networks are not in inclusion, i.e.
D(G) 6⊂ D(G′) and D(G) 6⊃ D(G′).

Proof. We will distinguish three cases. First when the two networks have
different skeletons, second when the two networks have the same skeletons
but different immoralities and third when the two networks have the same
skeletons and the same immoralities.

In the first case, the two skeletons of G and G′ are different but have
the same number of edges. This implies that there are at least two distinct
vertices u and v such that they are adjacent in G and are non-adjacent in
G′. Either v ∈ nd(u) or u ∈ nd(v) holds in G′ as otherwise there would
be a cycle. By the DPMP (see Definition 3.3) there exists a CI restriction
between u and v in G′. This CI restriction cannot hold in G according
to the d-separation criterion because u and v are adjacent in G. Thus
D(G) 6⊃ D(G′). The same argument applies for D(G) 6⊂ D(G′).

In the second case, G and G′ have the same skeletons but different im-
moralities. Let u → w ← v be an immorality formed by three distinct
vertices u, v and w which, without loss of generality, is in G but not in G′.
This implies that the subgraph induced in G′ by u, v and w will be either
u ← w ← v or u → w → v or u ← w → v where u and v are non-adjacent
as in G.

Either v ∈ nd(u) or u ∈ nd(v) holds in G′ as otherwise there would be a
cycle. By means of the DPMP (see Definition 3.3), there is a CI restriction
u⊥⊥v|C in G′ for some C where w ∈ C. If w 6∈ C, u⊥⊥v|C would not hold in
G′ according to the d-separation criterion. The same CI restriction u⊥⊥v|C,
where w ∈ C, cannot hold in G because w ∈ C creates an active path
between u and v, so they are not d-separated. This leads to D(G) 6⊃ D(G′).
Analogously, for some subset C ′ where w 6∈ C ′, the CI restriction u⊥⊥v|C
holds in G while it does not hold in G′, therefore D(G) 6⊂ D(G′).
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The third case follows from Lemma 2.1, which leads to D(G) = D(G′).

Lemma 3.3.
Let D(G) and D(G′) be two Bayesian Networks. If D(G) ⊂ D(G′) then G′

has less edges than G.

Proof. We will prove this lemma by contradiction. Assume D(G) ⊂ D(G′)
and the two possibilities: (a) the two DAGs G and G′ have the same number
of edges or (b) G′ has at least one more edge than G.

In (a) the contradiction follows from Lemma 3.2 which forces D(G) and
D(G′) to be either equivalent or not in inclusion.

In (b) the contradiction follows from the fact that there is a pair of
vertices u, v which are non-adjacent in G and adjacent in G′. By the DPMP
(see Definition 3.3) there is a CI restriction u ⊥⊥ v|nd(u)\v in G which does
not hold in G′, i.e. D(G) 6⊂ D(G′).

The following result discusses some of the relationships among the dif-
ferent concepts of neighborhoods as well as with respect to the inclusion
boundary.

Theorem 3.1. Let D(G) denote a Bayesian Network. Let NNR(G),
NCR(G), NNCR(G), NAR(G), NENR(G) and NENCR be the sets of Bayesian
Networks that form, respectively, the NR, CR, NCR, AR, ENR and ENCR
neighborhoods for D(G). The following statements hold:

1. For all G: NNR(G) ⊆ NENR(G) ⊆ IB(G); NNR(G) ⊆ NNCR(G) ⊆
NENCR(G); NNR(G) ⊆ NCR(G) ⊆ NAR(G); NNR(G) ⊆ NNCR(G) ⊆
NAR(G); NENR(G) ⊆ NENCR(G).

2. For all G: {NNCR(G)\NNR(G)} ∩ IB(G) = {NAR(G)\NCR(G)} ∩
IB(G) =
{NENCR(G)\NENR(G)}∩IB(G) = {NCR(G)\NNR(G)}∩IB(G) = ∅.

3. There exists G such that: NAR(G) 6⊇ IB(G).

Proof. Statement 1. The part NNR(G) ⊆ NENR(G) follows directly from
the fact that ENR performs all operations that NR does. The same ar-
gument applies to the NNR(G) ⊆ NNCR(G), NNCR(G) ⊆ NENCR(G),
NNR(G) ⊆ NCR(G), NCR(G) ⊆ NAR(G), NNCR(G) ⊆ NAR(G) and
NENR(G) ⊆ NENCR(G).

The relationship NENR ⊆ IB(G) follows from Lemmas 2.1, 3.1 and 3.3.
The first lemma guarantees us that the ENR neighborhood is created by
transforming every member of an equivalence class. The second lemma
proves that the Bayesian Network, from which the ENR neighborhood is
created, precedes all Bayesian Networks in the ENR neigborhood under
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the inclusion order. The third lemma shows that, under the inclusion or-
der, there are no Bayesian Networks in between the one from which the
ENR neighborhood is created, and those from the ENR neighborhood, i.e.
NENR ⊆ IB(G).

Statement 2. The Bayesian Networks in the difference sets
{NNCR(G)\NNR(G)}, {NAR(G)\NCR(G)} and {NENCR(G)\NENR(G)} are
created by the reversal of a non-covered arc in G. This statement says that,
for any given Bayesian Network D(G), if we reverse a non-covered arc of G
obtaining a new DAG G′, then D(G′) 6∈ IB(G). We prove this as follows.
If an arc is not covered in G, its reversal either introduces or destroys an
immorality in G′ (see Definition 2.3) that yields a non-equivalent model (see
Lemma 2.1). Since the number of edges remains the same, by Lemma 3.2,
DI(G) 6⊂ DI(G′), and therefore DI(G) 6⊆ DI(G′).

The difference set {NCR(G)\NNR(G)} contains only DAGs equivalent to
G and thus its intersection with the IB(G) is empty set.

Statement 3. Figure 4 illustrates this statement.

The intuition behind the previous theorem is that the ENR neighborhood
covers a larger part of the inclusion boundary than any of the previously
introduced neighborhoods. In particular, the ENR will coincide with the
inclusion boundary under the next circumstance.

Theorem 3.2. Let D(G) be a DAG Markov model. If Meek’s conjecture
holds, then it follows that

NENR(G) = IB(G).

Proof. From the characterization of the inclusion order provided by Meek’s
conjecture it follows that the inclusion boundary are all DAGs with one arc
more and one arc less than every member of the equivalence class of a given
DAG, which coincides with the definition of ENR neighborhood.

As it follows from its definition (and formally stated in Theorem 3.1),
the ENCR neighborhood contains the ENR neighborhood plus other models
that are not part of the inclusion boundary. Assuming that Meek’s conjec-
ture holds, the ENR neighborhood retains already the desired property of
containing the inclusion boundary. Nevertheless, as we shall see later on the
experiments, a variation of the ENCR neighborhood seems to be actually
very useful, hence we formalize this neighborhood.

Finally, we are going to emphasize further the relevance of the inclu-
sion order in the learning process by proving that the inclusion boundary
condition (see Definition 3.2) is sufficient under the assumptions of data
faithfulness and unbounded data length.

Before we formally introduce these assumptions let’s recall the definition
of penalized score function. Let PL(D(G);D) denote the penalized score
function of the dataset D against the Bayesian network D(G):
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PL(D(G);D) = −H(D(G), D)− f(|D|)
|D|

∗ k(D(G)),

where H(D(G), D) is the entropy (Kullback, 1959) of the Bayesian Network
D(G) and the data D, i.e. the approximated distribution from D(G) and
the distribution of D. The function k(D(G)) provides the number of free
(independent) parameters of the Bayesian Network D(G), and f(|D|) is a
positive function driving the penalization such that lim|D|→∞

f(|D|)
|D| = 0. A

typical example of a penalized score function is the Bayesian Information
Criterion (Schwarz, 1978), or BIC, where f(|D|) = 1

2 log(|D|). The BIC is
a large-sample approximation of the likelihood of a dataset given a model
(Chickering and Heckerman, 1997).

A dataset D, sampled from some probability distribution P , is faithful
(Spirtes et al., 1993) to some Bayesian Network D(G) if all and only the CI
restrictions in P , make P Markov over G. One also says that G is a perfect
map of D (Pearl, 1988).

If two models are in inclusion, i.e. DI(X) ⊃ DI(X∗), then obvi-
ously the entropy of the data and the more complex model is smaller
or equal than the entropy of the data and the less complex model, i.e.
H(D(X∗), D) ≤ H(D(X), D). Similarly the number of free parameters of
the more complex model is always higher than the number of free parameters
of the less complex model, i.e. k(D(X∗)) > k(D(X)).

If two models are in inclusion, i.e. DI(X) ⊃ DI(X∗), and we have dataD
faithful to the model D(G) then the entropy H(D(X∗), D) = H(D(X), D)
if and only if all the CI restrictions in DI(X) and not in DI(X∗) are valid
in the data D, i.e. DI(X)\DI(X∗)\DI(G) = ∅. This is the situation when
it does not make sense to go to the more complex model D(X∗) because it
does not enable us to include any information more from the data.

We will use these basic properties to derive the following two useful
lemmas. They characterize relations between PL scores of pairs of model in
inclusion with respect to faithful data of unbounded length.

Lemma 3.4.
Let D∞ be a set of data of unbounded length faithful to the model D(G). Let
D(X) and D(X∗) be two models in inclusion, i.e. DI(X) ⊃ DI(X∗), where
DI(X)\DI(X∗)\DI(G) 6= ∅. Then PL(D(X∗);D∞) > PL(D(X);D∞).

Proof. DI(X) ⊃ DI(X∗) thus H(D(X∗), D) ≤ H(D(X), D) and
k(D(X∗)) > k(D(X)). Because DI(X)\DI(X∗)\DI(G) 6= ∅ we know that
H(D(X∗), D) 6= H(D(X), D). Thus H(D(X∗), D) < H(D(X), D). Know-
ing from the definition of the PL score that lim|D|→∞

f(|D|)
|D| = 0 we conclude

PL(D(X∗);D∞) > PL(D(X);D∞).
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Lemma 3.5.
Let D∞ be a set of data of unbounded length faithful to the model D(G). Let
D(X∗) and D(X) be two models in inclusion, i.e. DI(X) ⊂ DI(X∗), where
DI(X∗) ⊆ DI(G). Then PL(D(X∗);D∞) > PL(D(X);D∞).

Proof. DI(X) ⊂ DI(X∗) thus H(D(X∗), D) ≥ H(D(X), D) and
k(D(X∗)) < k(D(X)). From DI(X) ⊂ DI(X∗) ⊆ DI(G) follows that
DI(X∗)\DI(X)\DI(G) = ∅. Thus H(D(X∗), D) = H(D(X), D). From
H(D(X∗), D) = H(D(X), D) and k(D(X∗)) < k(D(X)) follows the desired
by definition of the PL score.

As we shall see now, there is a fundamental relationship between learning
Bayesian Networks from data and the inclusion order. The next theorem
shows that following the right inclusion path, the PL score always increases.

Theorem 3.3. Let D(G∗) be a Bayesian Network faithful to a dataset D∞

of unbounded length. Let PL(D(G);D∞) be any PL score of the dataset D∞

against the Bayesian Network D(G).
The PL score increases monotonically through any inclusion path

DI(G1) ⊃ DI(G2) ⊃ . . . ⊃ DI(Gn) ending with the faithful model, i.e.
with Gn = G∗:

PL(D(G1);D∞) < PL(D(G2);D∞) < . . . < PL(D(Gn);D∞) where Gn = G∗.

Proof. We will show that if DI(Gi) ⊃ DI(Gj) ⊇ DI(G∗) then
PL(D(Gi);D∞) < PL(D(Gj);D∞). From DI(Gi) ⊃ DI(Gj) ⊇ DI(G∗)
it follows that DI(Gi)\DI(Gj)\DI(G∗) 6= ∅. By Lemma 3.4 we get
PL(D(Gi);D∞) < PL(D(Gj);D∞).

Note that a learning algorithm which satisfies the inclusion boundary
condition can possibly follow the longest inclusion path to the faithful model.
There always exists a longest inclusion path from the empty graph model
to any model.

The following theorem proves correctness of the hill-climbing algorithm
under the faithfulness and unbounded data assumptions.

Theorem 3.4. Let D(G∗) be a Bayesian Network faithful to a dataset D∞

of unbounded length. Let PL(D(G);D∞) be any PL score of the dataset D∞

against the Bayesian Network D(G).
The hill-climbing algorithm using the PL score and a traversal operator

satisfying the inclusion boundary condition always finds the faithful model
D(G∗) which has the highest score.

Proof. First we will shortly review how the hill-climber works. It starts with
some model, usually the empty graph model. It computes the score of all
neighbours of current model and goes to the model with highest score. It
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stops when no model in the neighborhood of the current model has higher
score than the current model.

Second we will prove the theorem. We will show that the hill-climber
always stops and we will show that the hill-climber returns the faithful
model D(G∗). Moreover we will show that the faithful model D(G∗) has
the highest score among all models.

The hill-climber produces a sequence of models with increasing score.
Because the number of all models is finite it will stop.

The model where the hill-climber stops has in its neighbourhood no
model with higher score. We show that for each model D(X) 6= D(G∗)
there is a model D(X∗) where D(X∗) ∈ N (X) and PL(D(X∗);D∞) >
PL(D(X);D∞). Thus the hill-climber cannot stop in D(X), i.e. it has to
stop in D(G∗). Each model D(X) 6= D(G∗) satisfies either DI(X) ⊂ DI(G∗)
or DI(X) 6⊆ DI(G∗). The proof of existence of D(X∗) follows separately
for these two cases.

Suppose a model D(K) where DI(K) ⊂ DI(G∗). Then there exists a
longest inclusion path DI(G1) ⊃ DI(G2) ⊃ . . . ⊃ DI(Gn) where G1 =
G∗ and Gn = K. Take the model D(Gn−1) from this path and denote it
by D(K∗). Thus DI(G∗) ⊇ DI(K∗) ⊃ DI(K). By Lemma 3.5 we get
PL(D(K∗);D∞) > PL(D(K);D∞). The model D(K∗) is neighbor of the
model D(K) in the longest inclusion path, thus D(K∗) ∈ IB(K). Because
the traversal operator satisfies the inclusion boundary condition, D(K∗) ∈
N (K).

Suppose a model D(L) where DI(L) 6⊆ DI(G∗). Then DI(L)\DI(G∗) 6=
∅. Thus there is some CI restriction of the type a ⊥⊥ b|C in DI(L)\DI(G∗).
Thus in the DAG L the nodes a and b are not adjacent (otherwise there
would be an active path in L and the CI would not hold). Denote by
L∗ the DAG obtained from the DAG L by adding an arc between the
nodes a and b (at least one orientation of the arc which does not cre-
ate any cycle is always possible, otherwise the graph L would be cyclic).
Then D(L∗) ∈ NNR(L). By Theorem 3.1 which says that NNR(L) ⊆
IB(L) we get D(L∗) ∈ IB(L) and DI(L∗) ⊂ DI(L). {a ⊥⊥ b|C} ∈
DI(L)\DI(L∗)\DI(G∗) thus DI(L)\DI(L∗)\DI(G∗) 6= ∅. By Lemma 3.4
we get PL(D(L∗);D∞) > PL(D(L);D∞). From D(L∗) ∈ IB(L) and the
fact that the traversal operator satisfies the inclusion boundary condition
we conclude that D(L∗) ∈ N (L).

We have shown that the hill-climber always finds the faithful model
D(G∗) and we did not assume any special model where the hill-climber
starts, i.e. the hill-climber can start in any model.

Because the hill-climber always produces a sequence of models with in-
creasing score, the faithful model D(G∗) has the highest score among all
models. This finishes the proof.

The idea of the proof above is that from any model there is always an
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inclusion path to some bigger model (in the worst case it is the complete
one) from which there is another inclusion path to the faithful model. The-
orem 3.3 says that when starting from the empty graph model the bigger
model can always (possibly) be the faithful model itself. Because there is no
guarantee that the hill-climber will follow the inclusion path to the faithful
model it may use some other bigger model (more complex than the faithful
one). It is clear that enabling the smallest possible bigger model (i.e. the
faithful model, i.e. what Theorem 3.3 does) is crucial when working with
finite size data. Meek (1997) in his PhD thesis proved a similar result to
which, unfortunately, the authors have not had access to provide compari-
son.

4 The RCARNR and RCARR Neighborhoods

A straightforward realization is that both the ENR and ENCR neighbor-
hoods are not computationally efficient to handle. More concretely, the
effort to enumerate the members of an equivalence class is prohibitive since
there is no cheap graphical characterization of those members.

However, we conjecture that because the average ratio of DAGs per
equivalence class seems to be bounded by some constant, it might suffice to
simulate somehow the ENR neighborhood. In order to do that, we introduce
the repeated covered arc reversal algorithm, or RCAR algorithm, that allows
to reach any member of the equivalence class with certain probability. We
may see the RCAR algorithm in Figure 5.

algorithm g.rcar(int r) is

01 int rr = rnd(0, r)
02 for i = 0 to rr do

03 vector ce = g.covered edges()
04 int j = rnd(0, ce.size()− 1)
05 edge e = ce[j]
06 g.reverse edge(e)
07 endfor

endalgorithm

Figure 5: RCAR algorithm implemented as a method for an object g that
embodies a DAG and implements a method that returns a vector of the
covered edges and an another method that reverses a given edge.

The algorithm in Figure 5 takes a constant r as parameter and iterates
some random number of times between 0 (no iteration) and r. At each itera-
tion, it picks at random a covered arc and reverses it. Lemma 2.1 guarantees
us that the RCAR algorithm reaches any member of the equivalence class
with a positive probability for a sufficiently large maximum number r of
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iterations. The bounded ratio of DAGs per equivalence class suggests that
a small number between 4 and 10 should be sufficiently large.

Note that when the number of undirected edges in the corresponding
essential graph is lower or equal to the number of iterations of RCAR,
then RCAR is able to reach any Bayesian Network in its equivalence class.
Gillispie and Perlman (2001) show that the distribution of the sizes of the
equivalence classes represented by essential graphs, follows a very particu-
lar pattern. In concrete, they make the following observation (Gillispie and
Perlman, 2001):

The pattern of the distribution shows that certain sizes appear
more frequently than others. In particular, larger compound
numbers occur more often than larger prime numbers. This is
probably due to separate sets of undirected edges in the essen-
tial graph acting independently to produce class sizes that are
products of the sizes of their independent components.

In a nutshell, essential graphs with many disconnected components rep-
resent equivalence classes with a large number of members. However, the
fact that these classes have many disconnected components allows RCAR
to reach a substantial amount of the members of those equivalence classes.

Using the RCAR algorithm, we may define the following two new con-
cepts of neighborhood for Bayesian Networks:

• RCARNR (RCAR+NR) Perform the RCAR algorithm and then cre-
ate a NR neighborhood, noted NRCARNR(G).

• RCARR (RCAR+NCR) Perform the RCAR algorithm and then cre-
ate a NCR neighborhood, noted NRCARR(G).

The RCARNR neighborhood may be seen as a simulation, or an approx-
imation, of the ENR neighborhood, and analogously between the RCARR
and ENCR neighborhoods. We can establish the following property for the
RCARNR and RCARR neighborhoods.

Theorem 4.1. Let D(G) be DAG Markov model. For a sufficiently
large maximum number of iterations r of the RCAR algorithm, D(G′) ∈
NENR(G) ⇒ D(G′) ∈ NRCARNR(G) and D(G′) ∈ NENCR(G) ⇒ D(G′) ∈
NRCARR(G), with probability p > 0.

Proof. It follows directly from Lemma 2.1 and the definitions of ENR,
ENCR, RCARNR and RCARR neighborhoods.
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5 Heuristic Search

The usual learning algorithm used in heuristic search consists of a hill-
climber that iterates until the score metric does not improve. The score
metric is evaluated typically throughout a NR or an AR neighborhood at
each iteration. The NR or AR neighborhoods for DAG models have been
traditionally restricted by a maximum number of parents and a causal order-
ing because otherwise the hill-climber would not find a model of a reasonable
quality or simply the algorithm would not scale up in a reasonable time to
a larger number of variables. Therefore, some of the existing algorithms
assume that the causal ordering is known (Cooper and Herskovits, 1992),
or they search for a good causal ordering that can be used later (Bouckaert,
1992; Singh and Valtorta, 1993; Larrañaga et al., 1996; Friedman and Koller,
2000).

However, the causal ordering reduces the already small part of the inclu-
sion boundary that was reachable from a NR or AR neighborhood. There-
fore, errors in the ordering may easily lead to very bad local maxima, as
shown in Chickering et al. (1995). The same reasoning holds for the number
of parents. Heuristic algorithms that do not use any form of causal order-
ing at all correspond in fact to those that use EG-space (Spirtes and Meek,
1995; Chickering, 1996, 2001).

We will introduce now a new heuristic algorithm which works in DAG-
space, and partially accounts for the inclusion order. This will be achieved
by the use of the RCAR algorithm (see Figure 5) that allows to create the
RCARNR and RCARR neighborhoods.

The algorithm we propose is in Figure 6. It consists of a usual hill-
climber that iterates through lines 4 to 17. It contains two modifications.
One, on line 5, is to perform the RCAR algorithm from Figure 5 on the
current DAG. The other is to perform again the RCAR algorithm when a
local maxima is reached, as in line 13. This last step will be performed a
maximum number of times (MAXTRIALS). If within this maximum number
of times, it has not been possible to escape from that local maxima, then the
RCAR algorithm is not called again and the hill-climber will stop iterating.

The first of the two modifications, on line 5, is followed by the creation of
a NR or NCR neighborhood, depending on the truth value of the parameter
ncr. In this way, a RCARNR or RCARR neighborhood will be employed.
Afterwards, on line 7, the method g.score and pick best(nh) scores all mem-
bers of the neighborhood and returns the one that provides the highest score,
which is assigned to g′.

The second of the two modifications, on lines 12 to 16, resembles in a
way the iterative hill-climber introduced in Chickering et al. (1995), which
consists of perturbing randomly the current model once a local maxima is
reached. This is done in line 13 as well but the perturbation is constrained
to a move within the same equivalence class of the current model. Due to
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algorithm hcmc(int r, bool ncr) returns dag

01 dag g = emptydag

02 bool local maxima = false

03 int trials = 0
04 while (¬local maxima) do

05 g.rcar(r)
06 set nh = g.neighborhood(ncr)
07 dag g′ = g.score and pick best(nh)
08 local maxima = (g′.score() < g.score())
09 if (¬local maxima) then

10 g = g′

11 trials = 0
12 else if (trials < MAXTRIALS) then

13 g.rcar(r)
14 local maxima = false

15 trials = trials + 1
16 endif

17 endwhile

18 return g

endalgorithm

Figure 6: Hill-Climber Monte Carlo algorithm

the random nature of the new steps introduced in the hill-climber, we call
this algorithm the Hill-Climber Monte Carlo, or HCMC for short.

6 The Markov Chain Monte Carlo Method

The need to account for the uncertainty of models (Draper, 1995) has led to
the development of computational methods that implement the full Bayesian
approach to modelling. Recall Bayes’ theorem:

p(M |D) =
p(D|M)p(M)

p(D)
, (3)

where p(D) is known as the normalizing constant which is computed as
follows

p(D) =
∑
M∈M

p(D|M)p(M). (4)

Once we account for the uncertainty of the models, it is possible to com-
pute the posterior distribution of some quantity of interest ∆, by averaging
over all the models in the following way

22



p(∆|D) =
∑
M∈M

p(∆|M,D)p(M |D). (5)

As we saw in the first section, DAG-space has a prohibitive size as to go
exhaustively through all the models. Therefore, it is not computationally
feasible to carry out the sums in (4) and (5).

The method of Markov Chain Monte Carlo (MCMC hereafter) solves
this problem by sampling directly from the posterior distributions p(M |D)
and p(∆|D), thus performing the sumations implicitly. The MCMC method
had its origins in a sampling method introduced by Metropolis et al. (1953)
within the context of statistical physics. However, it was in the work of
Hastings (1970), that this sampling method was generalized for statistical
problems, by using the theory of Markov chains, introducing the well known
Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm was adapted for structural learning
of GMMs by Madigan and York (1995), who called it the Markov Chain
Monte Carlo Model Composition, or MC3 algorithm for short.

For each Bayesian Network M ≡ D(G), let N (G) be the set of neighbors
of M . Let q be a transition matrix such that for some other Bayesian
Network M ′ ≡ D(G′), q(M →M ′) = 0 if M ′ 6∈ N (G) and q(M →M ′) > 0
if M ′ ∈ N (G). Using the transition matrix q we build a Markov chain
M(t, q), t = 1, 2, . . . , n, with state space M.

Let the chain M(t, q) be in state M and let’s draw a candidate model
M ′ from q(M →M ′). The proposed model M ′ is accepted with probability

α(M ′,M) = min

{
1,
|N (G)|p(M ′|D)
|N (G′)|p(M |D)

}
, (6)

where |N (G)| refers to the cardinality of the set of neighbors of the
model M . If M ′ is not accepted, M(t, q) remains in state M . The idea
behind is that a Markov chain M(t, q) built in such way, has p(M |D) as
its equilibrium distribution. This means that, after the chain has ran for
enough time, the draws can be regarded as a sample from the target density
p(M |D), and one says that the chain has converged.

The convergence of the Markov chain to the target density p(M |D) is
guaranteed under two mild regularity conditions: irreducibility and aperi-
odicity. The reader may find a discussion in depth of these conditions in
(Smith and Roberts, 1993).

Given output M(t, q) = {Mt=1,Mt=2, . . . ,Mt=n} of the Markov chain,
the regularity conditions allow to derive the following asymptotic results
(Chung, 1967; Hastings, 1970; Smith and Roberts, 1993; Madigan and York,
1995):

Mt=n
n→∞−→ M ∼ p(M |D) (7)
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1
n

n∑
t=1

f(M(t, q)) n→∞−→ E(f(M)) (8)

Which imply that, when the Markov chain M(t, q) converges:

• the draws from the Markov chain mimic a random sample from
p(M |D). Therefore, in order to get an estimate of p(M |D), it suf-
fices to account for the frequency of visits of each model M and divide
it by the number iterations n,

and

• the average of the realizations of any function of the model, f(M),
is an estimator of the expectation of f(M). Therefore, by setting
f(M) = p(∆|M,D) we will approximate the sum in (5) (Madigan and
York, 1995),

respectively. In this setting, the transition matrix q choses randomly the
Bayesian Network typically from a NR or AR neighborhoods. The enhance-
ment we introduce here consists of simply modifying q such that it uses
RCARNR or RCARR neighborhoods. In Figure 7 we may see the pseu-
docode of the modified MC3 algorithm, which we will call the enhanced
MC3 or eMC3 for short. For later comparison in the experiments, we have
tuned the algorithm also to work with NR, CR and NCR neighborhoods.

algorithm eMC3(dag init, int n, int(dag) f , int r, bool ncr,
int burn in) returns {dbl[],dbl[]}

01 dag g = init
02 int i = 0
03 dbl p[]
04 dbl d[]
05 while (i < n) do

06 g.rcar(r)
07 set nh = g.neighborhood(ncr)
08 dag g′ =pick at random(nh)
09 dbl x = U(0, 1)
10 if (x ≤ α(g, g′)) then g = g′ endif

11 if (i > burn in) then

12 p[g] = p[g] + 1
13 d[f(g)] = d[f(g)] + 1
14 endif

15 i = i+ 1
16 endwhile

17 for g = p.fst() to p.lst() do p[g] = p[g]/n enddo

18 for i = 1 to d.size() do d[i] = d[i]/n enddo

19 return {p, d}
endalgorithm

Figure 7: The eMC3 algorithm.

The algorithm in Figure 7 needs the specification of the following six pa-
rameters:
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• init: some arbitrary Bayesian Network from which the Markov chain
starts.

• n: number of iterations that the Markov chain will perform.

• f : function that takes a Bayesian Network as input and gives an inte-
ger number as output, which indexes some quantity of interest of the
model.

• r maximum number of iterations for the RCAR algorithm.

• ncr flag set to true when the algorithm should use a RCARR neigh-
borhood, and false for a RCARNR neigborhood.

• burn in: number of iterations we want to discard before the algorithm
starts accounting for the frequency of visits to the models.

The algorithm uses two vectors p and d to store the estimated posteriors
p(M |D) and p(∆|D), which are the result that the algorithm returns.

The Markov chain iterates through lines 5 to 16. On line 6, it performs
the RCAR operation (see Figure 5) on the current Bayesian Network g.
Then, from this new Bayesian Network a NR or NCR neighborhood is cre-
ated, depending on the truth value of the parmeter ncr. In line 8 a Bayesian
Network is picked randomly from this neighborhood. These three lines of
code implement the transition matrix q.

In line 9 a random number x is generated from a uniform distribution
between 0 and 1. This random number x is used to accept the candidate
Bayesian Network g′ with probability as specified in (6). If the current
iteration i is beyond those to be discarded (line 11), then on lines 12 and 13
the current state of the Markov chain is stored.

Finally, on lines 17 and 18, the averages of the stored quantites p and d
are computed and they are returned on line 19.

7 Experimental Comparison

Throughout all the experimentation we have used the Alarm dataset (Bein-
lich et al., 1989), which is a synthetic dataset that has become a standard
benchmark for the assessment of learning algorithms for DAG models on
discrete data. The Alarm dataset was sampled from the Bayesian Network
in Figure 8, which was designed for a monitoring system in the context of
intensive care unit ventilator management.

The Alarm dataset, originally employed by Herskovits (1991), contains
20000 records. From this dataset the first 10000 records where used by
Cooper and Herskovits (1992) to assess the K2 learning algorithm. We will
use here this latter dataset of 10000 records. From this 10000 records we have
sampled six different datasets of two different sizes: three of 1000 records and
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Figure 8: The Alarm Network (Beinlich et al., 1989): 37 vertices and 46
edges.

three of 5000 records. The experiments reported on 10000 records regard
only the single dataset of the first 10000 records. As reported by Cooper
and Herskovits (1992), this dataset of 10000 records does not support the
arc between vertices 12 and 32 (see Figure 8).

7.1 Heuristic Learning

The assessment has been done as follows. On each of the seven datasets,
the HCMC was run ten times for four different cardinalities of RCAR (2, 4,
7 and 10) and three different neighborhoods (AR, RCARR and RCARNR).
The traditional hill-climber that uses an AR neighborhood will be referred
here as RCAR 0.

The reason for running the HCMC several times is obvious since this
new hill-climber performs random moves that may lead to different results
in different runs. The maximum number of trials for escaping local max-
ima (MAXTRIALS) is set to 50. The results have been averaged over ten
runs and confidence intervals, at a level of 95% for the means of score and
structural difference, have been included. We may see these results in Table
1.

The information in Table 1 regards two aspects, the performance of the
algorithm and the accuracy of the learned models with respect of the true
one (Figure 8). The performance is provided in terms of number of steps, i.e.
local transformations of a DAG, that the HCMC performs before stopping
and the average time per step. This is meant to be a timeless way of assessing
performance since we would only need to scale the average time per iteration
as the hardware performance improves.

The accuracy of the learned models is measured in terms of the score
metric, where the higher is the better and the structural difference between
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Table 1: Results (1st part) of the HCMC learning algorithm over the Alarm
dataset. Performance is averaged over RCARR and RCARNR.

smpl rcar performance score struct diff
steps sec/st RCARNR RCARR RCARNR RCARR

1ka 0 55 0.27 -11480.47 -11480.47 29 29
2 58 0.40 -11491.52±15.12 -11470.46±15.79 18.90±3.06 16.50±2.00
4 55 0.44 -11484.69±19.29 -11473.41±14.18 18.00±3.28 16.30±2.18
7 54 0.43 -11469.06±07.88 -11470.75±14.67 15.50±1.55 15.60±1.88
10 53 0.43 -11470.43±15.94 -11464.03±11.00 14.80±2.15 15.20±1.78

1kb 0 60 0.28 -11115.13 -11115.13 28 28
2 58 0.40 -11113.50±19.07 -11105.10±20.62 18.10±2.77 14.70±3.87
4 56 0.42 -11121.49±24.64 -11090.15±08.51 17.90±4.41 11.10±2.35
7 53 0.42 -11095.19±12.38 -11083.13±05.07 13.40±2.55 10.00±1.47
10 53 0.43 -11095.87±11.25 -11094.17±18.72 12.40±2.05 11.50±2.11

1kc 0 62 0.61 -11530.80 -11530.80 37 37
2 60 0.41 -11451.58±14.23 -11453.70±15.75 18.20±2.23 15.90±3.10
4 59 0.43 -11438.31±08.01 -11436.65±07.46 14.90±2.95 13.40±1.94
7 56 0.67 -11431.02±06.23 -11427.84±03.62 11.80±1.61 10.80±0.81
10 53 0.86 -11440.88±10.78 -11428.89±08.95 13.70±2.13 11.00±1.17

5ka 0 69 1.54 -55249.43 -55249.43 46 46
2 66 2.50 -55072.99±67.61 -54993.41±08.70 11.60±6.70 7.20±2.23
4 57 2.09 -55051.93±40.93 -54992.40±10.92 7.90±2.12 5.20±1.38
7 56 2.14 -55024.53±48.12 -54989.70±10.12 7.10±2.17 4.90±1.37
10 56 2.08 -55025.19±43.49 -54985.99±06.68 6.10±1.95 5.10±2.49

5kb 0 57 0.92 -54732.19 -54732 33 33
2 57 2.02 -54679.46±34.06 -54641.27±60.60 12.50±6.25 6.10±4.08
4 56 1.35 -54610.82±15.24 -54607.60±14.34 5.20±3.93 3.80±1.38
7 53 1.29 -54611.85±25.63 -54602.77±10.93 4.50±1.52 3.70±1.31
10 52 1.28 -54602.98±10.85 -54606.47±12.48 4.00±1.26 4.10±1.32

5kc 0 59 0.88 -54454.16 -54454.16 36 36
2 63 1.19 -54340.02±16.48 -54335.27±32.25 10.20±3.97 8.00±2.18
4 59 1.20 -54335.49±19.99 -54326.25±11.15 8.60±1.91 8.40±2.05
7 55 1.25 -54331.19±12.09 -54315.06±07.33 8.50±1.55 7.70±1.35
10 55 1.28 -54363.17±52.63 -54329.40±11.13 10.00±2.18 8.50±1.85

10k 0 56 1.86 -108697.78 -108697.78 21 21
2 56 2.23 -108495.65±68.33 -108463.65±46.17 4.90±2.20 5.40±4.10
4 54 2.28 -108549.53±63.63 -108437.83±35.72 6.80±2.25 1.60±0.90

7 50 2.29 -108477.50±52.06 -108485.55±58.14 5.50±3.22 2.80±1.11

10 50 2.41 -108468.56±53.07 -108477.98±51.65 4.20±1.34 3.30±1.17

the essential graph of the learned DAG and the essential graph of the true
model of Figure 8. In summary, these are the measures taken:

• steps: number of steps (g = g′ in the algorithm) of the HCMC.

• sec/st: speed of the HCMC in seconds per step.

• score: confidence interval of the mean of the score.

• struct diff: confidence interval of the mean of the structural difference.

As we may appreciate, there is a substantial difference in using RCAR
within the hill-climber. The structural differences, throughout all the seven

27



samples, for the standard hill-climber (RCAR 0) fall far away outside the
confidence intervals for any of the different cardinalities of RCAR, which are
nicely centered at a much lower values than the values for RCAR 0.

Regarding the score, on samples of 1000 records, RCAR 7 and 10 show
a significantly higher score than RCAR 0, since the latter does not fall into
their confidence intervals. At 5000 and 1000 records, the score for RCAR 0
falls outside the intervals for any of the cardinalities of RCAR.

The highest accuracy of the learned models is achieved when a RCARR
neighborhood is used. The most striking evidence lies in the case of 10000
records and RCARR. There, an average of just only 1.6 structural differences
is achieved in about 54 steps. As its confidence interval already suggests,
let’s remark the fact that on eight out of ten of those runs, there was only just
one structural difference, corresponding to the missing arc not supported by
the data. In some of those eight times, the result was reached in 49 steps
and the same result was reached for RCAR 7 and 10 even in 48 steps, which
is extremely close to the optimal path of the right result (46 additions).

In order to gain further insight into the HCMC algorithm and discuss
its performance, we have taken further measures that we may see in Table
2 and we describe as follows.

• considered models: accumulated number of models that have improve
the score at each step of the learning algorithm.

• escapes/trials: number of escapes of local maxima performed by doing
RCAR and average number of trials per escape.

As we did with the scores, confidence intervals at a level of 95% are
provided for the number of considered models. Although all of them are
quite wide, they show that the HCMC algorithm considers significantly less
amount of models to achieve a better result. This means that the HCMC
algorithm makes better choices during the search process which, provide its
greedy nature, implies that the way HCMC traverses the search space is
definitely better.

The number of escapes and trials, provide an idea of how effective is
the RCAR algorithm in avoiding local maxima. We may see that a higher
cardinality of RCAR implies a lower number of times that the HCMC es-
capes from a local maxima achieving a similar result. We may appreciate
that with the RCARR neighborhood the number of times HCMC is able to
escape from local maxima is slightly higher. In preliminary experiments not
reported here, we noted that this difference is more significant if the maxi-
mum number of trials (MAXTRIALS) is smaller. This fact may be one of
the reasons why RCARR seems to perform slightly better than RCARNR.

Finally, let’s highlight the computational trade-off that this approach
affords. We want to know what is the overhead of using the RCAR operation,
as in the HCMC algorithm, in front of the usual hill-climber. We can see
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Table 2: Results (2nd part) of the HCMC learning algorithm over the Alarm
dataset. Performance is averaged over RCARR and RCARNR.

smpl rcar performance considered models escapes/trials struct diff
steps sec/st RCARNR RCARR RCARR RCARNR RCARNR RCARR

1ka 0 55 0.27 6505 6505 0 0 29 29
2 58 0.40 6037±137.1 6061±131.4 2.40/7.72 2.30/6.82 18.90±3.06 16.50±2.00
4 55 0.44 5856±117.2 5936±145.9 1.60/6.55 2.00/3.80 18.00±3.28 16.30±2.18
7 54 0.43 5810±71.4 5862±113.5 1.60/4.47 1.70/2.92 15.50±1.55 15.60±1.88
10 53 0.43 5723±63.6 5816±111.6 1.20/3.00 1.70/3.45 14.80±2.15 15.20±1.78

1kb 0 60 0.28 6460 6460 0 0 28 28
2 58 0.40 5940±79.7 5956±131.7 1.70/5.07 2.20/11.36 18.10±2.77 14.70±3.87
4 56 0.42 5933±97.3 5861±120.1 2.00/10.53 1.60/6.17 17.90±4.41 11.10±2.35
7 53 0.42 5800±89.7 5810±109.9 0.20/4.00 0.70/6.00 13.40±2.55 10.00±1.47
10 53 0.43 5787±59.0 5794±67.0 0.40/1.33 0.60/16.33 12.40±2.05 11.50±2.11

1kc 0 62 0.61 6760 6760 0 0 37 37
2 60 0.41 5943±101.6 6123±141.5 5.40/8.68 2.50/2.02 18.20±2.23 15.90±3.10
4 59 0.43 5903±127.5 5928±126.8 3.70/4.66 3.50/6.10 14.90±2.95 13.40±1.94
7 56 0.67 5904±94.7 5782±80.0 1.80/3.02 1.40/3.10 11.80±1.61 10.80±0.81
10 53 0.86 5823±53.0 5711±43.6 1.70/3.52 1.90/1.96 13.70±2.13 11.00±1.17

5ka 0 69 1.54 8307 8307 0 0 46 46
2 66 2.50 6956±153.5 7346±236.5 4.70/9.08 6.10/6.80 11.60±6.70 7.20±2.23
4 57 2.09 6849±82.7 6921±188.8 1.30/7.94 1.80/7.99 7.90±2.12 5.20±1.38
7 56 2.14 6784±97.8 6733±160.6 1.60/10.39 1.50/5.87 7.10±2.17 4.90±1.37
10 56 2.08 6760±197.5 6678±88.3 0.90/7.21 1.00/3.97 6.10±1.95 5.10±2.49

5kb 0 57 0.92 7418 7418 0 0 33 33
2 57 2.02 6881±171.4 6704±217.4 4.20/7.11 2.10/15.12 12.50±6.25 6.10±4.08
4 56 1.35 6552±158.9 6565±159.8 2.70/6.18 2.50/7.68 5.20±3.93 3.80±1.38
7 53 1.29 6414±116.3 6464±160.6 1.60/7.64 1.50/7.28 4.50±1.52 3.70±1.31
10 52 1.28 6305±114.7 6417±129.5 0.80/7.71 1.30/5.96 4.00±1.26 4.10±1.32

5kc 0 59 0.88 7560 7560 0 0 36 36
2 63 1.19 7165±149.5 7081±149.5 4.70/6.45 3.70/7.65 10.20±3.97 8.00±2.18
4 59 1.20 6931±159.9 6905±178.2 1.70/5.10 2.40/3.42 8.60±1.91 8.40±2.05
7 55 1.25 6873±122.4 6803±114.8 1.30/7.94 0.70/7.22 8.50±1.55 7.70±1.35
10 55 1.28 6846±44.8 6783±111.8 1.20/3.60 0.60/2.33 10.00±2.18 8.50±1.85

10k 0 56 1.86 7774 7774 0 0 21 21
2 56 2.23 6915±184.6 6908±185.0 2.80/14.25 2.20/8.93 4.90±2.20 5.40±4.10
4 54 2.28 6865±199.1 6874±163.5 1.30/5.57 2.60/12.57 6.80±2.25 1.60±0.90

7 50 2.29 6695±111.4 6790±147.5 0.80/4.83 1.30/7.91 5.50±3.22 2.80±1.11

10 50 2.41 6682±140.0 6784±78.1 1.00/6.56 1.20/7.22 4.20±1.34 3.30±1.17

that by comparing the seconds taken per step in RCAR 0 with respect to
any other cardinality of RCAR. This information is in both Tables 1 and
2, and we may see that the HCMC algorithm is, at most, two times slower
than the usual hill-climber.

In the three works4 that develop an heuristic algorithm that works di-
rectly in the search space of essential graphs, one of them (Chickering, 1996)
reports that the algorithm is about 20 times slower than the usual hill-
climber in the space of DAGs for a 10000 record dataset sampled from the
Alarm network. In (Spirtes and Meek, 1995) only absolute times in a specific
platform are provided, thus comparison is not possible. However, both algo-
rithms rely in the transformation of DAG to essential graph, and essential
graph to DAG, in order to score the models. Therefore we conjecture that
the trade-off of the algorithm in (Spirtes and Meek, 1995) will be similar
to the one in (Chickering, 1996). This fact allows us to conclude that our

4To the best knowledge of the authors.
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algorithm is an order of magnitude faster than these two works, yielding the
same result.

In the third work (Chickering, 2001), the author provides a set of traver-
sal operators in EG-space that always yield local changes in the score, such
that they are as efficient as the usual traversal operators in DAG-space.
No experiments in the Alarm dataset are reported thus direct comparison
with our approach is not possible as in (Spirtes and Meek, 1995; Chickering,
1996). Nevertheless, the approach in (Chickering, 2001) does not account
for the inclusion order and may easily suffer of bad local maxima as in the
situation illustrated in Figure 3. Therefore we may assert that our approach
is also fully competitive with this latter EG-space based learning algorithm.

7.2 MCMC Learning

When we reviewed the MC3 algorithm, we saw that the acceptance ra-
tio (6) is in fact the product of two ratios. One is the ratio of the
posteriors p(M ′|D)/p(M |D), which nicely cancels the normalizing con-
stant (4) and therefore the data D is involved only through the Bayes’
factor p(D|M ′)/p(D|M). The other is the ratio of the cardinalities of the
neighborhoods |N (G)|/|N (G′)| which is known as the candidate-generating
ratio. In our experimentation we have assumed a symmetric candidate-
generating density (Chib and Greenberg, 1995), where |N (G)| = |N (G′)|.
This is reasonable in our context since G and G′ will differ in one single
adjacency.

The eMC3 algorithm of Figure 7 needs the specification of some Bayesian
Network as a starting point (the init parameter). It is of general agreement
within the MCMC literature that the run of the Markov chain is sometimes
sensible to the starting point. Therefore it makes sense to try several runs
from several starting points chosen at random.

However, within the context of random generation of acyclic digraphs,
Melançon et al. (2000) point out that starting the process on the empty
graph gives an effective way of achieving a good mixing rate of the chain.
They explain such effect as follows:

Observe that the maximal distance between any two acyclic di-
graphs is bounded by n(n − 1), since an obvious (but far from
optimal) path connecting them goes through the empty graph
(by first deleting all edges from the first graph and then adding
the edges of the second graph).

We consider that in our context, where the distribution of the DAGs
that determine the Bayesian Networks, is not uniform, it still makes sense to
follow that advice because one may reason analogously in terms of graphical
Markov model inclusion.
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In addition, we will consider as good starting points those Bayesian Net-
works with a high likelihood, as they will be close to the mode of the distri-
bution and therefore it may accelerate convergence of the chain. In concrete,
we will use the output of the HCMC algorithm which was the original Alarm
network structure of Figure 8 with one arc missed (the one not supported
by the data), and to which we will refer as the almost true Alarm network.
When such starting point is used it will be noted with an asterisk in the
legends, next to the name of the neighborhood.

We have ran the eMC3 algorithm for 105 iterations over each of the seven
samples of the Alarm dataset, and for the 10000 records sample we ran the
chain starting from the almost true Alarm network. We do not provide all
the results for every sample, since for some combinations the conclusions are
the same.

A first aspect we are going to look at, is the mobility of the Markov
chain. The mobility is a relevant aspect because the higher the mobility,
the lower the chance that the approximated posterior distribution does not
reflect an important area of the search space.

Table 3: Mobility of the Markov chain and Kullback-Leibler distance per
essential graph

size AR CR NCR RCARR RCARNR

number 1k 1764 1622 1632 1898 2017

essential 5k 830 780 660 991 955

graphs 10k 561 470 526 727 654

10k* 553 485 612 577 626

K-L 1k 4.36525 4.46228 4.37798 4.33639 4.38295

per 5k 3.78184 3.78113 3.95602 3.66680 3.75692

e.g. 10k 3.73537 4.05203 3.97652 3.53715 3.75776

10k* 2.70025 2.70035 2.70018 2.70029 2.70046

In Table 3 we may see the averages across the samples and across the
RCAR cardinalities of 2,4 and 10 of the different essential graphs visited
during the process. We may see as well the average Kullback-Leibler distance
(Kullback and Leibler, 1951) per essential graph. It is clear that RCAR
yields a higher mobility of the Markov chain since more essential graphs
were visited when RCAR was used.

This higher mobility results in a better choice of the DAG Markov models
during the process, as we may see from the lower Kullback-Leibler ratios for
the cases where RCAR was used. The asterisk in Table 3 denotes the case
where we used the output of the HCMC algorithm as starting point. In
this latter situation, the Kullback-Leibler ratio does not show a gain while
using RCAR. This is because the Markov chain starts from a good point
and all the neighboring models to where the chain jumps still provide a
good Kullback-Leibler distance.

The second, and most important aspect to assess, is how the RCARNR
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and RCARR neighborhoods afford a faster rate of convergence to the equi-
librium distribution. In order to do so, we will use several convergence
diagnostics originally introduced by Giudici and Castelo (2001).

The first convergence diagnostic will be the behavior of the running
average number of edges during the run. The rationale behind monitoring
this average is that those Bayesian Networks with higher posterior will be
sampled more often, and therefore the average number of edges of these
networks should be approached by the running average number of edges.
If this running average shows some slope at some point of assessment, it is
most likely that the Markov chain has not converged at that point.

We have monitored this diagnostic starting from the empty Bayesian
Network and using the standard neighborhoods AR, CR and NCR, and the
newly introduced RCARNR and RCARR. In the case of these two latter
ones, we have ran the experiments with three different cardinalities on the
RCAR algorithm (see Figure 5), namely 2,4 and 10.

We have plotted the AR, CR and NCR neighborhoods against RCARNR
and RCARR, for each of the three cardinalities, 2, 4 and 10. We may see
these plots in Figure 9, plots (a),(b) and (c). They correspond to the runs
against the 10000 records dataset.
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Figure 9: Convergence average number of edges (a,b,c) and accepts/rejects
ratio (d) for the 10k dataset. Legends are ordered with lines.
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Recall that the true Alarm network has 46 edges (see Figure 8). There-
fore we should expect that the average number of edges converges towards
that number. We have ran the Markov chain for 105 iterations and we may
see in all these three plots that all lines still have some slope downwards
at the last iteration. According to this convergence diagnostic, it implies
that the chain has not converged. However, it is already possible to observe
which approach affords a faster convergence.

In all three plots, the faster convergence is carried out by either a
RCARR or a RCARNR neighborhood. We may appreciate that the larger
the cardinality of RCAR is, the larger the difference between the use of
RCAR and any of the other non-RCAR neighborhoods. In the particu-
lar case of cardinality 4, although RCARR4 clearly outperforms the rest,
RCARNR4 shows the slowest convergence. This may be due to a sequence
of jumps that led the Markov chain into an area of local maxima from which
is very improbable to escape.

We may see this effect examining the next convergence diagnostic, the
ratio of accepts over rejects, in Figure 9d. The RCARNR4 has one of the
lowest ratios, only larger than NCR. We did not include RCARR2 and
RCARNR2 but they are larger than RCARNR4. Note from this convergence
diagnostic that the lines still have some slope, so we can also conclude from
this diagnostic that the chain did not converge.

The third convergence diagnostic is to monitor the approximated
marginal log-likelihood of the data log p(D). After swapping terms in Bayes’
theorem (3), we may obtain an explicit expression of this marginal:

p(D) =
p(D|M)p(M)
p(M |D)

.

Note that this equality holds for any given Bayesian Network M . Ob-
viously, when the posterior p(M |D) is approximated by MCMC, only an
approximate marginal likelihood p̂(D) can be obtained. Such an approxi-
mation will be better for models within an area of high probability in the
posterior distribution. Furthermore, as Kass and Raftery (1995) point out,
small likelihoods may have large effects on the final approximation and make
the resulting estimator p̂(D) very unstable. This suggests us to compute the
approximate marginal likelihood as an average of the approximations from
the models with highest posteriors, as follows.

Let p̂(M |D) be the current estimated posterior for model M give data
D. Let p(D|M) be the current likelihood of the model M . The marginal
likelihood p̂(D) can be estimated as:

p̂(D) =
1
|B|

∑
B

p(D|M)p(M)
p̂(M |D)

M ∈ B, (9)

where B is a set formed by the Bayesian Networks M with highest pos-
terior at each iteration of the eMC3 algorithm. In our experiments below,
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we have chosen a number of five Bayesian Networks to form B.
We may see this convergence diagnostic in Figure 10 for the 104 records

sample starting from the empty Bayesian Network as well. Here a larger
log p(D) indicates that the Markov chain moves in an area of a higher
posterior and therefore affords a faster convergence. Again RCARR and
RCARNR outperform CR, NCR and AR neighborhoods. We may observe
for the cardinality 4 of RCAR that the slow convergence shown in the pre-
vious plot 9b is in agreement with a low log p(D).

Another interesting fact is in the slope of the curve for the AR neigbor-
hood when we look at the entire length of the Markov chain (left plots). We
may appreciate that using the AR neighborhood, p(D) increases faster than
any of the others. This means that the AR neighborhood allows to perform
larger steps in the search space, but then later seems to get stucked in worse
local maxima than using RCARR or RCARNR neighborhoods.

Finally, the last convergence diagnostic corresponds to the posterior dis-
tribution of the total number of edges present. More formally, let n be the
number of vertices of the DAG that determines the Bayesian Network. Let
W be the random variable that takes as value, the number of edges of the
DAG at each iteration of the Markov chain. The integer random variable W
will take values in the range [0, 1, 2, . . . , n(n− 1)/2)], which are all possible
cardinalities of the set of edges.

The quantity to monitor is p(W |D), which is computed as in the gen-
eral case of any quantity of interest ∆ (see expression (5)). This posterior
distribution will have a normal shape, and it will be centered close to the
cardinality of the model for which the Markov chain gives the highest poste-
rior. If the center of the normal shape shifts through longer runs, it means
that the Markov chain has not converged.

The fact that p(W |D) takes a normal shape can be explained observing
that for each adjacency we may attach a random variable describing the
absence or presence of an edge in that adjacency. This random variable can
be seen as a Bernouilli distribution with success probability equal to the
mean posterior probability of edge presence. If we see W , defined above,
as the sum of the n(n− 1)/2 Bernouilli variables, i.e. following a Binomial
distribution, we realize that we are in a particular case of the Central Limit
Theorem, where the variable W tends to a normal distribution.

In Figure 11 we have the posterior distribution of the different numbers
of edges. In this case, we have started the Markov chain from both the
empty DAG model and the almost true Alarm network, which has been
noted with an asterisk next to the name of the corresponding neighborhood.
In plot 11a we may see the runs for the AR, CR and NCR neigborhoods.
Clearly, those that started at the almost true Alarm network show a faster
rate of convergence than those that did not.

In plot 11b we may see the runs for cardinalities 4 and 10 of the RCARNR
and RCARR neigborhoods. In contrast with the previous case, here two of
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them, namely RCARR4 and RCARR10, are able to provide distributions
quite similar to those of the ones that started in the almost true alarm
network.

So far, from all these convergence diagnostics, we can conclude that
the RCAR operation improves substantially the convergence rate of the
traditional MC3 algorithm.

A further interesting outcome of our experimentation arises from looking
at number of members of each equivalence class of DAG Markov models,
visited by the Markov chain during the 105 iterations. For comparison,
we have computed a lower bound on the size of each equivalence class, as
follows.

Let M(G) be a Bayesian Network. Let E(G∗) be its equivalent Essential
Graph Markov model, i.e. M(G) = E(G∗), where G∗ is the essential graph
representation of G. Let G∗ have m connected components, where each of
them has ρi reversible edges. The lower bound on the number of members
of the equivalence class represented by G∗ is

m∏
i=1

(ρi + 1).

In Figure 12 we may see the plots of these numbers for the runs that
started on the almost true Alarm network over the 10000 records sample. In
plots (a) and (b) we may see CR and NCR, where in this latter case there
are no more than two members visited due to the nature of the non-covered
reversal operation.

In plots (c) and (d) we may see that AR visits a similar amount of
members per class as the CR neigborhood and RCARR4 can estimate much
better the number of members of each equivalence class. This is the empirical
evidence of Theorem 3.1, which explains why the RCAR operation enhances
both heuristic search and the MCMC method. Note that we visited up to
100 equivalent DAGs using the RCAR4.

The length of Markov chain we have used (105 iterations) is long enough
as to clearly distinguish among different rates of convergence. However, all
the diagnostics show lack of convergence of the chain. We have ran a longer
chain for 106 iterations starting from the almost true Alarm network. We
may see the convergence diagnostics in Figure 13.

In this case we do not include the CR and NCR neighborhoods for com-
parison. In plot 13a we find the average number of edges during the run. In
plot 13b we find the convergence of the marginal of the data. In plot 13c we
find the posterior distribution of the cardinalities of the corresponding sets
of edges. In all these three diagnostics we may distinguish two groups that
converge at a different rate. One formed by AR, RCARR10, RCARR4 and
RCARR2, and another by RCARNR10, RCARNR2 and RCARNR4, being
the latter the one that shows better convergence.
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In a way, this is surprising because, as we had seen so far, RCARR was
outperforming RCARNR. Now, it is clear that starting from the almost true
Alarm network and running that long, RCARNR converges faster. Never-
theless, this behavior should not be suprising to us, if we would assume that
Meek’s conjecture (see Conjecture 3.1) holds. As we saw in Theorem 3.1,
the ENR neighborhood provides the largest portion of the inclusion bound-
ary among all concepts of neighborhood presented here. Recall that the
RCARNR is an approximation of the ENR neighborhood. Thus, in the-
ory we had no reason to believe that any of the other neighborhoods would
improve the RCARNR neighborhood. Only we could see empirically that
when starting from the empty Alarm network, the RCARR neighborhood
converges faster.

We may conclude that when the Markov chain is close to the model with
largest likelihood, the non-covered reversal operation in the RCARR neigh-
borhood leads the chain to local maxima that slows down the convergence.
We may see in plot 13d that the RCARR neigborhoods have a lower ratio
of accepts over rejects, meaning precisely this effect, that there is a very low
probability of escaping from where the chain is. This might be happening
because the non-covered reversal makes the chain always to jump to a model
out of the inclusion boundary (see Theorem 3.1).

We conjecture that probably a better strategy would combine, during the
run of the Markov chain, both the RCARR and RCARNR neighborhoods.

Finally, we will take a look at the computational overhead produced
by the use of the RCAR operation within the MC3 algorithm. In Figure
14 we have plotted the average number of iterations (lines 5 through 16
in Figure 7) per second. This plot corresponds to the runs of length 105

iterations. In addition to the legend, we have labeled the lines with their
corresponding neighborhood and also including the total average ratio of
accepts and rejects. A lower ratio speeds up the chain as it is making, on
average, less moves.

For clarity we only report comparison between AR, RCARR4 and
RCARR10, as the differences are similar for other combinations. Analyzing
separately those runs that start from the empty DAG model from those that
start from the almost true Alarm network, we may see that in both cases,
using the RCAR operation is between two and three times slower than no
using it.

This cost is similar to the one we observed for heuristic search, and we
consider it to be a very good trade off. Madigan et al. (1996) extended
the MC3 algorithm to work directly in EG-space. They do not show the
computational overhead with respect to DAG-space. However, the fact that
their Markov chain modifies two adjacencies at a time, to fulfill irreducibility,
allows us to conjecture that their method is computationally more expensive
than ours.
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8 Conclusion

The standard AR neighbourhood for a given DAG is not invariant to other
DAGs within the same equivalence class (see Figure 4). In order to solve this
problem, we have introduced new concepts of traversal operators for DAGs,
based upon the idea to make more moves within the equivalence classes by
applying the covered arc reversal operation.

The experiments with RCAR within the MCMC method show a higher
mobility of the chain and a faster convergence rate according to the diag-
nostics, without compromising the already heavy computational cost of the
method. Madigan et al. (1996) point out a problem for Markov chains that
do not move in EG-space. The approximated posterior may be proportional
to the size of the equivalence classes. Obviously RCAR does not solve this
problem but there is no guarantee that the moves in the space of essential
graphs approximate the posterior well. We believe that the quality of the
approximation depends more on the concept of neighbourhood than on the
search space used.

We have shown usage of RCAR within the hill climbing heuristic where
it brings very impressive results in reasonable time as, e.g. recovering 45 out
of the 46 edges of the Alarm network in 48 steps (transformations of single
adjacencies). Our work included a few user defined constants (number of
covered arc reversals in RCAR, number of repetitions of RCAR in the local
maximum of the hill-climber) which could be assigned in a more clever way.
We expect that it could bring another improvement of obtained results.

The study of the inclusion order sheds light on the reasons why the
approach presented here works well. We proved that a whole class of hill-
climber methods, which use any penalized score and any traversal operator
satisfying the inclusion boundary condition, always recovers the true under-
lying model for large data sets. This in fact highlights the extreme relevance,
in learning Bayesian Networks, of the (open) problems related to graphical
Markov model inclusion, namely:

• Given two DAGs or EGs that differ in more than one adjacency, decide
graphically if one of them is included into the other.

• Efficiently generate all models from the ENR neighborhood of one
given model.
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Figure 10: Convergence of the marginal of the data. Comparison between
AR, CR, NCR, RCARNR and RCARR. Legend is ordered with lines.
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Figure 11: Comparison convergence ability.
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Figure 12: DAGs per essential graph.
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Figure 13: Convergence diagnostics for a Markov chain of length 106 iter-
ations, starting from the almost true Alarm network. Legends are ordered
with lines.
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