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Abstract

We study two recent theoretical models—a population-sizing model and a con-
vergence model—and examine their assumptions to gain insights about the condi-
tions under which GAs work well. We use these insights to formulate several
design rules to develop competent GAs for practical problems. We then use these
rules to design a GA that solves the map-labeling problem, an NP-hard problem
of real-world significance. Finally, we test whether the fact that our GA followed
the design rules inspired by the theoretical models results in a scale-up behavior as
predicted by these models. Experiments show that this is indeed the case.

1 Introduction

Genetic algorithms have been applied to solve an impressively wide range of problems.
Although they have proven to be very flexible, many successful GAs are found by mak-
ing educated guesses for the representation, parameters and operators. As a result, GA
design is sometimes seen as a black art, not as an engineering task with a solid theo-
retical basis. In part, this is caused by the complexity of the behavior of the algorithm,
which is difficult to model in its entirety. Several different theoretical approaches are
being pursued, such as the facet-wise composition of partial models (Goldberg, 1999),
the exact analytical models based on Markov-chains (Vose, 1999; Rowe, 2001), for-
mal proofs of GA behavior (Jansen and Wegener, 2001), models based on statistical
mechanics (Shapiro, Bgel-Bennett, and Rattray, 1994), approaches bases on the es-
timation of distributions (Mihlenbein and Paass, 1996; Pelikan, Goldberg, and Lobo,
2002), exact schema theorems (Poli, 2000), and coarse-grained analysis of building-
block evolution (Stephens and Waelbroeck, 1999).

These approaches offer valuable insights in various important aspects of genetic
algorithms, but do not all translate easily to practical design rules. Indeed, practition-
ers dealing with real-life problems may feel that current theoretical results are too far
removed from the practical realities to be of any use.

In this paper, we study this gap between theory and practice, following the approach
of facet-wise design as advocated by Goldberg (1999). Specifically, we examine two
recently developed models, and see what they can teach us about successful GA design.
We translate these lessons in practical design rules for building a competent GA. We
use these rules to design a GA for a practical problem that is NP-hard, namely the map-
labeling problem: placing the names of map elements on a cartographic map. Next,
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we turn around and examine whether the results of the GA match with the predictions
of the models. This allows us to evaluate the practical usability and significance of the
models.

A GA can be calleccompetenif it is able to find good solutions for the problem at
hand in reasonable time. “Good” can be defined as finding solutions with quality that
is a certain percentage (say, 97%) of the optimum. “Reasonable” means that the algo-
rithm shouldscale upwell (Thierens, 1999). The scale-up behavior of an algorithm
is the relation between input sit@nd the amount of computational effovt required

to find a solution with the requested quality. The amount of computational effort the
GA spends is the product of the number of fithess evaluatogrsd the time needed to
perform a single fitness evaluatiefy: W = E - ;. The optimal number of fithess eval-
uationsE is also the product of two factors: the critical population size and the number
of generations it takes to converdge:= n* - t*, wheren* is the critical population size
needed to obtain a solution of a certain quality, &ind the number of generations until
convergence when the GA uses a population that is sized large enoughi‘j. Both
factors 0" andt*) therefore determine the scale-up behavior of the number of fithess
evaluations spent by the GA.

In this paper, we discuss two models from literature—a population-sizing model
(Goldberg, Deb, and Clark, 1992; Harik, CasRaz, Goldberg, and Miller, 1999) and a
convergence model (hlenbein and Schlierkamp-Voosen, 1993; Thierens and Gold-
berg, 1994a; Bck, 1995; Miller and Goldberg, 1996)—that together allow the predic-
tion of the scale-up behavior of the GA. Both models predict a scale-up of the square
root ofl, yielding a prediction of a linear scale-up for the number of fithess evaluations.
Unfortunately, these models have only been tested for artificial problefasurfded
difficulty.! It is implicitly assumed that the concept of bounded difficulty is relevant
for many practical problems, too. In this paper we will strengthen this claim by show-
ing how good solutions can be found for the map-labeling problem by treating it as a
problem of bounded difficulty.

The map-labeling problem comes from automated cartography and is defined as
follows. Given is a map of cities and their names. Each name has to be placed on the
map next to the city. Th&abel of a city is the rectangular bounding box of its name
when printed in a certain font and font size. The label can be placed with the city in
one of the four corners—in other words, the label can be placed in either the top-right,
top-left, bottom-right or bottom-left position. Findabeling(a position for each label)
such that the number of non-intersecting labels is maximized. A solution for a map of
1000 points is shown in Figure 1. This problem instance has been shown to be NP-
hard (Formann and Wagner, 1991; Marks and Shieber, 1991). The full map-labeling
problem is more complex and contains many additional cartographic constraints and
additional feature types (for rivers and areas). A more thorough treatment of the map-
labeling problem is beyond the scope of this paper. The interested reader is referred to
Van Dijk’s thesis (2001).

We will develop a GA that finds solutions for instances of the map-labeling prob-
lem, based on the issues that were raised by the theoretical models. Note that in the
case of the map-labeling GA on maps of fixed density, the &jris easy to bound:
in the fithess function each label on the map is checked for an intersection in constant
time (by checking for an intersection with the labels of a bounded number of neighbor-
ing cities). Therefore, the total time needed for a single fithess evaluatgn0(1).

1We will say more about problems of bounded difficulty in Section 2.
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Figure 1: An example of a labeled map.

Combining this with the linear scale-up for the number of evaluations gives a quadratic
scale-up for the amount of computational effakt:= O(1?).

Next, we will use the GA to evaluate the usability of the models, by experimentally
testing whether the predictions actually hold up. This will demonstrate whether the
models are interesting in a practical setting too. Indeed, the experimental results match
the predictions.

Our main contributions are as follows. Firstly, we demonstrate the practical use-
fulness of two recent theoretical models and the concept of bounded difficulty. We
extract the underlying assumptions of the models to gain insights about the conditions
under which a GA performs well. Secondly, we show how these insights translate in
several practical design rules. Using the rules, we design a GA that solves the map-
labeling problem. We use the GA to experimentally evaluate the practical usability of
the models under real-world conditions.

This article is structured as follows. Figure 2 shows the relations between theory
and practice we will explore in this paper. In Section 2, we will briefly describe the two
models from literature. Next, in Section 3, we formulate the design rules and use them
to design an efficient GA for the map-labeling problem. The GA is not able to satisfy
the underlying assumptions of the models as well as the artificial problems on which
the models were originally tested. However, since we were guided by the theoretical
principles in the design phase, we expect no serious deviations from the assumptions
and the predictions to hold. Section 4 is devoted to a verification of this expectation.
Firstly, we systematically check the model assumptions to see how much the GA de-
viates from them. Secondly, we run the GA on dense, randomly-generated maps and
find the experimental critical population size and number of generations until conver-
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Figure 2: The relation between theory and practice.

gence occurs. These match the predictions of the models. As a result, the total number
of fithess evaluations scales linearly with respect to the input size. Some concluding
remarks are made in Section 5.

2 The models

Before examining the theoretical models, we have to discuss what is meant in this pa-
per by “problems of bounded difficulty”. Such problems can be solved by combining
the best schemata of partitions of bounded size (Kargupta, 1995; Harik, 1997). Specif-
ically, in this paper we will consider problems of bounded difficulty that can be solved
by a GA whose fitness function is assumed to be additively decomposable, uniformly
scaled and (semi-)separable. Additively decomposable functigMiihlenbein and
Mahnig, 1999) can be expressed as the summation of the contributions of the parts of
the solution. More precisely, the function is a summation of partial fithess functions
that only depend on a few genes each. For example, given a sokution XoXsX4Xs,
the function fg:(X) = f1(X1x2) + f2(xsxa) + fa(xs) is an ADF. If the different func-
tions fi(-) all depend on different genes, as in the example above, an ADF is called
separable It is also useful to consider the case where a fitness function is “almost”
separable, which we will calemi-separabtean additively decomposable function is
defined as semi-separable if each gene is input to only a small, bounded number of
partial fithness functions. For examplig;(x) = f1(x1XoXs) + f2(XoXaXa) + f3(XaXs) is @
semi-separable ADF in which each gene occurs in maximal two partial functions. The
ADF is uniformly scaled if the function$ (-) have the same distribution of values.

The fitness function used to solve a problem of bounded difficulty can thus be
expressed as follows:

m
fie(x) = fi(xi1,%2..-Xik),
i i; i

where partial functiond; are defined on at moktgenes, wittk < I. Additionally, the

functionsfi(-) all depend on different genes and have the same distributions of values.
The bit-counting problemf;(x) = z!:lxi) is the most simple instance in this class

of functions. A characteristic example of a problem that involves higher-order relations

(defined over multiple genes) is the concatenated trap-function problem. It is defined



as follows. Chromosomes use a binary alphabet antl-are- mlong, wheremis the
number of trap functions aridis a constant.
We define drap functionas follows:

firap(Xit1..ivk) = { K It U011 = k
k—1—u(Xj;+1. j+k) Otherwise ’
wherex;_j is shorthand fokixi,1...Xj—1Xj andu(x;..j) = thzi Xt.

Trap functions withk > 3 have also been calledkceptive functios (Goldberg,
1989a; Deb and Goldberg, 1994), because information from lower-order partitions (de-
fined over less thak genes) leads away from the optimal schema. In order to find the
optimal schema of the partition defined on the genes that are input to the trap function,
schemata in the partition should not be disrupted during crossover. In other words,
there exists strong linkage between those genes.

The fitness function for the concatenated trap-function problem is a concatenation
of mtrap functions:

m-1

fit(X) = Y Firap(Xick1.ikik) -
i iZO rap(Xi i

Each trap function is defined dngenes and introduces linkage between those
genes. The optimal solution can be found by combining the best schema of each par-
tition defined over linked genes. For examples i 4 andm = 2, these partitions are
simply FFFRE### and ####-FF, where ‘F” denotes a fully specified gene and “#” de-
notes the “don’t care”-character (Goldberg, 1989b). The optimal solution 11111111
can be found by searching the best schema in each partition (hamely, the schemata
111 1#### and ####11111) and combining them.

The remainder of this section examines two models from the literature. We extract
the underlying assumptions and will use them in the next section to formulate several
design rules. We start in Subsection 2.1 with the convergence model té,fthd num-
ber of generations until convergence. It is assumed the population size is adequately
sized. Subsection 2.2 will cover the gambler’s-ruin model, which deals with the critical
population sizen*—that is, the minimal population size needed to find a solution with
a certain level of quality.

2.1 Determination oft*

There have been several studiedifNenbein and Schlierkamp-Voosen, 1993; Thierens
and Goldberg, 1994a; &k, 1995; Miller and Goldberg, 1996) on the convergence
characteristics of GAs that solve the bit-counting problem, which is to find a bitstring
of lengthl with the maximal number of 1's. Itis a very useful problem to study because
its properties (for example the distribution of fitness values in a randomly-generated
population) can be calculated exactly. Furthermore, it has building blocks of only one
gene, which means that no disruption can occur. Using uniform crossover, almost
perfect mixing can be obtained. Mixing is callpdrfectwhen no correlation between
building blocks—which was introduced by selection—remains after crossover.
Milhlenbein and Schlierkamp-Voosen (1993) analyzed the convergence time—the
number of generations to obtain convergence to the optimal string—of a GA that solves
the bit-counting problem using truncation selection, uniform crossover, no mutation,
and assuming a properly-sized population. Uniform crossover is used because no dis-
ruption of building blocks can occur for this problem, and it mixes the building blocks



well. Crossover is always applied. The rate of convergence of the GA is primarily
determined by the selection pressure of the selection scheme. This can be quantified as
the selection intensitat generation (denoted byt (t)) as follows (Bulmer, 1980):

Hsel— N(t)

where use is the mean fitness of the selected individuals, aifid ando(t) are the
mean and the standard deviation of the fitness of the population at generation
spectively. Since crossover does not change the proportion of 1's—that is, the building
blocks—in the population, the mean of the fitness of the new population- 1) is
equal touse. Under the assumption of perfect mixing, the population fitness is bino-
mially distributed, which can be approximated well with a normal distribution, giving
values foru(t) ando(t). The use of a rank-based selection scheme implies that the
selection pressure is constant. Therefore, the selection intéfi5itg equal for allt
and is just denoted ds The selection intensity depends on the truncation constant
used. For example, f = 80%,| = 0.34.

The following result was obtained ([hlenbein and Schlierkamp-Voosen, 1993)
for t*, the number of generations until convergence:

1
r=ovl | N _ o).
wherel is the length of the chromosomes, anid a constant depending on the number
of building blocks in the initial population.

Thierens and Goldberg (1994a) investigated other selection schemes, such as tour-
nament selection, and the elitist recombination scheme (the latter is discussed in Sec-
tion 3). All rank-based schemes were found to hiive O(v/1). In contrast, for pro-
portionate selectiont; = O(llogl) holds. This suggests that the above result holds for
all selection schemes which are rank-basedck3(1995) considere(lt, 1 )-selection
and tournament selection, and used order statistics to generalize the results for different
selection intensities.

Miller and Goldberg (1996) extended this research by considering noisy fitness
functions. Furthermore, they also applied the model to more complex problem do-
mains than the bit-counting problem. They derived equations for domains in which the
mean and the standard deviation of the fitness distribution can be expressed as func-
tions of the proportion of converged building blocks. For the more complex domain of
concatenated trap functions an approximation was used.

Miller and Goldberg found that their prediction of the convergence behavior for the
concatenated trap function closely matched experimental results. The requirement of
separability can be relaxed to semi-separability by modeling the interactions between
different partitiond as noise. Miller and Goldberg showed that adding small levels
of noise to the fitness function added a constant to the number of generations until
convergence. Therefore, as long as the linkage between genes from different partitions
is weak, the model gives a good approximation.

This indicates that the predictidgh= O(+/1) holds for GAs that, in the ideal case,
satisfy the following assumptions:

t* =

e The fitness function is additively decomposable, uniformly scaled, and (semi-)-
separable.

2Unless otherwise specified, “partitions” refers to the partitions that hold the building blocks which are
being mixed by the GA.



e The selection scheme is rank-based.

e Mixing is perfect: no correlations remain between genes of different partitions
after crossover.

e There is no disruption of building blocks.

For the case where the fitness function is exponentially scaled (instead of uniformly),
similar studies (Thierens, Goldberg, and Pereira, 1998; Lobo, Goldberg, and Pelikan,
2000) show that the number of generations is linear with respect to the input size:
t*=0O(I).

In the models above, it is assumed that the population size is large enough and
contains sufficiently many building blocks. The next section covers models that deal
with population sizing and building-block supply.

2.2 Determination ofn*

The issue of determining*, the minimal population size needed to solve a problem
of input lengthl, was investigated by Goldberg et al. (1992). They provided a model
of the GA based on statistical decision making. Assuming that the GA would find the
best solution if the search progressed in the right direction after the first generation,
they obtained a population-sizing equation. Drawbacks of this approach were that it
did not model the way a GA can recover from decision errors (explained later) and did
not include a building-block supply model. Harik et al. (1999) extended the model by
combining the so-called gambler’s-ruin model and a building-block supply model with
the previous model.

The model views the search process as a propagation of building blocks through the
population, assuming mixing is adequate. A building block is the schema in a certain
partition with the highest fitness Since decisions are made on the level of strings, a
competition between a string matching a building block and a string matching another
(sub-optimal) element from the same partition can result in the loss of the building
block. Such an event is called a decision error. Since building blocks have a higher
fitness, on average they will win the competition. The probability of making the right
decisionPre in a competition between two chromosomes was derived by Goldberg
et al. (1992):

d

Prok = ®(——o"n—),
ok ( 2(m— 1) Gpart)

where®(-) is the cumulative distribution function of the standard normal distribution,
d is the difference between the fithess of the building block and its competitor (the
schema with the next-highest fitness)is the number of partitions, angpa is the
standard deviation of the fitness contribution from a single partition.

The gambler’s-ruin model views the search of a GA in a single partition as a series
of competitions which progresses until either all individuals in the population match
the building block, or none do. The outcome is dependent on the population size and
the initial number of building blocks in the population. The model is a one-dimensional
random walk between absorbing barriers, corresponding with the loss of the building
block (no building blocks left; we call this théepletion barriej and the existence of
the building block in all individualsr( building blocks in the population; we call this

3The fitness of a schema is the average of the fithesses of all possible chromosomes that match it.
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Figure 3: The gambler’s-ruin model.

the saturation barrie). The walk starts axg, the number of building blocks in the
initial population. Each competition advances the walk to either the saturation barrier
(the string with the building block wins the competition) which increases the number of
building blocks, or the depletion barrier (a decision error) which decreases the number
of building blocks. Figure 3 depicts the situation after initialization, before the first
competition.

The initial number of building blocks is given by. A simple building-block
supply model assumes each element of the partition is equally likely to be (randomly)
created. Therefore, if only one element of the partition is a building block, the number
of genes in the partition ksand the alphabet size is denoted&)yhe expected number
of building blocks in the initial population of sizeis n/AX.

The notion of competitions in the gambler’s-ruin model corresponds most naturally
to an incremental GA. However, the experimental results by Harik et al. show that the
more conventional generational replacement scheme also agrees well with the model.
As a result, we can assume that any selection scheme with constant selection pressure
suffices. This implies a rank-based selection scheme, such as tournament selection or
the elitist recombination scheme.

We now turn to the question of determining the probabifiyn) of the gambler
eventually hitting the saturation barrier using a population of siz&his is a known
result from random-walk literature (Feller, 1966):

L (opg)e
_ ok
Pr(n) = I (Pragn
Prok

)

The probabilityPr(n) for a single partition can be used to calculate the outcome of
all the partitions searched in parallel. Hence, the following holdsifgt, the number
of partitions that converge to the building block:

E[Ncony = m-Pr(n), 3)

wheremis the total number of partitions arit]-] denotes the expected value.

Given a measure of quality = “%"V that denotes the desired fraction of found
building blocks, we can find the critical population size to obtain that result. Extract-
ing n from Equation 3, assuming a binary alphabet, and approxim&igggives the
following approximation of a population-sizing equation (Harik et al., 1999):

na 26 (1 o) 2PV 2 A(m=1)

. )

Note that limy11In(1— o) = —o. In other words, finding the optimal solution with
absolute certainty requires an infinite population size. This is only to be expected, since
a GA is a stochastic algorithm. Harik et al. performed experiments to test their model
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Figure 4: The four possible positions where a label can be placed.

on various domains, including the concatenated trap-function problem with overlap-
ping partitions (they share genes). They found that the model gave a good estimate of
the relation between the quality of solutions (expresseml)iand the population size.
The good results on the domain with overlapping partitions show that the assumption
of separability of the fitness function can be relaxed to semi-separability.

To find the relation between input siz@nd the optimal population size, for a cer-
tain level of qualityc (for example (87), we observe that, opart, andd are constants
andl = ©(m). Hence, given some, we have

wheren* is thecritical population size needed to find a solution with the required level
of quality.

This is expected to hold for GAs that adhere to the assumptions of the gambler’s-
ruin model. These assumptions (again, for the ideal case) are now restated for conve-
nience:

e The fitness function is additively decomposable, uniformly scaled, and (semi-)-
separable.

e The order of partitionsk, is a fixed constant, witk < I.
¢ All building blocks are present in the initial population.
e The selection scheme is rank-based.

e Mixing is perfect: no correlations remain between genes of different partitions
after crossover.

e There is no disruption of building blocks.

Note that these assumptions subsume the assumptions from the convergence model.

These assumptions may appear to be quite strict. One of the purposes of this paper
is to examine whether this is really the case. How much can one deviate from these
requirements before the models no longer give meaningful predictions of the GA's
behavior? Are GAs that were designed to solve real-world problems (as opposed to
artificial problems such as the concatenated trap function) still able to adhere to these
assumptions? In the next sections, we will show that it is indeed possible for a practical
GA to adhere to these assumptions close enough that the models still give valuable
predictions.

3 Design of a GA for the map-labeling problem

The overview of the models from the previous section showed the underlying assump-
tions about the problem and the GA. As such, it provides us with several insights that
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Figure 5: The encoding for a map.

Figure 6: Citiesp andq are rivals, butp andr are not.

we can turn into design rules. The rules we will formulate in this section are reminis-
cent of the guidelines of Goldberg (1999), but are more explicit. We will use them to
design a GA that will find solutions for instances of the map-labeling problem. Recall
that the map-labeling problem consists of placing a label in one of four positions (see
Figure 4) for a set of points such that the number of labels that do not intersect another
label is maximized. We denote the number of points on the mapnyithThe GA that
will solve the map-labeling problem will represent a labeling by a string of numbers
between one and four, indicating positions. Each city has an index which indicates its
position in the string. See Figure 5.

We will now state the design rules that we can derive from the models:

1. Identify building blocks. Both models show a strong dependency on the notion
of a building block. The convergence model defines convergence as the state in which
each patrtition is converged to the building block. The population sizing model views
the search as the parallel growth of building blocks in the separate partitions. To con-
struct a competent GA, it is necessary to know what the building blocks of the solution
are. More generally, the designer needs to make an assessment of the linkage of the
representation. The identification of the linkage of the problem is a necessary first step
that will be used in the application of the following rules.

Map labeling is interesting in that the linkage of the problem is reasonably clear
since it can be inferred from the geometry. Given a representation in which every
point on the map corresponds with a gene on the chromosome, linkage between two
genes can be suspected when the two corresponding points are close together. Thus,
we assume the building blocks consist of good labelings of a city and several close-
by cities. To make this more concrete, we define two pointsvasds if their labels
can intersect (see Figure 6). rival group consists of a certain point and its rivals.

We assume the best labelings for rival groups are building blocks. Note that we make
an assessment of the linkage which will likely neglect higher-order relations. As this
is a NP-complete problem, that is necessary to obtain a favorable trade-off between
solution quality and running time. We hypothesize that close-to-optimal solutions can
still be found when the problem is treated as having bounded difficulty by using the
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lower-order relations that are defined by the rival relationship.

Note that for other problems the linkage is not so easily found. In that case, one
has either to learn the linkage (Kargupta, 1996; Harik, 1997; Munetomo and Goldberg,
1999; Pelikan et al., 2002), or resort to traditional trial-and-error.

2. Use a fitness function that is additively decomposable, uniformly scaled and
(semi-)separable The models demand the fitness function to be in a certain form. For
some problems, the designer may have little choice in the form of the fitness function.
In other cases, an effort can be made to keep the fithess function in the required form.
The map-labeling problem is a good example. Let us consider another GA for the
map-labeling problem. The GA by Verner, Wainwright, and Schoenefeld (1997) uses
the following fitness function (to be minimized):

fiit(X) = wy - overlap(x) 4+ w; - area(x) — ws - distFacyx).

The number of overlapping labels is measuredbgriap-) and the total area of all
overlapping labels is given grea(-). The functiondistFacy-) measures thdistance
factor of a point feature with an overlapping label, defined as the sum of distances from
the center of its label and the centers of the labels from the four nearest features. The
distance factor of a point feature with a non-intersecting label is zero. Verner et al. say
that “the values fow;, w, andws were arrived at by)umeroudrial and error testing”
(emphasis added and notation changed). Tuning the weighting fagtorsvs takes a
lot of time and makes the algorithm inflexible. In addition, the fitness function has lost
the preferred characteristics of being uniformly scaled.

For these reasons, the fitness function of our map-labeling GA just counts the num-
ber offreelabels. A labelis free when it does not intersect any other label. For example,
the fitness of the little map of Figure 5 is 3. The fitness function can be expressed as a
uniformly scaled, semi-separable ADF:

Npts

fir(X) = .zifree(xi) ; (5)

wherenys denotes the number of points on the map, andenotes the genes corre-
sponding to the rival group of thi&h feature. The functiorfree(x;) returns 1 if the
label of pointi is free, and 0 if it intersects another label. Hence, this fitness function
is uniformly scaled.

3. Use a rank-based selection schem&he models depend on the assumption of
constant selection pressure, which implies a rank-based selection scheme. For our map-
labeling GA, the elitist recombination scheme (Thierens and Goldberg, 1994b) was
used. In this rank-based scheme, two parents are chosen randomly from the population.
Crossover is always performed, and two children are generated. From this family of
four, the two best individuals replace the parents in the population. In the case of ties,
children precede their parents. The scheme is conceptually simple, easily implemented,
and simplifies the structure of the GA. In addition, it preserves good solutions by having
elitism on the family level. The paramet®r:, which denotes the probability that
crossover is applied, is set ta0] because there is no danger of losing fit parents.

4. Ensure good mixing of building blocks.Fast mixing of building blocks is critical
to the success of the GA. Combined with the assumption of an additively decomposable
fithess function, it allows an appeal to the Central Limit Theorem to use a normal
approximation of the distribution of fithesses in the population. Ideally, after crossover
no correlations between building blocks exist. This is best achieved by using what

11
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Figure 7: The geometrically local optimizer resolves conflicts after crossover.

Miller and Goldberg (1996) called a “uniform building block crossover’—a crossover
that chooses at random for each partition in which a building block can reside whether
to copy from either parent.

The assessment of linkage as the rival relationship allows us to design a crossover
operator for the map-labeling GA that mixes on the level of building blocks. The
crossover operator works by generating aSef points. The labelings of points in
S are transfered from the first parent to the first child. Labelings of points n8t in
are taken from the other parent. The other child is constructed in a complementary
fashion—that is, the first child inherits labelings of pointsSifrom thesecondarent,
and the rest from the first parent. The crux lies, of course, in the method to construct
the setS. This is done by randomly picking a point on the map and placing its rival
group in the set. Since we assess the linkage as the rival relationship, the rival group
is a partition which can hold a building block. If the local labeling of the chosen point
and its rivals is indeed a building block, it is transfered undisrupted to the child. The
next point is again chosen randomly, and this process is repeated until the 8ze of
exceeds half the total number of points on the maps.

5. Minimize disruption. Both models assume that no disruption of building blocks
takes place, so naturally it is important to minimize disruption as much as possible. One
can either do this by mixing less aggressively, sometimes copying whole chromosomes
(by settingPr¢ < 1), or repairing disrupted building blocks after crossover. We use the
latter method for our example GA.

The geometry of the map-labeling problem (the rival relationship) helps in identify-
ing locally bad solutions. After crossover, points which came f&imt had a rival not
in S (and vice-versa) can have new conflicts, making the crossover rather disruptive.
On these points a so-callggometrically local optimizeor GLO for short, is applied,
which tries to resolve the conflict in two phases (see Figure 7). Firstly, it determines the
status of each candidate label position. The stat@ssTy if the label is free when
it is placed there. It isuLL otherwise. Secondly, from themPTY positions one is
randomly chosen. If no position BMPTY, nothing changes.

The role of the GLO can be viewed in a more general setting as a way to supply
the GA with building blocks which may have been disrupted by crossover. Note that
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this is only possible because the geometry of the problem allows us to say whether
a certain change (such as placing a label in an empty slot) will locally improve the
solution. In the more general case of the full map-labeling problem, cartographic rules
will be enforced on a local scale, and the GLO still acts as a supply of building blocks
which the GA uses to build a globally good solution. More details on GAs for more
complicated map-labeling problems are given elsewhere (Van Dijk, 2001). The use of
the GLO makes the GA more flexible. For example, it keeps the fitness function simple
and uniformly scaled by enforcing cartographic rules in the GLO instead of specifying
them as penalty functions in the fithess function.

The GLO renders mutation in the traditional sense (assigning a random allele to a
randomly chosen gene) obsolete. Therefore, the probability of mutBtigiis set to
zero.

6. Ensure good building-block supply. Both models assume a good supply of
building blocks. Two well-known mechanisms of building-block supply are initial-
ization and mutation. Initialization forms building blocks in the initial population and
mutation introduces them during the run of the algorithm. The GLO is a more explicit
kind of building-block supply than blind mutation, since it cannot make the solution
worse. Our use of the GLO allows us to do away with the traditional kind of mutation
and places modest demands on the initialization operator. Since the GLO will introduce
building blocks during the run, there is no need for all building blocks to be present in
the initial population. Therefore, for initialization, we assign a random position to each
label of each individual in the population. As will become apparent in Subsection 4.2,
the population size can be kept small.

Comparison with a simple GA

In Figure 8, we compare our GA using the so-called “rival” crossover against simple
GAs using uniform and one-point crossover. The graphs show the average of five runs
on five different maps. The last point of each graph shows the standard deviation of
the fitnesses of the best solutions of all runs. The maps are created as explained in
Subsection 4.2, and place 1000 points on a grid of 650 units squared (an example of
such a map is shown in Figure 1). The comparison is done using the number of label-
intersection tests, as this is a direct measure of computational effort. Our GA is able to
find near-optimal solutions on the dense, randomly-generated test data. More extensive
comparisons are beyond the scope of this paper and can be found elsewhere (Van Dijk,
2001).

Comparison with other map-labeling algorithms

A comparison of several map-labeling algorithms was done by Christensen, Marks,

and Shieber (1995). Their conclusion was that the best results were obtained by a
simulated-annealing algorithm. Figure 9 shows the experimental results of running the
algorithms on randomly-generated maps. Note that these maps differ from those we
use in the rest of this paper, since they are created by placing an increasing number
of points in an area of fixed size. Therefore, the optimal number of free labels is not

known, unlike with our maps. Since the comparison by Christensen et al. (1995), sev-

eral other algorithms have been proposed, such as genetic algorithms (Merner et al.,
1997; Raidl, 1998), tabu-search (Yamamoto, Lorena, anddaeam 1999), and heuris-

tics for maximum independent set (Strijk, Verweij, and Aardal, 2000; Verweij, 2000;

13



100

90

80

70

60

50

40

Percentage of non-intersecting labels

L7 Rival crossover ——
Uniform crossover - - -
One-point crossover — - -

10 20
Number of labdl-intersection tests (*10")

20

Figure 8: Comparison of crossover operators. The selection scheme is the elitist re-
combination schem@&r. = 1.0, Pr,, = 0.0, and the population size is 200.

Strijk, 2001). They perform similar, or slightly better than simulated annealing. A
comparison between the simulated-annealing algorithm and our genetic algorithm is
shown in Figure 10. It shows the results are comparable. An advantage of the GA over
the SA algorithm is that additional constraints—that is, cartographic rules—are more
easily incorporated. More details can be found in Van Dijk’s thesis. We can conclude
that our GA succeeds in finding solutions of good quality. In the next section, we will
turn to the question whether the computation time is reasonable—that is, whether the
scale-up behavior is favorable.

4 Experimental evaluation

In the previous sections, we examined the theoretical models and derived several de-
sign rules. Using these rules, we developed a GA that is able to find solutions of good
quality. According to the models, the number of fitness evaluations should scale lin-
early if the GA adheres to the assumptions of the models. The question is whether these
assumptions are realistic. Our GA does not match them completely, and it may deviate
too much from them for the predictions to hold. First, we will check each assumption
of the models and discuss how much the GA adheres to it. Then we will experimentally
find the critical population size and number of generations until convergence, and see
whether their scale-up behavior matches with the prediction of the models. This will
gives us an idea about the applicability of the models in a practical setting.

14



100 w==- 100
90 190
= -
§ 80 80
2 70 470
3
2 60 160
3
= hol
L 50 e 1 50
< 40 F ) el R gk‘"*u 1 40
S —e— Simulated annéaling i, e T,
@ 5, L < Greedy A T e 430
= | - Gradient descent (1) “a Ty
8 o L9 Gradient descent (2) Sea, e N P
S -—-#-- Gradient descent (3) A“A»-A‘_A o
--0-- Hirsch’s algorithm T,
10—+ Zoraster’s algorithm ea 710
0 = Random placement . . . 0

0 200 400 600 800 1000 1200 1400 1600

Number of cities on the map

Figure 9: Results from the paper by Christensen et al.

100 100
95 - {95
[7)]
3
€ 90} {90
j@))
£
B et 185
o
c
T 80 180
o
c
5 75¢ {75
g
g 70 + 470
65 - {65
—e— Our GA
e SA
60 1 1 1 1 1 1 1 60

0 200 400 600 800 1000 1200 1400 1600
Number of cities on the map

Figure 10: Comparison of SA with our GA for the four-position model. Also shown is
a run of SA with the GLO.

15



4.1 Adherence of assumptions

We will now check all model assumptions which were stated in Section 2;

The fitness function is additively decomposable Equation 5 shows the fitness func-
tion can be expressed as an ADF.

The order of partitions, k, is a fixed constant, withk < I: The partitions in the map
labeling problem (rival groups) are not of fixed order, but the largest rival group
can be taken as a conservative estimate. Moreover, the size of rival groups does
not vary too much (on the dense maps used in the experiments, cities have on
average about six or seven rivals, with a maximum of 14 rivals).

The fitness function is uniformly scaled: Each partial function can contribute either
zero or one to the overall fitness. Therefore, the fitness function is uniformly
scaled.

The fitness function is semi-separable Each city occurs in a bounded number of ri-
val groups, since the number of rivals is bounded. Therefore, each gene is in-
put to a bounded number of partial functions, and the fitness function is semi-
separable.

All building blocks are present in the initial population: Since building-block for-
mation is possible, and indeed very likely to happen, this requirement can be
relaxed.

The selection scheme is rank-basedThis requirement is met by using either tourna-
ment selection or the elitist recombination scheme. We will experimentally test
the predictions for both selection schemes.

Mixing is perfect: Rival crossover can be seen as a kind of uniform crossover on the
level of the building blocks. As a result, we can be reasonably confident that
mixing is performed adequately.

No disruption of building blocks takes place: In practice, some disruption takes place
but is minimized due to the use of the geometrically local optimizer with the ef-
fect that it has a marginal influence on the behavior of the algorithm. Since
building blocks can be disrupted, the saturation barrier is not absorbing. How-
ever, a gambler that reached the saturation barrier will with high probability stay
in its proximity.

We find that some assumptions are not adhered to exactly but deviate somewhat. Still,
we expect that the deviation is not serious enough to falsify the prediction. More gen-
erally speaking, we expect the models to be quite liberal in their assumptions. For
example, the models assume that mixing completely removes the correlations between
building blocks (or rather, their partitions) that were introduced by selection. We do
not expect radically different behavior if mixing slightly less.

Therefore, we conclude that we can be reasonably confident that none of the un-
derlying assumptions is seriously violated. We expect to see the scale-up behavior
predicted by the models. The next section is devoted to experimentally putting this
expectation to the test.
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4.2 Empirical results

Experimental data was gathered by running the GA on randomly generated maps. The
maps were square grids, embedded on a torus (to remove boundary effects). They were
generated by repeatedly selecting uniformly at random a location for a point and its
label on the torus, making sure the label did not overlap other labels. All labels had
fixed dimensions of 30 by 7 units. Afterwards, the labels were removed and the GA
was used to find a placement for the labels again. This way we were certain that it
was possible to place all labels without intersecting other labels, and the optimum was
always the number of cities on the map. The den8iyf the map is the number of

units on the grid for each point. For all subsequent experiments, we used a density of
0 = 450—that is, an area of 670 units squared contains 1000 points. The density is
equal for all maps. Therefore, maps with more points are bigger.

In the remainder of this section, functions will be fitted to data by using the Levenberg-
Marquardt algorithm for non-linear least-squares fitting, with the data points weighted
by their standard deviation.

We present the experimental verifications in a number of steps. First, we investi-
gate the influence of selection pressure. One of the most critical assumptions of the
models is that mixing is perfect. If the selection pressure is too high, this assumption
is clearly violated. We then look at how the gambler's-ruin model can be fitted to our
experimental data. This allows us to derive the critical population size. The number
of generations to converge for a GA using the critical population size can subsequently
be found. We show that the functions predicted by the models can be fitted well to the
experimental results. Finally, the total, minimal number of function evaluations can be
derived and is shown to be linear in the input size.

Selection pressure

We start by investigating the selection pressure. An efficient GA uses a selection
scheme that pushes as hard as possible while still allowing mixing to occur adequately.
We performed experiments to find the optimal tournament size for the tournament se-
lection scheme. The GA used a population size of 200, which, as will become apparent
from the other experiments, is large enough. The termination criterion used for all
runs was convergence of fitness, that is, the average fithess becomes equal to the fit-
ness of the best individual. The GA was run five times with different seeds for the
random-number generator on five different maps of 1000 points. The average of those
twenty-five runs was used as a data point.

The results are shown in Figure 11. As can be seen in the figure, the optimal tour-
nament size seems to be two or three, since with larger tournaments the quality begins
to drop too much. We used a tournament size of two in all following experiments.

Use of the gambler’s-ruin model

Since we have argued that the assumptions are not significantly violated, we should
be able to apply the gambler’s-ruin model to describe the behavior of the GA for map
labeling. Equation 2 gives us the probabilRy(n) a certain gambler hits the satura-
tion barrier. We haven = nys gamblers running in parallel in the GA (whengs is

the number of features). Each partition corresponds with a rival group. The optimal
schema of the partition will place the label of the central point of the rival group in

a free position. Given a population simethe fitnessfi;(x*(n)) of the final solution
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Figure 11: Influence of different selection pressures for tournament selection. On the
left, the average number of generations is shown. On the right, the average fitness is
shown.

x*(n) is equal to the number of partitions that converge to the optimal schema (given
by Equation 3:E[ncenj = M- Pr(n)). Therefore, the following holds for the expected
fithess of the final solution when a population sizendd used:

E[fsit(x"(n))] = E[Ncond = Npts- Pr(n), (6)

wherePr(n) is as given in Equation 2, arie]-] denotes the expected value.

For maps of sizéps € {200,500,1000 1500 2000 400Q 700Q 10000 we ran the
GA with population sizen € {10,30,50,100,110,200}. The GA was run three times
with different seeds for the random-number generator on three different maps of the
same size. The average of those nine runs was used for further computation.

The experimental data for maps of 10000 points is shown in Figure 12 (note that
the figure is scaled to make 1 the optimum). We fitted Equation 6 to this data. The
closeness of the fit shows that the gambler’s-ruin model gives a reasonably close ap-
proximation of the relation between population size and the quality of the final solution.
All experiments were also done for the elitist recombination scheme. Experimental re-
sults for maps with 10000 points are given in Figure 13 (again, be aware that the figure
is scaled to make 1 the optimum). Note that the fit shown for elitist recombination is
better than the one for tournament selection.

The experimental critical population size

The critical population size for each map of a certain size is found by fitting Equa-
tion 6 to the experimental data and using the function to find the point where the fitness
was 97% of the optimum. Since it is guaranteed that all labels can be placed without
intersections, the optimum igys labels placed. The critical population size can be
calculated as

n* =g 1(0.97 npts),

whereg~1(-) denotes the inverse of the functigft) resulting from fitting Equation 6
to the experimental data.

The critical population size is calculated in this way for each map size. The results
are plotted in Figure 14, where a square-root function is fitted to verify the prediction
of the gambler’'s-ruin model. This prediction, which states that the relation between
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Figure 14: Critical population size for a quality of 97% of the global optimum. Shown
is experimental data with the fit of the predicted function, for tournament selection and
the elitist recombination scheme.

critical population sizen* and problem length should ben* = O(\/1), is confirmed.
Also it is clear that very small population sizes are sufficient.

We also tried the same experiments with elitist recombination instead of tournament
selection as the selection scheme. The results are also shown in Figure 14 and show the
same scale-up behavior. Note that elitist recombination succeeds in finding solutions
of the same quality but can use smaller populations than tournament selection.

The number of generations

The number of generations needed to converge, when the population is equal to the
critical population size, is obtained in a similar fashion. The critical populationgize

has already been calculated. For each inputlsiaefunction is fitted to a set of data
points. Each point consists of the population size and the number of generations that
were spent to find a solution of the required quality. To these data points, the function
g(x) =0(1— )—1() if fitted. This function was chosen as it fits the experimental data
reasonably well. After fitting the function to the data, the critical number of generations
t* is given ag* = g(n*).* This is done for each map size, and the results are shown
for both selection schemes in Figure 15. The number of generations for the elitist
recombination scheme, an incremental replacement scheme, is calculated by dividing
the number of recombinations by half of the population size. The experimental results
are shown with a fit to a square root. The predictiot*ef O(+/1) is confirmed.

4The use of an interpolation averages out stochastic effects. This was deemed more reliable than deriving
t* from additional runs with a population size mf.
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Figure 15: Run time in number of generations of GA when using the critical population
size. Shown is experimental data with the fit of the predicted function, for tournament
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Total amount of computational effort

Since the number of fitness evaluationsEis= t* - n*, it follows thatE = O(l) (the
number of evaluations scales up linearly with the problem size). In Figure 16 the
required number of evaluations for a given map size—the optimal population size times
the number of generations until convergence—is plotted, and a linear function is fitted
to it.

Figure 16 shows that the GA using tournament selection, compared with the GA
using elitist recombination, requires more computational effort to obtain the same level
of quality. Tournament selection also gives less reliable results, because the spread of
the final solutions is larger than with elitist recombination.

5 Conclusion

In this paper, we examined two theoretical models from literature that allow us to
make predictions of the scale-up behavior of GAs under certain assumptions. The
models present a view of the way a GA works that stresses issues like good mixing,
minimizing disruption and ensuring good building-block supply. With these insights in
mind, we developed several design rules. These were used to design a GA for the map-
labeling problem, an NP-hard cartographic problem. The GA was able to find solutions
of good quality. Then we tested whether the use of the design rules (inspired by the
theoretical models) for the design of the map-labeling GA resulted in scale-up behavior
as predicted by the models. We experimentally found the critical population size and
number of generations until convergence for different input sizes and compared these
with the predictions of the models. It was found that the scale-up behavior matched the
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Figure 16: The scale-up behavior of the number of fithess evaluations is linear.

predictions. As a result, we have shown that the number of fithess evaluations scales
linearly with respect to the input size for our map-labeling GA.

Much theoretical research has been done on problems of bounded difficulty, such
as the bit-counting problem and the concatenated trap function. This is justified by the
implicit claim that many real-world problems are either problems of bounded difficulty,
or can be solved satisfactorily by assuming they are (such as the map-labeling prob-
lem). Therefore, one can expect that the theoretical results are useful in the design and
analysis of GAs for real-world problems. We have shown that for at least one instance
of an NP-hard problem (namely, the map-labeling problem), the reduction to a problem
of bounded difficulty allows us to quickly find solutions that are near optimal.

For some problems, it will be fairly straight-forward to apply the design rules to ob-
tain a competent GA. It is significant that the assumptions that underlie the models are
more liberal than one may expect, since the map-labeling GA was allowed to deviate
from the assumptions in some extent but still showed the expected scale-up behavior.
This suggest that the design rules can be applied to a broad range of problems. A no-
table case of successful GA design is the grouping GA of Falkenauer (1996), which
uses a special representation and operators to match the building-block structure of
grouping problems. Whereas this GA was not designed using explicit design rules, we
believe it could be largely derived from our rules.

But even for problems for which the application is less obvious, the design rules
highlight the important issues that need to be considered in order to design a competent
GA. For example, for a problem in which the linkage of the building blocks is not
readily available, the natural course of action would be to try to learn the linkage.
Another option would be to accept that one can not decide a priori which crossover is
best and try to find a linkage-respecting crossover by trial and error. Thus the design
rules guide the designer in developing a competent GA.
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