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Abstract. In the context of graph transformations we look at the op-
eration of switching, which can be viewed as an elegant method for real-
izing global transformations of graphs through local transformations of
the vertices. A switching class is then a set of graphs obtainable from a
given start graph by applying the switching operation.

Continuing the line of research in Ehrenfeucht et al. we consider the
problem of detecting three kinds of graphs in switching classes. For all
three we find algorithms running in time polynomial in the number of
vertices in the graphs, although switching classes contain exponentially
many graphs.

1 Introduction

The operation of switching is an elegant example of a graph transforma-
tion, where the global transformation of a graph is achieved by apply-
ing local transformations to the vertices. The elegance stems from the
fact that the local transformations are group actions, and hence basic
techniques of group theory can be applied in developing the theory of
switching.

For a finite undirected graph G = (V, E) and a subset o C V, the
switch of G by o is defined as the graph G? = (V, E’), which is obtained
from G by removing all edges between ¢ and its complement V' — ¢ and
adding as edges all nonedges between o and V — o. The switching class
[G] determined (generated) by G consists of all switches G for subsets
ocCV.

A switching class is an equivalence class of graphs under switching,
see the survey papers by Seidel [11] and Seidel and Taylor [12]. General-
izations of this approach — where the graphs are labelled with elements
of a group other than Zy — can be found in Gross and Tucker [6], Za-
slavsky [13], the book of Ehrenfeucht, Harju and Rozenberg [5] and the
thesis of Hage [7].



A property P of graphs can be transformed into an existential property
of switching classes as follows:

P3(G) if and only if there is a graph H € [G] such that P(H).

We will also refer to P35 as “the problem P for switching classes”.

Let G be a graph on n vertices. It is easy to show that there are 271
graphs in [G], and so checking whether there exists a graph H € [G]
satisfying a given property P requires exponential time, if each graph is
to be checked separately.

However, we prove that deciding that a switching class is bipartite
(i.e., it contains at least one bipartite graph) can be done in polynomial
time. The same result holds for the predicates ”triangle-free” and ”eule-
rian”. The solution to the latter problem can also be found in the thesis
of Hage [7], but has never been published in a paper.

A little now about the motivation for our research. In [8], we consid-
ered the problem of characterizing the switching classes which contain
only cyclic graphs. We did this by means of a list of forbidden subgraphs.
In the process of this research we made extensive use of computer pro-
grams. However, as stated earlier, switching classes grow unwieldy quite
soon and having an efficient algorithm to check whether a switching class
contains any acyclic graphs at all, would be of great help. For the case
of acyclic graphs such an algorithm exists (Theorem 1 of Ehrenfeucht,
Hage, Harju and Rozenberg [4] or Theorem 3.21 of Hage [7]).

After considering this problem for acyclic graphs we turned to gener-
alizations of the acyclic graphs: the bipartite and the triangle-free graphs.
The bipartite graphs and the triangle-free graphs are natural classes of
graphs in the context of switching, see Seidel [11] and Seidel and Taylor
[12]. In the latter case, it seems that there is not a reasonably elegant re-
sult using a list of forbidden subgraphs: this list soon grows to enormous
size. For the bipartite case however the computational results so far are
promising.

The computational complexity of various problems for switching classes
were considered by Ehrenfeucht, Hage, Harju and Rozenberg [4]. In the
present paper we continue this approach by showing that the three prob-
lems to decide whether a switching class contains a bipartite respectively
eulerian respectively triangle-free graph are all polynomial time (in the
number of vertices of the graphs). Although we consider graphs up to
equality (i.e. the names of the vertices do matter), most results carry
over to the situation where the graphs are considered up to isomorphism.



2 Preliminaries

For a (finite) set V', let |V| be the cardinality of V. We shall often identify
a subset A C V with its characteristic function A : V — Zs, where Zy =
{0,1} is the cyclic group of order two. We use the convention that for
x € V, A(r) = 1if and only if x € A. The restriction of a function
f:V — W toasubset A C V is denoted by f|4. We denote set difference
by A — B. It contains the elements in A which are not in B. If B is a
singleton {b}, then we may write A — b for brevity.

The set E(V) = {{z,y} | z,y € V, & # y} denotes the set of all
unordered pairs of distinct elements of V. We write xy or yx for the
undirected pair {z,y}. The graphs of this paper will be finite, undirected
and simple, i.e., they contain no loops or multiple edges. We use F(G) and
V(G) to denote the set of edges E and the set of vertices V', respectively,
and |V|] and |E| are called the order, respectively, size of G. Analogously
to sets, a graph G = (V, E) will be identified with the characteristic
function G : E(V) — Zs of its set of edges so that G(zy) = 1 for zy € E,
and G(xy) = 0 for zy ¢ E. Later we shall use both notations, G = (V, E)
and G : E(V) — Zs, for graphs.

To establish notation and terminology we repeat some elements of
graph theory.

Let G = (V,E) be a graph. A vertex z € V is adjacent to y € V if
xy € E. The degree of x in G is the number of vertices it is adjacent to.
The neighbours of u in G, denoted Ng(u), or N(u) if G is clear from the
context, is the set of vertices adjacent to u in G. A vertex which is not
adjacent to any other vertex in a graph is called isolated.

For a graph G = (V, E) and X C V, let G|x denote the subgraph of G
induced by X. Hence, G|x : E(X) — Zs. For two graphs G and H on V/
we define G+ H to be the graph such that (G+ H)(zy) = G(xy) + H (zy)
for all zy € E(V).

Some graphs we will encounter in the sequel are Ky, the clique on the
set of vertices V, and Ky, the complement of Ky which is the discrete
graph on V; the complete bipartite graph on A and V — A is denoted by
K4 v—a. If the choice of vertices is unimportant we can write K, K,
and Ky, y,—m for n = |V| and m = |A].

An euler graph is a connected graph consisting of a single closed walk
such that each edge is traversed once (but a vertex can be visited several
times). It is well-known that a graph is eulerian if and only if all the
degrees of its vertices are even. We can extend the definition of euler
graphs to disconnected graphs by demanding that all components are



eulerian. These graphs are here called even graphs. In a similar fashion
we call graphs in which every vertex has odd degree an odd graph.

A graph G = (V, E) is bipartite if V' can be partitioned into two sets
A and V — A, such that all edges in E are between A and V — A. An
equivalent characterization is to say that G is bipartite if and only if it
contains no cycles of odd length. Deciding whether a graph is bipartite
is easily done by visiting each vertex at most once. So it can be checked
for graphs very efficiently. The bipartite graphs include among them all
acyclic graphs, because these do not contain cycles of any kind.

The triangle-free graphs generalize bipartite graphs by only disallow-
ing triangles: a graph G = (V, E) is triangle-free if G does not contain an
induced K3. Note that if G is triangle-free, then its largest clique (i.e.,
complete subgraph) has at most two vertices. Deciding whether a graph
is triangle-free is easily done by examing every subset of three vertices to
see if all three edges in the triangle are in the graph.

Triangle-freeness can be decided in time cubic in the number of ver-
tices. Whether a graph is eulerian and bipartite can both be decided in
time quadratic in the number of vertices of the graph. In the following
we shall consider all three problems for switching classes and show that
the problems remain polynomial.

We continue now with definitions for the switching of graphs.

A selector for G is a subset 0 C V(G), or alternatively a function
o : V(G) — Zs. A switch of a graph G by o is the graph G? such that for
all zy € E(V),

G7(zy) = o(z) + Glzy) +o(y) -

Clearly, this definition of switching is equivalent to the one given at the
beginning of the introduction. The set [G] = {G? | ¢ C V'} is called the
switching class of G. We reserve lower case o for selectors (subsets) used
in switching.

A selector o is constanton X C V if X C o, or X No = (). The name
arises from the fact that, in these cases, G|x = G7|x.

We now give a few results from the literature that will be used through-
out this paper, see Seidel [11], Ehrenfeucht, Harju and Rozenberg [5] and
Hage [7].

Lemma 1. The switching class [Ky| equals the set of all complete bipar-
tite graphs on V.

Proof. Given any complete bipartite graph Ky, _o}, we can obtain it
from Ky by switching with respect to o. Also, every switch of Ky can



divide its partition at most in two, so it must be a bipartite graph. It is
obviously complete bipartite, because Ky has no edges. O

From the observation that applying a selector o to G amounts to
computing G + K,y (q)—s we obtain the following result.

Lemma 2. It holds that G € [H] if and only if G + H € [Ky].

Lemma 3. Let G = (V,E) be a graph, wu € V and A CV — {u}. There
exists a unique graph H € [G] such that the neighbours of w in H are the
vertices in A.

Proof. The vertex u has no adjacent vertices in Gy, = GN® where N (u)
is the set of neighbours of u in GG. Switching G,, with respect to A connects
u to every vertex in A (and no others) yielding H.

To show that H is unique: let H' be such that N(u) = A in H'. Since
H and H' are in the same switching class H + H’ is a complete bipartite
graph (Lemma 2), say Gpy_p. Because u has the same neighbours in
both, u is isolated in Gpy_p. Hence, Gpy_p is a discrete graph and,
consequently, H = H'. O

As a corollary we easily find that for every vertex x € V(G), there is
a unique graph in [G] where z is isolated.

3 Euler switching classes

Let G be a graph. Recall that G is called an even (odd) graph if all vertices
are of even (odd) degree.

Seidel [10] proved that if G is of odd order, then the switching class [G]
contains a unique even graph. Such a result is interesting because it tells
us that every graph having an odd number of vertices can be constructed
from an even graph using the rather simple transformation of switching.
(See also Mallows and Sloane [9] and Cameron [2] for the connection of
eulerian graphs to switching.)

Theorem 1 (Seidel [10]). Let G be a graph of odd order. Then [G]
contains a unique even graph.

Proof. Let G be a graph of odd order. The even graph can be obtained
by switching with respect to the set o of vertices in G that have odd
degree, because there are an odd number of vertices of even degree and
an even number of vertices of odd degree. For instance, if a vertex v



had odd degree and an even number of its neighbours had even degree,
then v loses an even number of neighbours, but gains an odd number of
neighbours, since the number of vertices of even degree is odd. In sum, v
will have an even number of neighbours in G°. The other three cases can
be treated in a similar way. Hence G has only vertices of even degree.
Let H € [G] be an even graph on vertices V and 7 a nontrivial selector
so that H” is also even. We can assume without loss of generality that
7 has even cardinality. Let v € 7. We can split V' — {v} into four sets of
vertices based on the fact whether a vertex is connected to v or not and
the fact whether they are or are not in 7. The vertex v will be connected
to all vertices in A = (V —7) N (V — Ng(v)), i.e., the vertices outside 7
that it was not connected to, and B = 7 N N (v), i.e., the neighbours it
was connected to. We now show |AU B] is odd, which implies that H7 is
not even. Assume | B| is odd. Then [(V —7)NNg(v)] is odd, because v was
even. Because |[BU{v}| is even and |7| is even, we find that |7 — (BU{v})|
is even. It follows that |A| is even, because the order of H is odd. Similar
reasoning for the case that |B| is even proves that H can not be switched
into an even graph, unless the switch is trivial, which proves that the even
graph H is unique. O

A general uniqueness result such as Theorem 1 is not possible without
restrictions on the vertex set. Indeed, if P is any graph property, which
is preserved under isomorphisms, then there exists a switching class that
has no graphs with P or that has at least two graphs with P. This state-
ment follows from a result on automorphisms of switching classes, see
Cameron [2]: there exist switching classes where the first cohomological
invariant is different from zero, and therefore there exist switching classes
for which the group of automorphisms is strictly larger than the group of
automorphisms of its graphs.

For graphs of even order, a switching class [G] can contain only noneu-
lerian graphs, e.g. take the switching class [Py]. However, it holds that
either [G] has no even and no odd graphs, or exactly half of its graphs are
even while the other half are odd, as first proved in Ehrenfeucht, Hage,
Harju and Rozenberg [4]. (This is a result that is not likely to hold when
graphs are considered up to isomorphism.)

To see this, define u ~¢ v, if dg(u) = dg(v) (mod 2), that is, if the
degrees of u and v have the same parity. This relation is an equivalence
relation on V(G).

Assume then that the order n of G is even. If we consider singleton
selectors o only (hence switching with respect to one vertex), then it is
easy to see that ~¢ and ~go coincide for all selectors o. In other words,



if G has even order, then the relation ~¢ is an invariant of the switching
class [G]. This means that if [G] contains an even graph, then all graphs
in [G] are either even or odd. Moreover, if G is even, and o : V(G) — Za
is a singleton selector, then for each v € V(G), dg(v) and dgo(v) have
different parity.

Theorem 2. Let G be a graph of even order and such that [G] contains
an even graph. Then [G] contains an eulerian graph unless |G| contains
a complete graph.

Proof. We may assume that G itself is even, otherwise switch at an ar-
bitrary vertex. However, this graph may not be connected and we need
to find a connected even switch of G. This can be done as follows: let u
be any vertex of G. Let V = V(G) and let O =V — ({u} U Ng(u)), the
vertices that are not neighbours of u in G. Note that the set O has odd
cardinality. Switch G with respect to o = O — {v} for an arbitrary v € O.
The resulting graph G7 is again even, but it may still not be connected,
but at least G7|y_, is. However, if G?|y_, is not the complete graph, we
can choose a vertex w € V — {u,v} that is not connected to all vertices
in V' —v. Switching with respect to {v, w} now gives us a connected even
graph. Note that in fact [K,] for even n does have even graphs, but no
eulerian graphs, because K, is the only connected graph and it is not
even, but odd. O

From the above it follows that the existence of an even graph in a
switching class can be determined in time linear in the size of the graph:
in the odd order case, the answer is always yes, while in the even order
case, we need only verify whether G is an even or odd graph. If either of
these is the case, then the answer is yes, otherwise it is no.

We can extend this algorithm to check for eulerian graphs: for graphs
G of odd order it is simply a question of finding the unique even graph as
in the proof Theorem 1 and verifying whether or not it is connected. For
the even case we can use the algorithm implied in the proof of Theorem 2.

4 Triangle-free switching classes

The smallest graph that generates a switching class without bipartite
graphs, also has no triangle-free graphs. It is the switching class [K35],
which contains in addition to K5 only K4 ¢ K7 and K3 & Ko, where &
denotes the operation of disjoint union of two graphs. In this section we
investigate the problem of deciding whether a switching class contains
any triangle-free graphs.



The algorithm is specified by means of a reduction to the 25AT prob-
lem, a conjunction of disjunctions such that each disjunction contains at
most two literals, where in our case each literal stands for a vertex in the
graph. If the literal occurs positively this will mean that the vertex is in
the selector corresponding to the instance of 2SAT. If it occurs negatively,
it will not occur in this selector.

An example instance of this problem is @w A (u V v). A selector that
satisfies this proposition does not select u, because of the first clause and
hence must select v to make the second clause true.

In what follows we shall omit A from the propositions by writing, e.g.,
u(u V v). We often use @ for the xor connective. Recall that = ® y is
equivalent to (z V y)(T V7).

Theorem 3. Deciding whether or not a switching class contains a triangle-
free graph can be decided time polynomial in the order of the graph.

Proof. We may assume, by Lemma 3, that GG contains an isolated vertex
v and we set o(v) = 1. Hence, our 2SAT formula contains the clause v.
Note that our choice to select v is no restriction, because a selector is
equivalent to its complement.

If G contains K4, then we are done, because then we can conclude that
G does not have a triangle-free switch (take the K, with isolated vertex
v). Second, if the graph G is triangle-free, then we can also stop. In the
other case, G contains a triangle, say T. Assume that o is the selector
that maps G into a triangle-free graph. Obviously, o is not constant on
T. In this case only one degree of freedom remains: which single vertex
u € T has o(u) = 07 If we had two vertices in T with o(u1) = o(u2) =0,
then {uj,u2,v} would be a triangle in G°.

We now choose an arbitrary vertex u € T and set o(u) = 0 and
o(x) =1 for x € T — {u}. All other neighbours of v in G must also be
selected: if one of them, say z, was not, then {z,u, v} would be a triangle
in G°.

The foregoing can be summarized as follows: the selector o satisfies
the formula

ag(u) =vu /\ x

€N (u)

Note that G| N(u) can have no induced triangles, because then G would
contain an induced Ky, a case we have already taken care of.

The only remaining vertices are those in M (u) = V(G) — (N(u) U
{u,v}). Consider an edge xy € E(G|ps(y))- If both of them or neither of



them are selected by o, then G? contains either a triangle {x,y,u} or
{z,y,v}, depending on whether o(z) =1 or o(z) = 0 respectively.
In other words we obtain

Bo(w) =aclw) N\ @)

ry€FE,x,ye M (u)

Note that this formula can only be satisfied if G|y, is bipartite.
Let 7 be any selector that satisfies S (u). Then G7 has the following
properties:

i. v is not in any triangle in G7,
ii. u is not in any triangle in G7,
iii. G7|n(uufuwy is triangle-free, and
iv. G7|pr(u) is bipartite and hence triangle-free.

We have now come this far: if o satisfies S (u), then the only triangles
that can remain in G involve either

— two vertices from N (u) and one from M (u), or
— two vertices from M (u) and one from N (u).

We continue now with the prevention of triangles {z,y, 2z} with = €
M (u) and y,z € N(u). We need to consider only triangles {z,y, z} and
the case that G(yz) = 1, G(xzy) = 0, G(xz) = 0. This follows from the fact
that G|y, -y must be a switch of K3, so it is either K3 or an edge with an
isolated vertex. In the latter case, there are three possibilities: the edge in
question is zy, zz or yz. In the former two cases, yz will not be an edge
in a switch G? of G that satisfies S (u), because o is constant on N (u).
So in the end only the third case, yz € E(G) needs to be considered.

We define

Xo={x e M(u)|Jy,z€ N(u) : Gyz) = G(xy) = G(zz) = 1},

X1 ={r e M(u)|Jy,z€ Nu):Gyz) =1,G(zy) =0,G(zz) = 0}

and take as our improved formula

The conjunction over X forces all triangles involving one vertex from
M (u) and two from N (u) to be removed from G. On the other hand, the
conjunction over X; prevents the introduction of triangles of this kind



after switching. It is possible for Xg N X7 to be non-empty, but in that
case the formula will not be satisfied by any selector.

For the final case, let x,y € M(u) and z € N(u). As we did earlier,
we need only consider the case that the subgraph G|y, , .y is a switch of
K3. Every edge in G/|j(,) will be destroyed by any selector that satisfies
~va(u). This immediately takes care of the case that G(xy) = 1 (this
includes the case that {z,y, 2} is a triangle in G).

The second case is when G(zy) = 0. In that case either G(zz) = 0
and G(yz) = 1 or vice versa, G(zz) = 1 and G(yz) = 0. We assume the
former. In that case, the only way in which we can possibly introduce a
triangle is by o(z) = 0 and o(y) = 1. For this reason we add for all such
pairs x and y the clause x V7 to the formula v5(u), obtaining in this way
our final formula g (u).

If there is no selector that satisfies dg(u), then we can construct the
formula d¢(u') for the other two vertices u' € T'— {u}. If neither of these
yield a formula that can be satisfied by a selector, then the switching
class contains no triangle-free graphs: the choice of 17" is an arbitrary
one, because a selector must dissolve all existing triangles in G. The
completeness of the algorithm then follows from the fact that the 2SAT
formulas by construction only forbid selectors that are guaranteed to map
into graphs with triangles.

Note that if dg(u) is satisfiable for some u, then we can easily con-
struct the triangle-free graph by constructing the selector that satisfies
the formula and applying it to G. We have shown that there are only three
choices for u, and in all three cases, the formula has size at most quadratic
in the number of vertices. 2SAT itself can be solved in time linear in the
size of the formula [1] so we obtain a polynomial time complexity for our
problem. O

FEzample 1. We shall now give a small example, one which also indicates
the need for trying all three vertices of a chosen triangle.

In Figure 1 we have depicted the same graph twice, with different
choices for u. Choosing u; for v does not give us a switch into a triangle-
free graph (see Figure 1(a)). The reason is that the triangle {uz,us,us}
must be removed (so ug must not be switched), but this induces a triangle
{uq,us,us}. We get a similar situation for u = us. However, if we choose
u = ug, then the situation of Figure 1(b) arises, for which we can construct
the formula

5g(’LL2) = UEQU1U3U6(U4 V U5)(ﬂ4 V ﬂ5)ﬂ4’LL5.



Fig. 1. Choosing u = u1 does not give us a switch, choosing u = u2 does.

In this case there is one selector that satisfies the formula, the one which
selects us, but does not select uy (the selector also selects all other vertices
except uz). Applying this selector to the graph results in the simple cycle
of length 7.

5 Bipartite switching classes

In this section we consider the problem of determining whether a switch-
ing class contains a bipartite graph.

Starting from a bipartite graph and applying an arbitrary switch, the
resulting graph is always 4-colourable (Lemma 3.30 in [7]). Hence if we
start from a bipartite graph, say G = (V, E) with bipartition A,V — A,
and we switch with respect to a selector ¢ then we obtain the graph G,
in which

—thesetscNA,oN(V—-A), V-o)nAand (V—-0o)n(V —A) are
independent,

— the sets c N A and o N (V — A) are completely connected,

— as are the sets (V —o)NAand (V—0)N(V —A).

Note that up to three of the four sets may be empty. An example
where AN o is empty is given in Figure 2.

In the following we shall derive a 25AT formula which specifies for each
vertex, whether it must be in either the top or lower complete bipartite
graph, or it may be in either one. We begin however with a small but
essential lemma.

Lemma 4. A graph G is complete bipartite if and only if G does not
have an induced K3 nor Ko ® K;.



Proof. By Lemma 1, all complete bipartite graphs can be switched into
the discrete graph, and these are the only graphs for which this holds.

The result on triangles by Seidel [11] states that the parities of edges
in any induced subgraph on three vertices is invariant under switching
and, the other way around, if two graphs (on the same vertex set) have
the same parities for corresponding triangles, then they can be switched
into each other.

The invariance implies that for all complete bipartite graphs, the par-
ity of edges of T is zero, as it is for the discrete graph. But the parity of
edges in both K3 and K7 ¢ K; is one, and they are the only such graphs
on three vertices. O

Theorem 4. Deciding that a switching class contains a bipartite graph
or not can be done in time cubic in the number of vertices in the graph.

Proof. Let G = (V, E) be a graph in the switching class. We start by fixing
a single vertex u € V' to go “up”. Up refers to the top complete bipartite
graph (see Figure 2) and will be represented as 0 (or, equivalently, false)
in our formulas. By Lemma 4, the only thing to take care of, is to forbid
subgraphs K3 and Ko @& K;. The formula that forbids K3 and Ko & K;
in the top complete bipartite graph (assuming that u is part of it) is as
follows (here V! =V — {u}):

upg(u) = N{z Vy | G(zu) = Gyu), G(zy) = 1, z,y € V'} A
Nz Vy | Glzu) # Gyuw),G(zy) = 0,2,y € V'}

The first part of the formula takes care of the case that xy is an edge
in G. We then have to force one of z and y down to the lower part (i.e.,
one of them must be true). This includes both the case of K3 and one of
the three cases of an induced Ky @ K;. The second part of the formula
takes care of the case where xy is not an edge in G, but we do have a
subgraph Gy, 5,1 isomorphic to K> @ K (these are the other two cases
for Ko @ Kl)

The formula above only forces vertices down. This is not enough to
guarantee that on the down side we always obtain a complete bipartite
graph (in fact you can always choose all vertices but u to go down, so
pretty much every graph can arise there). To set things right we do the
same as above, but now we construct a formula downg(v) for a vertex v,
that tells us of which pairs of vertices at least one has to go to the “up”
side. This formula only differs from upg(v) in the fact that every literal
occurs complemented, because we have to exchange “up” with “down”



(here V! =V — {v}):

downg(v) = N{ZT VY| G(zv) = G(yv),G(zy) =1, z,y € V'} A
Mz VY| Glav) # Glyv), Glay) = 0,2,y € V'}

Finally, we can construct the 2SAT formula
ca(u,v) = upg(u) A downg(v),

for different vertices u and v. In ¢g(u,v) a small optimization is possible
by taking V' =V — {u,v} in upg(u) and downg(v).

The above reasoning should make clear that every way of satisfying
the formula guarantees that the graph G is split into two, arbitrarily
connected, complete bipartite graphs. It does not yet guarantee that if
the formula is not satisfiable, then the graph cannot be partitioned into
two complete biparite graphs. This can be done by fixing v and to let v
run through V(G) —{u}: if a graph has a bipartite switch, then there has
to be a partition in which v goes up and one of the other vertices goes
down. After fixing u to belong to the top complete bipartite graph, we
have assumed all we can, and we simply have to try all other vertices for
.

We have now shown how the problem of deciding whether a switching
class is bipartite can be reduced to finding a solution to a linear number
of 2SAT problems. Since 2SAT can be solved in time linear in the size of
the formula [1], and we construct each of the formula in time quadratic
in the number of vertices, we obtain an algorithm cubic in the order of
the graph. O

Ezample 2. Take the graph G depicted in Figure 2. The selector {u4}
gives us a bipartite graph.

The picture already implies that if we choose © = w1 and v = uy, then
we should obtain a satisfiable formula ¢(uy,u4), for which we need

upa(u1) = (ug V us)(us V us)(ug V ur)
and
downg(ug) = (T2 V Ug) (o V s ) (U3 V Us ) (T3 V Ur) (s V Tr)

Here we have given the “optimized” version. The reader can now verify
that setting ug = ug = 1 and us = us = uy = 0 makes ¢(uq,uyq) true.



Fig. 2.

Choosing © = u; and v = w7 yields a formula ¢(u1,u7) which is not
satisfiable. This is because both vertices are not connected to any vertex
in the triangle {us, w4, us}. We get

upc(ui) = (ug V ug)(us V us)(ug V us) ...

and
downg(ur) = (ug V ug)(us V us) (g V us) . . .

One of ug,uq and us must be assigned 1. Assume, without loss of gener-
ality, that this is ug. But then (us V uy) implies that uy = 0. This implies
that us = 1 (because of (u4 Vus)), but also that us = 0 (by (ugVus)). The
example shows that we may choose our u and v incorrectly. However, it
is guaranteed that whatever our choice for u: if the graph has a bipartite
switch, then there exists a vertex v # u for which the constructed formula
is satisfiable.

6 Some final words

In this paper we have shown for three different graph problems that the
same problem for switching classes is polynomial. In the case of bipar-
titeness, the result can also be used to help solve the original problems
for graphs as follows.

From the above we may conclude that if G has a bipartite switch,
then G is 4-colourable. Hence the algorithm implied in the theorem can
be used as an approximative algorithm for this problem and will find a



4-colouring in polynomial time. There is no guarantee however that the
colouring of GG is minimal.

Not surprisingly, in view of the P versus NP conjecture, there are

graphs which are 4-colourable, but which do not have a bipartite switch.
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