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Abstract

Programming language semantics based on pure rewrite rules suffers from the gap
between the rewriting strategy implemented in rewriting engines and the intended
evaluation strategy. This paper shows how programmable rewriting strategies can
be used to implement interpreters for programming languages based on rewrite
rules. The advantage of this approach is that reduction rules are first class entities
that can be reused in different strategies, even in other kinds of program transfor-
mations such as optimizers. The approach is illustrated with several interpreters for
the lambda calculus based on implicit and explicit (parallel) substitution, different
strategies including normalization, eager evaluation, lazy evaluation, and lazy eval-
uation with updates. An extension with pattern matching and choice shows that
such interpreters can easily be extended.

1 Introduction

Language prototyping is the activity of designing and validating the design of
programming languages. Prototype interpreters are useful for experimentation
with language design, to provide a reference implementation for validation of
compilers, and as basis for the design and implementation of optimizers and
other program transformation systems. A language prototyping methodology
should support executability of language definitions and easy modification of
a definition to include or exclude language constructs and experiment with
different evaluation strategies.

Systems supporting language prototyping can be divided into systems
based on a denotational approach and systems based on an operational ap-
proach. In the denotational approach a program expression is translated to
its computational value. Typical systems supporting this approach are ac-
tion semantics, LPS, and Montages. In action semantics [5] an expression is
translated to an action, which represents its computation. In the LPS system
[11] an expression is mapped onto a monadic computation [12]. In Montages
programs are translated to abstract state machines [10]. While denotational
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semantics is very useful for building compilers, it does not provide a theory
of syntactic manipulation of programs at the source level, which is needed for
building source-to-source transformation systems.

In the operational approach a program expression is directly interpreted
by some kind of transition system to produce its value. This provides a direct
operational interpretation of the (abstract) syntactic constructs of a language
that can be used to build interpreters, but can also be used as the basis for
implementing other program transformations, such as optimizers, refactoring
engines, and software renovation tools.

There are different styles of operational semantics. In natural semantics [9]
supported by the CENTAUR system [3] an expression is directly related to its
value, possibly through the use of recursive invocations of the evaluation rela-
tion. In rewriting semantics, supported by many systems including ASF+SDF
[4] and ELAN [2], an expression is normalized by successive applications of
reduction rules, which define a, generally small, modification of an expression.
In the approach of syntactic theories [7], supported for example by the SL lan-
guage [17,18], a set of reduction rules is extended with evaluation contexts that
limit the positions in which reduction rules can be applied. Thus, evaluation
contexts overcome a limitation of pure rewriting based semantics. Exhaus-
tive application of reduction rules is usually not an adequate description of
the semantics of a language. Therefore, the gap between evaluation strategy
and rewriting strategy (provided by the rewriting engine) is usually filled by
explicitly specifying an evaluation function instead of using pure rewrite rules.

In this paper we show how the paradigm of programmable rewriting strate-
gies can be used to implement interpreters. In this approach the semantics
is defined by means of ‘constant folding’ reduction rules, which describe valid
transformations on program expressions. In addition, a user-defined rewriting
strategy determines in what order and at which positions in an expression the
rules are applied, thus determining the evaluation strategy.

This approach is attractive since semantic rules are first-class entities which
are reusable and can be combined using different strategies, making it easy
to experiment with evaluation strategy and language configurations. Such
configurations do not depend on the module structure of the specification—as
is the case, for example, in the approach to modular action semantics [5]; it
is possible to define different interpreters in the same specification module
based on the same set of rules. For example, in [6] interpreters based on lazy
and strict evaluation for RhoStratego are defined using the same set of rules.
Furthermore, the set of rules can be used for other program transformations
than complete evaluation of a program by using a different strategy. Indeed,
the approach stems from the implementation of optimizers with rewriting
strategies [16].

We illustrate the approach by defining a number of interpreters for lambda
expressions. Although the lambda calculus is not a full fledged programming
language, it is useful to illustrate various solutions to the key problems in
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defining symbolic interpreters, i.e., the treatment of variable bindings and
substitutions and the reduction order.

In Section 2 we define lambda reduction with a substitution meta-operation
and with substitution defined explicitly through reduction rules. In Section 3
we consider the specification of evaluation strategies based on reduction rules
with explicit substitution. Strategies include exhaustive application, eager
and lazy evaluation, parallel substitution, and lazy evaluation with updates.
In Section 4 explicit substitution is replaced with the generation of dynamic
rewrite rules. In Sections 5 and 6 we extend the basic lambda language with
pattern matching, pattern match failure, and choice, leading to an interpreter
for the core of the RhoStratego language [6]. Section 7 discusses applications
of this approach.

All examples are specified in Stratego, a language for program transfor-
mation based on the paradigm of rewriting strategies [14]. We explain the
Stratego constructs used, but not in depth. For a full account see [14,13,16].

2 Lambda Reduction with Explicit Substitution

In this section we explore various ways of defining interpreters for lambda
expressions using explicit substitution.

Lambda expressions are composed of variables, applications of lambda ex-
pressions, and abstractions of variables from lambda expressions. To describe
the structure of expressions, we will use in this paper both concrete syntax
following context-free grammar productions and abstract syntax following con-
structor declarations. Thus, lambda expressions are described by the following
algebraic signature, with concrete syntax in comments:

signature

sorts Exp

constructors

Var : String -> Exp // Id -> Exp

App : Exp * Exp -> Exp // Exp Exp -> Exp

Abs : String * Exp -> Exp // "\\" Id "->" Exp -> Exp

Stratego specifications define transformations on abstract syntax terms. How-
ever, concrete syntax can be regarded as syntactic sugar for abstract syn-
tax expressions [15]. Concrete syntax terms will be written between [[ and
]]. Thus, [[ (\x -> x) y ]] denotes the term App(Abs("x", Var("x")),

Var("y")). We will use concrete syntax in rules, but abstract syntax in the
definition of traversals.

2.1 Beta Reduction

The meaning of lambda expressions can be expressed by reduction rules that
reduce an expression to a canonical form. The canonical form represents the
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value of the expression. The reduction of lambda expressions is expressed by
the single beta reduction rule

Beta:

[[ (\ x -> e1) e2 ]] ->

<substitute> ([[ x ]], [[ e2 ]], [[ e1 ]])

where the right-hand side denotes the (capture-free) substitution of x by e2 in
e1. A lambda expression without β redices is in normal form and represents
the value of all expressions that can be reduced to it. Of course, this normal
form should be considered modulo renaming of bound variables.

A pure rewriting-based interpreter for lambda expressions exhaustively
applies rule Beta to a lambda expression in arbitrary order. This can be
expressed by the reduce strategy, which is defined as

reduce(s) =

repeat(rec x(some(x) + s))

The reduce strategy takes a selection of rules (s) and repeatedly tries to find
some subterms for which s succeeds. Using this strategy a lambda interpreter
can be defined as follows:

eval1 = reduce(Beta)

In the next section we will consider strategies that are more in line with
interpreters for actual programming languages.

2.2 Substitution Laws

In the above formulation of beta reduction, capture-free substitution has not
been defined as part of the reduction, but is assumed as a meta-operation.
Besides the fact that this does not provide a satisfactory definition of reduc-
tion, this has consequences for the complexity of the interpretation algorithm.
The implementation of the substitution operation must traverse the term,
while the rewriting strategy itself also traverses the term, resulting in multi-
ple traversals. Therefore, it is desirable to express substitution as part of the
reduction process itself.

To make substitution explicit we extend the signature of lambda expres-
sions with a let binding to be used as substitution operator. Let bindings
have the following syntax:

signature

constructors

Let : String * Exp * Exp -> Exp

// "let" Id "=" Exp "in" Exp -> Exp

A let binding let x = e1 in e2 binds the expression e1 to the variable x.
The binding holds in the expression e2, not in e1.

Again, the meaning of the let construct can be expressed by means of
reduction rules. When the Let body is just a variable, the let bound expression
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is substituted for the variable if it is the same as the bound variable

SubsVar :

[[ let x = e in x ]] -> [[ e ]]

otherwise, the binding is eliminated.

SubsVar :

[[ let x = e in y ]] -> [[ y ]]

where <not(eq)> (x, y)

Substitution distributes over application

SubsApp :

[[ let x = e in (e1 e2) ]] ->

[[ (let x = e in e1) (let x = e in e2) ]]

Substitution under abstraction needs to be treated with care to avoid capture
of free variables in the let-bound expression. If the abstraction variable is the
same as the let-bound variable, the abstraction shadows the let binding, which
can thus be eliminated.

SubsAbs :

[[ let x = e1 in \ x -> e2 ]] -> [[ \ x -> e2 ]]

If the variables are not the same, the substitution can be applied to the body
of the abstraction, but after renaming the abstraction variable to a new name.

SubsAbs :

[[ let x = e1 in \ y -> e2 ]] ->

[[ \ z -> (let x = e1 in let y = z in e2) ]]

where <not(eq)> (x, y); new => z

The strategy new generates a new unique name. The name is guaranteed not
to coincide with any string currently in use.

Given these reduction rules, we can redefine beta reduction by translating
the application of an abstraction to a substitution of the actual parameter for
the formal parameter by means of a let binding:

BetaES:

[[ (\ x -> e1) e2 ]] -> [[ let x = e2 in e1 ]]

Beta reduction with explicit substitution can now be defined without recourse
to meta-operations by reducing with respect to the BetaES rules and the Subs*
rules. By giving a name (lambda-es) to this selection of rules it can be reused
later on.

eval2 =

reduce(lambda-es)

lambda-es =

BetaES + SubsVar + SubsApp + SubsAbs
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3 Evaluation Strategies

Now that we have made substitution explicit, we turn to the issue of reduc-
tion order. The arbitrary reduction order of the reduce strategy is not very
efficient, nor does it describe the strategy that should be followed by a pro-
gramming language interpreter.

First of all we consider the efficiency issue. The reduce strategy repeat-
edly looks for several redices, starting at the root of the term. A more efficient
strategy is the following innermost strategy that completely normalizes sub-
terms before it considers the term itself:

innermost(s) =

rec x(memo(all(x); try(s; x)))

The strategy first normalize the subterms (all(x)), and only then tries to
apply one of the rules (s). If that succeeds, it recursively reduces the result of
applying the rule. Otherwise the term is in normal form. To avoid renormal-
izing terms, the memo operator memorizes normalization results. See [8] for an
optimization of the innermost strategy that does not depend on memorization.

Reusing the same set of rules we can now define a more efficient evaluation
strategy based on innermost:

eval3 = innermost(lambda-es)

3.1 Eager Evaluation

Exhaustive application of the evaluation rules is not adequate for an inter-
preter of a programming language. For example, reducing the body of a
function is often only meaningful after its parameters are known; it could
contain non-terminating reductions. To improve the termination behavior of
programs, interpreters restrict the evaluation of expressions. Such restrictions
can be expressed by adapting the strategy for applying the evaluation rules.

An eager (or strict) interpreter evaluates the let-bound expression before
substituting it into the body of the let, evaluates arguments to functions, but
does not evaluate bodies of functions. This is basically the same as a complete
reduction, except that the traversal should be limited in order not to apply any
reductions under abstractions. This is expressed by the following evaluation
strategy, which follows the innermost algorithm, but restricts traversal:

eval4 = rec e(

(Var(id) + App(e, e) + Abs(id, id) + Let(id, e, e));

try(lambda-es; e)

)

The traversal is defined using congruence operators that specify traversal spe-
cific for a constructor. For example, the App(e,e) strategy specifies that e

should be applied to the two direct subterms of App terms. On the other hand
Abs(id,id) indicates that the identity transformation should be applied to
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the subterms of Abs terms, i.e., the subterms of Abs should not be evaluated.

A more economic definition of this strategy only specifies the constructors
that should be traversed, not touching any of the other constructors:

eval5 = rec e(

try(App(e, e) + Let(id, e, e));

try(lambda-es; e)

)

3.2 Lazy Evaluation

Lazy evaluation further improves the termination behavior by only reducing
expressions whose value is needed. In the lambda calculus, values are only
ever needed when performing a beta reduction, therefore the arguments of
applications and let bound expressions should not be evaluated; only function
positions of applications should be evaluated to expose possible redices. This
is expressed in the following strategy, which further restricts traversal:

eval6 = rec e(

try(App(e, id) + Let(id, id, e));

try(lambda-es; e)

)

The only difference with the eager evaluation strategy is the restriction of the
traversal, the evaluation rules used remain the same.

This strategy implements lazy evaluation or call by need since an expression
is only evaluated when it is needed. Usually lazy evaluators also memorize
the value of an expression after evaluation such that it is only evaluated once.
This aspect will be discussed later on.

3.3 Parallel Substitution

The formulation of explicit substitution defined above, distributes a single
variable binding at a time over the constructors of an expression. By combin-
ing multiple bindings into a set of bindings, the number of term traversals can
be reduced. For this purpose we introduce the parallel let (letp) construct
with a list of bindings instead of a single binding. The syntax of the construct
is:

signature

constructors

Letp : List(Bind) * Exp -> Exp

// "letp" {Bind ";"}* "in" Exp -> Exp

Bind : String * Exp -> Bind // Id "=" Exp -> Bind

The first argument of a letp is a list binding of expressions to variables.

The new letp construct requires the reformulation of the evaluation rules.
Variable evaluation entails looking up the value in the list of bindings. If no

7



Dolstra and Visser

binding is found (lookupb fails), the original variable is produced.

PSubsVar :

[[ letp ds in x ]] -> [[ e ]]

where (<lookupb>(x, ds) <+ ![[ x ]]) => e

lookupb =

?(x, ds); <fetch(?[[ x = e1 ]]); ![[ e1 ]]> ds

Distribution of substitution over application distributes all bindings in one
step:

PSubsApp :

[[ letp ds in e1 e2 ]] ->

[[ (letp ds in e1) (letp ds in e2) ]]

Distribution of substitution over abstraction requires renaming of the binding
variable to avoid free variable capture.

PSubsAbs :

[[ letp ds in \ x -> e ]] ->

[[ \ y -> (letp ds in letp x = y in e) ]]

where new => y

Beta reduction consists of binding the argument to the formal parameter:

BetaPES :

[[ (\ x -> e1) e2 ]] ->

[[ letp y = e2 in letp x = y in e1 ]]

where new => y

To achieve the benefit of parallel substitution, the bindings of two adjacent
letps can be combined. This requires applying the substitutions of the outer
letp to the let-bound expressions of the inner letp; this corresponds to the
substitution lemma. Rule LetLetOne defines the combination of two letps
with a single binding:

LetLetOne:

[[ letp x = e1 in (letp y = e2 in e3) ]] ->

[[ letp y = (letp x = e1 in e2); x = e1 in e3 ]]

Rule LetLet generalizes this to letps with arbitrary numbers of bindings:

LetLet:

[[ letp ds1 in letp ds2 in e1 ]] ->

[[ letp ds4 in e1 ]]

where <map(\ [[ x = e ]] ->

[[ x = letp ds1 in e ]] \ )> ds2 => ds3

; <conc> (ds3, ds1) => ds4

Finally we give the collection of reduction rules for parallel explicit substitution
a name:
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lambda-pes = BetaPES + PSubsVar + PSubsApp + PSubsAbs + LetLet

Using these rules we can define evaluation strategies along the same lines as
before. The eager evaluation strategy evaluates function arguments and letp

bindings:

eval7 =

rec e(try(App(e, e) + Letp(map(Bind(id,e)), id))

; rec e(try(lambda-pes; rec y(try(App(y, y)); e))))

The inner (y) recursion only traverses application nodes, and not letp bind-
ings to avoid re-evaluating substitutions.

The lazy evaluation evaluation strategy only evaluates expressions in func-
tion positions:

eval8 = rec e(

try(App(e, id)); try(lambda-pes; e)

)

Note that it is no longer necessary to evaluate the body of letp expressions
since the substitution rules will push the letp inside first.

3.4 Sharing Bindings

A problem with the explicit substitution approach above is that substitutions
are distributed over the term by rule (P)SubsApp. In the case of eager eval-
uation this is no problem, since the expressions bound in the substitutions
are evaluated first. In the lazy evaluation strategies (eval6,eval8), however,
the let-bound expressions are not evaluated. This guarantees that expressions
are only evaluated when needed, but the duplication by the substitution dis-
tribution may result in multiple evaluations of the same expression. A good
lazy evaluator will update the binding to a variable as soon as it has been
evaluated once. This requires maintaining the bindings after substitution.

To formalize the notion of updating we use the set of bindings introduced
for parallel substitution as a global heap on which variable bindings are col-
lected. At the start of evaluation an empty heap is introduced by rule LetLift:

LetLift:

[[ e ]] -> [[ letp in e ]]

Variable substitution is the same as before, but should maintain the bindings
and should only reduce when the variable is present to avoid non-termination

USubsVar :

[[ letp ds in x ]] -> [[ letp ds in e ]]

where <lookupb>(x, ds) => e

Evaluation of the function position of an application can no longer be ex-
pressed using a simple congruence operator since it needs to distribute the
substitution environment and restore the environment afterwards:
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LetAppL(eval) :

[[ letp ds1 in e1 e2 ]] -> [[ letp ds2 in e3 e2 ]]

where <eval> [[ letp ds1 in e1 ]] => [[ letp ds2 in e3 ]]

The renaming of the variables bound in the inner Let in the LetLetRen rule
corresponds to allocating space on the heap for these bindings.

LetLetRen:

[[ letp ds1 in letp ds2 in e1 ]] ->

[[ letp ds4 in e2 ]]

where <rename> [[ letp ds2 in e1 ]] => [[ letp ds3 in e2 ]]

; <conc> (ds3, ds1) => ds4

With these rules we can define a lazy evaluation strategy that threads the
evaluation environment, but does not yet update any bindings. Every time a
variable is substituted for, the expression bound to it is reevaluated.

eval9 =

LetLift; rec e(

try(LetAppL(e));

try((USubsVar + Letp(id, BetaPES) + LetLetRen); e)

)

This strategy can be extended to update variable bindings using the additional
rule Update, which takes as parameter an evaluation strategy.

Update(eval) :

[[ letp ds1 in x ]] -> [[ letp x = e; ds2 in e ]]

where <eval> [[ letp ds1 in x ]] => [[ letp ds2 in e ]]

The evaluation strategy e is used to evaluate the variable, resulting in a value
v. The value is produced as result, as well as bound to the variable x in the
environment. Subsequent evaluations of variable x will directly produce the
value.

The Update rule can be used to adapt strategy eval9 into an updating
strategy:

eval10 =

LetLift; rec e(

try(LetAppL(e));

try(Update(USubsVar; e)

+ (Letp(id, BetaPES) + LetLetRen); e)

)

The strategy passed to Update first performs the substitution and then recur-
sively evaluates the resulting expression.

Thus we have specified a full operational account of lazy lambda evalua-
tion. The scheme can be extended with operational notions such as garbage
collection and blackholing to detect infinite loops [6].
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4 Lambda Reduction with Dynamic Rules

The explicit substitution interpreters discussed in the previous sections provide
a full account of operational notions of lambda calculus evaluation. However,
the manipulation of substitutions as part of the term structure requires book-
keeping and plumbing, and distracts from the basic scheme of the evaluation
traversal. This is exemplified by the change from a simple congruence opera-
tor for expression traversal through an App node to the environment threading
rule LetAppL.

This situation can be improved by noting that a substitution can be con-
sidered as a rewrite rule that rewrites a variable to the expression with which
it should be substituted. Ordinary rewrite rules cannot be used, however,
since the set of bindings is extended dynamically during evaluation. In this
section we replace the explicit substitution environment by a set of dynamic
rewrite rules. A dynamic rewrite rule [13] is a rewrite rule that is generated
at run-time and that can inherit (meta-)variable bindings from its generation
context.

4.1 Eager Evaluation

The application of an abstraction gives rise to a substitution. Using dynamic
rules this is expressed by rewriting the application to the body of the abstrac-
tion and generating a rule EvalVar that rewrites the abstraction variable to
the argument of the application.

EvalApp :

[[ (\ x -> e1) e2 ]] -> [[ e3 ]]

where

<rename> [[ \ x -> e1 ]] => [[ \ y -> e3 ]];

rules(EvalVar : [[ y ]] -> [[ e2 ]])

Since the abstraction is opened up by the transformation rule, the bound
variable needs to be renamed in order to prevent clashes with free variables.

The construct rules(EvalVar : [[ y ]] -> [[ e2 ]]) generates a rule
EvalVar, which rewrites an occurrence of variable y to e2, for the terms bound
to y and e2 in the context, in this case the left-hand side of the EvalApp rule.
If prior to this generation, another EvalVar rule would have been generated
for the same binding to y, the new rule would override the old one. To reg-
ulate such overrides the dynamic rule mechanism provides a scope construct,
which can be used to determine how long a dynamic rule should remain valid.
However, in the case of the evaluation strategy we are defining, this is not
needed; by renaming the abstraction before generating the dynamic rule, we
are guaranteed that y is a fresh variable and does not clash with any earlier
bindings.

If let bindings are not used to express substitutions, they can be evaluated
just like applications of abstractions.
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EvalLet:

[[ let x = e1 in e2 ]] -> [[ (\ x -> e2) e1 ]]

An eager evaluation strategy based on these rules is similar to an eager
evaluation strategy with explicit substitution, i.e., the expression is traversed
in a restricted fashion after which the evaluation rules are applied. The dy-
namic rule EvalVar is called just like an ordinary static rule.

eval11 = rec e(

try(App(e, e));

try(EvalVar + (EvalApp + EvalLet); e)

)

Note that in this strategy the argument of an application is evaluated before
it is associated with the abstraction variable, this ensures that only values are
substituted for variables. Therefore, the result of applying EvalVar should
not be evaluated recursively.

If the result of evaluation is not a first-order value, but rather contains
functions, it is possible that those functions contain free variables that have
a value assigned to it by a dynamic rule. Since evaluation does not proceed
within abstractions, these free variables are not replaced with their values.
Therefore the evaluation strategy eval11 needs to be followed by a substitu-
tion phase that takes care of this.

subs11 = substitute(EvalVar)

The substitute strategy uses the dynamic rule EvalVar to replace free vari-
ables and at the same time renames bound variables to avoid variable capture.

4.2 Lazy Evaluation with Updating

As was the case with the explicit substitution style, turning an eager evaluation
strategy into a lazy evaluation strategy is a matter of adapting the traversal
scheme.

eval12 = rec e(

try(App(e, id));

try((share(e) + (EvalApp + EvalLet)); e)

)

After evaluating a variable, its binding is updated such that subsequent evalu-
ations of the variable are not evaluated again. The share strategy substitutes
a variable, i.e., applies the dynamic rule EvalVar, then evaluates the expres-
sion, and finally updates the dynamic rule to yield this value the next time
the variable is evaluated.

share(s) :

[[ x ]] -> [[ e ]]

where <EvalVar; s> [[ x ]] => [[ e ]]

; rules(EvalVar: [[ x ]] -> [[ e ]])
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5 Pattern Matching

In the previous sections we have explored several styles of using rewriting
strategies for the definition of interpreters for pure lambda expressions. Once
a certain style has been chosen it becomes very easy to extend an interpreter
with support for new language features. In this section and the next we con-
sider the extension of lambda expressions with pattern matching and failure.
We build on the dynamic rule style of evaluation, storing bindings in dynam-
ically generated rules.

5.1 Rules

First of all we extend the expression language with algebraic data type con-
structors. A term Con(n) is a data constructor with name n, which can be
applied to a number of expressions using the ordinary application operator
App. Thus, an example term with constructor applications is

App(App(Con("Plus"), Con("Zero")),

App(Con("Succ"), Con("Zero")))

or in concrete syntax

Plus Zero (Succ Zero)

Values built from constructors can be taken apart by means of pattern match-
ing rules. A rule is similar to an abstraction, but instead of just abstracting
over a variable, it abstracts over a constructor application pattern. A rule con-
sists of an expression on the left denoting a term pattern, and an expression
on the right denoting the value of the rule. An example rule is

Plus Zero x -> x

or in abstract syntax

Rule(App(App(Con("Plus"), Con("Zero")), Var("x")), Var("x"))

The language of lambda expressions is extended with the Con and Rule con-
structors:

signature

constructors

Con : String -> Exp // Id -> Exp

Rule : Exp * Exp -> Exp // Exp "->" Exp -> Exp

5.2 Pattern Matching Reductions

When applying a rule to a term, the left-hand side of the rule is matched
against the term. If that succeeds, the instantiation of the right-hand side
is produced. This can be expressed by reduction rules that decompose the
pattern and subject term simultaneously.

If the pattern is a simple variable, it matches with any argument term,
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binding the argument to the variable using a new dynamic rule:

VarMatch :

[[ (x -> e1) e2 ]] -> e1

where rules(EvalVar : [[ x ]] -> [[ e2 ]])

A simple constructor only matches the same constructor:

ConMatch :

[[ (c -> e) c ]] -> [[ e ]]

Complex terms and patterns are composed using the application operator. An
application pattern matches an application value if the subterms match. This
is achieved by decomposing the pattern and value applications into a curried
rule and application:

AppMatch:

[[ (p1 p2 -> e3) (e1 e2) ]] -> [[ (p1 -> p2 -> e3) e1 e2 ]]

Note that this application pattern match does not require a constructor at
the bottom of the application spine; a pattern can be of the form x y, i.e., a
variable can be used at the function position, and thus generically decompose
a constructor application. This feature is introduced in RhoStratego [6] to
support generic term traversal.

Note that this definition has a consequence for non-linear patterns, i.e.,
in which a variable occurs more than once. For example, the pattern in the
left-hand side of the rule (Plus x x) -> e3 contains two occurrences of the
variable x. Matching this pattern against Plus e1 e2, eventually rewrites to

(x -> (x -> e3)) e1 e2

In other words, the inner x will shadow the outer one. Although this is different
from the usual interpretation in which the arguments matched against these
variables are required to be equal, this is a reasonable solution; in this setting
it is not clear otherwise what the scope rules would be.

Finally, a let binding can be considered syntactic sugar for a rule applica-
tion,

LetRule :

[[ let x = e1 in e2 ]] -> [[ (x -> e2) e1 ]]

and abstraction is syntactic sugar for a simple rule

AbsRule :

[[ \ x -> e ]] -> [[ x -> e ]]

5.3 Evaluation Strategy

Based on these rules we can define a lazy evaluation strategy for the lambda
calculus with lets and patterns, as follows:

rules13 = VarMatch + ConMatch + AppMatch + LetRule + AbsRule
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eval13 = rec e(

try (App(e, id); try(App(Rule(not(Var(id)),id),e))

+ Rule(Var(id),id); rename);

try(rules13; e + share(e))

)

This strategy has a couple of interesting features. In lazy evaluation the
argument of a rule application should not be evaluated, unless the argument
is matched against a non-variable pattern. This is achieved by evaluating
the argument only if the function reduces to a non-variable rule. Evaluation
of the argument is done by a recursive call to the evaluation strategy. The
main strategy reduces expressions to head normal form since arguments of
applications are not evaluated. Furthermore, renaming of the bound variables
in a rule is done in the strategy instead of in the rules.

6 Failure and Choice

The pattern matching extension presented in the previous section is only of
limited value, since the definition of pattern matching did not include pattern
match failure. A useful language with pattern matching must catch failure
and provide a mechanism for choosing an alternative execution. Functional
languages provide the case construct, which subsequently tries a number of
rules until one succeeds. In RhoStratego the case construct has been taken
apart into individual pattern matching rules and a choice operator. In this
way, rules are first-class citizens that can be combined at will with other rules.
Also pattern match failure itself becomes first-class. The conventional case
construct can easily be defined in terms of rules and choice. In this section we
further extend our language with failure and choice.

6.1 Pattern Match Failure

First we extend the language with an explicit notion of failure. This is the
special symbol that pattern match failure reduces to.

signature

constructors

Fail : Exp // "fail" -> Exp

Rules ConMatch and AppMatch in the previous section will fail to apply when
the application arguments are not the corresponding constructor or an ap-
plication, respectively. This is expressed by the following negative reduction
rules that reduce these cases to fail.

ConMatchN:

[[ (c -> e1) e2 ]] -> [[ fail ]]

where <not(?[[ c ]])> [[ e2 ]]
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AppMatchN:

[[ (p1 p2 -> e1) e2 ]] -> [[ fail ]]

where <not(?[[ e3 e4 ]])> e2

Note that these negative rules only make sense in case the argument has been
evaluated.

6.2 Failure Propagation and Choice

When pattern match failure is made explicit it becomes possible to deal with
it. We add a left-biased choice operator e1 <+ e2 (LChoice), which first
tries its first argument and if that results in failure, backtracks to its second
argument. This operator makes it possible to choose between rules, but also
between more complex computations that can result in failure.

signature

constructors

LChoice : Exp * Exp -> Exp // Exp "<+" Exp -> Exp

The choice operator is defined by the following reduction rules. If the left-
hand side has failed, the choice reduces to the right-hand side. Otherwise,
if the left-hand side is not fail (and not a (choice of) rule(s)), it reduces to
the left-hand side.

RightChoice :

[[ fail <+ e ]] -> [[ e ]]

LeftChoice :

[[ e1 <+ e2 ]] -> [[ e1 ]]

where

<not(?[[ fail ]]

+ ?[[ e3 -> e4 ]]

+ ?[[ e5 <+ e6]])> e1

Again, these rules are only meaningful if the left-hand side of the choice is
reduced to a value.

A choice with a rule as its left-hand side is not considered to succeed, yet.
The choice is considered to be determined by the result of application of the
rule. This is expressed by the following distribution rule, that distributes an
application over a choice:

Distrib:

[[ (e1 <+ e2) e3 ]] -> [[ (e1 x) <+ (e2 x) ]]

where new => x

; rules(EvalVar : [[ x ]] -> [[ e3 ]])

In order to share the computation associated with the argument expression,
it is bound to a variable.

Failure propagates through applications:
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PropFunc:

[[ fail e ]] -> [[ fail ]]

PropArg:

[[ e fail ]] -> [[ fail ]]

The PropArg rule is only relevant for eager strategies. In lazy strategies the
value of the argument of an application is ignored, unless it is matched against.

A lazy evaluation strategy that includes pattern match failure, failure prop-
agation and choice is a straightforward extension of eval13, adding the traver-
sal of LChoice and the additional reduction rules:

eval14 = rec e(

try(App(e, id); try(App(Rule(not(Var(id)),id),e))

+ LChoice(e, id)

+ Rule(Var(id),id); rename);

try(rules14; e + share(e))

)

rules14 =

VarMatch + ConMatch + ConMatchN + AppMatch + AppMatchN

+ LeftChoice + RightChoice + PropFunc + Distrib

+ LetRule + AbsRule

An eager strategy can be derived from the lazy one by always evaluating
function arguments and adding argument failure propagation.

This strategy provides an interpreter for a language with first-class rules
and generic traversal. This is the basis of the RhoStratego language [6]. RhoS-
tratego adds two extensions. Matching against failure is useful in a lazy eval-
uation setting to force evaluation. A cut operator that cuts off backtracking is
useful to commit to a choice and prevent further applications of the Distrib

rules.

6.3 Case is Sugar for Choice

The traditional case construct of functional programming languages such as
ML and Haskell can be implemented by means of rules and choice. It could
be added to the language defined above as a convenience for the programmer
by introducing the case construct, which uses a list of alternatives:

signature

constructors

Case : Exp * List(Alt) -> Exp

// "case" Exp "of" "{" {Alt ";"}* "}" -> Exp

Alt : Exp * Exp -> Alt // Exp "->" Exp

This syntactic sugar can be desugared into an application of the choice of the
alternatives, rendered as rules, to the case scrutinee:
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CaseDesugar :

[[ case e1 of { as } ]] -> [[ e2 e1 ]]

where

<foldr(![[ fail ]]

,\ (e1, e2) -> [[ e1 <+ e2 ]] \

,\ [[ p -> e ]A] -> [[ p -> e ]] \ )> as => e2

Note that foldr(s1,s2,s3) is a combination of fold and map, i.e., reduces a
list [t1,...,tn] to <s2>(<s3>t1, <s2>(...,<s2>(<s3>tn, <s1>))). The
anonymous rule \ [[ p -> e ]A] -> [[ p -> e ]] \ transforms a case al-
ternative into a rule. The A annotation in the left-hand side is used to disam-
biguate the term.

7 Concluding Remarks

The techniques in this paper have been applied in several realistic interpreters,
including interpreters for Tiger, RhoStratego, and StrategoScript, an inter-
preter for Stratego specifications.

A specification of an interpreter for the Tiger language [1] is part of the
Tiger-in-Stratego project 1 , which explores the application of program trans-
formation techniques in compilation. The language includes imperative fea-
tures such as loops, assignments, updatable records and arrays. Using dynamic
rules these features can be expressed elegantly.

RhoStratego [6] is a functional programming language with built-in fea-
tures for strategic rewriting. The language with pattern matching rules, choice
and failure of Sections 5 and 6 forms the core of this language. A com-
plete specification of the interpreter can be found in [6], its source is available
online 2 .

Furthermore, we have experimented with the specification of optimizers for
imperative programs (e.g., constant and copy propagation, dead code elimi-
nation) following the same approach; a set of optimization rules guided by a
rewriting strategy using dynamic rules to transfer context-sensitive (data-flow)
information. Many of the ‘constant folding’ rules from the interpreter can be
reused in such optimizers. Although it is clear that an optimizer achieves
a partial evaluation of a program, the relationship between interpreters and
optimizers needs further investigation.
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