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Abstract
Qualitative probabilistic networks are qualitative abstractions of

probabilistic networks, summarising probabilistic influences by qual-
itative signs. As qualitative networks model influences at the level
of variables, knowledge about probabilistic influences that hold only
for specific values cannot be expressed. The results computed from a
qualitative network, as a consequence, can be weaker than strictly nec-
essary and may in fact be rather uninformative. We extend the basic
formalism of qualitative probabilistic networks by providing for the in-
clusion of context-specific information about influences and show that
exploiting this information upon reasoning has the ability to forestall
unnecessarily weak results.

1 Introduction

Probabilistic networks have become widely accepted as practical representa-
tions of knowledge for reasoning under uncertainty. Applications are found
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in such fields as (medical) diagnosis and prognosis, planning, monitoring,
vision, information retrieval, natural language processing, and e-commerce.
Probabilistic networks combine a graphical representation of the statistical
variables in a problem domain and the relations between them, with (con-
ditional) probabilities that represent the uncertainties involved [1]. More
specifically, the graphical representation of a network takes the form of a di-
rected graph where each node represents a variable and each arc expresses a
possible probabilistic dependence between the connected variables. To cap-
ture the strengths of the represented dependences, each variable has associ-
ated a set of conditional probability distributions given the possible combi-
nations of values for the variable’s predecessors in the digraph. For reasoning
with these probabilities in a mathematically correct way, powerful algorithms
are available.

Qualitative probabilistic networks are qualitative abstractions of proba-
bilistic networks [2], introduced for probabilistic reasoning in a qualitative
way. Just like a probabilistic network, a qualitative network encodes statis-
tical variables and the probabilistic dependences between them in a directed
acyclic graph. Each node A in this digraph once again represents a variable.
An arc A → B again expresses a probabilistic influence of the variable A
on the probability distribution of the variable B. Rather than quantified by
conditional probabilities as in a probabilistic network, however, the influence
is summarised by a qualitative sign. This sign indicates the direction of shift
in B’s (cumulative) probability distribution that would be occasioned by an
observation for A. For example, a positive influence of A on B expresses that
observing higher values for A renders higher values for B more likely. The
signs of a qualitative network have a well-defined basis in the mathematical
concept of stochastic dominance. Building upon this concept, it is possible to
reason with qualitative signs in a mathematically correct way. To this end,
an efficient algorithm, based upon the idea of propagating and combining
signs, is available [3].

Qualitative probabilistic networks can play an important role in the con-
struction of probabilistic networks for real-life application domains. While
constructing the digraph of a probabilistic network requires considerable ef-
fort, it is generally considered feasible. The assessment of all probabilities
required is a much harder task, especially if it has to be performed with the
help of human experts. The quantification task is, in fact, often referred to as
a major bottleneck in building a probabilistic network [4, 5]. Assessment of
the signs for a qualitative probabilistic network tends to require considerably
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less effort from human experts, however [3]. Now, by eliciting signs from do-
main experts for the digraph of a probabilistic network under construction,
a qualitative probabilistic network is obtained. This qualitative network can
be used to study and validate the reasoning behaviour of the network prior
to probability assessment. Upon quantifying the network, the acquired signs
can then be used as constraints on the probabilities to be assessed [6, 7].

Qualitative networks model the uncertainties involved in an application
domain at the high abstraction level of variables, as opposed to probabilistic
networks where uncertainties are represented at the level of the variables’
values. Due to this coarse level of representation detail, reasoning with a
qualitative probabilistic network often leads to results that are weaker than
strictly necessary and may in fact be rather uninformative. To be able to fully
exploit a qualitative probabilistic network as outlined above, we feel that it
should capture and exploit as much qualitative information from the appli-
cation domain as possible. First introduced by M.P. Wellman [2] and later
extended by M. Henrion and M.J. Druzdzel [3, 8, 9], various researchers have
refined qualitative probabilistic networks to enhance their expressiveness.
S. Parsons [10, 11], for example, has introduced the concept of qualitative
derivative where the influence of a variable A on a variable B is summarised
by a set of signs, one for each value of B; he has also studied the use of
other approaches to uncertain reasoning, such as order-of-magnitude reason-
ing, within qualitative probabilistic networks [12]. S. Renooij and L.C. van
der Gaag [13] have enhanced qualitative probabilistic networks by adding a
qualitative notion of strength. Renooij et al. [14] have further focused on
identifying and resolving troublesome parts of a network. In the current
paper, we propose adding a notion of context as an extension to the basic
formalism of qualitative networks in order to enhance its expressive power.

The notion of context has been studied before in quantitative probabilis-
tic networks. The digraph of a probabilistic network in essence captures
independences between variables, that is, it models independences that hold
for all values of the variables involved. The independences that hold only for
specific values are not explicitly represented in the digraph but are instead
captured by the conditional probabilities associated with the variables. As
knowledge of the latter independences allows further decomposition of con-
ditional probabilities and can be exploited to speed up inference, a notion
of context-specific independence was introduced [15, 16]. Context-specific
independence occurs often enough that some well-known tools for the con-
struction of probabilistic networks have incorporated special mechanisms to
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allow the user to more easily specify the conditional probability distributions
for the variables involved [15].

A qualitative probabilistic network also captures independences between
variables by means of its digraph. Since its qualitative influences are speci-
fied at the high abstraction level of variables as well, independences that hold
only for specific values of the variables involved cannot be represented. In
fact, qualitative influences hide such context-specific independences: if the
influence of a variable A on a variable B is positive in one context, that is, for
one specific combination of values for some other influential variables, and
zero in all other contexts, which indicates independence, then the influence
is captured by a positive sign. We note that a sign may hide not just in-
dependences, but also context-specific positive and negative influences: if a
variable A has a positive influence on a variable B in some context and a neg-
ative influence in another context, then the influence of A on B is modelled
as being ambiguous.

As knowledge of context-specific independences basically is qualitative
by nature, we feel that it can and should be captured explicitly in a qual-
itative probabilistic network. For this purpose, we introduce the notion of
context-specific sign. A context-specific sign is basically a function that de-
fines different signs for different contexts. In a qualitative network, each
influence is now associated with such a context-specific sign. Upon reason-
ing with the thus extended network, for each influence the appropriate sign
is determined as the sign that is defined for the context corresponding to
the observed variables’ values. We show that exploiting this context-specific
information upon reasoning can prevent unnecessarily weak results.

The paper is organised as follows. In Section 2, we provide some prelim-
inaries concerning probabilistic networks and qualitative probabilistic net-
works. We present, in Section 3, two examples of the type of information
that can be hidden in qualitative influences. We introduce our extended for-
malism and associated algorithm for exploiting context-specific information
upon reasoning in Section 4. In Section 5, we discuss the context-specific
information that is hidden in the qualitative abstractions of two real-life
probabilistic networks. The paper ends with our concluding observations in
Section 6.
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2 Preliminaries

Before introducing qualitative probabilistic networks, we briefly review their
quantitative counterparts.

2.1 Probabilistic networks

A probabilistic network B = (G, Pr) is a concise representation of a joint
probability distribution Pr on a set of statistical variables. It encodes the
variables concerned, along with their probabilistic interrelationships, in an
acyclic directed graph G = (V (G), A(G)). Each node A ∈ V (G) represents
one of the statistical variables. Variables will be indicated by capital letters
from the beginning of the alphabet; the values of these variables will be de-
noted by small letters, possibly with a subscript. As there is a one-to-one
correspondence between nodes and variables, we will use the terms ‘node’
and ‘variable’ interchangeably. The probabilistic relationships between the
represented variables are captured by the set of arcs A(G) of the digraph.
Informally speaking, we take an arc A→ B in G to represent an influential
relationship between the variables A and B, designating B as the effect of
cause A. The absence of an arc between two variables means that they do
not influence each other directly. More formally, the set of arcs captures
probabilistic independence among the represented variables by means of the
d-separation criterion [1]. Two variables are said to be d-separated if all
chains between them are blocked by the available observations. We say that
a chain between two variables is blocked if it includes either an observed
variable with at least one outgoing arc or an unobserved variable with two
incoming arcs and no observed descendants; a chain that is not blocked is
called active. If two variables are d-separated then they are considered con-
ditionally independent given the available evidence. Associated with each
variable A ∈ V (G) in the digraph is a set of conditional probability distribu-
tions Pr(A | π(A)) that describe the probabilistic relationship of this variable
with its (immediate) predecessors π(A) in the digraph.

Example 2.1 We consider the small probabilistic network shown in Fig-
ure 1. The network represents a fragment of fictitious and incomplete med-
ical knowledge, pertaining to the effects of administering antibiotics on a
patient. Variable A models whether or not a patient has been taking antibi-
otics; A = true, or ‘ a’ for short, represents that a patient has been taking
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T F

D

APr(a) = 0.70

Pr(t | a) = 0.01
Pr(t | ā) = 0.35

Pr(f | a) = 0.50
Pr(f | ā) = 0.45

Pr(d | tf) = 0.95
Pr(d | t̄f) = 0.15

Pr(d | tf̄ ) = 0.80
Pr(d | t̄f̄ ) = 0.01

Figure 1: The Antibiotics network.

antibiotics, and A = false, or ‘ ā’, represents that a patient has not been
taking antibiotics. Variable T models whether or not the patient is suffering
from typhoid fever and variable D represents presence or absence of diarrhoea
in the patient. Variable F , to conclude, describes whether or not the compo-
sition of the bacterial flora in the patient’s gastrointestinal tract has changed.
Typhoid fever and a change in the patient’s bacterial flora are modelled as
the possible causes of diarrhoea. Antibiotics can cure typhoid fever by killing
the bacteria that cause the infection. However, antibiotics can also change
the composition of the patient’s bacterial flora, thereby increasing the risk of
diarrhoea.

The extent to which the variables influence each other is captured by the
network’s (conditional) probability distributions. The conditional probability
distributions of the variable D, for example, reveal that a patient with typhoid
fever almost certainly will be suffering from diarrhoea, regardless of whether
or not the composition of his bacterial flora has changed. �

A probabilistic network B = (G, Pr) defines a unique joint probability
distribution Pr on V (G) with

Pr(V (G)) =
∏

A∈V (G)

Pr(A | π(A))

that respects the independences portrayed in the digraph G. Since a prob-
abilistic network captures a unique distribution, it provides for computing
any prior or posterior probability of interest over its variables. Although
computing such probabilities is known to be NP-hard [17], various powerful
algorithms are available that have a polynomial runtime complexity for most
realistic networks [1, 18].
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2.2 Qualitative probabilistic networks

Qualitative probabilistic networks bear a strong resemblance to their quan-
titative counterparts. A qualitative probabilistic network Q = (G, ∆) also
comprises an acyclic digraph G = (V (G), A(G)) modelling statistical vari-
ables and the probabilistic relationships between them. The set of arcs A(G)
again models probabilistic independence. Instead of conditional probability
distributions, however, a qualitative probabilistic network associates with its
digraph a set ∆ of qualitative influences and qualitative synergies.

A qualitative influence between two variables expresses how the values
of one variable influence the probability distribution over the values of the
other variable. The direction of the shift in the distribution occasioned is
indicated by the sign of the influence. A positive qualitative influence of
a variable A on a variable B, for example, expresses that observing higher
values for A makes higher values for B more likely, regardless of any other
influences on B. Building upon a total ordering ‘>’ on the values per variable,
we have that higher values for a variable B are more likely given higher
values for a variable A, if the cumulative conditional probability distribution
FB|ai

of variable B given ai lies, graphically speaking, below the cumulative
conditional probability distribution FB|aj

given aj , for all values ai, aj of A
with ai > aj. When FB|ai

lies below FB|aj
for all values of B, we say that

FB|ai
dominates FB|aj

by first-order stochastic dominance (FSD) [2]:

FB|ai
FSD FB|aj

⇐⇒ FB|ai
(bi) ≤ FB|aj

(bi) for all values bi of B

The concept of first-order stochastic dominance underlies the formal defini-
tion of qualitative influence.

Definition 2.2 Let G = (V (G), A(G)) be an acyclic digraph and let Pr be a
joint probability distribution on V (G) that respects the independences in G.
Let A, B be variables in G with A→ B ∈ A(G), and let X = π(B) \ {A}
be the set of all predecessors of B other than A. Then, variable A positively
influences variable B along arc A→ B, written S+(A, B), iff for all values
bi of B and aj , ak of A, aj > ak, we have that

Pr(B ≥ bi | ajx) ≥ Pr(B ≥ bi | akx)

for any combination of values x for the set X.
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A negative qualitative influence, denoted by S−, and a zero qualitative
influence, denoted by S0, are defined analogously, replacing ≥ in the above
formula by ≤ and =, respectively. If the influence of variable A on variable
B is not monotonic or if it is unknown, we say that it is ambiguous, denoted
S?(A, B). The ‘+’, ‘−’, ‘0’ and ‘?’ in these definitions are termed the signs
of the qualitative influences.

In the remainder of this paper, we assume, for ease of exposition, that all
variables are binary valued, with a denoting A = true , ā denoting A = false,
and a > ā for any binary variable A. For illustrative purposes in examples,
binary variables often have different values than true and false; value state-
ments for these variables however, are again written as a or ā. We note that
for binary variables the definition of qualitative influence can be slightly sim-
plified. For a positive qualitative influence of A on B, for example, we now
have that

Pr(b | ax)− Pr(b | āx) ≥ 0

for any combination of values x for the set X = π(B) \ {A}.
A qualitative influence is associated with each arc in the digraph of a

qualitative network. Variables, however, not only influence each other di-
rectly along arcs, they can also exert indirect influences on one another.
The definition of qualitative influence trivially extends to capture such in-
direct influences along active chains. The signs of these indirect influences
are determined by the properties that the set of influences of a qualitative
probabilistic network exhibits [2]. The property of symmetry , for example,
guarantees that, if the network includes the influence Sδ(A, B), then it also
includes the reverse influence Sδ(B, A) with the same sign δ. The property of
transitivity asserts that qualitative influences along an active chain without
any variables with two incoming arcs on the chain, combine into an indirect
influence whose sign equals the product of the signs of the separate influ-
ences along the chain; the product of the signs is defined by the ⊗-operator
from Table 1. The property of composition asserts that multiple qualitative
influences between two variables along parallel active chains combine into a
composite influence with a sign as specified by the ⊕-operator.

From Table 1, we observe that combining non-ambiguous qualitative in-
fluences with the ⊕-operator can yield influences with an ambiguous sign.
Such an ambiguity, in fact, results whenever two influences with opposite
signs are combined. The two influences in essence are conflicting and repre-
sent a trade-off in the application domain. The ambiguity that results from
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⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Table 1: The ⊗- and ⊕-operators for combining signs.

combining the two conflicting influences indicates that the trade-off cannot
be resolved from the information that is represented in the network. In con-
trast with the ⊕-operator, the ⊗-operator cannot introduce ambiguities upon
combining signs of influences along chains. Note that, once an ambiguous
result has arisen, both operators serve to propagate the ambiguity.

In addition to influences, a qualitative probabilistic network includes syn-
ergies that model interactions within small sets of variables. We distinguish
between additive synergies and product synergies. As we will not use the
additive synergy in the remainder of this paper, we just say that it captures
the joint influence of two variables on a common successor [2]. A product
synergy expresses how the value of one variable influences the probabilities
of the values of another variable in view of an observed value for a third
variable [8].

Definition 2.3 Let G = (V (G), A(G)) be an acyclic digraph and let Pr be a
joint probability distribution on V (G) that respects the independences in G.
Let A, B, C be variables in G with A→ C, B → C ∈ A(G). Then, variable
A exhibits a negative product synergy on variable B (and vice versa) given
the value c for their common successor C, denoted X−({A, B}, c), iff

Pr(c | abx)·Pr(c | āb̄x) ≤ Pr(c | ab̄x)·Pr(c | ābx)

for any combination of values x for the set X = π(C) \ {A, B}.
Positive, zero, and ambiguous product synergies are defined analogously.

Product synergies are of importance for reasoning with a qualitative net-
work since they induce a qualitative influence between the predecessors A
and B of a variable C upon its observation. Such an induced influence is
coined an intercausal influence. The sign of an intercausal influence is de-
termined by the product synergy that served to induce it and may differ for
the observations c and c̄ for the variable C.
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Example 2.4 The qualitative probabilistic network shown in Figure 2 is the
qualitative counterpart of the Antibiotics network discussed in Example 2.1.
From the conditional probability distributions specified for the variable D, we
observe that

Pr(d | tf )− Pr(d | t̄f ) = 0.95− 0.15 ≥ 0 and

Pr(d | tf̄ )− Pr(d | t̄f̄ ) = 0.80− 0.01 ≥ 0

and therefore conclude that S+(T, D). We further find that S+(A, F ), S−(A, T ),
and S+(F, D). The signs of these influences are shown over the correspond-
ing arcs in the qualitative network. In addition, we observe that

Pr(d | tf ) · Pr(d | t̄f̄ )− Pr(d | tf̄ ) · Pr(d | t̄f ) = 0.95 · 0.01− 0.80 · 0.15 ≤ 0

and

Pr(d̄ | tf ) · Pr(d̄ | t̄f̄ )− Pr(d̄ | tf̄ ) · Pr(d̄ | t̄f ) = 0.05 · 0.99− 0.20 · 0.85 ≤ 0

We conclude that either value for the variable D induces a negative inter-
causal influence between the variables T and F , that is, X−({T, F}, d ) and
X−({T, F}, d̄ ). The intercausal influences that can be induced are repre-
sented in the qualitative network by a dotted line, over which the associated
signs are shown. �

For reasoning with a qualitative probabilistic network, an elegant algo-
rithm is available from M.J. Druzdzel and M. Henrion [3]; this algorithm,
termed the sign-propagation algorithm, is summarised in pseudocode in Fig-
ure 3. The basic idea of the algorithm is to trace the effect of observing a
value for a variable upon the probabilities of the values of all other variables in

T F

D

A− +

+ +

−,−

Figure 2: The qualitative Antibiotics network.
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procedure PropagateSign(trail, from, to, messagesign):

sign[to] ← sign[to] ⊕ messagesign;
trail ← trail ∪{to};
for each active neighbour Vi of to
do linksign ← sign of (induced) influence between to and Vi;

messagesign ← sign[to] ⊗ linksign;
if Vi /∈ trail and sign[Vi] 6= sign[Vi] ⊕ messagesign
then PropagateSign(trail, to, Vi, messagesign).

Figure 3: The sign-propagation procedure for inference in a qualitative net-
work.

the network by message passing between neighbouring variables. In essence,
the algorithm computes the sign of influence along all active chains between
the newly observed variable and all other variables in the network, using the
properties of symmetry, transitivity and composition. For each variable, it
summarises the overall influence in a node sign that indicates the direction
of the shift in the probability distribution of that variable occasioned by the
new observation.

The sign-propagation algorithm takes for its input a qualitative proba-
bilistic network, a set of previously observed variables, a variable for which a
new observation has become available, and the sign of this observation, that
is, either a ‘+’ for the value true or a ‘−’ for the value false. Prior to the
actual propagation of the new observation, for all variables Vi the node sign
sign[Vi] is initialised at ‘0’. For the newly observed variable the appropriate
sign is now entered into the network. The observed variable updates its node
sign to the sign-sum of its original sign and the entered sign. It thereupon
notifies all its (induced) neighbours that its sign has changed, by passing to
each of them a message containing a sign. This sign is the sign-product of
the variable’s current node sign and the sign linksign of the influence asso-
ciated with the arc or intercausal link it traverses. Each message further
records its origin in the variable trail ; this information is used to prevent the
passing of messages to variables that were already visited on the same simple
chain. Upon receiving a message, a variable to updates its node sign to the
sign-sum of its current node sign sign[to] and the sign messagesign from the
message it receives. The variable then sends a copy of the message to all its
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neighbours that need to reconsider their node sign. In doing so, the variable
changes the sign in each copy to the appropriate sign and adds itself to trail
as the origin of the copy. As this process is repeated throughout the network,
the chains along which messages have been passed are thus recorded. Note
that, as messages travel simple chains only, it is sufficient to just record the
variables on these chains.

During sign-propagation, the variables of a qualitative network are only
visited if they need a change of node sign. A node sign can change at most
twice, once from ‘0’ to ‘+’, ‘−’ or ‘?’ and then only from ‘+’ or ‘−’ to ‘?’.
From this observation we have that no variable is ever activated more than
twice upon inference. The algorithm is therefore guaranteed to halt. The
time complexity of the algorithm is linear in the number of arcs of the di-
graph of the network.

Example 2.5 We illustrate the sign-propagation algorithm by once again
considering the qualitative Antibiotics network from Figure 2. Suppose that a
specific patient is taking antibiotics. This observation is entered into the net-
work by updating the node sign of variable A to a ‘ +’. Variable A thereupon
propagates a message with sign +⊗− = − towards variable T . T updates its
node sign to ‘−’ and sends a message with sign −⊗+ = − to variable D.
D updates its sign to ‘−’. It does not pass on a sign to variable F , since the
chain from A to F through D is blocked. Variable A also sends a message,
with sign +⊗+ = +, to F . Variable F updates its node sign accordingly
and passes a message with sign +⊗+ = + to variable D. D thus receives
the additional sign ‘ +’. This sign is combined with the previously updated
node sign ‘−’, which results in the ambiguous sign −⊕+ = ? for D. Note
that the ambiguous sign arises from the trade-off that is represented by the
two chains from A to D. Also note that if the network would have contained
additional variables beyond D, these variables would have all ended up with
the sign ‘ ?’ after inference. �

3 Context-independent signs

Since qualitative probabilistic networks model knowledge at the abstraction
level of variables, context-specific information, that is, information that holds
only for specific values of the variables involved, cannot be represented ex-
plicitly. This information in essence is hidden in the qualitative influences
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and synergies of the network. If, for example, the influence of a variable A
on a variable B is strictly positive for one combination of values for the set
X of B’s predecessors other than A, and zero for all other combinations of
values for X, then the influence of A on B is positive by definition. The zero
influences, indicating context-specific independence, are hidden due to the
fact that the inequality in the definition of qualitative influence is not strict.
We present an example to illustrate such hidden zeroes.

Example 3.1 We consider the qualitative probabilistic network from Fig-
ure 4, which represents a highly simplified fragment of knowledge in oncology.
It pertains to the effects and complications to be expected from treatment of
oesophageal cancer. The variable L models the life expectancy of a patient
after therapy; the value l indicates that the patient will survive for at least
one year and the value l̄ expresses that the patient will die within this year.
Variable T models the therapy instilled; we consider surgery, modelled by t,
and no treatment, modelled by t̄, as the only therapeutic alternatives. The ef-
fect to be attained from surgery is a complete removal of the tumour, modelled
by the variable R. After surgery a life-threatening pulmonary complication,
modelled by P , may result; the occurrence of this complication is heavily in-
fluenced by whether or not the patient is a smoker, which is modelled by the
variable S.

We consider the conditional probabilities from a quantified network rep-
resenting the same knowledge. We would like to note that these probabilities
serve illustrative purposes only: although not entirely unrealistic, they have
not been specified by domain experts. The probability of attaining a complete
removal of an oesophageal tumour upon surgery is Pr(r | t) = 0.45; as without
surgery there can be no removal of the tumour, we have Pr(r | t̄ ) = 0. From
Pr(r | t) ≥ Pr(r | t̄ ), we have that the variable T indeed exerts a positive

T

R P

L

S
++

+ −

+

Figure 4: The qualitative Surgery network.

13



qualitative influence on R. The probabilities of a pulmonary complication
occurring and of a patient’s life expectancy after therapy are, respectively,

Pr( p | TS ) s s̄ Pr( l | RP ) p p̄
t 0.75 0.00 r 0.15 0.95
t̄ 0.00 0.00 r̄ 0.03 0.50

From the rightmost table we observe that Pr(l | r P ) ≥ Pr(l | r̄ P ) for all
values of P and that Pr(l | p R ) ≤ Pr(l | p̄ R ) for all values of R. We thus
verify that the variable R exerts a positive influence on L, indicating that
successful removal of the tumour serves to increase life expectancy, and that
the qualitative influence of P on L is negative, indicating that pulmonary
complications from surgery are indeed life threatening. From the leftmost
table, we observe that Pr(p | s T ) ≥ Pr(p | s̄ T ) for all values of T and
Pr(p | t S ) ≥ Pr(p | t̄ S ) for all values of S. Both T and S thus exert
a positive qualitative influence on the variable P , indicating that performing
surgery and smoking are risk factors for pulmonary complications. The zeroes
in the table reveal that pulmonary complications are likely to occur only in
the presence of both risk factors. The fact that the influence of T on P is,
for example, actually zero in the context of the value s̄ for the variable S,
however, is not apparent from the sign of the influence. Note that this zero
influence does not arise from the probabilities being zero, but rather from
their having the same value. �

The previous example shows that the level of representation detail of a
qualitative network can result in information hiding. As hidden information
cannot be exploited upon reasoning, unnecessarily weak answers may result
from inference with the network. Referring to the previous example, for in-
stance, we can derive that performing surgery on a non-smoker has a positive
influence on life expectancy: as Pr(l | ts̄ ) = 0.70 and Pr(l | t̄s̄ ) = 0.501, we

1The values Pr(l | t̄s̄ ) = 0.50 and Pr(l | ts̄ ) = 0.70 are computed by conditioning on
the values of R and P and using the fact that T and S are independent of L given R and
P . For example,

Pr(l | ts̄) = Pr(l | rp) · Pr(r | t ) · Pr(p | ts̄) + Pr(l | r̄p) · Pr(r̄ | t ) · Pr(p | ts̄) +
Pr(l | rp̄) · Pr(r | t ) · Pr(p̄ | ts̄) + Pr(l | r̄p̄) · Pr(r̄ | t ) · Pr(p̄ | ts̄)

= 0.15 · 0.45 · 0 + 0.03 · 0.55 · 0 + 0.95 · 0.45 · 1 + 0.50 · 0.55 · 1
= 0.7025
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have that Pr(l | ts̄ ) ≥ Pr(l | t̄s̄ ). In the qualitative network, however, upon
entering the observation t for the variable T , in the presence of s̄, inference
will result in a ‘?’ for L due to the conflicting reasoning chains from T to
L. The ‘?’ for the variable L indicates that the resulting influence is un-
known. As, from the context s̄, we know that the influence of T on P is zero,
and hence the influence of T on L via P is zero, the result from qualitative
inference is weaker than strictly necessary.

We recall from the definition of qualitative influence that the sign of the
influence of a variable A on a variable B must hold for all combinations of
values for the set X of predecessors of B other than A. A ‘?’ for the influence
may therefore hide the information that A has a positive influence on B
for some combination of values for X and a negative influence for another
combination. If so, the ambiguous influence of A on B is non-monotonic
in nature and can in fact be looked upon as specifying different signs for
different contexts. We present an example to illustrate this observation.

Example 3.2 The qualitative network from Figure 5 represents another frag-
ment of knowledge in oncology, this time pertaining to the metastasis of oe-
sophageal cancer. The variable L represents the location of the primary tu-
mour in a patient’s oesophagus; the value l models that the tumour resides
in the lower two-third of the oesophagus and the value l̄ expresses that the
tumour is in the oesophagus’ upper one-third. An oesophageal tumour upon
growth typically gives rise to lymphatic metastases. The extent of such metas-
tases is captured by the variable M . The value m̄ of M indicates that just
the local and regional lymph nodes are affected; m denotes that distant lymph
nodes are affected. Which lymph nodes are local or regional and which are
distant depends on the location of the primary tumour in the oesophagus. The
lymph nodes in the neck, or cervix, for example, are regional for a tumour
in the upper one-third of the oesophagus and distant otherwise. Variable C
represents the presence or absence of metastases in the cervical lymph nodes.

L M

C
− ?

Figure 5: The qualitative Cervical metastases network.
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We consider the conditional probabilities from a quantified network rep-
resenting the same knowledge; these probabilities again serve illustrative pur-
poses only. The probabilities of the presence of cervical metastases in a pa-
tient are

Pr( c |ML ) l l̄
m 0.35 0.95
m̄ 0.00 1.00

From these probabilities we observe that the variable L indeed has a nega-
tive influence on C, indicating that tumours in the lower two-third of the
oesophagus are less likely to give rise to lymphatic metastases in the neck
than tumours that are located in the upper one-third of the oesophagus. The
influence of the variable M on C, however, is non-monotonic:

Pr(c | ml) > Pr(c | m̄l), yet Pr(c | ml̄ ) < Pr(c | m̄l̄ )

While for tumours in the lower two-third of the oesophagus the lymph nodes in
the neck are less likely to be affected when only local and regional metastases
are present, they are more likely to be affected for tumours that are located in
the upper one-third of the oesophagus. We conclude that the non-monotonic
influence of M on C hides a ‘ +’ for the value l of the variable L and a ‘−’
for the context l̄. �

With the two examples above we have illustrated that context-specific in-
formation about influences that is present in the conditional probabilities of
a quantified network cannot be represented explicitly in a qualitative proba-
bilistic network. Upon abstracting the quantified network to the qualitative
network, the information is effectively hidden. Of course, in real-life applica-
tions of qualitative probabilistic networks, the qualitative network would be
built directly with the help of domain experts rather than computed from an
already quantified network. During the construction of the qualitative net-
work, however, an expert may express knowledge about non-monotonicities
and context-specific independences as discussed above, which cannot be rep-
resented explicitly and will thus be hidden in the various signs of the network.

4 Context-specificity and its exploitation

The level of representation detail of a qualitative probabilistic network en-
forces the signs of influences and synergies to be independent of specific
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contexts. In this section we present an extension to the basic formalism of
qualitative networks that allows for associating context-specific signs with
qualitative influences and synergies. In Section 4.1, the extended formalism
is introduced; in Section 4.2, we demonstrate, by means of the example net-
works from the previous section, that exploiting context-specific information
can prevent unnecessarily weak results upon inference.

4.1 Context-specific signs

Before introducing context-specific signs, we formally define the notion of
context for qualitative probabilistic networks.

Definition 4.1 Let G = (V (G), A(G)) be an acyclic digraph. Let X ⊆ V (G)
be a set of variables in G called context variables. A context cX for X is a
combination of values for a subset Y ⊆ X of the set of context variables. For
Y = ∅ we say that the context is empty, denoted εX. For Y = X, we say
that the context is maximal. The set of all possible contexts for X is called
the context set for X and is denoted CX.

The subscript X for the empty context ε will be omitted as long as no con-
fusion is possible. Note that contexts may pertain to arbitrary subsets of
variables from a qualitative network. Also note that any combination of val-
ues x for a set X ⊆ V (G) can be written as cXx′, where the context cX is the
combination of values for a set Y ⊆ X and x′ is the combination of values
for X \ Y .

Upon inference, we will have to compare different contexts for the same
set of context variables. For this purpose, we define a partial order ‘>’ on
contexts.

Definition 4.2 Let G = (V (G), A(G)) be an acyclic digraph and let X ⊆
V (G) be a set of context variables. Let cX and c′X be combinations of values
for the sets Y ⊆ X and Y ′ ⊆ X, respectively. Then, cX > c′X iff Y ⊃ Y ′ and
cX and c′X specify the same combination of values for Y ′.

From this definition and the notational convention introduced above, we
have that if cX > c′X for two contexts cX and c′X , then cX can be written as
c′Xx for the combination of values x for the appropriate subset of X.

We now define a context-specific sign to be a sign that may vary from
context to context. A context-specific sign can basically be looked upon as a
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function δ : CX → {+,−, 0, ?} from a set of contexts CX to the set of basic
signs introduced in Section 2.

Definition 4.3 Let Q = (G, ∆) be a qualitative probabilistic network and let
X ⊆ V (G) be a set of context variables. A context-specific sign is a function
δ : CX → {+,−, 0, ?} such that for any two contexts cX and c′X, cX > c′X ,
the following property holds:

δ(c′X) = δi, δi∈{+,−, 0} =⇒

δ(cX) =

{
δi if, for cX = c′Xx, δ(x)∈{δi, ?}
0 otherwise

The definition of context-specific sign in essence states that the sign for
a context agrees with the sign for any larger context, in the sense that signs
cannot become less constrained for increasing contexts; we say that a ‘0’ is
more constrained than a ‘+’ or a ‘−’, which in turn are more constrained
than a ‘?’. More specifically, signs cannot disagree unless they pertain to
contexts that cannot occur simultaneously.

We will write δ(X) to denote the context-specific sign δ that is defined on
the context set CX . To avoid an abundance of braces, we will further write
δ(A) instead of δ({A}) to indicate a context-specific sign for a single context
variable A. Note that the basic signs from regular qualitative networks can be
looked upon as context-specific signs that are defined by a constant function.
By being context-independent, they in essence cover all possible contexts.

Having introduced the notion of context-specific sign, we now extend the
basic formalism of qualitative networks by allowing context-specific signs for
qualitative influences.

Definition 4.4 Let G = (V (G), A(G)) be an acyclic digraph and let Pr be a
joint probability distribution on V (G) that respects the independences in G.
Let A, B be variables in G with A→ B ∈ A(G) and let X = πG(B) \ {A}
be the set of predecessors of B other than A. Then, variable A exerts a
qualitative influence of sign δ(X) on variable B, denoted Sδ(X)(A, B), iff for
each context cX for X we have

• δ(cX) = + iff Pr(b | acXx′ ) ≥ Pr(b | ācXx′ ) for all combinations of
values cXx′ for X;
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• δ(cX) = − iff Pr(b | acXx′ ) ≤ Pr(b | ācXx′ ) for all combinations of
values cXx′ for X;

• δ(cX) = 0 iff Pr(b | acXx′ ) = Pr(b | ācXx′ ) for all combinations of
values cXx′ for X;

• δ(cX) = ? otherwise.

Note that in defining a context-specific influence for an arc between two
variables A and B, we have taken the set X of predecessors of B other than
A for the set of context variables. This restriction of the set of context
variables is not essential, however, and can be lifted whenever desirable.
Context-specific qualitative synergies are defined analogously.

A context-specific sign δ(X) in essence has to specify a basic sign from
the set {+,−, 0, ?} for each possible combination of values in the context set
CX . From the definition of context-specific sign, however, we have that such
a sign cannot specify arbitrary basic signs for the various contexts as some
of these signs are fully determined by the basic signs of other contexts. It
is therefore not necessary to explicitly specify a basic sign for every context.
The following example illustrates this observation.

Example 4.5 We consider a qualitative influence of a variable A on a vari-
able B with the set of context variables X = {D, E}. Suppose that the sign
δ(X) of the influence is defined as

δ(ε) = ?,
δ(d) = +, δ(d̄ ) = −, δ(e) = ?, δ(ē) = +,
δ(de) = +, δ(dē) = +, δ(d̄e) = −, δ(d̄ē) = 0

From the definition of context-specific sign, we have for example that δ(d) =
+ enforces δ(de) and δ(dē) to be either ‘ +’ or ‘ 0’. As both contexts de and
dē induce the same sign basic as context d, the signs δ(de) and δ(dē) reveal
that no additional information is hidden by the sign δ(d). Building upon this
observation, the function δ(X) can be uniquely described by the signs of the
smaller contexts whenever the larger contexts are assigned the same basic
sign. The function is therefore fully described by the four signs

δ(ε) = ?, δ(d) = +, δ(d̄ ) = −, δ(ē) = +

The sign for the context δ(d̄ē), for example, can be easily derived from these
signs. As δ(d̄) = −, we have from the definition of context-specific sign that
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δ(d̄ē) can be either ‘−’ or ‘ 0’. From δ(ē) = +, we have in addition that
δ(d̄ē) should be either ‘ +’ or ‘ 0’. We conclude that δ(d̄ē) equals zero. The
sign for the context d̄e is derived in much the same way. The unspecified
sign δ(e) equals that of the smaller empty context; the sign for the context e
therefore does not pose any restrictions on the sign for d̄e. The sign δ(d̄ ) =
−, however, restricts the sign δ(d̄e) to be either ‘−’ or ‘ 0’. As no sign has
been stated explicitly for the context d̄e, it inherits its sign from that for d̄:
δ(d̄e) = −. �

In order to exploit the above observation, we have to provide for comput-
ing the unspecified sign of a larger context from the signs of smaller contexts.
For contexts cX that pertain to a single variable, the unspecified sign δ(cX)
is taken to be equal to the sign specified for the empty context ε. For con-
texts cX that pertain to a set Y of two or more variables, we rewrite cX as
c′Xc, where c is the value assigned by cX to some variable C ∈ Y and c′X
assigns the same values to the variables Y \ {C} as cX . We then compute
the unspecified sign δ(cX) recursively from δ(cX) = δ(c′X) ? δ(c), building
upon the and -operator from Table 2. If δ(c′X) = δ(c) then the sign of cX

obviously equals δ(c). If one of δ(c′X) or δ(c) equals zero, then δ(cX) should
also be zero. If one of δ(c′X) or δ(c) is a ‘?’, then the strongest of the two
signs is taken for δ(cX). If δ(c′X) = + and δ(c) = −, or vice versa, then δ(cX)
can only be zero. The procedure for determining basic signs from a partially
specified context-specific sign is summarised in pseudocode in Figure 6.

The standard sign-propagation algorithm for probabilistic inference with
a qualitative network, as discussed in Section 2.2, is easily extended to handle
context-specific signs. The extended algorithm propagates and combines
basic signs only, as does the standard algorithm. Before a sign is propagated
over an influence, however, the currently valid context is determined from the
available observations and the basic sign that is either specified or computed
for this context is propagated. If none of the context variables have been

? + − 0 ?
+ + 0 0 +
− 0 − 0 −
0 0 0 0 0
? + − 0 ?

Table 2: The ?-operator for combining signs.
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function ComputeSign(cX , δ(X)): {+,−, 0, ?}
if δ(cX) is specified
then return δ(cX);
if X is a singleton
then return δ(εX);
return ComputeSign(c′X , δ(X)) ? ComputeSign(c, δ(X))

for c′Xc = cX .

Figure 6: The procedure for computing basic signs from a partially specified
context-specific sign.

observed, then the sign specified for the empty context is propagated. The
extended sign-propagation algorithm is given in Figure 7. We note that the
algorithm handles both context-specific and regular signs.

procedure PropagateSign(trail, from, to, messagesign):

sign[to] ← sign[to] ⊕ messagesign;
trail ← trail ∪{to};
for each active neighbour Vi of to
do linksign ← sign of (induced) influence between to and Vi;

if linksign = δ(X)
then determine the current context cX from the observations;

linksign ← ComputeSign(cX , δ(X));
messagesign ← sign[to] ⊗ linksign;
if Vi /∈ trail and sign[Vi] 6= sign[Vi] ⊕ messagesign
then PropagateSign(trail, to, Vi, messagesign).

Figure 7: The extended sign-propagation procedure for handling context-
specific signs.

4.2 Exploiting context-specific signs

In Section 3 we have presented two examples showing that the influences
of a qualitative probabilistic network can hide context-specific information.
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Revealing this hidden information and exploiting it upon inference can be
worthwhile. The information that an influence is zero for a certain context
can be used, for example, to improve the runtime complexity of the sign-
propagation algorithm because propagation of a sign along a chain can be
stopped as soon as a zero influence is encountered on that chain. More im-
portantly, however, exploiting context-specific information can prevent con-
flicting influences arising during inference and can thereby forestall the gen-
eration of ambiguous signs. We illustrate this observation by means of an
example.

Example 4.6 We reconsider the qualitative Surgery network from Figure 4.
Suppose that a non-smoker is undergoing surgery. From Example 3.1 we
recall that, in the context of the observation s̄ for the variable S, propagation
of the observation t for the variable T with the standard sign-propagation
algorithm results in the sign ‘ ?’ for L, that is, the influence of the surgery
on the patient’s life expectancy is unknown. In essence, there is not enough
information present in the network to compute a non-ambiguous sign from
the two conflicting reasoning chains between T and L.

From Example 3.1, we now further recall that the positive qualitative in-
fluence of T on P effectively hides a zero influence. With our new notion of
context-specific sign, we can associate the sign δ(S) with

δ(ε) = +, δ(s̄) = 0

with the influence of T on P , thereby explicitly representing the information
that non-smoking patients are not at risk for pulmonary complications after
surgery. The extended network is shown in Figure 8.

We now reconsider our non-smoking patient undergoing surgery. Propa-
gating the observation t for the variable T with the extended sign-propagation
algorithm in the context of the observation s̄ results in the sign (+⊗+)⊕(0⊗
−) = + for the variable L. The previously hidden zero influence is exploited
upon inference and we find that the surgery indeed is likely to increase the
patient’s life expectancy. �

In Section 3 we have not only discussed hidden zero influences, but have
also argued that positive and negative influences can be hidden by the non-
monotonic influences of a qualitative network. As the initial ‘ ?’s of these
influences tend to spread to major parts of the network upon inference, it
is worthwhile to resolve the non-monotonicities involved whenever possible.
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T

R P

L

S
δ(S)+

+ −

+

Figure 8: A hidden zero revealed by a context-specific sign.

Our extended formalism of qualitative networks provides for explicitly cap-
turing information about non-monotonicities by context-specific signs. The
following example illustrates the basic idea.

Example 4.7 We reconsider the qualitative Cervical metastases network
from Figure 5. From Example 3.2, we recall that the influence of the variable
M , modelling the extent of lymphatic metastases, on the variable C, which
represents the presence or absence of metastases in the lymph nodes in the
neck, is non-monotonic. More specifically, we have that

Pr(c | ml) > Pr(c | m̄l) and Pr(c | ml̄ ) < Pr(c | m̄l̄ ).

In the context of an observation l, that is, for tumours located in the lower
two-third of the oesophagus, we have that the influence is positive, while it is
negative in the context l̄, that is, for tumours higher up in the oesophagus.
With our new notion of context-specific sign, we can make this hidden infor-
mation explicit. In the extended network, shown in Figure 9, the information
is captured by the sign δ(L) with

δ(ε) = ?, δ(l) = +, δ(l̄ ) = −
for the influence of the variable M on C. It will be evident that the now
explicitly represented information can be exploited upon inference much in
the same way as described in Example 4.6. �

5 Evaluation of context-specificity in real-life

networks

To get an impression of the context-specific information that is hidden in real-
life qualitative probabilistic networks, we computed qualitative abstractions
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L M

C
− δ(L)

Figure 9: A non-monotonicity captured by a context-specific sign.

of the well-known alarm-network [19] and of a probabilistic network for
oesophageal cancer, called the oesoca-network [20]. The alarm-network
is reproduced in Figure 10 for ease of reference. It consists of 37, mostly
non-binary, variables and 46 arcs; the number of direct qualitative influences
in the abstracted network thus equals 46. The oesoca-network, shown in
Figure 11, consists of 42, also mostly non-binary, variables and 59 arcs. In
computing the qualitative abstractions of the two networks from the condi-
tional probabilities specified, we have assumed that the values of a variable
are ordered from top, the smallest value, to bottom, the largest value, as
indicated in the figures. Table 3 summarises for the abstracted networks the
numbers of direct influences for the four different basic signs.

The numbers reported in Table 3 pertain to the basic signs of the qualita-
tive influences associated with the arcs in the digraphs of the networks. Each
such influence, and hence each associated basic sign, covers a number of max-
imal contexts. For a qualitative influence associated with an arc A→ B, the
number of maximal contexts equals 1 if variable B has no other predecessors
than A; the only context then is the empty context. If B does have other pre-
decessors then the number of maximal contexts equals the number of possible
combinations of values for this set of predecessors. For the alarm-network
there thus are 218 maximal contexts; for the oesoca-network, the number of
maximal contexts equals 175. For every maximal context in the two networks,
we have computed the true context-specific sign from its original quantified
versions. Table 4 summarises the numbers of maximal contexts and their

# direct influences with sign δ:
+ − 0 ? total :

alarm 17 9 0 20 46
oesoca 32 12 0 15 59

Table 3: The numbers of direct influences with regular ‘+’, ‘−’, ‘0’ and ‘?’
signs for the qualitative alarm- and oesoca- networks.
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# max. cX with sign δ′:
alarm + − 0 ? total :

+ 38 – 21 – 59
δ: − – 40 11 – 51

0 – – – – 0
? 34 24 12 28 108

total: 72 64 44 28 218

# max. cX with sign δ′:
oesoca + − 0 ? total :

+ 74 – 8 – 82
δ: − – 36 8 – 44

0 – – – – 0
? 6 3 2 38 49

total: 80 39 18 38 175

Table 4: The numbers of maximal contexts cX covered by the regular ‘+’,
‘−’, ‘0’ and ‘?’ signs (δ) and their associated context-specific signs (δ′), for
the qualitative alarm- and oesoca- networks.

associated signs, and the way they are covered by the different basic signs
in the two abstracted networks. From the table we observe, for example,
that the 17 positive qualitative influences from the qualitative alarm net-
work together cover 59 different maximal contexts. For 38 of these contexts,
the influences are indeed positive, but for 21 contexts the positive influences
actually hide a zero influence, that is, an independence.

For the qualitative alarm-network, Table 3 shows that 35% of the di-
rect influences are positive, 17% are negative, and 48% are ambiguous; the
network does not include any explicitly specified zero influences. For the
extended network, we observe from Table 4 that, in terms of the signs for
the maximal contexts, 32% of the influences are positive. Note that 47% of
these influences are in fact hidden in the qualitative alarm-network. 31% of
the influences in the extended network are negative, 20% are zero, and 17%
remain ambiguous. Note that 65% of the ambiguous influences in the qual-
itative alarm-network effectively hide a positive, negative or zero context-
specific influence. For the qualitative oesoca-network, Table 3 shows that
54% of the influences are positive, 21% are negative, and 25% are ambiguous;
the network does not include any explicit zero influences. For the extended
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network, we find that, once again in terms of the signs for the maximal
contexts, 46% of the qualitative influences are positive, 22% are negative,
10% are zero, and 22% remain ambiguous. Note that, although the qualita-
tive oesoca-network also hides context-specific information, its information
hiding is less prominent than in the alarm-network.

We conclude that for both the alarm- and the oesoca-network, the
use of context-specific signs serves to reveal a considerable number of zero
influences and to substantially decrease the number of ambiguous influences.
Similar observations have been found for the qualitative abstractions of two
other real-life probabilistic networks, pertaining to Wilson’s disease [21] and
to ventricular septal defect [22], respectively. We feel that by providing for the
inclusion of context-specific information about influences, we have effectively
extended the expressive power of qualitative probabilistic networks for real-
life applications.

6 Conclusions

Qualitative networks model the probabilistic influences involved in an appli-
cation domain at the high abstraction level of variables, as opposed to quan-
tified probabilistic networks where influences are represented at the level of
values of variables. Due to this high level of representation detail, knowledge
about probabilistic influences that hold only for specific values of certain
variables cannot be expressed in a qualitative network. We have shown that,
as a consequence, the results computed from the network can be weaker
than strictly necessary. We have argued that some of the knowledge that is
hidden in a qualitative network is in fact qualitative in nature and should
be represented explicitly to be exploited upon reasoning. To this end, we
have extended the formalism of qualitative probabilistic networks with a no-
tion of context-specificity. By doing so, we have provided for a finer level
of representation detail and thereby enhanced the expressive power of qual-
itative networks. While in a regular qualitative network zero influences as
well as positive and negative influences can be hidden, in an extended net-
work context-specific signs are used to make these hidden influences explicit.
We have shown that these signs can be specified in an efficient way. We
have further shown that exploiting context-specific information can forestall
unnecessary ambiguous signs during inference.
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We have argued that qualitative probabilistic networks can play an im-
portant role in the construction of probabilistic networks for real-life ap-
plication domains. By first obtaining a qualitative network from domain
experts, the reasoning behaviour of the projected quantified network can
be studied and validated prior to the assessment of the various probabili-
ties required. The elicited signs can further be used as constraints on the
probabilities to be assessed. Now, recall that the notion of context-specific
independence was introduced before for quantified probabilistic networks as
a concept to be exploited to speed up probabilistic inference. To identify the
context-specific independences, generally the conditional probability distri-
butions that have been specified for the network have to be inspected [15].
Using context-specific signs in qualitative networks during the construction
of a probabilistic network, now brings the additional advantage of context-
specific independence information being readily available.
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