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Abstract

A radio labeling of a graph G is an assignment of pairwise distinct, positive

integer labels to the vertices of G such that labels of adjacent vertices di�er by at

least 2. The radio labeling problem (RL) consists in determining a radio labeling

that minimizes the maximum label that is used (the so-called span of the labeling).

RL is a well-studied problem, mainly motivated by frequency assignment problems

in which transmitters are not allowed to operate on the same frequency channel. We

consider the special case where some of the transmitters have pre-assigned operating

frequency channels. This leads to the natural variants p-RL(l) and p-RL(�) of RL
with l pre-assigned labels and an arbitrary number of pre-assigned labels, respectively.

We establish a number of combinatorial, algorithmical, and complexity-theoretical

results for these variants of radio labeling. In particular, we investigate a simple upper

bound on the minimum span, yielding a linear time approximation algorithm with a

constant additive error bound for p-RL(�) restricted to graphs with girth � 5. We

consider the complexity of p-RL(l) and p-RL(�) for several cases in which RL is

known to be polynomially solvable. On the negative side, we prove that p-RL(�) is
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NP-hard for cographs and for k-colorable graphs where a k-coloring is given (k � 3).

On the positive side, we derive polynomial time algorithms solving p-RL(�) and

p-RL(l) for graphs with bounded maximum degree, and for solving p-RL(l) for

k-colorable graphs where a k-coloring is given.

Keywords: Radio labeling, frequency assignment, graph algorithms, computational

complexity, approximation algorithm, cograph, k-coloring.

AMS Subject Classi�cations: 05C15, 68R10, 05C78, 68W25, 94C15.

1 Introduction

The Frequency Assignment problem (FAP) is a general framework focused on point-
to-point communication, e.g. in radio or mobile telephone networks. One of its main
threads asks for an assignment of frequencies or frequency channels to transmitters while
keeping interference at an acceptable level and making use of the available frequencies in
an eÆcient way. Interference constraints are usually related to the use of the same or
similar frequencies at locations within a certain distance (or transmitters within a certain
reach) from each other. Due to the scarce resources and the increasing use of frequencies
in modern wireless technology, the available frequencies should be used as eÆciently as
possible. There is usually a trade-o� between avoiding interference and the eÆcient use of
frequencies. We will not go deeper into the technical details here.

Graph theoretical issues come into play since possible interference between transmitters
is usually modeled by a so-called interference graph. Each vertex of the interference graph
represents a transmitter. If simultaneous broadcasting of two transmitters may cause an
interference, then they are connected by an edge in the interference graph. The frequency
channels are usually labeled by positive integers. Frequency channels with `close' labels are
assumed to be `close' in the spectrum or expected to be `more likely' to cause interference.

Regarding the assumption that a pair of `close' transmitters should be assigned di�erent
frequencies or frequency channels, the Frequency Assignment problem is equivalent
to the problem of labeling the interference graph with some constraints on the labeling.
In many cases the related labeling problems are variants on what is known as the vertex
coloring problem in graph theory.

However, Hale [14] observed that the signal propagation may a�ect the interference even
in distant regions (but with decreasing intensity). Hence, not only `close' transmitters
should get di�erent frequencies, but also frequencies used at some distance should be
appropriately separated. This leads to a more detailed and complicated modeling of FAP
in terms of distance constrained labeling of the interference graph. (See for instance the
book [16] by Leese.)

In some applications the transmitters are not allowed to operate on the same frequency
channel (for example, when every transmitter covers the whole area) while `close' trans-
mitters should use channels with suÆcient separation. In this case non-reusable frequency
channels should be assigned to transmitters in a proper way. This leads to the so-called
Radio Labeling problem (RL), i.e. to the problem of assigning distinct labels to the
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vertices of a graph such that adjacent vertices get labels (positive integers) that di�er by at
least two. The purpose of RL is to �nd such a radio labeling with the smallest maximum
label.

In this paper we initiate the investigation of two versions of this problem in which some
of the transmitters (like military and governmental stations) already have pre-assigned
labels corresponding to frequency channels which one is not allowed to change. Then the
problem boils down to determining a radio labeling extending a given pre-labeling in a
`best possible' way. In this paper we consider some algorithmical, complexity-theoretical,
and combinatorial aspects of these versions of the problem.

We do not want to claim that the results in the sequel have immediate practical rele-
vance.

1.1 De�nitions and preliminary observations

We denote by G = (V;E) a �nite undirected and simple graph. The girth of G is the
length of a shortest cycle in G. For every nonempty W � V , the subgraph of G = (V;E)
induced by W is denoted by G[W ]. A cograph is a graph containing no induced path
on four vertices. The (open) neighborhood of a vertex v in a graph G is NG(v) := fu 2
V : fu; vg 2 Eg. The degree of a vertex v in G is dG(v) := jNG(v)j. The maximum degree
of G is �(G) := maxv2V dG(v). A graph G is t-degenerate if each of its subgraphs has a
vertex of degree at most t. A clique C of a graph G = (V;E) is a nonempty subset of V
such that all the vertices of C are pairwise adjacent in G. A nonempty subset of vertices
I � V is independent in G if no two of its elements are adjacent in G. The complement
G of G = (V;E) is the graph on V with edge set E such that fu; vg 2 E if and only if
fu; vg 62 E.

A k-coloring of the vertices of a graph G = (V;E) is a partition I1; I2; : : : ; Ik of V into
independent sets (in which some of the Ij may be empty); the k sets Ij are called the color
classes of the k-coloring. The chromatic number �(G) is the minimum value k for which
a k-coloring exists. A labeling of the (vertex set of the) graph G = (V;E) is an injective
mapping L : V ! N+ (the set of positive integers). A labeling L of G is called a radio
labeling of G if for any edge fu; vg 2 E the inequality jL(u)�L(v)j � 2 holds; the span of
such a labeling L is maxv2V L(v).

The Radio Labeling problem (RL) is de�ned as follows: \For a given graph G,
�nd a radio labeling L with the smallest span." The name radio labeling was suggested by
Fotakis and Spirakis in [8] but the same notion (under di�erent names) has been introduced
independently and earlier by other researchers (see, e.g. Chang & Kuo [2]). Problem RL is
equivalent to the special case of the Traveling Salesman problem TSP(2,1) in which
all edge weights (distances) are either one or two. The relation is as follows. For a graph
G = (V;E) let KG be the complete weighted graph on V with edge weights 1 and 2 de�ned
according to E: for every fu; vg 2 E the weight w(fu; vg) in KG is 2 and for fu; vg 62 E
the weight w(fu; vg) = 1. The weight of a path in KG is the sum of the weights of its
edges. The following proposition can be found in [8, 9].
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Proposition 1.1. There is a radio labeling of G with span k if and only if there is a
Hamiltonian path (i.e. a path on jV j vertices) of weight k � 1 in KG.

Another equivalent formulation of this problem, which was extensively studied in the
literature, is the Hamiltonian Path Completion problem (HPC), i.e. the problem of
partitioning the vertex set of a graph G into the smallest possible number of sets which
are spanned by paths in G. This equivalence is expressed in the following well-known
proposition.

Proposition 1.2. There is a radio labeling of G with span � k if and only if there is a
partition of V into � k sets, such that each of these sets induces a subgraph in G that
contains a Hamiltonian path.

Now let us turn to the versions of RL with pre-assigned labels. For a graph G = (V;E)
a pre-labeling L0 of a subset V 0 � V is an injective mapping L0 : V 0 ! N+. We say that a
labeling L of G extends the pre-labeling L0 if L(u) = L0(u) for every u 2 V 0. We study the
following two problems:

� p-RL(�): Radio Labeling with an arbitrary number of pre-labeled ver-
tices.
For a given graph G and a given pre-labeling L0 of G, determine a radio labeling of
G extending L0 with the smallest span.

� p-RL(l): Radio Labeling with a fixed number of pre-labeled vertices.
For a given graph G = (V;E), a subset V 0 � V with jV j � l, and a pre-labeling
L0 : V 0 ! N+, determine a radio labeling of G extending L0 with the smallest span.

1.2 Earlier results

As we mentioned above the Traveling Salesman problem TSP(2,1) (which is equiv-
alent to RL without any pre-labeling) is a well-studied problem. Papadimitriou & Yan-
nakakis [17] proved that this problem is MAX SNP-hard, but gave an approximation
algorithm for TSP(2,1) which �nds a solution not worse than 7/6 times the optimum
solution. Later Engebretsen [4] improved their result by showing that the problem is not
approximable within 5381=5380� " for any " > 0.

Damaschke, Deogun, Kratsch & Steiner [3] proved that the Hamiltonian Path Com-
pletion problemHPC can be solved in polynomial time on cocomparability graphs (com-
plements of comparability graphs). To obtain this result they used a reduction to the
problem of �nding the bump number of a partial order. (The bump number of a poset P
and its linear extension L is the number of neighbors in L which are comparable in P .)
It was proved by Habib, M�ohring & Steiner [13] and by Sch�a�er & Simons [19] that the
Bump Number problem can be solved in polynomial time. By Proposition 1.2, the result
of Damaschke, Deogun, Kratsch & Steiner yields that RL is polynomial time solvable for
comparability graphs. Later, this result was rediscovered by Chang & Kuo [2] but under
the name of L0(2; 1)-labeling and only for cographs, a subclass of the class of comparability
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graphs. Notice that RL is NP-hard for cocomparability graphs because the Hamilto-
nian Path problem is known to be NP-hard for bipartite graphs which form a subclass
of comparability graphs. Recently, Fotakis and Spirakis [8] proved that RL can be solved
in polynomial time within the class of graphs for which a k-coloring can be obtained in
polynomial time (for some �xed k). Note that, for example, this class of graphs includes
the well-studied classes of planar graphs and graphs with bounded treewidth.

We are not aware of any existing results concerning the pre-labeling versions p-RL(�)
and p-RL(l) of RL.

We complete this subsection by mentioning some results concerning the related notion
of radio coloring (also known as L(2; 1)-labeling, �2;1-coloring and �2;1-labeling). A radio
coloring of a graph G = (V;E) is a function f : V ! N+ such that jf(u) � f(v)j � 2 if
fu; vg 2 E and jf(u) � f(v)j � 1 if the distance between u and v in G is 2. Here the
distance between two vertices u and v in a connected graph G is the smallest number
of edges in a path of G between u and v. So, the di�erence between radio coloring and
radio labeling is that in a radio coloring vertices at distance at least three may have equal
labels (or colors). The notion of radio coloring was introduced by Griggs & Yeh [12] under
the name L(2; 1)-labeling. As with radio labeling the span of a radio coloring f of G is
maxv2V f(v).

The problem of determining a radio coloring with minimum span has received a lot of
attention. For various graph classes the problem was studied by Sakai [18], Bodlaender,
Kloks, Tan & van Leeuwen [1], Van den Heuvel, Leese & Shepherd [15], and others. NP-
hardness results for this Radio Coloring problem (RC) restricted to planar, split, or
cobipartite graphs were obtained by Bodlaender, Kloks, Tan & van Leeuwen [1]. Fixed-
parameter tractability properties of RC are discussed by Fiala, Kratochv��l and Kloks [6].
Fiala, Fishkin & Fomin [5] study on-line algorithms for RC. For only very few graph classes
the problem is known to be polynomially solvable. Chang & Kuo [2] obtained a polynomial
time algorithm for RC restricted to trees and cographs. The complexity of RC even for
graphs of treewidth 2 is a long standing open question. An interesting direction of research
was initiated by Fiala, Kratochv��l & Proskurowski [7]. They consider a precolored version
of the Radio Coloring problem, i.e. a version in which some colors are pre-assigned to
some vertices. They proved that RC with a given precoloring can be solved in polynomial
time for trees. Recently Golovach [11] proved that RC with a given precoloring is NP-hard
for graphs of treewidth 2.

1.3 Our results and organization of the paper

We study algorithmical, complexity-theoretical, and combinatorial aspects of radio labeling
with pre-labeled vertices. In Section 2 we give some simple combinatorial bounds for the
minimum span of such labelings: We introduce an easy-to-compute lower bound M on the
minimum span of a labeling extending a pre-labeling, and we show that there always exists
such a radio labeling

� with span � b(7M � 2)=3c, for arbitrary graphs
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� with span � b(5M + 2)=3c, for graphs of girth at least 4

� with span �M + 3, for graphs of girth at least 5.

All these bounds are best possible. The third bound is even best possible for paths, i.e.
for graphs of in�nite girth. In Section 3, we derive similar results for t-degenerate graphs.
In Section 4 we obtain polynomial time algorithms for graphs with bounded degree; these
algorithms are based on the results of Section 2.

Sections 5 and 6 are devoted to the algorithmical study of the radio labeling problem
with pre-assigned labels. We study these problems restricted to graphs for which a k-
coloring is given, and restricted to cographs, two graph classes for which the radio labeling
problem without pre-labeling is known to be solvable in polynomial time. Known and new
results on these radio labeling problems are summarized in the following table.

graphs with graphs with a Cographs
a bounded � given k-coloring

RL P [8] P [8] P [3, 2]
p-RL(l) P [�] P [�] ???
p-RL(�) P [�] NPC for k � 3 [�] NP [�]

In this table, an entry P denotes solvable in polynomial time, NPC denotes NP-complete,
[�] denotes a contribution from this paper, and the sign ??? marks an open problem.

For the results in the middle column, we assume that k is a �xed integer that is not
part of the input. Note that the class of graphs with a given k-coloring contains important
and well-studied graph classes such as the class of planar graphs and the class of graphs
with bounded treewidth.

2 Upper bounds for the minimum span

Let G = (V;E) denote a graph on n vertices, and let V 0 � V and L0 : V 0 ! N+ be a �xed
subset of V and a pre-labeling for V 0, respectively. We de�ne the parameter M which will
be very useful in the rest of the paper:

M := maxfn; max
v2V 0

L0(v)g:

Clearly,M is straightforward to compute if G and L0 are known. And clearly,M is a lower
bound on the span of any radio labeling in G extending the pre-labeling L0 of G. A natural
question is how far M can be away from the minimum span of such a labeling. We will
show that the answer to this question heavily relies on the girth of the graph G:

Theorem 2.1. Consider a graph G on n � 7 vertices, and a pre-labeling L0 of G. Then
there is a radio labeling in G extending L0

(a) with span � b(7M � 2)=3c
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(b) with span � b(5M + 2)=3c if G has girth at least 4

(c) with span �M + 3 if G has girth at least 5.

All these bounds are best possible. The third bound is even best possible for the class of
paths.

Proof. Let us start the proof of Theorem 2.1 by showing that all the stated bounds indeed
are best possible: For (a), let x be a positive integer and y an integer such thatM = 3x+y
and �1 � y � 1. We consider the complete graph onM vertices in which x vertices are pre-
labeled with labels 2; 5; 8; : : : ; 3x� 1, whereas the remaining 2x+ y vertices are unlabeled.
Since we cannot use the labels 1; 2; : : : ; 3x at the unlabeled vertices, and the labels at
these vertices have to di�er by at least two, the span of any radio labeling extending the
pre-labeling is at least 3x + 2(2x+ y)� 1 = 7x+ 2y � 1 = b(7M � 2)=3c.

For (b), let x be a positive integer and y an integer such thatM = 3x+y and 0 � y � 2.
We consider the complete bipartite graph Kx+1;2x+y�1 on M vertices. The x+1 vertices in
the �rst part of the bipartition are pre-labeled with the labels 2; 5; 8; : : : ; 3x + 2, whereas
the 2x + y � 1 vertices in the second part of the bipartition are unlabeled. Note that the
pre-labeling forbids the labels 1; : : : ; 3x + y + 1 for the unlabeled vertices. Thus the span
of any radio labeling extending the pre-labeling is at least 5x+ 2y = b(5M + 2)=3c.

Finally, for (c) we consider the path v1�v2�� � ��vn on n � 7 vertices. The pre-labeling
assigns L0(v1) = 1, L0(v3) = 5, L0(v5) = 3, L0(v7) = 7, and L0(vk) = k for k � 8. Then
M = n, and all but three vertices (v2; v4; v6) are pre-labeled. Since we cannot use the
labels 2, 4, and 6 at these three vertices, every radio labeling of this path extending the
pre-labeling L0 has a span of at least n+ 3 =M + 3.

The greedy preprocessing step. In several of our proofs, we use the same preprocess-
ing step. We denote this step as greedy preprocessing.

Greedy preprocessing is done as follows. We extend the pre-labeling by assigning labels
from f1; : : : ;Mg to unlabeled vertices, such that the conditions that all labels are di�erent,
and that adjacent vertices have labels that di�er by at least two keep being met. This
preprocessing step terminates, when we get stuck: then either all vertices have been labeled,
or for every unused label c 2 f1; : : : ;Mg and for every unlabeled vertex v, v is adjacent to
a vertex labeled with c� 1 or v is adjacent to a vertex labeled with c + 1. Note that this
greedy preprocessing step does not change the value of M .

Proof of Theorem 2.1.(a). It is suÆcient to consider the case where G is the complete
graph on n vertices. Assume that there are l = jV 0j pre-labeled vertices and that we start
with the available labels 1; 2; : : : ; N = b(7M � 2)=3c. Call a label blocked, if it is used in
the pre-labeling or if it is adjacent to a (vertex labeled with a) label in the pre-labeling
(and thus cannot be used). Hence there are at most minf3l;M +1g blocked labels. Order
the remaining available (nonblocked) labels increasingly, and assign the labels at the odd
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positions in the ordering to the remaining n � l vertices. Note that we need at most
minf3l;M + 1g+ 2(n� l)� 1 labels. If 3l �M + 1, then this number is at most

3l + 2(n� l)� 1 = 2n+ l � 1 � 2M +
M + 1

3
� 1 =

7M � 2

3
:

If 3l �M + 1, then this number is at most

M + 1 + 2(n� l)� 1 = M + 2n� 2l � M + 2M � 2
M + 1

3
=

7M � 2

3
:

So, in both cases we obtain a feasible radio labeling with span at most b(7M � 2)=3c.

Proof of Theorem 2.1.(b). We start with N = b(5M + 2)=3c available labels
1; 2; : : : ; N , perform the greedy preprocessing described above, and from now on consider
the labeling thus obtained. If all vertices are labeled, then we are done and there is noth-
ing to show. Otherwise, consider some �xed label c 2 f1; : : : ;Mg that is not used in this
labeling. Then every unlabeled vertex v must be adjacent to a vertex labeled with c + 1
or to a vertex labeled with c� 1. Denote the set of unlabeled vertices adjacent to c� 1 by
A, and denote the set of unlabeled vertices that are adjacent to c + 1 but not to c� 1 by
B. Then A must be an independent set. (Any edge in A together with the vertex labeled
with c� 1 would induce a triangle, and bring the girth of G down to 3.) And also B must
be an independent set.

Assume that l vertices are labeled. Since every label blocks at most two other labels,
there are at most minf3l;M + 1g blocked labels and we have at least

b(5M + 2)=3c �minf3l;M + 1g � n� l

available labels for the remaining n � l vertices. The displayed inequality can be seen as
follows. If 3l � M + 1, then b(2M + 2)=3c � 2l. Adding M � 3l � n � 3l yields the
desired inequality in this case. If 3l � M + 2, then n � l � M � d(M + 2)=3e. Together
with M �d(M +2)=3e � b(5M +2)=3c�M � 1 we get the desired inequality also for this
second case.

Now we distinguish three subcases. In the �rst subcase, there are vertices a 2 A, b 2 B,
such that a is not adjacent to b. We assign the jAj smallest of the n � l available labels
to the vertices in A, and the jBj largest of these labels to the vertices in B. This is done
in such a way that vertex a receives the largest label in A, and such that vertex b receives
the smallest label in B. This gives a radio labeling with span � b(5M + 2)=3c.

In the second subcase, either A or B is empty. In this case, we use the n� l available
labels on the n� l vertices in A or B.

In the third subcase, we assume that none of A and B is empty and that they span a
complete bipartite graph, i.e. each vertex in A is adjacent to each vertex in B. Consider an
arbitrary label d 2 f1; : : : ;Mg that is not used in the pre-labeling. Then every unlabeled
vertex v 2 A[B must be adjacent to the vertex labeled with d+1 or to the vertex labeled
with d � 1. There are only two possibilities for this: either all vertices in A are adjacent
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to the vertex labeled with d + 1 and all vertices in B are adjacent to the vertex labeled
with d�1, or all vertices in A are adjacent to the vertex labeled with d�1 and all vertices
in B are adjacent to the vertex labeled with d + 1. As a consequence, there are at most
minf2l;M + 1g blocked labels in this subcase, and at least

b(5M + 2)=3c �minf2l;M + 1g � n� l + 1

available labels for the remaining n� l vertices. We assign the jAj smallest of these labels
arbitrarily to the vertices in A, and the jBj largest of these labels arbitrarily to the vertices
in B.

Proof of Theorem 2.1.(c). We start with the greedy preprocessing described above,
and from now on consider the labeling thus obtained. Denote by C = fc1; : : : ; ckg with
c1 < c2 < � � � < ck the set of all unused labels from f1; : : : ;Mg in the labeling obtained after
the preprocessing. Denote by U the set of unlabeled vertices. It is clear that jU j � jCj.
We prove that the labeling obtained by the greedy preprocessing can always be extended
to a radio labeling of G using at most three additional labels M + 1, M + 2, and M + 3.

Without loss of generality, we assume that after the greedy preprocessing there is a
vertex of G labeled with M . (If this is not the case, the same proof produces a span
�M + 2.) For the sake of convenience we shall identify each labeled vertex with its label.
If jU j = 1, we just label the only unlabeled vertex with label M + 2. If jU j = 2, then
the two unlabeled vertices are either nonadjacent and we can label them with M + 2 and
M +3, or at least one of them is not adjacent to M (since G contains no 3-cycles), and we
label this vertex with M + 1 and the other vertex with M + 3.

From now on we assume jU j � 3. If C contains two consecutive labels d and d+1, then
every vertex in U must be adjacent to the vertices labeled with d�1 and d+2. This yields
a cycle of length four in G, and contradicts the assumption on the girth of G. Therefore,
there are no consecutive labels in C, and in particular c3 � 1 > c1 + 1.

Next, we �rst discuss the case jU j � 4. Then jCj � 4 and c3 < M . Suppose for the sake
of contradiction that c1 = 1. Then all vertices in U are adjacent to label 2, and at least
two vertices of U are adjacent to c3�1 or to c3+1. This would yield a cycle of length four.
This contradiction shows c1 � 2. There cannot be more than two vertices of U adjacent
to c1 � 1 because otherwise at least two of them would be adjacent to c3 + 1 or to c3 � 1,
and we again would obtain a 4-cycle. Similarly, we see that at most two vertices of U are
adjacent to c1 + 1. As a consequence, each of the vertices c1 � 1 and c1 + 1 has exactly
two neighbors in U . This implies that jU j = 4, and that each vertex of U is adjacent to
exactly one of c1 � 1 and c1 + 1. Denote the four vertices in U by u1; u2; u3; u4 such that
u1 and u2 are the neighbors of c1� 1, and u3 and u4 are the neighbors of c1+1. Moreover,
we may assume that u1 and u3 are adjacent to c3 � 1 and that u2 and u4 are adjacent to
c3 + 1; see Figure 1.

For every label c 2 Cnfc1; c3g we have that jfc�1; c+1g\fc1�1; c1+1; c3�1; c3+1gj = 0.
Otherwise, we either obtain a 4-cycle or can use the label c at one of the vertices in U ;
as an example, consider, e.g. the case that c � 1 = c1 + 1: then we can use the label c
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u1 u2 u3 u4

c3 � 1

c1 � 1

c3 + 1

c1 + 1

c� 1

c + 1

Figure 1: A step in the proof of Theorem 2.1.(c).

at u1 or u2 unless both are adjacent to c1 + 3, yielding a 4-cycle with c1 � 1; the other
cases are similar. But then there are only two possibilities for the vertices in U to be the
neighbor of c� 1 or c+ 1 without creating a 4-cycle: u1 and u4 should be adjacent to one
of these labels and u2 and u3 to the other. But since jC n fc1; c3gj � 2 and C does not
contain consecutive integers, we obtain a 4-cycle in G, which is a contradiction. So the
case jU j � 4 can not occur at all.

We are left with the case that jU j = 3. By similar arguments as above, we may assume
that c1 � 1 is adjacent to u1, that c1 + 1 is adjacent to u2 and u3, that c3 + 1 is adjacent
to u1 and u2, and that c3 � 1 is adjacent to u3 (the other cases are analogous). The girth
condition implies that the graph induced by the vertices fu1; u2; u3g has at most one edge,
the edge fu1; u3g. If such an edge exists, then M is nonadjacent to one of these three
vertices, and we label this vertex with M + 1 and the other one with M + 3; in that case
the vertex u2 is labeled with M + 2. If there is no such edge, then M is nonadjacent to at
least one of the vertices ui (otherwise we obtain a 4-cycle) and we label this vertex with
M + 1 and the other two vertices with M + 2 and M + 3. This completes the proof of
Theorem 2.1.(c).

Note that the proof of Theorem 2.1.(c) yields a linear time approximation algorithm
determining a radio labeling extending a pre-labeling in graphs with girth � 5 with a span
that is at most an additive 3 away from the minimum span.

3 Graphs with bounded degeneracy

In this section, we apply the techniques from the proof of Theorem 2.1 to t-degenerate
graphs, i.e. graphs with the property that each of their subgraphs has a vertex of degree at
most t. We will also use the easy, well-known fact that a t-degenerate graph on n vertices
has at most t(n� t)+ t(t�1)=2 edges. First we consider the case without any pre-labeling,
and obtain the following result which is easy to prove. This result will be used in the case
where a pre-labeling is assumed.

Lemma 3.1. If G is a t-degenerate graph on n vertices, then it has a radio labeling with
span � n + 2t.

10



Proof. Let G be a counterexample to Lemma 3.1 with the least number of vertices. Remove
a vertex v of minimum degree from G and consider a radio labeling with span � n� 1+2t
in G � v (which exists by the choice of G). If we started with the n + 2t available labels
1; 2; : : : ; n + 2t, there are at least 2t + 1 unused labels left. Since v has degree at most t
and each neighbor of v forbids the use of at most two labels at v, we can choose a suitable
label for v.

We now turn to the variant in which a pre-labeling is assumed. We obtain an upper
bound for the minimum span of a radio labeling extending the pre-labeling in a t-degenerate
graph, depending on M and t only.

Theorem 3.2. If G is a t-degenerate graph and L0 is a pre-labeling of G, then there exists
a radio labeling extending L0 with span �M + (4 +

p
3)t+ 1.

Proof. We again start with the greedy preprocessing step as described in the preceding
section, and with available labels 1; 2; : : : ;M + (4 +

p
3)t + 1. Denote by U the set of

unlabeled vertices after this step. We only consider the case where jU j = 2p for some
positive integer p; the case with odd jU j is similar and left to the reader. Denote by
C = fc1; : : : ; c2pg with c1 < : : : < c2p the set of the �rst 2p unused labels. It is clear that
C cannot contain three consecutive labels c � 1; c; c + 1 (otherwise, we can use the label
c at some vertex of U). Thus for every i we have ci + 1 < ci+2 � 1. Consider the set C 0

of vertices ci + 1 and ci � 1 for every odd i = 1; 3; : : : ; 2p � 1. Then C 0 contains exactly
p pairs of vertices and each unlabeled vertex of U must be adjacent to at least one vertex
from every pair. The graph induced by the set U [C 0 has 4p vertices. Denote the number
of edges of this graph by x. We have 2p2 � x � (4p� t)t + (t� 1)t=2 = 4pt� t2=2� t=2.
Thus (p � t)2 � 3t2=4� t=4 � 3t2=4, yielding 2p � (2 +

p
3)t. Using Lemma 3.1 and the

fact that G[U ] is t-degenerate, we can label the unlabeled vertices of U with the labels
fM + 2; : : : ;M + (4 +

p
3)t+ 1g. This completes the proof.

The above results imply a polynomial time approximation algorithm for solving the
radio labeling problem (with pre-labeling) in t-degenerate graphs. Note, that the bound
in Theorem 3.2 can possibly be improved considerably. We pose the following conjecture.

Conjecture. If G is a t-degenerate graph and L0 is a pre-labeling of G, then there exists
a radio labeling extending L0 with span �M + 3t.

The upper bound in the above conjecture cannot be improved. For t = 1 this is clear
from earlier examples. (See the discussion on case (c) of Theorem 2.1.) Let us show it here
for general t by the following example. Let V be the union of disjoint sets A, B, C and
D, with jAj = jBj = jCj = t; jDj = t+ 1. Let A be a clique, and assume that each vertex
of B [ C is adjacent to every vertex from A. Finally assume B [ D induces a complete
bipartite graph. Let G be the graph on V with the described edges. One easily checks that
G is a t-degenerate graph. Pre-label the vertices of C with labels 3; 7; : : : ; 4t� 1 and of D
with labels 1; 5; : : : ; 4t+ 1. Then M = 4t+ 1 and none of the even labels less than M can
be used for labeling A [B. Since each vertex of A is adjacent to all vertices of A [B, we
lose t labels more, and the largest label we have to use is at least 7t+ 1 =M + 3t.
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4 Graphs with a bounded maximum degree

We now turn to graphs with a bounded maximum degree. Using similar proof techniques
as in the previous section, we will prove that p-RL(�) is polynomially solvable within this
class of graphs. We �rst prove the next technical result on t-degenerate graphs.

Theorem 4.1. Let G = (V;E) be a t-degenerate graph with maximum degree � and let
V 0 � V be the set of vertices that is pre-labeled by L0. If the number of unlabeled vertices
p = jV n V 0j � 4�(t+ 1), then L0 can be extended to a radio labeling of G with span M .

Proof. Let H = G[V n V 0] be the graph induced by the unlabeled vertices, and start with
the available labels 1; 2; : : : ;M . As long as H has edges we will apply the following labeling
procedure. Consider a vertex v inH of minimum positive degree. It has at most t neighbors.
We can label them all with unused labels because there are at most 2�� 2 blocked labels
among the unused labels and the number of available labels in every step is at least the
number of unlabeled vertices at that moment, which is always at least 4�. Adapt H by
removing the neighbors of v. In each step we reduce the number of unlabeled vertices by
at most t and increase the number of isolated vertices by one. Since p � 4�(t + 1), we
have q � 4� isolated vertices in H when H becomes edgeless.

We now show that the set Q of the remaining q isolated vertices of H can be labeled
with unused labels from the set f1; : : : ;Mg. Denote the set of such labels by C (it is clear
that jCj � q) and consider the auxiliary bipartite graph G0 with vertex partition Q [ C
where an edge fv; cg exists if and only if the vertex v of Q can be labeled with the label
c. It is suÆcient to show that G0 has a matching saturating all vertices of Q. Suppose
that there is no such matching. Then by standard matching theory there is a set A � Q
such that jAj = a and jN(A)j � a � 1 (where N(A) is the neighborhood of A in G0).
Let B = C n N(A). We have jBj � q � a + 1. Note that each label could be forbidden
for at most 2� vertices and, vice versa, that for every vertex at most 2� labels could be
forbidden. Therefore, since there are no edges between A and B, we have a � 2� and
q � a + 1 � jBj � 2�. But this implies q � 4� � 1, a contradiction. This completes the
proof.

From Theorem 4.1 we easily obtain the following complexity result for graphs with a
bounded maximum degree.

Corollary 4.2. Let k be a �xed positive integer. For every graph G with maximum degree
� � k and pre-labeling L0, p-RL(�) can be solved in polynomial time.

Proof. Each graph with maximum degree � is clearly �-degenerate. If at most 4�(�+1)
vertices of G are not pre-labeled by L0, then one can use a brute force algorithm to �nd a
radio labeling extending L0 with a minimum span, e.g. by checking all admissible labelings.
The time complexity of such a brute force algorithm is O(n4�(�+1)). If more than 4�(�+1)
vertices are unlabeled, then by Theorem 4.1 there is a radio labeling extending L0 with span
M (which is clearly the minimum), and from the proof of Theorem 4.1 it is not diÆcult to
check that such a labeling can be found in polynomial time.
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The above corollary shows that p-RL(l) and p-RL(�) have the same complexity be-
havior as RL for graphs with a bounded maximum degree, i.e. all three of the problems
can be solved in polynomial time. This picture changes if we restrict ourselves to graphs
which are k-colorable and for which a k-coloring is given (as part of the input) for some
�xed positive integer k. This is the topic of the next section.

5 Graphs with a bounded chromatic number

In this section we concentrate on radio labeling algorithms for graphs with a bounded
chromatic number, in particular for the case where a k-coloring of the graph (for a �xed
constant k) is provided as part of the input.

Related to Proposition 1.1 we discussed the useful equivalence between RL and the
Traveling Salesman problem TSP(2,1). We now adapt this equivalence to capture
the restrictions of the pre-labeling problem. Let L be a labeling of a graph G = (V;E) on n
vertices. The path P = (v1; v2; : : : ; vn) corresponding to L visits the vertices by increasing
labels, i.e. for all 1 � a < b � n we have L(va) < L(vb). P is a path in the complete graph
KG; its weight w(P ) is measured according to the edge weights w in KG as introduced in
the paragraph preceding Proposition 1.1.

Lemma 5.1. Let L0 be a pre-labeling of a subset V 0 � V of a graph G = (V;E), and let
P = (v1; v2; : : : ; vn) be an ordering of the vertices of G. Then the path P in KG corresponds
to some extension L of L0 to V , if and only if the following two conditions are satis�ed:

(T1) For any 1 � a < b � n with va; vb 2 V 0, the weight w(va; va+1; : : : ; vb) of the subpath
from va to vb is at most L0(vb)� L0(va).

(T2) Let c be the smallest index with vc 2 V 0. If c 6= 1, then the weight w(v1; v2; : : : ; vc) of
the subpath from v1 to vc is at most L0(vc)� 1.

For any path P that satis�es (T1) and (T2), a labeling L extending L0 with the smallest
possible span can be computed in polynomial time O(n).

Proof. Suppose P corresponds to a labeling L that extends L0. Let a < b, va, vb 2 V 0.
Consider the path va; va+1; : : : ; vb. By induction, we see that for all i with 0 � i � b � a,
L(va+i) is at least the sum of L(va) and the weight w(va; va+1; : : : ; va+i) of the subpath
from va to va+i. So, L(vb) � L(va)+w(va; va+1; : : : ; vb), and (T1) follows. In a similar way,
it can be shown that (T2) must hold.

It remains to prove the `if'-statement. Consider a path P that satis�es (T1) and (T2).
We construct the following labeling L: If v1 2 V 0 then we set L(v1) = L0(v1), and if v1 =2 V 0

then we set L(v1) = 1. For i � 2 and vi 2 V 0, we set L(vi) = L0(vi). Finally for i � 2
and vi =2 V 0, we set L(vi) = L(vi�1) + 1 if fvi; vi�1g 62 E and we set L(vi) = L(vi�1) + 2
otherwise.

It can be seen that the above procedure in fact computes a labeling L with the smallest
possible span for P among all labelings that extend L0.
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Now let G = (V;E) be a graph with a given k-coloring with color classes I1; I2; : : : ; Ik.
Let L0 be a pre-labeling of a subset V 0 � V with jV 0j = l. Let L be a radio labeling of G
that extends L0, and let P = (v1; v2; : : : ; vn) be the path corresponding to L. Consider two
consecutive vertices va and va+1 along this path with va 2 Ii and va+1 2 Ij. If i = j, then
va and va+1 form a monochromatic edge. If i 6= j, then va and va+1 form a bichromatic
edge of type (i; j).

Lemma 5.2. Let G = (V;E) be a graph with a k-coloring with color classes I1; I2; : : : ; Ik.
Let L0 be a pre-labeling of a subset V 0 � V with jV 0j = l. Then there exists a radio labeling
L of G extending L0 with the smallest possible span, such that its corresponding path P
satis�es the following two conditions:

(P1) For any bichromatic edges fva; va+1g and fvb; vb+1g of type (i; j) with a < b and i 6= j,
there exists a pre-labeled vertex vc 2 V 0 on the subpath (va+1; : : : ; vb).

(P2) P contains at most (l + 1)k(k � 1) bichromatic edges.

Proof. Among all radio labelings of G that extend L0 with the smallest possible span,
consider the labeling L for which the corresponding path P = (v1; v2; : : : ; vn) contains the
largest possible number of monochromatic edges.

Suppose that this path P violates property (P1). Then there exist two bichromatic
edges fva; va+1g and fvb; vb+1g of type (i; j) with a < b and i 6= j, such that none of the
vertices on the subpath (va+1; : : : ; vb) is pre-labeled; see Figure 2. We replace the subpath
(va; va+1; va+2; � � � ; vb�1; vb; vb+1) of P by (va; vb; vb�1; vb�2; � � � ; va+1; vb+1), and thus pro-
duce a new path P �. Since the edges fva; vbg and fva+1; vb+1g are monochromatic, whereas
the edges fva; va+1g and fvb; vb+1g were not, the new path P � has more monochromatic
edges than P . Moreover, if we compute a labeling L� for P � as indicated in the proof of
Lemma 5.1, then the span of L� is at most the span of L. This contradicts our choice of
the labeling L. Hence, P satis�es property (P1).

b

va 2 Ii

va+1 2 Ij

b

b

b

vb 2 Ii

vb+1 2 Ij
b

Figure 2: A step in the proof of property (P1) in Lemma 5.2.

Property (P2) is a simple quantitative consequence of property (P1): The pre-labeled
vertices split P into l+1 subpaths, and any such subpath contains at most one bichromatic
edge of type (i; j). Since there are only k(k � 1) possible types of bichromatic edges, the
bound in property (P2) follows.
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Theorem 5.3. Let G = (V;E) be a graph with a given k-coloring with color classes
I1; I2; : : : ; Ik. Let L0 be a pre-labeling of a subset V 0 � V with jV 0j = l. Then a ra-
dio labeling L of G extending L0 with the smallest possible span can be computed in time
O(n4(l+1)k(k�1)).

Proof. The proof is based on Lemma 5.2. The idea is to use a brute force algorithm that
enumerates all possible subsets of bichromatic edges as described in property (P2), and
then tries to extend them to a radio labeling. This is done in the following way.

1. Compute all possible subsets S of at most (l + 1)k(k � 1) bichromatic edges.

2. For each such subset S, compute all possible functions f : S ! f1; : : : ; n� 1g. The
interpretation of f(va; va+1) = m is that va is the mth vertex and that va+1 is the
(m+ 1)th vertex on the path.

3. Compute all possible functions g : V 0 ! f1; : : : ; ng. The interpretation of g(vc) = m
is that vc is the mth vertex on the path.

4. For each subset S and all functions f and g, determine whether there exists a com-
patible path. If such a path exists, then compute a corresponding labeling with the
smallest possible span according to Lemma 5.1.

5. Output the detected labeling with the minimum span.

There are O(n2(l+1)k(k�1)) possibilities for subset S in the �rst step. There are
O(n(l+1)k(k�1)) possible functions f in the second step and O(nl) possible functions g in
the third step. Below, we will show that the fourth step can be performed in O(n2) time.
This yields an overall time complexity of at most O(n4(l+1)k(k�1)).

So how do we check compatibility in the fourth step? If any vertex is assigned to two
or more distinct positions (for instance, since it is incident with two or more bichromatic
edges in S), then there clearly exists no compatible path. Also, if there are two or more
distinct vertices assigned to the same position (for instance, by f and by g), then there
clearly exists no compatible path. So from now on we will assume that every vertex goes
to at most one position, and any position receives at most one vertex. Then the functions
f and g fully determine the positions of all pre-labeled vertices, and the positions of all
vertices on bichromatic edges in the corresponding path. What about the empty positions?
Consider a maximal piece Z of empty positions, and let z` and zr be the vertices assigned to
the position immediately to the left of Z and immediately to the right of Z, respectively.
Then z` and zr must belong to the same color class Ij. Otherwise, there is a missing
bichromatic edge, and there can not be a compatible path. So we will assume that z` and
zr belong to the same color class Ij; then the vertices that go into positions in Z must all
be in Ij. This determines the color class for all empty positions.

We randomly assign the remaining vertices to the empty positions, subject to the
condition that every empty position receives a vertex of the right color class. If no such
assignment exists, then there can not be a compatible path. Otherwise, all these random
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assignments yield a path with the same sequence of edge weights w in KG. We �nally check
whether conditions (T1) and (T2) of Lemma 5.1 are satis�ed by the resulting path, and
use this lemma to compute a corresponding labeling with the smallest possible span.

For each of the graph classes in the following corollary, it is possible to construct a
vertex coloring with a constant number of colors in polynomial time. Hence:

Corollary 5.4. The radio labeling problem p-RL(l) is polynomially solvable

� on the class of planar graphs,

� on any class of graphs of bounded treewidth,

� on the class of bipartite graphs.

The above results show that p-RL(l) is solvable in polynomial time for graphs with
a bounded chromatic number and a given coloring. This result does not carry over to
the more general labeling problem p-RL(�) where the number of pre-labeled vertices is
part of the input. We next show that p-RL(�) is NP-hard even when restricted to 3-
colorable graphs with a given 3-coloring; this result then easily generalizes to k-colorable
graphs (k � 4) with a given k-coloring. We use a polynomial time transformation from
the following problem.

Partition into triangles
Instance: A graph G = (V;E), with jV j = 3q for a positive integer q.
Question: Is there a partition of V into triangles, i.e. into V1; V2; : : : ; Vq such

that G[Vi] = K3?

This problem remains NP-hard even when the graph G = (V;E) is 3-colorable and a
partition of V into independent sets I1; I2; I3 with jI1j = jI2j = jI3j, is given. This can be
proved by replacing Exact cover by 3-sets in the reduction on p. 68{69 of Garey &
Johnson [10] by 3-Dimensional matching.

Theorem 5.5. For any �xed k � 3, problem p-RL(�) is NP-hard even when the input is
restricted to graphs with a given k-coloring.

Proof. Let us �rst prove the theorem for k = 3. Let G = (V;E) be a graph and let I1; I2; I3,
jI1j = jI2j = jI3j = q, be a partition of V into three independent sets. We construct a
graph F = (VF ; EF ) and a pre-labeling L0 of F such that there is a radio labeling of F
with span � K extending L0 if and only if V can be partitioned into triangles.

The graph F is obtained as follows: VF is the disjoint union of four independent sets
V A
1 ; V

B
1 ; V2; V3 of cardinality q. (The vertices of V A

1 ; V
B
1 correspond to I1, the vertices of
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V2 to I2 and those of V3 to I3. Also for simplicity we denote vertices from VF and the
corresponding vertices from V by the same letters.)

EF = ffu; vg : u 2 V A
1 ; v 2 V2 and fu; vg 62 Eg [ (1)

ffu; vg : u 2 V B
1 ; v 2 V3 and fu; vg 62 Eg [ (2)

ffu; vg : u 2 V2; v 2 V3 and fu; vg 62 Eg [ (3)

ffu; vg : u 2 V A
1 ; v 2 V3g [ (4)

ffu; vg : u 2 V B
1 ; v 2 V2g: (5)

The vertices of V A
1 are pre-labeled with integers 4i � 3 and the vertices of V B

1 with 4i,
where 1 � i � q.

Notice that F is 3-colorable because the sets V A
1 [V B

1 ; V2; V3 are independent. We claim
that there is a radio labeling with span at most K = 4q in F extending the pre-labeling if
and only if the vertex set V of G can be partitioned into q triangles.

If there is such a radio labeling in F with span K, then every label from f1; 2; : : : ; Kg
should be used in this labeling. Then for every i with 1 � i � q the vertices labeled with
4i � 3 and 4i are in V A

1 and V B
1 (because of the pre-labeling). Then by (5), the vertices

labeled with 4i� 2 should be in V2, and by (4) the vertices labeled with 4i� 1 should be
in V3. Then by (1), (2) and (3), the vertices in G corresponding to vertices labeled with
4i�3; 4i�2; 4i�1; 4i induce a triangle in G. Hence, V can be partitioned into q triangles.

For the converse, consider a partition into triangles of V in G. For every triangle with
vertex set fv1; v2; v3g, vi 2 Ii, 1 � i � 3, the corresponding four vertices vA1 2 V A

1 ; v
B
1 2

V B
1 ; v2 2 V2; v3 2 V3 in F can be labeled with four consecutive labels. The vertices vA1 ; v

B
1

are pre-labeled with 4j� 3 and 4j for some j; by (1), vertex v2 can be labeled with 4j� 2,
and by (2), (3), vertex v3 can be labeled with 4j � 1. Therefore, F has a radio labeling
extending the pre-labeling with at most 4q = K labels. This settles the case for 3-colorable
graphs with a given 3-coloring.

To prove the theorem for any �xed k � 3, we add to the graph F two disjoint cliques of
size k and pre-label the vertices of one clique with labels f4q+1; 4q+3; : : : ; 4q+2k�1g and
of the other clique with f4q+2; 4q+4; : : : ; 4q+2kg. Then the new graph is k-colorable, and
using the previous arguments it is clear that this graph has a radio labeling with 4q + 2k
labels extending the pre-labeling if and only if the graph G has a partition into triangles.
This completes the proof.

6 NP-completeness results for cographs

We now turn to the last class of graphs for which RL is known to be polynomially solvable,
namely the class of cographs, i.e. graphs without an induced path on four vertices. Using
an easy reduction from 3-partition we show that p-RL(�) is NP-hard for cographs.

Theorem 6.1. Problem p-RL(�) is NP-hard for cographs.

Proof. We use a reduction from the problem 3-partition stated below to p-RL(�).
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3-partition
Instance: A set A of non-negative integers a1; : : : ; a3m, and a bound B, such

that for all i with 1 � i � 3m, (B+1)=4 < ai < B=2 and
P

1�i�3m ai = mB.
Question: Can A be partitioned into m disjoint sets A1; A2; : : : ; Am such thatP

ai2Aj
ai = B for every j with 1 � j � m?

3-partition is NP-complete in the strong sense (Problem SP15 in Garey & Johnson [10]).
Let the set A = fa1; : : : ; a3mg and the bound B be an instance of 3-partition. Con-

sider a complete (3m+ 1)-partite graph GA with vertex partition V = V0 [ V1 [ : : :[ V3m,
where jV0j = m � 1 and jVij = ai for every i with i = 1; : : : ; 3m. This means there is
an edge between a vertex v 2 Vi and a vertex w 2 Vj, if and only if i 6= j. Clearly, GA

is a cograph because it obviously does not contain a path on four vertices as an induced
subgraph. Pre-label the vertices v1; : : : ; vm�1 of V0 using the labels L0(vj) = j(B + 5)� 1,
where j = 1; : : : ; m� 1 and let K = m(B+5)� 3. We show that the pre-labeling L0 of GA

can be extended to a radio labeling with span � K if and only if A can be 3-partitioned.
If there is a 3-partition A1; : : : ; Am, then each of the sets Ai contains exactly three

elements ai1 ; ai2 ; and ai3 . Consider then for every i = 1; : : : ; m the following labeling:

� Vertices of the set Vi1 are labeled with
f(i� 1)(B + 5) + 1; : : : ; (i� 1)(B + 5) + ai1g;

� Vertices of the set Vi2 are labeled with
f(i� 1)(B + 5) + ai1 + 2; : : : ; (i� 1)(B + 5) + ai1 + ai2 + 1g;

� Vertices of the set Vi3 are labeled with
f(i� 1)(B + 5) + ai1 + ai2 + 3; : : : ; (i� 1)(B + 5) + ai1 + ai2 + ai3 + 2g.

Since ai1 + ai2 + ai3 = B, this produces a radio labeling extending the pre-labeling L0 with
span � K.

For the converse, suppose that a radio labeling of GA extending the pre-labeling L0

with span � K exists. For j = 1; : : : ; m, let Bj = f(j � 1)(B + 5) + 1; : : : ; j(B + 5)� 3g
where j = 1; : : : ; m. We call Bj a range. Vertices in V1 [ : : : [ V3m must get a label in a
range Bj, 1 � j � m. Note that for each range Bj, jBjj = B + 2. Each range must have
at least two unused labels: labels given to vertices in di�erent sets Vi must di�er by at
least two, and each jVij = ai < B=2, thus each range contains either vertices from at least
three sets Vi (and hence at least two unused labels), or vertices from at most two sets Vi,
and hence at least B + 2 � 2(B=2 � 1) = 4 unused labels. Since

P3m
i=1 jVij =

P3m
i=1 ai =

mB =
Pm

j=1(jBjj � 2), there are exactly two unused labels in each range Bj. For each i,
1 � i � 3m, consider the highest label `i given to a vertex in Vi. The label `i + 1 either
does not belong to a range (this is true for exactly m such labels, as there are m ranges),
or is an unused label in a range. Thus, every unused label in a range is one larger than the
highest label among all vertices in a set Vi, for some i, 1 � i � 3m. As a consequence, all
labels of a set Vi must be assigned to the same range. Now, let Aj be the set of values ai
such that vertices of Vi have their label in Bj. As Bj contains exactly B used labels, we
have for each j,

P
ai2Aj

ai = B. This completes the proof.
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We do not know whether p-RL(l) is NP-hard for cographs, and leave it as one of the
open problems in the next section.

7 Open problems

In this paper we initiated the study of two versions of the radio labeling problem in which
a pre-labeling is assumed. Many questions remain open, a few of which are listed below:

� We leave the complexity of any of the variants of Radio Labeling (RL, p-RL(l)
and p-RL(�)) for interval graphs as open problems.

� Another open problem concerns the computational complexity of p-RL(l) for
cographs. Recall that NP-hardness of p-RL(�) restricted to cographs is proved in
this paper, and that RL is polynomial for cographs.

� Our results imply that p-RL(l) is polynomial for bipartite graphs. On the other
hand, we proved that p-RL(�) is NP-hard for 3-partite graphs even if a 3-coloring
of the graph is given. The complexity of p-RL(�) for bipartite graphs is open.

� By Theorem 5.3, p-RL(l) is polynomial for planar graphs and graphs of bounded
treewidth. The complexity of p-RL(�) for these graph classes is open.
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