Model-Based Reinforcement Learning
in Dynamic Environments

Marco A. Wiering
marco@cs.uu.nl
Intelligent Systems Group
Institute of Information and Computing Sciences
Utrecht University

Abstract

We study using reinforcement learning in particular dynamic environ-
ments. Our environments can contain many dynamic objects which makes
optimal planning hard. One way of using information about all dynamic
objects is to expand the state description, but this results in a high di-
mensional policy space. Our approach is to instantiate information about
dynamic objects in the model of the environment and to replan using
model-based reinforcement learning whenever this information changes.
Furthermore, our approach can be combined with an a-priori model of the
changing parts of the environment, which enables the agent to optimally
plan a course of action. Results on a navigation task in a Wumpus-like
environment with multiple dynamic hostile spider agents show that our
system is able to learn good solutions minimizing the risk of hitting spi-
der agents. Further experiments show that the time complexity of the
algorithm scales well when more information is instantiated in the model.

Keywords: Reinforcement Learning, Dynamic Environments, Model-based
RL, Instantiating Information, Replanning, POMDPs, Wumpus

1 Introduction

Reinforcement learning. Reinforcement learning (Sutton and Barto, 1998;
Kaelbling et al., 1996) can be used to learn to control an agent by letting the
agent interact with its environment and learn from the obtained feedback (re-
ward signals). Using a trial-and-error process, a reinforcement-learning (RL)
agent is able to learn a policy (or plan) which optimizes the cumulative reward
intake of the agent over time. Reinforcement learning has been applied success-
fully in particular stationary environments such as in checkers (Samuel, 1959),
backgammon (Tesauro, 1992), and chess (Baxter et al., 1997). Reinforcement
learning has also been applied to find good solutions for difficult multi-agent
problems such as elevator control (Crites and Barto, 1996), network routing
(Littman and Boyan, 1993), and traffic light control (Wiering, 2000). RL has
only been used few times in single agent non-stationary environments, however.
Path-planning problems in non-stationary environments are in fact partially
observable Markov decision problems (POMDPs) (Lovejoy, 1991), which are

known to be hard to solve exactly. Dayan and Sejnowski (1996) concentrate
themselves on the dual control or exploration problem where there is the need
of detecting changes in a changing environment, while the agent should act to
gain as much reward as possible. Boyan and Littman (2001) use a temporal
model to take changes of the environment into account when computing a pol-
icy. In this paper we are interested in applying RL to learn to control agents
in dynamic environments.

Dynamic environments. Learning in dynamic environments is hard,
since the agent needs to stay informed about the status of all dynamic ob-
jects in the environment. This can be done by augmenting the state space with
a description of the status of all dynamic objects, but this may quickly cause a
state space explosion. Furthermore, the agent may not exactly know the status
of an object and therefore has to deal with uncertain information. Using un-
certain information as part of the state space is hard, since it makes the state
space continuous and high dimensional.

Instantiating information in the model. There exists another method
for using knowledge about dynamic objects: instantiate the information about
the dynamic objects in the world model and then use the revised world model
to compute a new policy. E.g. if a door can be open or closed, and we know
whether the door is closed, we can set new transition probabilities between
states in the world model such that this information can be used by the agent.
Once the model is updated using the currently available information, dynamic
programming-like algorithms (Bellman, 1957; Moore and Atkeson, 1993) can
be used to compute a new policy. In this way, we have an adaptive agent
which takes currently known information into account for computing actions,
and which replans once the dynamic information changes. This is hard to do
with other planning methods, especially for closed loop control in stochastic dy-
namic environments. Furthermore, the agent could also instantiate information
received by communication which can be useful for multi-agent reinforcement
learning. Although sharing policies (Tan, 1993) is one way for cooperative
multi-agent learning, communication with instantiating information can also
be used for non-cooperative or semi cooperative environments.

Using prior knowledge. Often reinforcement learning is used to learn
control knowledge from scratch, i.e. without using a-priori knowledge. We
know, however, that the use of some kind of a-priori knowledge can be very
beneficial. For example, if particular actions are heavily punished we do not
want to explore those actions, but rather reason about the consequences of these
actions using an a-priori designed model. A-priori knowledge can also be used to
model a dynamic environment so that this knowledge can be presented to the RL
agent. This enables the agent to reason about the dynamics of the environment
which may be necessary to solve a particular problem, where problems may
arise one after the other. As an example think about an agent which is walking
in a city and uses RL to learn a map of the city. After some time, the agent may
have the desire to drink something in a bar. Once the agent enters some bar,
it could use an a-priori model of bars to understand which dynamic entities,
such as a barkeeper, other customers, tables and chairs etc. play a role in the
bar-setting. So it can use this model, fill in the actual situation using sensor

data (e.g., vision) and compute a policy (or plan) to attain its current goal. If
the agent discovers more information about particular (dynamic) entities, it can
again instantiate this in the model of the current bar situation and recompute
a policy. In this way, the RL agent does not need to try all its actions, but can
efficiently compute a particular plan suited for the situation at hand. In this
paper, we will also study using a-priori knowledge for learning to solve problems
in dynamic partially observable environments.

Outline of this report. We will describe model-based RL in Section 2.
Then using instantiated information is described in Section 3. Then we describe
the experimental setup and results in Section 4. Section 5 provides a discussion
which relates our framework to POMDPs and describes the limitations of the
current approach and proposes possible extensions. Finally, Section 6 concludes
this paper.

2 Model-Based Reinforcement Learning

In this section we describe model-based reinforcement learning (MBRL), and in
particular prioritized sweeping (Moore and Atkeson, 1993; Wiering and Schmid-
huber, 1998) which is used in our current experiments. The main reason for
using model-based RL is that instantiating information is possible with these
algorithms, whereas it is not possible to combine instantiating information with
direct model-free RL algorithms such as Q-learning (Watkins, 1989). The rea-
son for using prioritized sweeping is that this algorithm is very eflicient in
managing the necessary updates of the Q-function.

2.1 Markov Decision Problems

Although we study dynamic environments, we use the well-known Markov de-
cision process framework as a model of the environment and task. This means
that policies will be computed based on the current state of the Markov de-
cision problem. If there are dynamic changes in the environment, we change
the underlying transition and reward functions, and recompute the policy. This
will be explained in section 3.

We consider a finite set of states S = {S1,S2,..., S}, a finite set of actions
A, and discrete time steps t = 1,2,3,.... Let s; denote the state at time
t, and a; = II(sy) the action, where II represents the agent’s policy mapping
states to actions. The transition function P with elements Pj;(a) := p(si41 =
jlst = i,a; = a) for i,j € S defines the transition probability to the next
state sy11 given s; and ay. A reward function R maps state/action/state tupels
(i,a,7) € S x A x S to scalar reinforcement signals R(i,a,j) € IR. A discount
factor 7y € [0,1] discounts later against immediate rewards. The agent’s goal is
to select actions which maximize the expected long-term cumulative discounted
reinforcement, given an arbitrary state € S. For this goal, the agent learns
two different value functions. The value V(3) is a prediction of the expected
discounted cumulative reward to be received in the future, given that the agent

is currently in state 7 and policy II will be used in the future:
o
V(i) = EQ_ ¥*R(sk, (sk), sp+1)]s0 = 4)
k=0

Action evaluation functions (Q-functions) Q' (i, a) return the expected fu-
ture discounted reward for selecting action a in state ¢, and subsequently exe-
cuting policy II:

Q"(i,a) = 3 Pij(a)(R(i;a,) +7V"(5))
J

where V! is defined as: V(i) = max, Q"(,a). By setting:
I1(3) = argmaz,Q" (i, a)

for all states ¢ we then iteratively improve the policy.

2.2 Estimating a Model

In reinforcement learning we often do not initially possess a model containing
the transition and the reward functions, and therefore we have to learn these
from the observations received during the interaction with the environment.
Inducing a model from experiences can be done by counting the frequency of
observed experiences. For this the agent uses the variables:

Cij(a) := number of transitions from state i to j after executing action a.

C; (a) := number of times the agent has executed action a in state i.

R;j(a) := sum of all immediate rewards received after executing action a in
state ¢ and stepping to state j.

A maximum likelihood model (MLM) is computed as:

Py = Gl 6o g

After each experience the variables are adjusted and the MLM is updated. In
deterministic environments one experience per state/action pair (SAP) is suffi-
cient to infer the true underlying model. In stochastic environments, however,
we need to explore the effects of an action in a state ad infinitum.

and R(i,a,j) :=

2.3 Prioritized Sweeping (PS)

Dynamic programming (DP) techniques (Bellman, 1957) could immediately be
applied to the estimated model, but online DP, which updates the complete
value function with value iteration after each step, tends to be computationally
very expensive. Although offline DP which recomputes the policy after a com-
plete trial, would be more efficient, online updating is much better for efficient
exploration and is especially needed in dynamic environment. To speed up on-
line DP algorithms in complex environments, some sort of efficient update-step
management should be performed.

This can be done by prioritized sweeping (PS) (Moore and Atkeson, 1993)
which assigns priorities to updating the Q-values of different state/action pairs
(SAPs) according to their relative update sizes. Following the update of a
state-value, the state’s predecessors are inserted in a priority queue. Then the
priority queue is used recursively for backpropagating the update of the states
with highest priority.

Moore and Atkeson’s PS (M+A’s PS) calculates the priority of some state
by checking all transitions to updated successor states and identifying the one
whose update contribution is largest. Our variant allows for computing the
ezact size of updates of state values since they have been used for updating the
Q-values of their predecessors, and yields more appropriate priorities. Unlike
our PS, M+A’s PS cannot detect large state-value changes due to many small
update steps, and will forget to process the corresponding states.

Our implementation (Wiering, 1999) uses a set of predecessor lists Preds(j)
containing all predecessor states of state j. We denote the priority of state ¢
by |A(%)|, where the value A(¢) equals the change of V (i) since the last time it
was processed by the priority queue. To calculate it, we constantly update all
Q-values of predecessor states of currently processed states, and track changes
of V(i). The details are given below.

Our Prioritized Sweeping:

1) Promote the most recent state k to the
top of the priority queue
2) V a do: R)
3 Q(k,a) := X; Pij(a)(R(k, a,7) + 7V (j))
4) While n < Upgz AND the queue is not empty
5 Remove the top state s from the queue
6 A(s):=0
7 V Predecessor states ¢ of s do:
8 V(i) := V(i)
9V a do:
10 Q(i,a) := ¥; Bj(a)(R(i, a, §) + 1V (5))
11 V(i) := max, Q(4,)
12 A(i) :== A + V(i) = V'(4)
13 If |A(i)] > €
14 Promote i to priority |A(i)]
15 n:=n+1

The parameter U,,q, is the maximal number of updates to be performed
per update-sweep. The parameter ¢ € IRT controls update accuracy.

3 Instantiating Information

For particular environments with dynamic objects, the agent should have in-
formation about the status (e.g., position) of these objects. One way of using
this information is to expand the state space to include the state of all dynamic
objects. However, suppose that we possess information about a dynamic object

in the form of occupancy probabilities. Clearly it is not desirable to include
these occupancy probabilities in the state space, since this would result in a
high dimensional continuous state space which makes planning and the use of
dynamic programming-like algorithms hard.

Instantiating information. Another way is to instantiate the informa-
tion about the dynamic object in the world model. E.g. if we have informa-
tion about occupancy probabilities of robots in a soccer game, we may adjust
the model’s transition probabilities to account for possible hits with obstacles.
Thus, expected occupancy probabilities of a hostile agent can be used for set-
ting transition probabilities to a (possibly terminal) encounter with the hostile
agent. In this paper we only study replanning where collision avoidance plays
the main role. Therefore we model all collisions with other agents as highly
punished transitions to terminal states. In case an agent could pick up objects
such as a tool (e.g., a hammer) and can perform actions with that tool, the
problem becomes more complex. In that case, we need to include the objects
as part of the state space, or we need to have multiple temporal branches be-
tween world models. This may quickly become intractable, and therefore in
this paper we only consider terminal hits with dynamic objects.!

An example of instantiating information. Suppose that the agent
receives new information that the hostile agent has probability p(j) to occupy a
specific state j. If the agent makes a step after which she meets the hostile agent,
she dies. How do we then change the model to incorporate the information
about occupancy probabilities of the hostile agent? Clearly we have to reset the
transition counters and reward variables, since this is what our model consists
of. We define the transition counter from state ¢ to some terminal state (H for
hit) which is occupied by a hostile agent if action A is executed as Cjp(a). Now
if some state action pair (i,a) can make a transition to state j with probability
]%-(a) and we know the probability that a hostile agent occupies state j is p(j),
we set the transition counter for modelling transitions from i to the terminal
state H (hit) to:?

oy PP (0) (G a) — Ciff(a)
Cula): 1 - p(j)By(a)

and
Ci(a) := Ca) — C¥(a) + Cin(a)

In this way the new probability Pz (a) will become p(j)Pij(a). We set the
reward R;y(a) to Rp.

General algorithm. In case an action a from a state ¢ can result in mul-
tiple states j all with a different probability of being occupied by the hostile
agent, we cannot set the transition counter to one of these transitions imme-
diately, but have to sum the transition counter over all transitions to states
which may be occupied by a hostile agent. For this we first reset all counters

'In principle any state transition could be modelled, as long as there are not novel objects
involved which were not already included in the state description.
%If p(§)Pij(a) = 1, we set the transition counter to a very large number.

to hostile states to 0, and then recompute the counters using the occupancy
probabilities. The following algorithm does this:

Instantiating information :

1) For all state-action pairs (i,a) which are in a
possible area of the hostile agent do:
2) Cz(a) = CZ((I,) - C,H(CI,)
3) CzH(a) =0
4) For all hostile areas D do:
5) For all (i,a) pairs which can lead to
some successor state k in D do:
6) For all successor states j of (i,a)
7) If state j falls inside D with prob.p(j)
8) Cg = Cij(a)p(y)
9) CT = Cij(a)
10) poia == Cin(a)/Ci(a)
11) prew ::C{Dij(a)CH/CT o
il@)*(Prnew tPold)—CiH (G
12) AC:= S ((f—pn:f—l;;d) ()

13) CZH(CI) = CZH(G,) + AC
142 Cz(a) = Cz(a) + AC
15) R(’L, a, H) = Rhit

This algorithm exactly recomputes the desired probabilities:

P(Hli,a) = ZPzas H|s)

for transitions from a state/action pair to a hit with some hostile agent (dynamic
obstacle) and renormalized the other probabilities. Note that rewards R (i, a, H)
are set to Ry;; which is predefined in the reward function.

Using prioritized sweeping to replan. After we instantiated all newly
available information, we store all changed states at the top of the priority
queue and use prioritized sweeping to recompute the policy. This ensures that
the new information is immediately used.

4 Experiments

We have executed two sets of experiments (Wumpus IT and Wumpus III) to
validate the usefulness of our method. In both experiments we have to deal
with partial observability of the dynamic hostile spider agents. In the first set
of experiments, the agent uses an a-priori model to reason where the dynamic
hostile agents might be. In the second set of experiments the agent uses a
limited sensor to observe where the hostile agents are. For the second set of
experiments we also study time complexity issues for updating the model after
instantiating new information.

4.1 Wumpus II

The first set of experiments consists of a number of different experiments. In the
first experiment we have a small maze and one hostile spider agent, and in the
second experiment we have a larger maze and 5 (10 or 20) moving spider agents.
The agent needs to find the goal in the least number of steps without hitting
a spider. The agent cannot see the spider, however. If the agent hits a spider
it dies and knows the region where the spider was. A spider agent occupies a
particular nest and moves randomly around the nest so that all states in the
region of an active spider nest have the same occupancy probability. If the agent
finds an active nest, the agent can smell whether there is an active spider in
the region or not. Figure 1 shows the first environment used in the experiments
which consists of two spider nests. For the region around the spider nest, we
use 25 states. During a trial, the spider moves randomly in the region around
the nest. After a trial, the spider may move to a different nest or goes to its
current nest.

Figure 1: The maze environment containing two spider nests X which may be
used by the spider. The start and goal positions are indicated by S and G. The
regions around the spider nests denote which states the spider may occupy if it
uses a particular nest. The agent and the spider can move in 4 directions.

4.1.1 The Model of the Environment

The agent knows its exact (X,Y’) location at all times, but cannot observe
the spider agent. It only knows the exact spider location when it hits the
spider, but then it dies so that information is only partially useful, since a new
trial starts and the spider is reset to the position of the new active, possibly
neighboring, spider nest. After each trial the spider has a particular probability
Ppove = 1 — Pyiqy of moving to one of the neighboring nests.

Modelling occupancy probabilities. In the beginning the agent does
not know where the spider nests are. It has to discover these for itself, but
once it hits a spider nest, it remembers its location in (X,Y’) coordinates. The

a-priori knowledge of the agent consists of its knowledge of the size of the region
of a spider nest in which the spider moves randomly, and the probabilities that
the spider makes a transition to a new neighboring spider nest after each trial®.
The agent uses a probabilistic model of the spider’s location. The occupancy
probabilities P(S_spider) are computed by:

P(S_spider) = Z P(Active;) P(S_spider|Active;)

7

Here, the agent uses for hostile area 7 the probabilities: P(Active;) and the con-
ditional probabilities P(S_spider|Active;) to compute the probabilities P(S _spider).
The probability P(S_spider|Active;), that a spider occupies a specific state if
it travels through an active region, is set to 47 for the M (25) states surround-
ing a spider region and 0 to other states. Note that we model the stationary
distribution of the spider’s location.

Computing active nest probabilities. The first probability P(Active;)
models the probability that a spider agent occupies a particular region ¢ and
follows from the properties of the dynamic stochastic system. There are several
ways to get new information about the state of the system: (1) The agents finds
a nest and observes whether it is used by a spider or not, (2) The agent hits
the spider around some nest, (3) A new trial starts, and the agent knows that
the spider may have migrated to a neighboring nest. In case the agent finds
a spider nest, it can see whether the nest is active or not. In case the nest is
active it sets the probability P(Active;) to 1.0, and sets the probabilities for
the other nests to 0. If the nest is not active the agent sets the probability
P(Active;) to 0.0 and renormalizes the probabilities of the other nests.

Hitting the spider. In the same way, in case the agent hits the spider,
the agent knows that the region in which it was walking contained the active
nest, and sets the probability P(Active;) to 1.0 and the other nest probabilities
to 0.0. After an encounter with the spider, the agent dies and a new trial is
started.

Transition probabilities between nests. After each trial, the spider
may change its nest. In the small maze given above, the spider has probability
Pyiay = 0.9 of staying in the same nest and probability 0.1 of moving to the
other nest after each trial. Therefore we recompute the active nest probabilities
of the model after each trial by:

P(Activer) = 0.9P(Activer) + 0.1P(Actives)

And vice versa for the other nest.

Discovering nests. Since the agent can only set probabilities to non-zero
for nests it has discovered and knows that the spider can only move between
nests which are closer than a particular distance Manhattan D (which is set to 7
and defines the neighbourhood relation between nests), the probability cannot
be exactly computed in case the agent has not yet discovered all spider nests.
Therefore exploration is important to ensure all spider nests have been found.

3 Although learning this information is possible, it would require many interactions with
the spider or with spider nests and therefore take a very long time.

Using additional a-priori information. Finally, we use a-priori infor-
mation in the form of an initial state transition model. For each action in a
state (X,Y"), we set the transition counter to 1 for the successor state (i.e. state
(X +1,Y) for action East) as if actions were deterministic and no states are
blocked. This initial information can be easily obtained and used in case of
maze environments, and makes it easier to implement the instantiating infor-
mation procedure (to deal with unvisited states which may contain a spider).
Of course, initially the position of the goal and spider’s nests are unknown and
should be discovered by the agent. Furthermore, in case of maze-like environ-
ments as in the second maze (see Figure 3), the initial transition model in the
maze is less helpful, since maze-locations may be occupied. For this maze, we
therefore initialize the transition counters to 0.0001.

4.1.2 Experiments with the Small Maze

First we have executed experiments with the small maze given in Figure 1.

Systems. We compare using the a-priori spider model using instantiated
information to using model-based RL without using the spider model and in-
stantiated information. The second algorithm computes probabilities of hitting
the spider based on previous experiences resulting in a confrontation with the
spider. It does not use any kind of a-priori knowledge. With each system we
perform 10 simulations. The algorithm using prior knowledge has access to the
following information: the number of states in a spider region, the distance D
between neighboring spider nests, the probability Pyope = 1 — Pigtqy of spider
transitions between nests, the knowledge that a spider moves randomly in its
active region, and finally the initial state transition information to navigate in
deterministic empty mazes. Using this information, it keeps track of the spider
model which after a change in spider occupancy probabilities is instantiated in
the agent’s world model.

Problem description. The reward for hitting the spider is -5000, the
reward for reaching the goal state is 1000. The reward for an individual step
is -1. We experimented with a deterministic environment, with 10% noise, and
with 25% noise. If a noisy action is executed, the agent has probability 25% of
executing each of its actions. Spiders move randomly to neighboring squares
and can cross blocked states (except for the borders of the maze of course).

Parameters. After a coarse search through parameter space to find the
best learning parameters, we used the following setup: We use max-random
exploration with Pgz, = 0.5 — 0.0 (we anneal the exploration probability).
The discount factor v when using the spider model is set to 0.9999, the discount
factor without spider model is set to 0.95. The update accuracy ¢ is set to 1.0.
Finally, the maximal number of updates Uy, = 500000 (which we used to
make almost optimal use of the instantiated information possible).

Results. Figure 2(A) shows the average cumulative reward in 100 test tri-
als after each 50 steps during the first 1000 training steps in the deterministic
environment. Within 1000 steps, both methods have learned to find good solu-
tions, but using the model results quickly in near optimal performance. Figure
2(B) shows the obtained cumulative reward intake during each 100 test trials

10

120000 120000

No model 6.0 —— No model 0.0 —+——
model 0.0 - Spider mode! 0.0 -~
100000 1 100000 | NoModel 0.25 --x---
Spider model 0.25 @
80000
80000
% -l -§ 60000
= 40000 =
& g
?;5 20000 |+ § 40000 ~
< < 7
0r 20000 | ;
-20000 ol
-40000
L L L L -20000 L L * L
0 200 400 600 800 1000 0 5000 10000 15000 20000
Nr steps Nr steps

Figure 2: The results for the small maze environment containing two spider
nests. (A) shows learning results for the first 1000 steps. (B) shows the results
for much longer simulations. Results are averages over 10 simulations.

after each 1000 learning steps of the two different algorithms for the small maze
with deterministic actions and with 25% randomness in the action selection.
The figure clearly shows that using the spider-model outperforms not using the
model. Basically, the agent can reason about the spider’s location and use its
marginal information to compute optimal dynamic policies. Thus, the agent
always prefers to go through the region with the smallest probability of con-
taining the spider. This is impossible to learn without using the spider model,
although it is clearly beneficial in particular dynamic environments. The sim-
ulation for 20,000 steps costs 358 seconds for using the spider model and 12
seconds for not using it.

Table 1: Results for the systems with (With) and without (No) the spider
model. Noise refers to the amount of noise in the action execution. Goal/Spider
hit refers to the number of test trials resulting in a hit with the goal/spider.
Final reward denotes average reward of the last 100 test trials.

Model (noise) Goal hit Spider hit Final reward
With (0.0) 1927+ 8 73+ 8 79K + 10K
With (0.1) 1917 £ 12 83 £ 12 68K + 9K

Wlth (0.25) 1910 + 41 80 +£19 76K £ 11K

No (0.0) 1802 +20 198 +£20 44K + 31K
1)

)

No (0. 1782 £ 20 218 £20 36K + 23K
No (0.25 1717 £ 24 283 + 24 7K £ 25K

Table 1 shows the total number of goal hits and spider hits in a total of 2000
test trials (100 test trials after each 1000 steps in a 20,000 step simulation) and

11

the average reward intake during the last 100 test trials. The table clearly
shows that using the spider model leads to fewer hits (4% vs. 11%) with the
spider (and therefore a larger number of times the goal was reached). It should
be mentioned that during the initial trials most hits with spiders are made,
and that it is impossible to avoid spider hits completely — the position of
the spider can never remain completely known. The table also shows that
additional randomness does not lead to significantly more hits with the spider
when the spider model is used, The reason is that the agent learns to circumvent
the dangerous region in most trials, and therefore does not suffer much from
random actions which let the agent stay there longer. Additional randomness
decreases the performance of the RL agent without spider model drastically,
however. An interesting phenomena when using the spider model is that in
particular simulations, the agent has learned a path traversing the spider nest’s
location so that it is able to get more information whether the current path is
safe (nest is not active). If not, the agent plans a new path. In our current
work we have not exploited this information gain, however, see chapter 5 for a
possible extension of the algorithm which can be used for dual control.

4.1.3 Experiments with a Large Maze with Multiple Spiders

We have also experimented with a larger maze of size 50 x 50 (see Figure 3)
containing 30 possible locations for spider nests, and 5 spiders traversing 30%
of the maze. The maze also contains about 20% randomly distributed blocked
states and 20% penalty states.

Reward function. For hitting the goal, the agent receives a reward of
2500. For hitting the spider, the reward is -10,000. For hitting a blocked state,
the reward is -2, for hitting a penalty state, the reward is -10, and other steps
are rewarded by -1.

Parameters. The discount factor when using the model is set to 0.99999
which was used to make almost optimal use of the model possible. The discount
factor without spider model which worked best is 0.99. The exploration rule
Max-Random is used where the probability of selecting a random action is
annealed from 0.5 to 0.0. The maximum number of updates per step is 50,000.
The accuracy parameter € is set to 0.5.

Simulation set-up. We perform 10 simulations with each system. The
number of steps in a simulation is 200,000. After each 1,000 steps the systems
are tested a single trial using a maximum number of 10,000 test actions. Thus,
in total there are 200 tests. For these tests we compute the total number of
times the goal has been found and the number of times one of the spiders is hit.

Results. Table 2 shows the number of times the goal has been found and
the number of times a spider has been hit for different noise levels when Piqy
is set to 0.4. The table clearly shows that using the spider model leads to
many fewer hits with the spider. The number of hits with a spider is reduced
by a factor of 3 when the spider model is used. It is clear that the agent is
able to discover spider nests and to use the acquired information to plan paths
which circumvent going through locations with a large probability of containing
a spider. We can again observe that more randomness does not lead to worse

12

Figure 3: The large maze environment containing 30 spider nests (indicated by
an X in the shaded area) and 5 active spiders. Black fields denote impassable
walls. Dark grey fields denote penalty fields.

results when the spider model is used (the agent circumvents dangerous regions
altogether), whereas the results become much worse when the spider model is
not used.

Table 2: Results for the system with and without using the spider model. Noise
refers to the amount of noise in the action execution. Spider hits refers to the
number of test trials resulting in a hit with the spider.

System Noise Goal hits Spider hits

With Model 0.0 173+3 9+2
With Model 0.1 1735 12 + 4
With Model 0.25 1735 11+ 3
No Model 0.0 163+6 26 £ 6
No Model 0.1 1606 31 £ 7
No Model 0.25 152+ 7 42 £ 7

Table 3 shows the number of times the goal has been found and the number
of times a spider has been hit for values of Py, where the noise is set to
0. It shows that our approach works better when the environment is more
predictable. This indicates that the agent makes efficient use of the model.
Both systems find very good solutions to the more deterministic task in which

13

spiders only move around their same unique nests.

Table 3: Results for the system with using the spider model for different values
of the Py, parameter. Evidently, using a larger value for Py, leads to more
predictable environments so that the spider model is more accurate.

Model (Pyzqy) Goal hits Spider hits Time (min)

With (0.1) 167 + 6 12+5 122+25
With (0.4) 173 + 3 9+2 117 21
With (0.9) 183 + 3 4+2 84 £ 6
With (1.0) 196 + 2 0+0 31 + 15
No (0.1) 165+ 5 23+5 0.5+ 0.2
No (0.4) 163 £ 6 26+6 0.5+ 0.2
No (0.9) 168 +5 19+7 05+03
No (1.0) 184 +4 4+2 02+00

Although instantiating information and replanning works very well, the
computational time is significantly larger, since after each trial large portions
of the policy have to be updated. We have not explored using other learn-
ing parameters to speed up the learning time, however. In the second set of
experiments we study time complexity issues in more detail.

We finally performed experiments with different numbers of spiders. Table
4 show the results for both competitors when there are 5, 10, or 20 spiders,
Psiqy = 0.9 and the randomness in the action selection is 0.1.

Table 4: Results for the systems for different numbers of spiders.
Model Nr. of spiders Goal hits Spider hits

With 5 190 + 4 442
With 10 169 £ 5 16 + 3
With 20 132+ 6 37£5
No 5 164 £ 3 29 £5
No 10 121 + 41 69 + 35
No 20 85 + 14 112 + 14

Table 4 shows that when the spider model is used, the agent can circumvent
hitting one of the moving spiders in a much better way than when the model
is not used. This is also true with a large amount of dynamic hostile agents.

4.2 Wumpus III

In the second set of experiments we study complexity issues of the updating
algorithm in more detail. For this we use an agent with a limited sensor for
observing spiders which are close to the agent. When the sensor range is en-
larged, the agents receives more information. A sensor range of 5 means that
the agent observes the spider when the Manhattan distance is less than 5. If a
spider is seen, the state and its neighboring states are assumed to be occupied

14

with 20% probability. This information is then instantiated in the model. We
again use the large maze from Figure 3, and the same parameters as in the
previous experiment. The number of spider agents in these experiments is set
to 20. We computed the number of Bellman backups performed per time step
with prioritized sweeping and the number of items (changed states) which are
instantiated per time step. For plotting figure 4, we performed one simulation
with one sensor range (from 5 to 35) in which only 50,000 steps were executed.

Nr instantiations per time step Update complexity behaviors
200 T T T 35000 T T T T
30000 - With Model ——
[}
=
S 150
2 & 25000
P 3]
2 £ 20000
O 100 X g
3 With Model 15000 |
s £
B 2 10000 |
B s0f =)
5000 -
0 . . . 0
10 20 30 40 0O 30 60 90 120 150 180
Sensor size Instantiated Observations

Time complexity behavior

14

12 - With Model ——

0.8
06

Time (seconds)

04

02 -

0
0 7000 14000 21000 28000 35000
Updates per time step

Figure 4: The complexity results for the large maze when using a limited sen-
sor. Results are shown per step (performed action). (A) shows the number of
instantiated items (changed states) for different ranges of the sensor. (B) shows
how many updates are performed given the number of instantiated items. (C)
shows the time needed to perform all updates per step.

Figure 4 shows three figures which display two measured variables against
each other. The variables are: (a) The size of the limited sensor, (b) the average
number of instantiated observations (changed states) per step, (c) the average
number of updates performed per step, and (d) the average time (seconds)
needed to perform the updates for one step.* We can see three things: (1)
With a larger sensor range, the number of instantiated items increases faster
than linearly. This can be explained by the fact that the number of states
which the agent observes scales quadratically with the sensor range. (2) With
more instantiated items, the number of performed updates to recompute the

4The simulations were run on a Ultra Sparc 5, 333MHz.

15

policy increases more or less linearly (although we should mention that the
maximal number of updates is set to 50,000). (3) With more updates per step,
the time increases approximately linearly (since it is the most important factor
in a simulation). The longest experiments take about 1.2 seconds per step on
our computer. Thus, the figures show that the algorithm scales more or less
linearly with more instantiated information.

More detailed results are shown in Table 5. For these experiments we per-
formed 10 simulations in which 200,000 steps were executed. The table shows
that a larger sensor range than 10 does not need to lead to better performance,
although the smallest sensor range of 5 performs worst. The reason why very
large sensors do not work better, is that spiders move around, so it is hard to
compute a path for a large number of steps without needing to revise it after-
wards. Furthermore, the agent usually focuses on its current path. Thus, a
limited sensor range can already perform quite well on its own. This is useful,
since a smaller sensor requires much less computational time. Finally, one can
observe that the agent still sometimes hits one of the spiders. The reason is that
squares are only considered dangerous if they are the neighboring or current
square of an observed spider. This can cause the agent to get trapped easily,
especially since it performs 10% noisy actions.

Table 5: Results for the system with using the spider model for different sizes of
the sensor range. The complete simulation lasts for 200,000 steps. The number
of trials is the total number of test and learning trials.

Sensor Range Goal hits Spider hits Trials

With (5) 183+4 16+4 1335+47
With (10) 190+5 95 1409+39
With (15) 192+3 7£3 1362+103
With (20) 192+2 T+2 1423464
With (25) 191+2 8+2 1518+52

If we compare it to using the spider model from the previous experiments
(132 goal hits - 37 spider hits) in 200 trials versus (190 goal hits - 9 spider hits)
in 200 trials with the sensor of range 10, we can see that the limited sensor
performs much better than the a-priori reasoning module. The first problem
was much harder, however, since in the previous experiments spiders could not
be seen at all, and the agent purely had to rely on previous encounters with a
spider or spider nest. Still, both methods perform much better than not using
instantiating information at all (85 goal hits - 112 spider hits).

5 Discussion

POMDPs. Path-planning problems in environments with dynamic obstacles
are partially observable Markov decision problems (POMDPs), since the tran-
sition and reward functions are non-stationary, and there is uncertainty about
the true state of the world. Usually POMDPs are solved by using a belief vector

16

which models the probabilities an agent is in each of the possible states. In case
of an environment with dynamic agents, we can use a belief vector modelling
probabilities of being in each possible world (with locations of other agents).
Solving POMDPs exactly can be done by particular dynamic programming al-
gorithms (Lovejoy, 1991; Kaelbling et al., 1998; Littman, 1996) which compute
the best action given each possible belief vector. However, this approach is
intractable when the number of possible worlds is quite large (as in our second
experimental environment).

Using the underlying MDP. There exist a number of heuristic algo-
rithms trying to find sub-optimal solutions to POMDPs more quickly. The
most relevant to our current algorithm is the Qupp value method (Littman
et al., 1995). Here, first the MDP is solved, and then the optimal action is
selected by computing the sum of the Q-values of possible states times the oc-
cupancy probabilities. This algorithm can perform very well (Littman et al.,
1995), but is not able to perform actions to obtain information.

Our approach. We model the POMDP using a single MDP (possible
world). Although the dynamic agents may be at different places, and in reality
there are multiple possible worlds, we use the certainty equivalence assumption
and set transition probabilities to account for all possible worlds. In this way
we can use dynamic programming techniques on the single world, otherwise
we would need to solve each possible world, which would become quickly in-
tractable. As with @;pp, our method does not take into account that actions
can be used for gaining information about the environment. In principle, the
MDP is unchanged as long as no additional information is acquired.

Computing information values. We can extend our algorithm so that
information gains can be computed and used by the agent. We can compute
the information value of going to a state by instantiating the possible outcomes
of an observation received in this state in the MDP. Given one such possible
instantiation, our current policy would obtain a reward which can be computed
by policy evaluation. By taking into account the instantiated information and
recomputing the policy afterwards (by value iteration), we would receive the
reward received with the optimal policy given the observation. By subtracting
the value of the current policy (found by policy evaluation) of the value of the
optimal policy (found by value iteration) and weighing these values over all
possible observations, we can compute the information value of going to this
state. This will be 0 if no change to the policy is made, and large if the current
policy would behave quite bad compared to the optimal policy. Then, this
information value can be instantiated in the reward function for this state, and
the agent can act to gain information. Unfortunately this becomes intractable
if the agent wants to explore sequences of observations.

Dual Control. Dayan and Sejnowski (1996) focus on the exploration prob-
lem in which barriers may block the shortest path with some probability. They
also changed the transition and reward functions to account for the dynamic
probabilities of the existence of each barrier. After this, they used DP to
compute a new policy. Although their approach is similar, our algorithm was
designed for modelling dynamic agents moving around in the environment and
was made much more efficient by using prioritized sweeping. Our algorithm can

17

also instantiate information acquired by sensors, communication, or reasoning
in the transition and reward functions, so that the approach is more general.

Instantiating Information. Instantiating information is a very useful
procedure for dealing with dynamic environments such as the Wumpus envi-
ronments or multi agent systems. We also used instantiating information in
(Wiering, 2000) where traffic light controllers communicated with each other
and with cars to determine paths through the traffic network containing the
least number of waiting cars. Here, the number of cars waiting at a next traffic
light was communicated and instantiated to compute the probabilities of ending
up at a specific place in a queue of cars at the next traffic light.

Dynamic Replanning. Multiple researchers have designed dynamic re-
planning algorithms. Most relevant to our research is the D* algorithm (Stentz,
1995), which uses A* planning in a dynamic way and a focusing technique to
backpropagate the effects of changed parts of the environment. Stentz ran ex-
periments in deterministic 100x100 and 1000x1000 mazes and found a large
improvement for only backpropagating partial state-update values which may
change the agent’s plan. His method used an heuristic to find the goal, however,
and cannot deal with probabilistic information.

Using a-priori knowledge. A-priori knowledge can be used with RL in
different ways. It can be used for constructing the initial behavior to quickly
generate useful learning experiences. It can also be used for designing the
structure of a function approximator, so that instead of having to solve both
the structural and temporal credit assignment problems, only the temporal
credit assignment problem has to be solved. A priori knowledge can be used
for modelling the decision process or as a model for solving POMDPs. In this
paper we have studied a new way of using a model of dynamic hostile agents
and compared it to using limited sensors.

6 Conclusion

We developed a new adaptive dynamic replanning method using reinforcement
learning. Our method can learn a model of the environment, and replan if
it observes that the environment has changed. The method uses model-based
reinforcement learning and instantiates dynamic information about the envi-
ronment in the model so that the agent can reason about the current environ-
mental state. For efficiency reasons, we used prioritized sweeping to recompute
the policy. Our method was successfully tested on maze problems with partially
observable dynamic obstacles. We first used an a-priori reasoning module to
reason about possible locations of the hostile spider agents. This method was
shown to be very effective in avoiding hitting hostile agents in a partially observ-
able path-planning problem. Additional experiments show that the complexity
of the algorithm scales well with the number of items which is instantiated in
the model. Furthermore, they also show that our method can be combined
effectively with a limited sensor for observing hostile agents.

Future work. For very fast changing environments, we may need to in-
clude time in the state description (Boyan and Littman, 2001), and our current

18

method may need too much computation. Therefore we need to make Priori-
tized Sweeping’s update management smarter, taking into account the position
and plan of the agent. Then, we want to implement and test our novel algo-
rithm for computing information gains for more effective exploration and dual
control.

References

Baxter, J., Tridgell, A., and Weaver, L. (1997). Knightcap: A chess program
that learns by combining TD(A) with minimax search. Technical report,
Australian National University, Canberra.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey.

Boyan, J. and Littman, M. (2001). Exact solutions to time-dependent MDPs.
In Neural Information Processing Systems (in press). MIT Press.

Crites, R. H. and Barto, A. G. (1996). Improving elevator performance using
reinforcement learning. In Touretzky, D., Mozer, M., and Hasselmo, M.,
editors, Advances in Neural Information Processing Systems 8, pages 1017—
1023, Cambridge MA. MIT Press.

Dayan, P. and Sejnowski, T. J. (1996). Exploration bonuses and dual control.
Machine Learning, 25:5-22.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and
acting in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99-134.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237-285.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. PhD thesis,
Brown University, Providence, Rhode Island.

Littman, M. L. and Boyan, J. A. (1993). A distributed reinforcement learning
scheme for network routing. In Alspector, J., Goodman, R., and Brown, T.,
editors, Proceedings of the First International Workshop on Applications
of Neural Networks to Telecommunication, pages 45-51, Hillsdale, New
Jersey.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning poli-
cies for partially observable environments: Scaling up. In Prieditis, A. and
Russell, S., editors, Machine Learning: Proceedings of the Twelfth Inter-

national Conference, pages 362-370. Morgan Kaufmann Publishers, San
Francisco, CA.

Lovejoy, W. S. (1991). A survey of algorithms methods for partially observable
Markov decision processes. Annals of Operations Research, 28:47-66.

19

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13:103-130.

Samuel, A. L. (1959). Some studies in machine learning using the game of
checkers. IBM Journal on Research and Development, 3:210-229.

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In
Proceedings of the International Joint Conference on Artificial Intelligence.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduc-
tion. The MIT press, Cambridge MA, A Bradford Book.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. coop-
erative agents. In Proceedings of the Tenth International Conference on
Machine Learning, pages 330-337.
http://www.cs.brandeis.edu/~aeg/papers/tan.ML93.ps.

Tesauro, G. (1992). Practical issues in temporal difference learning. In Lippman,
D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems 4, pages 259-266. San Mateo, CA: Morgan
Kaufmann.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, England.

Wiering, M. A. (1999). Ezplorations in Efficient Reinforcement Learning. PhD
thesis, University of Amsterdam, Amsterdam, The Netherlands.

Wiering, M. A. (2000). Multi-agent reinforcement learning for traffic light con-
trol. In Langley, P., editor, Proceedings of the Seventeenth International
Conference on Machine Learning, pages 1151-1158.

Wiering, M. A. and Schmidhuber, J. H. (1998). Efficient model-based explo-
ration. In Meyer, J. A. and Wilson, S. W., editors, Proceedings of the
Sizth International Conference on Simulation of Adaptive Behavior: From
Animals to Animats 6, pages 223-228. MIT Press/Bradford Books.

20

