
Derivation of algorithms for cutwidth and

related graph layout parameters

Hans L. Bodlaender

Michael R. Fellows

Dimitrios M. Thilikos

institute of information and computing sciences, utrecht university

technical report UU-CS-2002-032

www.cs.uu.nl

Derivation of algorithms for cutwidth and related

graph layout parameters�

Hans L. Bodlaendery Michael R. Fellowsz Dimitrios M. Thilikosx

July 22, 2002

Abstract

In this paper, we investigate algorithms for some related graph parameters. Each

of these asks for a linear ordering of the vertices of the graph (or can be formulated

as such), and constructive linear time algorithms for the �xed parameter versions

of the problems have been published for several of these. Examples are cutwidth,

pathwidth, and directed or weighted variants of these. However, these algorithms

have complicated technical details. This paper attempts to present ideas in these al-

gorithms in a di�erent more easily accessible manner, by showing that the algorithms

can be obtained by a stepwise modi�cation of a trivial hypothetical non-deterministic
algorithm.

The methodology is applied to rederive known results for the cutwidth and the

pathwidth problem, and obtain similar new results for variants of these problems,

like directed and weighted variants of cutwidth and modi�ed cutwidth.

1 Introduction

The notion of pathwidth (and the related notion of treewidth) has been applied successfully
for constructing algorithms for several problems. One such application area is for problems
where linear orderings of the vertices of a given graph are to be found, with a speci�c
parameter of the ordering to be optimised. In this paper, we are interested in a number

�The research of the �rst and third author was partially supported by EC contract IST-1999-14186:
Project ALCOM-FT (Algorithms and Complexity - Future Technologies. The research of the third author
was supported by the Spanish CICYT project TIC2000-1970-CE and the Ministry of Education and
Culture of Spain (Resoluci�on 31/7/00 { BOE 16/8/00).

yInstitute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands. Email: hansb@cs.uu.nl

zSchool of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW
2308, Australia

xDepartament de Llenguatges i Sistemes Inform�atics. Universitat Polit�ecnica de Catalunya. Campus
Nord M�odul C6. c/ Jordi Girona Salgado 1-3, 08034, Barcelona, Spain

1

of related notions which appear to allow the same algorithmic approach for solving them.
The central problem in the exposition is the cutwidth problem (see Section 2 for the
de�nition). While cutwidth is an NP-complete problem [17], we are interested in the
�xed parameter variant of it: for �xed k, we ask for an algorithm that given a graph G,
decides if the cutwidth of G is at most k, and if so, gives a linear ordering of G with
cutwidth at most k. This �xed parameter variant of the problem is known to be linear
time solvable (with the constant factor depending exponentially on k) [9, 14, 20]. Such a
linear time algorithm can be of the following form: �rst a path decomposition of bounded
pathwidth is found (if the pathwidth of G is more than k, we know that the cutwidth
of G is more than k), and then a dynamic programming algorithm is run that uses this
path decomposition. Unfortunately, the technical details of this dynamic programming
algorithm are rather detailed and complex. Other problems that have a similar algorithmic
solution are the pathwidth problem itself (see [7, 4]), and variants on weighted or directed
graphs, including directed vertex separation number [2]. See also [1].

In this paper, we attempt to present the central ideas in these algorithms in a di�er-
ent, more easily accessible manner, by showing that the algorithms can be obtained by a
stepwise modi�cation of a trivial hypothetical non-deterministic algorithm. Thus, while
our resulting algorithms will not be much di�erent from solutions given in the literature,
the reader may understand the underlying principles and the correctness of the algorithms
much easier.

In addition, we use the methodology for deriving a few new results: we give con-
structively for each �xed k, linear time algorithms, that, given a graph G, or directed
acyclic graph G, decides for some parameters related to cutwidth (e.g., `directed modi�ed
cutwidth', or weighted variants) is at most k, and if so, gives the corresponding linear
ordering or topological sort of G. Ingredients of the techniques displayed in this paper ap-
peared in the early 1990's independently in work of Abrahamson and Fellows [1], Lagergren
and Arnborg [15], and Bodlaender and Kloks [7]. In [6], a relation between decision and
construction versions of algorithms running on path decomposition with an eye to �nite
state automata was established. More background and more references can be found in
[10].

2 De�nitions

In this section, we give a number of de�nitions, used in this paper. The notion of pathwidth
was introduced by Robertson and Seymour [18].

De�nition 1 A path decomposition of a graph G = (V;E) is a sequence of subsets of
vertices (X1; X2; : : : ; Xr), such that

�
S
1�i�rXi = V .

� for all edges fv; wg 2 E, there exists an i, 1 � i � r, with v 2 Xi and w 2 Xi.

� for all i; j; k 2 I: if i � j � k, then Xi \Xk � Xj.

2

The width of a path decomposition (X1; X2; : : : ; Xr) is max1�i�r jXij � 1. The pathwidth
of a graph G is the minimum width over all possible path decompositions of G.

For directed graphs, these de�nitions are trivially modi�ed. The de�nition of a path
decomposition of a directed graph G = (V;A) only di�ers in the second condition: now,
we require that for every arc (v; w) 2 A, there is an i, 1 � i � r with v; w 2 Xi. Width
and pathwidth are now as for undirected graphs. I.e., the pathwidth of a directed graph
G equals the pathwidth of the undirected graph obtained from G by ignoring directions of
edges.

De�nition 2 A linear ordering of a graph G = (V;E) is a bijective function f : V !
f1; 2; : : : ; jV jg. An edge fv; wg 2 E is said to cross vertex x 2 V in linear ordering f , if
f(v) < f(x) < f(w). Edge fv; wg 2 E is said to cross gap i, if f(v) � i < f(w).

For an example of the notion of crossing, see Figure 1.

v1 2 3 4 5 6 7 8

Figure 1: Two edges cross vertex v; three edges cross gap 7.

De�nition 3 Let G = (V;E) be a graph, and let f : V ! f1; 2; : : : ; ng be a linear ordering
of G, n = jV j.

1. For 1 � i � n, we denote the number of edges that crosses gap i as nf (i) = jffv; wg 2
E j f(v) � i < f(w)gj.

2. The cutwidth of f is max1�i�n n
f(i).

3. For 1 � i � n, we denote the number of edges that cross vertex f�1(i) by mf(i) =
jf(u; v) 2 E j f(u) < i < f(v)gj.

4. The modi�ed cutwidth of f is max1�i�nm
f (i).

5. The vertex separation number of f is max1�i�n jfu 2 V j 9v 2 V : (u; v) 2 E ^
f(v) � i ^ f(u) < igj.

The cutwidth, modi�ed cutwidth, vertex separation number of a graph G is the minimum
cutwidth, modi�ed cutwidth, vertex separation number over all possible linear orderings of
G.

3

In Figure 1, we have nf(f(v)) = 2 (two edges cross v), and mf (7) = 3 (three edges
cross gap 7.) The cutwidth of the given ordering is three, and the modi�ed cutwidth of
this ordering is two.

The pathwidth of a graph is at most its cutwidth, and at most one larger than its
modi�ed cutwidth. The vertex separation number of a graph equals its pathwidth [13].
See [5] for an overview of related notions and results.

In this paper, we will also consider a linear ordering of G = (V;E) as a string in V �,
i.e., a string where every element of V appears exactly once. We say that a string t can be
obtained by inserting a symbol v into a string s, if s can be written as s = s1s2, and t can
be written as t = t1vt2, with s1; s2 substrings of s and t1; t2 substrings of t.

We say a path decomposition (X1; : : : ; Xr) is nice, if jX1j = 1, and for all i, 1 < i � r,
there is a v such that Xi = Xi�1 [fvg (i is called a introduce node, inserting v), or
Xi = Xi�1 � fvg (i is called a forget node).

It is not hard to see (see e.g. [5], that a path decomposition of width k can be trans-
formed to a nice path decomposition of width k in linear time.

A terminal graph is a triple (V;E;X), with (V;E) a graph, and X an ordered set of
distinguished vertices from V , called the terminals. A terminal graph with k terminals is
also called a k-terminal graph. Given two k-terminal graphs G and H, G �H is de�ned
as the graph, obtained by taking the disjoint union of G and H, then identifying the i'th
terminal of G with the i'th terminal of H for all i, 1 � i � k, and then dropping parallel
edges. See Figure 2.

� =

Figure 2: The � operation.

Suppose we have a path decomposition (X1; : : : ; Xr) of G = (V;E). To each i, 1 �
i � r, we can associate the terminal graph Gi = (Vi; Ei; Xi), with Vi =

S
1�j�iXj, and

Ei = jffv; wg 2 E j v; w 2 Vig.
If we have a nice path decomposition (X1; : : : ; Xr) of G = (V;E), then we can easily

build a k + 1-coloring ` : V ! f1; : : : ; k + 1g of G, such that for all v; w 2 V , if there is
an i with v; w 2 Xi, then `(v) 6= `(w). (Go through the path decomposition from left to
right, and at each introduce node i, color the inserted vertex v 2 Xi �Xi�1 di�erent from
the other vertices in Xi.) For each v, we call `(v) the label of v.

We now introduce a notation for the possible operations, that given a graph Gi�1, build
the next graph Gi. If i is an introduce node, suppose the inserted vertex v 2 Xi � Xi�1

has label l0, and S � f1; : : : ; k + 1g � fl0g is the set of the labels of those vertices in
Xi�1 = Xi � fvg that are adjacent to v. Now, we can write an introduce operation as
I(r; S), meaning an insertion of a new terminal that has number r 2 f1; : : : ; k + 1g, with

4

this terminal adjacent to the terminals with numbers in S � f1; : : : ; k + 1g. (Note that
the introduce operation should ful�l certain criteria; e.g., we may not insert a vertex with
a number already given to another present terminal, and for all s 2 S, there must be a
number with that terminal.)

The forget operation can be written as F (r), meaning that the terminal with number
r becomes a non-terminal. We denote the terminal with number r as tr.

Let � be a �nite alphabet. �� is the set of all (possibly empty) strings with symbols
in �. The concatenation of strings s and t is denoted st. A string s 2 �� is a substring
of a string t 2 ��, if there are t0; t00 2 ��, with t = t0st00. A string s is a subsequence of
a string t = t1t2 : : : tr 2 ��, if there are indices 1 � �(1) < �(2) < � � � < �(q) � r with
s = t�(1) � � � t�(q).

Let �, �0 be �nite alphabets, and let s be a string in (� [�0)
�. The string sj� is the

maximal subsequence of s that belongs to ��, i.e., sj� is obtained from s by removing all
symbols in �0.

If f1 is a linear order of G = (VG; EG), G is a subgraph of H = (VH ; EH), and f is a
linear order of H, we say that f extends f1, if f�11 (1); f�11 (2); : : : ; f�11 (jVGj) is a subsequence
of f�1(1); f�1(2); : : : ; f�1(jVH j), i.e., f can be obtained from f1 by inserting the vertices
of VH � VG. Equivalently, we have for all v; w 2 VG: f(v) < f(w) , f1(v) < f1(w).

To a sequence of vertices v1; : : : ; vn (or a linear order f), we associate the set of n + 1
gaps: a gap is the location between two successive vertices, or the location before the �rst,
or after the last vertex.

For a linear order f of G = (V;E) and a subset W � V , we consider the linear order f jW
of G[W], where for all v; w 2 W , f(v) < f(w), if and only if f jW (v) < f jW (w), i.e., f jW is
obtained in the natural way from f by dropping all vertices not in W from the sequence.
For v; w 2 V , we write f [v; w] as the sequence f jW with W = fx j f(v) � f(x) � f(w)g,
i.e., we take the substring that starts at v and ends at w.

We assume that the reader is familiar with the classic notions of deterministic and
non-deterministic automata, and the following result:

Theorem 4 For every non-deterministic �nite automaton A, there is a deterministic �nite
state automaton B that accepts the same set of strings.

We will use the acronyms NDFSA and DFSA for non-deterministic �nite state automa-
ton and deterministic �nite state automaton.

3 An algorithm for cutwidth

We �rst present our ideas in detail for the notion of cutwidth. In later sections, we will
show how the same ideas can be applied to other problems. We will derive the following
result, already shown in [19].

Theorem 5 For each k, there is a linear time algorithm, that given a graph G, decides
if the cutwidth of G is at most k, and if so, �nds a linear ordering of G with cutwidth at
most k.

5

We will derive the algorithm by �rst giving a naive non-deterministic algorithm for the
problem, and then modifying it step by step, until we have the desired algorithm.

In all cases, we start with �nding a nice path decomposition of G of width at most k.
If such a path decomposition does not exist, then we know that the cutwidth of G is more
than k, and we can stop.

3.1 A non-deterministic algorithm

Consider the following non-deterministic algorithm that �nds a linear order of G. The
algorithm builds the order by inserting the vertices one by one, i.e., in each step we have
a linear order of a subgraph of G.

1. Start with an empty sequence.

2. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) If the ith node is an introduce node of vertex v, then we insert v non-
deterministically at some gap in the sequence such that the resulting sequence
has cutwidth at most k. (If there is no such gap, the algorithm halts and rejects.)

(b) If the ith node is a forget node of vertex v, then we do nothing.

3. If all nodes of the path decompositions have been handled, then we output the
resulting linear order.

Clearly, this trivial non-deterministic algorithm solves the cutwidth problem. Of course,
we must do more in order to turn this algorithm into an eÆcient deterministic one.

3.2 A non-deterministic algorithm that counts edges

To determine whether a vertex can be inserted at some place in the sequence without vio-
lating the cutwidth condition, the algorithm above needs to consult the graph G. Instead,
we can keep the information about the number of edges that cross gaps in the sequence.
Now, we use sequences in N(V;N)�, i.e., sequences that have alternatingly an integer in
N, and a vertex in V , starting and ending with an integer. The following algorithm does
not need to look at G; only when a vertex is inserted, it has to be known to what other
vertices it is adjacent. The sequence gives the permutation (ordering) of the vertices, and
in addition, between every two vertices the number of edges that cross that position; i.e.,
if we have sequence nf0 ; v1; n

f
1 ; v2; : : : ; n

f
n�1; vn; n

f
n, where f is the linear order that is built

by the algorithm. In addition, we maintain that each vertex appears at most once in the
sequence, and if we have dealt with node i, then each vertex in Vi appears exactly once in
the sequence. In the remainder, we will often drop the superscript f .

We use the same algorithm as in the previous paragraph, but now start with the
sequence 0, and we have to detail how an insertion of a vertex v takes place now. This still
is fairly obvious:

6

1. Non-deterministically, a number nj in the sequence is chosen.

2. nj is replaced by nj; v; nj.

3. For every terminal x with fv; xg 2 E, add one to every number in the sequence
between x and v (regardless of the mutual order of v and x).

4. If we obtain a number that is k + 1 or larger, we halt and reject.

3.3 A non-deterministic decision algorithm

Suppose now for a moment, that we only want to output whether the cutwidth is at most
k, without having to output a corresponding linear ordering. Then, the following version
of the algorithm actually also works �ne.

In this case, we can actually forget the names of vertices, denoting terminals with their
number (i.e., as tr for 1 � r � k + 1), and denoting non-terminal vertex as a non-labelled
vertex, denoted as �. Thus, for L = f�; t1; : : : ; tkg, we have sequences in f0; 1; : : : ; kg,
(L; f0; 1; : : : ; kg)�.

1. Start with the sequence 0.

2. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) If the ith node is an introduce node of the form I(r; S), then we insert tr non-
deterministically at some gap in the sequence such that the resulting sequence
has cutwidth at most k. (If there is no such gap, the algorithm halts and rejects.)

(b) If the ith node is a forget node of the form F (r), then we replace tr in the
sequence by a symbol �.

3. If all nodes of the path decompositions have been handled, then we output yes.

When inserting tr, we again choose a number nj, replace it by nj; tr; nj, and then for
all s 2 S, we add one to each number in the sequence that is between ts and tr. If any such
number would become larger than k, then the cutwidth of the sequence would be more
than k, so such an insertion cannot be chosen by the non-deterministic algorithm.

Note that at this point, we used the structure of path decomposition, and the fact that
each set Xi contains at most k + 1 vertices.

3.4 A non-deterministic algorithm that also can construct the

sequence

If we let in the above algorithm, alongside with building the sequence, also record in which
gap the new vertex was inserted (in a data structure, separate from the sequence), then

7

the non-deterministic algorithm also can construct the sequence after one has been found.
In particular, we can maintain a list that denotes in which gap each vertex is inserted; in
step 2a of the algorithm of Section 3.3, the gap where the vertex is inserted is put on the
list; upon termination, the linear ordering corresponding to this run of the algorithm can
be constructed directly (in linear time) from this list.

3.5 A non-deterministic �nite state automaton

In this step, we use the crucial observation that turns the method into a linear time
algorithm.

First, we give an example. Suppose we have a substring 3 � 5 � 7 in the sequence.
Then one can note that when the non-deterministic algorithm succeeds in completing the
sequence, it can also do so by not inserting any vertex on the gap of the 5: everything it
inserts there can also be inserted at the 3. Thus, the 5 can be actually be forgotten from
the sequence. This will be proved in a more general form below.

Lemma 6 Let Gi = (Vi; Ei; X), i = 1; 2 be r-terminal graphs. Let f be a linear order of
G1 = (V1; E1; X) of cutwidth at most k, and let f 0 be a linear order of G1�G2 of cutwidth
at most k such that f 0 extends f . Suppose we have for 1 � j1 < j2 � jV1j:

� X \ ff�1(j1 + 1); f�1(j1 + 2); : : : ; f�1(j2 � 1); f�1(j2)g = ;.

� nf(j1) = minj1�j�j2 n
f (j).

� nf(j2) = maxj1�j�j2 n
f (j).

Let f 00 be the linear order of G1 � G2 that is obtained from f 0 by replacing the sub-
string f 0[f�1(j1); f

�1(j2)] by the substring f�1(j1) � (f 0[f�1(j1); f�1(j2)])jV2�X � f
0[f�1(j1 +

1); f�1(j2)]. Then the cutwidth of f 00 is at most k.

Proof: The change in the linear ordering is graphically depicted in Figure 3.

f�1(j1)

f�1(j1) f�1(j1 + 1)

f�1(j1 + 1)

f�1(j2)

f�1(j2)

f�1(j1) + 2

f�1(j1) + 2

Figure 3: A graphical depiction of the change going from f 0 to f 00

8

First, we note that for each gap that is not within the replaced substring, the set and
hence the number of edges that cross that gap stays the same, so this number is at most
k. The same is true for the gap directly after f�1(j1), and the gap directly before f�1(j2).

Consider now a gap in the sequence of f 00 that is directly after some vertex v0 2 V2
(depicted by an `open' circle in Figure 3. We compare the number of edges crossing this
gap by the number of edges crossing the gap after v0 in the sequence f 0. See Figure 4. We
consider three types of edges:

� Edges between vertices in V2. As the mutual ordering of the vertices in V2 has not
changed, the same edges between vertices in V2 cross the gap in both gaps.

� Edges between a vertex v1 2 V1 and a vertex v2 2 V2. In this case, we must have, by
de�nition of �, that v1 2 X � V2 or vw 2 X � V1, and hence this edge either is of
the �rst or third type of edge considered here.

� Edges between two vertices in V1. Some edges cross the considered gap in sequence
f 00 but not the considered gap in f 0 (shown in bold in Figure 4, and other edges
this is just the opposite (shown as a dotted line in Figure 4. Note that we have
exactly nf (j1) edges of this type that cross the gap in f 00, and nf (j) edges of this
type that cross the gap in f 0, for some j, j1 � j � j2. (In Figure 4, the last vertex
in V1 before the gap in f 0 is f�1(j1 + 1), and hence this number is nf(j1 + 1).) As
nf(j1) = minj1�j�j2 n

f(j), the number of edges of this type crossing the gap in f 00 is
at most the number of edges of this type crossing the gap in f 0.

We conclude that the number of edges crossing the gap after v0 in f 00 is at most the
number of edges crossing the gap after v0 in f 0, hence is at most k.

The last type of gap we consider is a gap in the sequence part f 0[f�1(j1 + 1); f�1(j2)]
in f 00, i.e., after a vertex v00 2 V1, as illustrated in Figure 5 (second part). This gap will
be compared with the gap after f�1(j2) in f 0. We distinguish the following types of edges
crossing the considered gap in f 00:

� Edges between vertices in V2. Again, the same edges will cross both gaps.

� Edges between a vertex in v1 2 V1 and a vertex in v2 2 V2. Again, v1 2 X or v2 2 X,
and hence each such edge is of the �rst or third type of edges.

� Edges between two vertices in V1. There are nf(j2) such edges for the gap in f 0, and
nf(j) such edges for the gap in f 00, for some j, j1 � j � j2. As we have for each such
j, nf (j2) � nf (j), the number of edges of this type crossing the gap in f 00 is at most
the number of edges of this type crossing the gap in f 0.

We can conclude that the number of edges crossing the gap after v00 in f 00 is at most
this number for the sequence f 0, hence again at most k. Thus, it follows that the cutwidth
of f 00 is at most k. ut

9

f�1(j1)

f�1(j1) f�1(j1 + 1)

f�1(j1 + 1)

f�1(j2)

f�1(j2)

f�1(j1) + 2

f�1(j1) + 2

Figure 4: Illustration with the proof of Lemma 6

f�1(j1)

f�1(j1) f�1(j1 + 1)

f�1(j1 + 1)

f�1(j2)

f�1(j2)

f�1(j1) + 2

f�1(j1) + 2

Figure 5: Illustration with the proof of Lemma 6

10

A similar lemma can be proved for the case that nf (j1) = maxj1�j�j2 n
f(j) and nf (j2) =

minj1�j�j2 n
f(j), and all other conditions are as in the lemma. The main reason why this

lemma is interesting is the following corollary.

Corollary 7 Consider the non-deterministic decision algorithm. Suppose at some point,
a sequence s1 � s2 � s3, with s2 = n1 � n2 � � � � � nq. s2 does not contain a character of
the form tr. Suppose it holds that n1 = minfn1; : : : ; nqg and nq = maxfn1; : : : ; nqg, or
that n1 = maxfn1; : : : ; nqg and nq = minfn1; : : : ; nqg. Then, if there is an extension of
the sequence that corresponds to a linear order of G of cutwidth at most k, there is such
an extension that does not insert any vertex on the gaps corresponding to the numbers
n2; : : : ; nq�1 in substring s2.

This gives an obvious modi�cation to the non-deterministic algorithm: when choosing
where to insert a vertex, forbid to insert a vertex on any of the gaps n2; : : : ; nq�1, as in-
dicated in Corollary 7. But then we may note that when we do not insert at the gaps
corresponding to these numbers n2; : : : ; nq�1, we can actually forget these numbers: any
insertion of a vertex that would increase the number of edges that crosses a gap corre-
sponding to such a number also will cross the gap with value maxn1;nq , and thus we can
drop the numbers n2; : : : ; nq�1 from the sequence.

The discussion leads to observing that the following non-deterministic algorithm indeed
also correctly decides whether the cutwidth is at most k. The insertion of a vertex is still
done as in Section 3.2; the main di�erence in the algorithm below is in the compression
operation.

1. Start with the sequence 0.

2. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) If the ith node is an introduce node of the form I(r; S), then we insert tr non-
deterministically at some gap in the sequence such that the resulting sequence
has cutwidth at most k. If there is no such gap, the algorithm halts and rejects.

(b) If the ith node is a forget node of the form F (r), then we replace tr in the
sequence by a symbol �.

(c) In both cases, check if the sequence has a substring of the form n1�n2�� � ��nq
with fnj1 ; nj2g = fminj1�j�j2 nj;maxj1�j�j2 njg. If so, replace the substring
n1 � n2 � � � � � nq with the substring n1 � nq. Repeat this step until such a
replacement is no longer possible. (We call this a compression operation.)

3. If all nodes of the path decompositions have been handled, then we output yes.

A sequence of integers that does not have a substring of length at least three n1 : : : nq,
with n1 = min1�i�q ni, and nq = max1�i�q ni, or n1 = max1�i�q ni, and nq = min1�i�q ni is
called a typical sequence. Note that every sequence formed by the algorithm has between

11

every two successive terminals always a typical sequence (with \�"-symbols between each
pair of successive integers.) In [7, Lemma 3.5], it is shown that there are at most 8

3
22k

typical sequences of the integers in f0; 1; : : : ; kg. This means that the number of possible
sequences that can be formed in the algorithm actually is bounded by a function of k (we
have a constant number of terminals, and between each pair of terminals a string from
some constant size set); i.e., is bounded by a constant if we assume that k is a constant.
In [19, Lemma 3.2], it is shown that this number of sequences is at most k!(8

3
22k)k+1.

This implies that the algorithm can actually be viewed as a NDFSA. The input to the
automaton is a string that describes the nice path decompositions; with symbols from the
�nite alphabet fI(r; S) j 1 � r � k + 1; S � f1; : : : ; k + 1gg [fF (r) j 1 � r � k + 1g, i.e.,
the input string is the sequence of successive introduce and forget operations that give the
nice path decomposition. The states of the automaton are the di�erent strings that can be
formed during the process: as there is a �nite number of di�erent such strings, the number
of states is �nite. The possible next states are determined by the symbol (the type of node
we deal with in the path decomposition), possibly a non-deterministic choice (where to
insert the new vertex) and the old state (the sequence to which the vertex is inserted or
the sequence where the forgotten node is replaced by an �).

We now have arrived at an algorithm that actually is just a NDFSA (in some disguise).
As for every NDFSA, there is an equivalent DFSA, and the latter one corresponds to a
linear time algorithm solving the decision problem, we directly have a proof of the existence
of a linear time decision algorithm for the cutwidth�k problem, k �xed. This will be made
explicit below; we will also show how to construct the corresponding sequences.

3.6 Constructive non deterministic �nite state automaton

In this step, we give a version of the NDFSA of the previous step that also is constructive,
i.e., it can construct the linear ordering of cutwidth at most k, if it exists.

To this end, we augment the algorithm of the previous step by maintaining besides the
compressed sequence, denoted here as s, also a linear ordering of the vertices inserted so
far, here denoted as �. � is implemented as a linked list, with in addition a record for every
gap that still appears in s. s is also a linked list, with separate records for the vertices
appearing in s, and the gaps (i.e., integer numbers); with for each element in the list an
additional pointer to the corresponding element in the data structure for �. An example
is given in Figure 6.

1. Start with s to be the sequence 0, and � a list with one record; with a pointer from
the record in s to the record in �.

2. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) If the ith node is an introduce node of the form I(r; S), then we insert tr non-
deterministically at some gap in the sequence such that the resulting sequence
has cutwidth at most k. In addition, the data structure is used to also insert tr

12

v z

v z2 3 45

v0 v00 v000 w w0 w00

Figure 6: Example of part of data structure. v and z are active vertices

in the sequence �, on `the same place'. If there is no such gap, the algorithm
halts and rejects.

(b) If the ith node is a forget node of the form F (r), then we replace tr in the
sequence by a symbol �.

(c) In both cases, check if the sequence has a substring of the form n1�n2�� � ��nq
with fnj1 ; nj2g = fminj1�j�j2 nj;maxj1�j�j2 njg. If so, replace the substring
n1 � n2 � � � � � nq with the substring n1 � nq. Repeat this step until such a
replacement is no longer possible. (We call this a compression operation.)

3. If all nodes of the path decompositions have been handled, then we output �.

From Figure 7 we see how an insertion can be done. The �gure shows the fragment
of the data structure after insertion of a vertex y, where y is assumed to be adjacent to
terminals v and z. By following the pointer from the gap in s in which tr is inserted, we
�nd the corresponding gap in �, and hence s keeps being a representation of �.

z

z

w0 w00

y

yv

v 5

v0 v00 v000 w

3 6 4 4

Figure 7: The data structure after insertion of a vertex y; y is assumed to be only adjacent
to v and z.

One can easily see that each node of the path decomposition can be handled with a
constant number of operations, so we still have a non-deterministic linear time algorithm.
In the next section, we will turn to a deterministic algorithm, but the construction of
the linear ordering for the deterministic algorithm is there postponed to a later section
(Section 3.8).

13

3.7 A deterministic decision algorithm

As is known for �nite state automata, NDFSA's recognise the same set of languages as
DFSA's. We can employ the (actually simple) tabulation technique here too, and arrive
at our deterministic algorithm. Thus, we take the algorithm of Section 3.5, and make it
deterministic, using this technique.

1. Start with a set of sequences A0 that initially contains one sequence 0.

2. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) Set Ai = ; and Bi = ;.

(b) If the ith node is an introduce node of the form I(r; S), then perform the
following step for every sequence s 2 Ai�1:

For every gap in the sequence s, look to the sequence s0 obtained by
inserting tr in s in that gap. If s0 has cutwidth at most k and s0 62 Bi,
then insert s0 in Bi.

(c) If the ith node is a forget node of the form F (r), then for every sequence
s 2 Ai�1, let s0 be the sequence obtained by replacing tr in s by a symbol �. If
s0 62 Bi, then insert s0 in Bi.

(d) In both cases, perform the following step for every s 2 Bi:

Check if s has a substring of the form n1�n2�� � ��nq with fnj1; nj2g =
fminj1�j�j2 nj;maxj1�j�j2 njg. If so, replace the substring n1�n2�
� � � � nq with the substring n1 � nq. Repeat this step until such a
replacement is no longer possible. Let s0 be the resulting sequence.
If s0 62 Ai, then insert s0 in Ai.

3. If all r nodes of the path decompositions have been handled, then we output yes, if
and only if Ar 6= ;.

What we did above is just tabulating all possible sequences the non-deterministic algo-
rithm can attain at its steps, thus arriving at an equivalent deterministic algorithm.

We mentioned earlier that the number of possible sequences is bounded by a function
of k (k!(8

3
22k)k+1 by [19]); thus, if k is �xed, each set S is of constant size. Hence, the

algorithm above uses linear time.
In the next �nal step we see how this deterministic decision algorithm can be turned

into a constructive one, i.e., one that also constructs a linear ordering of cutwidth at most
k if there is one.

14

3.8 A deterministic decision algorithm that also can construct

the sequence

To turn the deterministic decision algorithm of the previous step into a deterministic
algorithm that also can construct a linear ordering of cutwidth at most k, and still uses
linear time, we employ the standard tabulation technique, often used to turn dynamic
programming decision algorithms into constructive algorithms, and the data structure
for the non-deterministic constructive algorithm. Basically, we �rst decide whether the
cutwidth of the input graph is at most k, then determine the sequence of choices that
should be made by the non-deterministic algorithm to lead to acceptance, and then run
the `non-deterministic constructive algorithm', but with these choices.

Thus, our algorithm has three phases. The �rst phase is similar to the deterministic
decision algorithm, but does a little more bookkeeping. We maintain sets of triples; the
�rst element is as in the previous algorithm, while the second is either a sequence or the
default � symbol, and the third an integer (denoting a gap where a vertex is inserted)
or the default � symbol (used in case of a forget operation). The meaning of the second
element of the triple is as follows. The � symbol is only used for the �rst empty sequence
at the start of the algorithm. In all other cases, the second element is the sequence before
the introduce or forget operation. So, e.g., in case of a node of type I(r; S), a triple (s; s0; j)
means that if we insert tr in s0 at the jth gap, and then compress, we obtain s.

Below, we use � to denote any possible value.

1. Start with a set A0 that initially contains one triple < 0;�;� >.

2. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) If the ith node is an introduce node of the form I(r; S), then perform the
following step for every element of the form < s; �; � >2 Ai�1:

For every gap in the sequence s, look to the sequence s0 obtained by
inserting tr in s in that gap. Suppose this is the j'th gap in s. If s0

has cutwidth at most k, then insert the triple < s0; s; j > in the set
Bi.

(b) If the ith node is a forget node of the form F (r), then for every element of the
form < s; �; � >2 Ai�1, let s0 be the sequence obtained by replacing tr in s by
a symbol �. Insert < s; s00;� > in Bi.

(c) In both cases, perform the following step for every < s; s00; j >2 Bi:

Check if s has a substring of the form n1�n2�� � ��nq with fnj1; nj2g =
fminj1�j�j2 nj;maxj1�j�j2 njg. If so, replace the substring n1�n2�
� � � � nq with the substring n1 � nq. Repeat this step until such a
replacement is no longer possible. Let s0 be the resulting sequence.
If there is no triple of the form < s0; �; � > in Ai, then insert <
s0; s00; j > in Ai.

15

3. If Ar = ;, then halt: the cutwidth of G is more than k.

4. Select a triple qr =< sr; sr�1; � > from Ar.

5. For i = r � 1 downto 1 do (i.e., go through the nice path decomposition from right
to left): select a triple of the form qi =< si; s

0; � > from Ai, and set s=s
0.

6. Set i = 0, let s = s0 be the sequence 0, and � a list with one record with a pointer
from the record in s0 to the record in �.

7. Now, go through the nice path decomposition from left to right. If we deal with the
ith node of the path decomposition, then

(a) If the ith node is an introduce node of the form I(r; S), then suppose qi =<
si; si�1; ji >. Then, we insert tr at gap j in sequence s = si�1. In addition, the
data structure is used to also insert tr in the sequence �, on `the same place'.

(b) If the ith node is a forget node of the form F (r), then we replace tr in the
sequence by a symbol �.

(c) In both cases, do the compression operation. Now, s = s0.

8. If all nodes of the path decompositions have been handled, then we output �.

This �nal step consisted mainly of an implementation of the standard technique of
transforming a dynamic programming algorithm that decides upon a problem to one that
also constructs the corresponding solution if it exists. The additional work, compared with
the algorithm of the previous step is clearly linear in the number of nodes of the tree
decomposition. Thus, we have obtained Theorem 5.

4 Other problems

In this section, we show that the technique can be applied to several other problems. At one
hand, we give variants of the cutwidth problem and discuss how the method of the previous
section can be modi�ed to handle these as well; at the other hand, for some problems we
give a transformation that enables to solve the problem with help of an algorithm for
another problem.

4.1 Directed cutwidth

In the directed cutwidth problem, we have a directed acyclic graph G = (V;A), and look
for a topological sort (i.e., a linear order f such that for all arcs (v; w) 2 A: f(v) < f(w)
with minimum cutwidth, where the cutwidth is de�ned as usual. One can observe that
basically the same algorithm can be used for this problem as for the undirected case: when
inserting a vertex, only those insertions can be done that have no arcs directed in the
wrong way. To be precise, consider the linear orders f , f 0 and f 00 from Lemma 6. A simple

16

case analysis shows that if for every arc (v; w) 2 A: f(v) < f(w) and f 0(v) < f 0(w), then
we also have that for every arc (v; w) 2 A: f 00(v) < f 00(w). Hence, Corollary 7 holds also
for the directed cutwidth problem, and thus we can derive, exactly as for cutwidth the
following result.

Theorem 8 For each k, there is a linear time algorithm, that given a directed acyclic
graph G, decides if the directed cutwidth of G is at most k, and if so, �nds a topological
sort of G with cutwidth at most k.

4.2 Mixed graphs

Also, one can solve the cutwidth problem for mixed graphs: given a mixed graph G =
(V;E;A), where E is the set of undirected arcs, and A is the set of arcs, we look for a
linear order such that for every arc (v; w) 2 A: f(v) < f(w), of minimum cutwidth. Again,
this problem can be solved with the same method.

4.3 Weighted graphs

Suppose the edges (or arcs) have (small) integer weights (in f0; 1; : : : ; kg). The cutwidth
is now modi�ed accordingly, by adding the weights of edges across cuts. When given a
path decomposition of the input graph, the method described in the previous section still
works as we can again prove variants of Lemma 6 and Corollary 7 for the case of weighted
graphs. Note that now, it may be that G has pathwidth more than k, in cases where there
are several edges of weight 0, and thus we assume we are given a path decomposition of G
of bounded width. (This assumption is not necessary when all weights are at least one, as
in that case, any positive instance must have bounded pathwidth.)

Theorem 9 For each �xed k, l, there exists a linear time algorithm, that given a graph G
whose edges have integer weights in f0; 1; : : : ; kg with a path decomposition of G of width at
most l, decides if the weighted cutwidth of G is at most k, and if so, �nds a linear ordering
of G of weighted cutwidth at most k.

For the directed weighted variant of the problem, we similarly get the following result.

Theorem 10 For each �xed k, l, there exists a linear time algorithm, that given a directed
acyclic graph G whose arcs have integer weights in f0; 1; : : : ; kg with a path decomposition
of G of width at most l, decides if the weighted directed cutwidth of G is at most k, and if
so, �nds a topological sort of G of weighted directed cutwidth at most k.

4.4 Pathwidth

The pathwidth problem can also be solved in this way. There are several methods to solve
the pathwidth problem. Instead of solving it directly, as is done in [7], we now instead

17

model it as a weighted cutwidth problem on a directed graph, showing how the pathwidth
problem can be translated to weighted directed cutwidth.

However, a direct derivation of an algorithm for pathwidth, similar to our derivation of
the cutwidth problem is also possible - however, it seems that such an algorithm would be
essentially the same as the algorithm obtained by the modi�cation given here.

Let G = (V;E) be an undirected graph. The directed weighted graph GM is de�ned as
follows:

� GM has vertices V M = fbv j v 2 V g [fev j v 2 V g.

� GM has two types of arcs. For every v 2 V , we have an arc (bv; ev) of weight 1. For
every fv; wg 2 E, we have two arcs (bv; ew) and (bw; ev), both of weight 0.

Lemma 11 Let G be an undirected graph. Then G has pathwidth at most k, if and only
if GM has weighted directed cutwidth at most k + 1.

Proof: Suppose (X1; : : : ; Xr) is a nice path decomposition of G. Now, let f be the linear
order of GM , de�ned by f(bv) = i, if Xi is an introduce node that introduces v, and
f(ev) = i, if Xi is a forget node that forgets v.

We claim that f is a topological sort of G of cutwidth at most k+1. As for every v, the
node that introduces v is before the node that forgets v, we have that f(bv) < f(ev). Also,
for every edge fv; wg 2 E, there must be a node that contains both v and w. Hence, we
cannot forget v before w is introduced, and vice versa, so f(bv) < f(ew) and f(bw) < f(ev).

The cutwidth of f is at most k + 1. Consider an i. Consider the arcs (bv; ev) with
f(bv) � i < f(ev) { the other arcs have zero weight. For each such arc, we have that
v 2 Xi, hence there are at jXij � k + 1 such arcs.

The reverse is similar. ut

Lemma 12 Let G be a graph of pathwidth at most k. Then, GM has pathwidth at most
2k + 1.

Proof: Replace in a path decomposition of G every vertex v in each bag by the vertices
bv and ev. ut

These two lemmas show.

Theorem 13 (Bodlaender, Kloks [7]) For each �xed k, l, there exists a linear time
algorithm, that given a graph G with a path decomposition of G of width at most l, decides
if the pathwidth of G is at most k, and if so, �nds a path decomposition of G of width at
most k.

Proof: First build a path decomposition of GM of width at most 2l+1 (Lemma 12. Then,
check if GM has weighted directed cutwidth at most k + 1. (See Lemma 11.) This check
can be done in the same way as the cutwidth problem (see the discussions in the previous
sections.) ut

18

An algorithm that does not make use anymore of the notion of cutwidth can be also
derived as a �nal step. We will not elaborate this, as, while the details are not diÆcult,
they would require signi�cant space.

This step can be used as a subroutine in the algorithm given in [3] to obtain a linear
time algorithm to determine whether the pathwidth of a graph is at most k and construct
a corresponding path decomposition if it exists, for constant k.

4.5 Directed vertex separation number

The directed vertex separation number problem is the following: suppose we are given
a directed acyclic graph G = (V;A), �nd a topological sort of G with minimum vertex
separation number, where the vertex separation number of ordering f : V ! f1; : : : ; jV jg
equals

max
v2V

jfw 2 V j f(w) < f(v) ^ 9fw; xg 2 A : f(x) � f(v)gj

Kinnersley [13] showed that for undirected graphs, the vertex separation number equals
the pathwidth, hence this notion can be seen as a directed variant of pathwidth.

In [2], Bodlaender, Gustedt and Telle gave the result that this problem is linear time
solvable. Now, we give a simpler proof of that fact, similar to the proof of the previous
section.

Actually, this can be handled almost identical to the translation of pathwidth to directed
cutwidth. Let G = (V;A) be a directed acyclic graph. The weighted directed acyclic graph
GD = (V D; AD) is de�ned as follows:

� GD has vertices V D = fbv j v 2 V g [fev j v 2 V g.

� GD has two types of arcs. For every v 2 V , we take an arc (bv; ev) of weight 1. For
every arc (v; w) 2 A, we take arcs (bv; bw) and (bw; ev) of weight 0.

Lemma 14 Let G be a directed acyclic graph. G has directed vertex separation number at
most k, if and only if GD has weighted directed cutwidth at most k + 1.

Proof: First, suppose we have a topological sort g of GD of weighted directed cutwidth
at most k + 1. Then, take the ordering f of G with f(v) < f(w) , g(v) < g(w). As for
every (v; w) 2 A, (bv; bw) 2 AD hence bv < bw, this is a topological sort. We claim that
this sort has directed vertex separation number at most k. Consider, for a vertex v, the
set Jv = fw 2 V j f(w) < f(v) ^ 9(w; x) 2 A : f(x) � f(v)g. If w 2 Jv, then bw < bv, and
there is a vertex x with fw; xg 2 A and f(v) � f(x). Hence, bw < bv � bx < ew, so the arc
(bw; ew) `crosses' the gap after bv. As (bv; ev) also crosses this gap, there can be at most k
vertices in Jv.

Now, suppose we have a topological sort f of G of directed vertex separation number
at most k. Make a sort of GD in the following way: �rst sort the vertices bv, v 2 V in the
same order as the corresponding vertices are ordered in f . Now, for every vertex w 2 V ,
look to the highest numbered vertex v with (v; w) 2 A, and insert ew in the ordering after

19

bv and before the next vertex of the form bx. The number of arcs crossing a gap is bounded
by k + 1. Consider a gap, and suppose v is the last vertex such that bv is before this gap.
Then, the gap can be crossed by arc (bv; ev), and arcs (bw; ew) with w 2 Jv, but not by
other arcs of weight one. ut

Thus, this lemma shows that we can translate the directed vertex separation number
problem to a directed weighted cutwidth problem, and hence have a constructive proof of
the following result.

Theorem 15 (See [2].) For each k, there is a linear time algorithm, that given a directed
acyclic graph G, decides if the directed vertex separation number of G is at most k, and if
so, �nds a topological sort of G with directed vertex separation number at most k.

4.6 Modi�ed cutwidth

In [12], it is shown that the modi�ed cutwidth problem can be transformed to the Gate
Matrix Layout problem, which on its turn can be transformed to the Pathwidth problem
(see [11, 16].) Below, we describe the resulting transformation from modi�ed cutwidth to
pathwidth.

Let G = (V;E) be a graph, and k be an integer. First, we add to each vertex v 2 V ,
2k + 2� d self loops (edges from v to v.) Let G0 = (V;E 0) be the resulting graph with self
loops. Let H = (E; F) be the edge graph of G0, i.e., the vertex set of H is the edge set of
G0, and we have for each pair e; e0 2 E: fe; e0g 2 F , if and only if e 6= e0 and e and e0 have
at least one endpoint in common.

Lemma 16 The modi�ed cutwidth of G is at most k, if and only if the pathwidth of H is
at most 3k + 1.

Proof: Write n = jV j. Suppose we have a linear ordering f of G of modi�ed cutwidth at
most k. Take the path decomposition (X1; : : : ; Xn) with for all i, 1 � i � n, Xi the set
of vertices in H representing edges in G0 that either that f�1(i) as an endpoint, or have
endpoints f�1(j1) and f�1(j2) with j1 < i < j2 or j2 < i < j1. As there are precisely 2k+2
edges of the former type by construction, and at most k edges of the latter type (as f has
modi�ed cutwidth at most k), for each i, 1 � i � n, jXij � 3k + 2.

Let (X1; : : : ; Xr) be a path decomposition of H of width at most 3k + 1. For each
v 2 V , let E 0

v be the set of edges in G0 that have v as endpoint. E 0
v forms a clique in H.

By a well known property of path decompositions, there is an iv 2 I with E 0
v � Xiv . If

v 6= w, then iv 6= iw as jEv [Ewj � 4k + 3. Let f be the linear ordering of G with for
all v, w 2 V : f(v) < f(w), if and only if iv < iw. We claim that the modi�ed cutwidth
of f is at most k. Consider a vertex u 2 V , and look to the edges e = fv; wg with
f(v) < f(u) < f(w). We have iv < iu < iw, and e 2 Xiv , e 2 Xiw , hence e 2 Xiu. As Xiu

contains 2k + 2 vertices representing an edge with u as endpoint, there can be at most k
edges with f(v) < f(u) < f(w). ut

20

As the proof also shows how to translate a path decomposition of H of width at most
3k + 2 to a linear ordering of G of modi�ed cutwidth at most k, we have a constructive
proof of the following theorem.

Theorem 17 For each k, there is a linear time algorithm, that given a graph G, decides
if the modi�ed cutwidth of G is at most k, and if so, �nds a linear ordering of G with
modi�ed cutwidth at most k.

4.7 Directed modi�ed cutwidth

Similar to the directed cutwidth, the directed modi�ed cutwidth of a directed acyclic graph
G = (V;A) is the minimum directed modi�ed cutwidth of a topological sort f of G. We
have the following result.

Theorem 18 For each k, there is a linear time algorithm, that given a directed acyclic
graph G, decides if the directed modi�ed cutwidth of G is at most k, and if so, �nds a
topological sort of G with directed modi�ed cutwidth at most k.

The result follows from a transformation from directed modi�ed cutwidth to directed
weighted cutwidth.

Let G = (V;A) be a directed acyclic graph. The weighted directed acyclic graph
GQ = (V Q; AQ) is de�ned as follows.

� V Q = fbv j v 2 V g [fev j v 2 V g.

� GQ has two types of arcs. For every v 2 V , we take an arc (bv; ev) of weight k + 1.
For every arc (v; w) 2 A, we take an arc (ev; bv) of weight 1.

Lemma 19 G has directed modi�ed cutwidth at most k, if and only if GQ has weighted
directed cutwidth at most 2k + 1.

Proof: Suppose f is a topological sort of G of modi�ed cutwidth at most k. Set for all
v 2 V , g(bv) = 2f(bv) � 1 and g(ev) = 2f(ev). g is a topological sort of GQ of weighted
cutwidth at most 2k + 1.

Suppose g is a topological sort of GQ of weighted cutwidth at most 2k+1. For v; w 2 V ,
v 6= w, we have [g(bv); g(ev)]\[g(bw); g(ew)] = ;, as we would otherwise have a contradiction
with the weighted cutwidth of g. So, for all v 2 V , g(ev) = g(bv) + 1, and we can set
f(v) = g(ev)=2. For each arc (v; w) 2 A, g(ev) < g(bw) < g(ew), hence f(v) < f(w),
so f is a topological sort of G. Consider a vertex u. For each arc (v; w) 2 A with
f(v) < f(u) < f(w), the arc (ev; bw) crosses the spot between bu and eu. As the arc (bu; eu)
also crosses this spot and has weight k + 1, there can be at most k arcs (v; w) 2 A with
f(v) < f(u) < f(w). ut

Theorem 18 now follows from Lemma 19 and Theorem 10.

21

5 Conclusions

The techniques described here only deal with problems where a linear order has to be
found, and as common characteristic we have that yes-instances have bounded pathwidth.
Similar algorithms are known however for graphs of bounded treewidth (like branchwidth
[8], carving width [20] and treewidth itself [15, 7]). In order to be able to present or extend
such algorithms like we did above, additional techniques have to be added to the machinery.
In particular, there are two additional complications that must be mastered:

� The desired output of the problem has a tree structure. Basically, one should show
that certain parts of the tree (tree-decomposition or branch-decomposition) are `not
interested' and can be forgotten in the decision algorithm, and that the remainder of
the tree then can be formed by gluing a constant number of paths together.

� The input has bounded treewidth, thus a nice tree decomposition can be formed. We
now have, in addition to the introduce and forget operations, a join operation, where
two partial solutions of two subgraphs have to be combined, basically by `interleaving'
these two.

The constant factors of the algorithms resulting from the methodology presented in
this paper are very large. To improve upon these factors, especially as much that the
resulting algorithms have implementations that run fast enough for moderate values of k
is a remaining challenge.

References

[1] Abrahamson, K. R., and Fellows, M. R. Finite automata, bounded treewidth
and well-quasiordering. In Proceedings of the AMS Summer Workshop on Graph Mi-
nors, Graph Structure Theory, Contemporary Mathematics vol. 147 (1993), N. Robert-
son and P. Seymour, Eds., American Mathematical Society, pp. 539{564.

[2] Bodlaender, H., Gustedt, J., and Telle, J. A. Linear-time register allocation
for a �xed number of registers. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (San Francisco, CA, 1998) (New York, 1998),
ACM, pp. 574{583.

[3] Bodlaender, H. L. A linear time algorithm for �nding tree-decompositions of small
treewidth. SIAM J. Comput. 25 (1996), 1305{1317.

[4] Bodlaender, H. L. Treewidth: Algorithmic techniques and results. In Proceedings
22nd International Symposium on Mathematical Foundations of Computer Science,
MFCS'97, Lecture Notes in Computer Science, volume 1295 (Berlin, 1997), I. Privara
and P. Ruzicka, Eds., Springer-Verlag, pp. 19{36.

22

[5] Bodlaender, H. L. A partial k-arboretum of graphs with bounded treewidth.
Theor. Comp. Sc. 209 (1998), 1{45.

[6] Bodlaender, H. L., Fellows, M. R., and Evans, P. A. Finite-state com-
putability of annotations of strings and trees. In Proc. Conference on Pattern Match-
ing (1996), pp. 384{391.

[7] Bodlaender, H. L., and Kloks, T. EÆcient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms 21 (1996), 358{402.

[8] Bodlaender, H. L., and Thilikos, D. M. Constructive linear time algorithms for
branchwidth. In Proceedings 24th International Colloquium on Automata, Languages,
and Programming (1997), P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, Eds.,
Springer Verlag, Lecture Notes in Computer Science, vol. 1256, pp. 627{637.

[9] Chen, M.-H., and Lee, S.-L. Linear time algorithms for k-cutwidth prob-
lem. In Proceedings Third International Symposium on Algorithms and Computation,
ISAAC'92 (Berlin, 1992), Springer Verlag, Lecture Notes in Computer Science, vol.
650, pp. 21{30.

[10] Downey, R. G., and Fellows, M. R. Fixed-parameter tractability and complete-
ness I: Basic results. SIAM J. Comput. 24 (1995), 873{921.

[11] Fellows, M. R., and Langston, M. A. An analogue of the Myhill-Nerode
theorem and its use in computing �nite-basis characterizations. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science (1989), pp. 520{525.

[12] Fellows, M. R., and Langston, M. A. On well-partial-order theory and its
application to combinatorial problems of VLSI design. SIAM J. Disc. Math. 5 (1992),
117{126.

[13] Kinnersley, N. G. The vertex separation number of a graph equals its path width.
Informormation Processing Letters 42 (1992), 345{350.

[14] Kinnersley, N. G., and Kinnersley, W. M. Tree automata for cutwidth recog-
nition. Congressus Numerantium 104 (1994), 129{142.

[15] Lagergren, J., and Arnborg, S. Finding minimal forbidden minors using a
�nite congruence. In Proceedings of the 18th International Colloquium on Automata,
Languages and Programming (1991), Springer Verlag, Lecture Notes in Computer
Science, vol. 510, pp. 532{543.

[16] M�ohring, R. H. Graph problems related to gate matrix layout and PLA folding.
In Computational Graph Theory, Comuting Suppl. 7 (1990), E. Mayr, H. Noltemeier,
and M. Sys lo, Eds., Springer Verlag, pp. 17{51.

23

[17] Monien, B., and Sudborough, I. H. Min cut is NP-complete for edge weighted
trees. Theor. Comp. Sc. 58 (1988), 209{229.

[18] Robertson, N., and Seymour, P. D. Graph minors. I. Excluding a forest. J.
Comb. Theory Series B 35 (1983), 39{61.

[19] Thilikos, D. M., Serna, M. J., and Bodlaender, H. L. A constructive lin-
ear time algorithm for small cutwidth. Tech. Rep. LSI-00-48-R, Departament de
Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Barcelona,
Spain, 2000.

[20] Thilikos, D. M., Serna, M. J., and Bodlaender, H. L. Constructive linear
time algorithms for small cutwidth and carving-width. In Proc. 11th International
Symposium on Algorithms And Computation ISAAC '00, Lecture Notes in Computer
Science 1969 (2000), D. Lee and S.-H. Teng, Eds., Springer-Verlag, pp. 192{203.

24

