Proceedings of the Twelfth Belgian-Dutch
Conference on Machine Learning

Edited by Marco Wiering

institute of information and computing sciences, utrecht university
technical report UU-CS-2002-046

www.cs.uu.nl

Proceedings of the Twelfth

Belgian-Dutch Conference
on Machine Learning

Edited by

Marco A. Wiering

Intelligent Systems Group

Institute of Information and Computing Sciences
Utrecht University

4 December, 2002
Utrecht University, The Netherlands

Contents

Preface

Labeling and Splitting Criteria for Monotone Decision Trees

Jan Bioch and Viara Popova 1
Induction of Supermodels

Hendrik Blockeel e e 9
Improving the Efficiency of ILP Systems Using an Incremental Language Level Search

Rui Camacho 16
Non-Universal Suffrage Selection Operators Favor Population Diversity in Genetic Algorithms

Federico Divina, Maarten Keijzer, and Elena Marchiori, 23
On Using Guidance in Relational Reinforcement Learning

Kurt Driessens and Saso Dzeroski oo e 31
Datasize-Based Confidence Measure for a Learning Agent

Wojciech Jamroga 39
An Approach to Noncommunicative Multiagent Coordination in Continuous Domains

Jelle Kok, Matthijs Spaan, and Nikos VIasSisccouuoiii i, 46
Model Growth

Jeroen van Maanen 53

Context-based Policy Search: Transfer of Experience Across Problems

Leonid Peshkin and Edwin de JoONgooom e 59
Selecting Relevant Features for Splice Site Prediction by Estimation of Distribution Algorithms

Yvan Saeys, Sven Degroeve, Dirk Aeyels, Yves van de Peer, and Pierre Rouzé 64
Identifying Mislabeled Training Examples in ILP Classification Problems

Sofie Verbaeten 71
Locally Linear Generative Topographic Mapping

Jakob Verbeek, Nikos Vlassis, and Ben KroSec.oeemireeiniiiiieeniinnnnn.. 79
Detecting Orthogonal Class Boundaries in Entropy Behavior

Floor Verdenius and Maarten van SOMerenee ot 87

Supervised Learning of Bayesian Network Parameters Made Easy
Hannes Wettig, Peter Grinwald, Teemu Roos, Petri Myllymdki, and Henry Tirri 95

Evolving Causal Neural Networks
Marco Wieringo 103

Preface

The Twelfth Belgian-Dutch Conference on Machine Learning (Benelearn’02) has gathered a wide
variety of researchers interested in many different topics in machine learning (ML). Decision trees,
Bayesian networks, neural networks, and genetic algorithms are used for mostly supervised learn-
ing tasks. Multiple authors also propose the use of relational representations (e.g. predicate logic)
to strengthen the expressive power of the chosen representation (most often decision trees).

There is also some work on reinforcement learning. Kurt Driessens and Saso Dzeroski describe
how guided trials can be used to speed up relational reinforcement learning. Leonid Peshkin and
Edwin de Jong describe an approach to enhance cooperation and inductive transfer for multi-agent
reinforcement learning.

There is a little work on unsupervised learning; only the paper by Jakob Verbeek, Nikos Vlassis,
and Ben Krose describes a novel unsupervised learning algorithm for non-linear data projection.
It is also worth noting that there are no papers on support vector machines, which receive increas-
ing attention at many international machine learning conferences. Finally, Jeroen van Maanen
discusses the use of algorithmic information theory to extract a universal learning agent from its
interactions with an environment.

We hope that the different topics lead to interesting discussions and we look forward to an inter-
esting and pleasant day.

Marco Wiering
December, 2002

Sponsors:

The workshop was partially sponsored by SIKS (www.siks.nl)
School of Information and Knowledge Systems, the Netherlands.

Invited Talk:
Helge Ritter

Organising Committee:

Marco Wiering
Walter de Back

Program Committee:

Hendrik Blockeel
Ad Feelders
Marcus Hutter
Stephan ten Hagen
Ben Krose

Martijn van Otterlo
Mannes Poel

Eric Postma
Maarten van Someren
Dirk Thierens
Katja Verbeeck
Nikos Vlassis
Marco Wiering

Other Contributors:

Institute of Information and Computing Sciences
Utrecht University

Benelearn’'02 Home Page

Conference Program

Utrecht, The Netherlands, December 4, 2002

Wednesday 4 December 2002

® 09:30- Registration and Coffee

® 10:00- Invited Talk by Prof. Helge Ritter:
Toward Robots that Learn to Imitate Actions

® 11:00- Coffee break
® 11.20 - 12.40 Morning SessioBession chair:

® 11:20- On Using Guidance in Relational Reinforcement Learning
Kurt Driessens and Saso Dzeroski

® 11:40- Context-based Policy Search: Transfer of Experience Across Problems
Leonid Peshkin and Edwin de Jong

® 12:00- Identifying Mislabeled Training Examples in ILP Classification Problems
Sofie Verbaeten

® 12:20- Improving the Efficiency of ILP Systems Using an Incremental Language Level Search
Rui Camacho

® 12:40 - 13:40- Lunch
® 13.40 - 15.20 Afternoon SessionSession chair:

® 13:40- Locally Linear Generative Topographic Mapping
Jakob Verbeek, Nikos Vlassis, and Ben Krose

® 14:00- Evolving Causal Neural Networks
Marco Wiering

® 14.20- Model Growth
Jeroen van Maanen

14:40- An Approach to Noncommunicative Multiagent Coordination in Continuous Domains
Jelle Kok, Matthijs Spaan, and Nikos Vlassis

15:00- Non-Universal Suffrage Selection Operators Favor Population Diversity in Genetic
Algorithms

Federico Divina, Maarten Keijzer, and Elena Marchiori

15:20 - 15:40- Coffee break

15:40 - 17:40 Afternoon Session 8ession chair:

15:40- Induction of Supermodels
Hendrik Blockeel

16:00- Selecting Relevant Features for Splice Site Prediction by Estimation of Distribution
Algorithms
Yvan Saeys, Sven Degroeve, Dirk Aeyels, Yves van de Peer, and Pierre Rouz\'e

16:20- Detecting Orthogonal Class Boundaries in Entropy Behavior
Floor Verdenius and Maarten van Someren

16:40- Supervised Learning of Bayesian Network Parameters Made Easy
Hannes Wettig, Peter Grunwald, Teemu Roos, Petri Myllymaki, and Henry Tirri

17:00- Datasize-Based Confidence Measure for a Learning Agent
Wojciech Jamroga

17.20- Labeling and Splitting Criteria for Monotone Decision Trees
Jan Bioch and Viara Popova

17:40 - 18:40- Drinks

19:30- Social dinner (organized by Benelearn’02)

Labeling and Splitting Criteria for Monotone Decision Trees

Jan C. Bioch and Viara Popova
Dept. of Computer Science
Erasmus University Rotterdam,
P.O. Box 1738, 3000 DR Rotterdam.
{bioch,popova}@few.eur.nl

Abstract

This paper focuses on the problem of monotone de-
cision trees. It addresses the question how to label
the leaves of a tree in a way that guarantees the
monotonicity of the resulting tree. Two approaches
are proposed for that purpose - dynamic and static
labeling which are also compared experimentally.

The paper further addresses the problem of split-
ting criteria in the context of monotone decision
trees. Two criteria from the literature are compared
experimentally - the entropy criterion and the num-
ber of conflicts criterion - in an attempt to find out
which one fits better the specifics of the monotone
problems and which one better handles monotonic-
ity noise.

Keywords: ordinal classification, monotone deci-
sion trees, noise, pruning, labeling, splitting criteria,
entropy

1 Introduction

Ordinal classification considers problems that are
monotone i.e. if z,y are data points such that ¢ <y
(z; < y; for each attribute ¢) then their labels should
satisfy A(z) < A(y)) and therefore aims at generat-
ing classifiers that satisfy this constraint. In prac-
tice such problems appear in different domain area.
An example can be given with credit rating where if
one applicant for credit outperforms another on all
criteria then he should be given at least the same
chance for being approved. Other examples can be
given from the areas of financial management (e.g.
bankruptcy prediction, bond rating), marketing, hu-
man resources management, etc.

The general methods for generating classifiers can-
not guarantee that the monotonicity constraint will
be satisfied, therefore different methods are neces-
sary. For example well-known algorithm such as
CART and C4.5 are not guaranteed to construct
monotone trees. Ordinal classification has been
studied in the context of logical analysis of data,
decision trees, decision lists, rough sets theory, etc.
by a number of authors, e.g. (Crama et al., 1988),
(Ben-David, 1995), (Makino et al., 1996), (Bioch

and Potharst, 1997), (Greco et al., 1998), (Bioch,
1998), (Bioch and Popova, 2000), (Potharst and
Bioch, 2000), (Cao-Van and Baets, 2002), (Bioch
and Popova, 2002).

This paper discusses some aspects of the problem
in the framework of monotone decision trees (MDT).
An extension of the classical decision tree algorithm
for dealing with ordinal data was first proposed in
(Makino et al., 1996) for 2-class problems. A more
general approach applicable to k-class problems is
proposed in (Bioch and Potharst, 1997; Potharst
and Bioch, 2000). In (Bioch and Popova, 2002) a
number of methods were presented for dealing with
noise with respect to monotonicity.

The classical decision tree algorithm can be char-
acterized by three rules: a splitting rule which de-
fines how to split a node, a stopping rule defin-
ing when to stop growing a branch and turn the
current node to a leaf and a labeling rule defining
how to label the new leaf. The algorithm for MDT
generation presented in (Bioch and Potharst, 1997;
Potharst and Bioch, 2000) extends the original algo-
rithm by means of adding one more rule, the update
rule, which takes care of preserving the monotonicity
property of the tree. The update rule fires as soon
as a new node is entered and tries to add two new
points to the data set - the minimal and the max-
imal possible data point for the current node (also
called corners). If the corners do not already exist
in the data set, they are labeled with the minimal
and the maximal possible label respectively for this
node and added to the data set.

The MDT algorithm requires a monotone data set.
In practical applications, however, noise can cause
inconsistencies of the type: data points x < y with
labels A(z) > A(y). The extension of the algorithm
proposed in (Bioch and Popova, 2002) allows the
generation of monotone trees from non-monotone
data. That is achieved by an alteration of the update
rule to not only add the corners to the data set but
also, if they are already present but inconsistent, to
relabel them with consistent class values. The algo-
rithm is further augmented with methods for prun-
ing in order to limit the tree size while keeping the

monotonicity property.

This paper extends some of the methods presented
in (Bioch and Popova, 2002) and discusses the issue
of splitting criteria in the context of ordinal classi-
fication. Section 2 gives a brief introduction to the
MDT algorithm. Section 3 presents the extension
for dealing with monotonicity noise. Section 4 dis-
cusses the problems of pruning and labeling MDT.
Two approaches for labeling are presented in sub-
sections 4.1 and 4.2 and compared in 4.3. Section 5
discusses two splitting criteria - the entropy criterion
and a more ’consistency-oriented’ criterion we refer
to as 'number of conflicts’. Section 6 gives the results
of the experiments performed on the comparison of
the two labeling approaches(subsection 6.1) and on
the comparison of the two labeling approaches (sub-
section 6.2). Section 7 gives some conclusions and
some possible directions for future research.

2 Monotone decision trees

Let T be a node of the tree T generated thus far on
the data set D C X where X" is the input space. T
can be represented as T = {z € X : o(T) < z <
b(T)} where a(T),b(T) are called the lower/upper
corners of T respectively. In the following the cor-
ners will be denoted by simply @ and b when no ambi-
guity occurs. The original MDT algorithm is given
in figure 1. In order to guarantee the monotonic-
ity of the tree, an update procedure is performed
on the data set by adding at most 2 new data points
with consistent labels. The update procedure is per-
formed every time a node is considered for splitting
and the added points are the lower and the upper
corners of the node (if they are not already present
in the data set). The labels are chosen to be Ayaz (@)
and Apmin (D) respectively, which are defined in the
following, where Cpin/Cmaz are the lowest/highest
class in the data set:

le={yeX :y<z}

te={yeX:y>uz)

iD= 4=
z€eD
tD=J te
zeD
Ao (1) = max{\(y): yeDnlz} ifzetD
min\T) = Cmin otherwise.
Ao () = min{\(y): yeDntz} ifzelD
maz () = Crnaz otherwise.

Using this way of labeling we guarantee that the
lower corner gets the minimal label possible for the

T a1 a a3 as as ag | A
1 0 0 1 1 0 110
2 1 1 2 1 3 110
310 1 1 0 0 110
4 | 2 3 1 3 3 1|1
5 1 0 2 2 3 1|1
6 0 0 0 3 2 2 |1
70 2 2 1 1 1 2 |1
8 2 4 2 2 2 3|2
9 1 1 2 1 3 2 |2
10| 3 2 1 0 O 1|2
113 2 2 1 2 2 13
1213 3 4 1 2 2 13
314 2 3 3 3 313
1413 3 3 4 1 313
1514 4 2 3 0 113

Table 1: The example data set

node and the upper corner gets the maximal possi-
ble label. At the same time the new points remain
consistent with the rest of the data, therefore the
monotonicity constraint is not violated.

split(node T'):

update(T);

if T'is homogeneous
label T';

else
split T' into disjoint T, and Trg;
split(TL);
split(Tr);

update(node T'):
ifad¢ D
A(a) = Amaz (a')§
add a to D;
itb¢ D
A(D) = Amin(b);
add b to D;

Figure 1: The monotone decision tree algorithm

In order to illustrate how the algorithm works
we use the example data set from table 1. In the
first step, the root of the tree (containing the whole
data set) is considered for splitting. The update
rule fires and the corners a = (0,0,0,0,0,0) and
b= (4,4,4,4,3,3) are added with labels A(a) = 0
and A\(b) = 3. Further a; > 2 is chosen for a test of
the node and the data set is divided between the two
children. Following the left-depth-first strategy we
consider the left child for splitting. The corners are
a=(0,0,0,0,0,0) and b = (2,4,4,4,3,3) where a is
already present and b is added with a label A(b) = 2.
The algorithm continues with finding the best split,

Figure 2: The MDT generated for the example data set

etc. The full monotone tree generated from this data
set is given in figure 2.

3 Monotone decision trees from
noisy data

The extension of the MDT algorithm for handling
noisy data alters the update rule to not only add
the corners if they are not present but also to rela-
bel them with consistent labels if they are present.
In this way the algorithm tries to repair the incon-
sistencies caused by monotonicity noise. The new
update rule, for a node T with lower/upper corners
respectively a and b, is given in figure 3.

update(node T):
I = Amaw(a)Q lr = Amzn(b)y
ifaeD
relabel a: A(a) = l3;
else
label a: A\(a) =1y; add a to D;
ifbe D
relabel b: A(b) = lo;
else
label b: A(b) = I2; add b to D;

Figure 3: The extended update rule

Theorem: The MDT algorithm with the extended
update rule of figure 3 always generates a monotone
tree.

(See (Bioch and Popova, 2002) for a proof.)

To illustrate the algorithm we introduce monotone
inconsistency in the example data set of table 1 -
we change the label of data point z3 from 0 to 1.
Thus we introduce an inconsistent pair of data points
(z2,z3). The output of the algorithm on the new
data set is given in figure 4.

Note that a simple criterion for checking the
monotonicity of a tree (Potharst and Bioch, 2000)
can be defined as follows.

Let £ be the set of leaves of a tree 7 and A be
the set of nodes of 7. We define a relation on N:
for T, T' e N

T<T & a(T) <b(T").

Let T,T" € £ such that
T={zxeX:a(T)<z<bT)}

and
T'={z e X:a(T') <z <bT")}.
Then the tree is monotone if for any choice of T and
T"
T<T' = \T)<XT.

4 Pruning and labeling rules that
guarantee the monotonicity

The original MDT algorithm adds new points to the
data set, therefore the set grows and that is one of
the reasons why the generated trees tend to be big-
ger than the ones generated by the classical DT al-
gorithms. The noise with respect to monotonicity
can cause further increase of the tree size. One way
to correct that is to prune the trees to reduce the
size while keeping the misclassification rate as low
as required. Pruning can be performed in two ways:
pre-pruning which prematurely stops the growth of
the tree when a predefined threshold is reached and
post-pruning which first grows the full tree and then
cuts branches from it until a predefined criterion is
fulfilled.

In both situations it is important to apply consis-
tent rules for giving labels to the new leaves in such
a way that the resulting tree is monotone. Dynamic
labeling refers to giving labels while the tree is being
generated, as soon as a node is turned to a leaf. It
can be used together with pre-pruning. Static label-
ing refers to the process of giving consistent labels
to the tree that is already generated. It can be used
on any trees with non-homogeneous leaves, e.g. trees
generated with pre- and post-pruning as well as trees
generated with other methods.

This section discusses the two labeling methods.

4.1 Dynamic labeling

One important difference between the static and the
dynamic way of labeling is how much of the infor-
mation in the tree is already available. While in the
static case the tree is grown and all the information
about the shape of the tree, the corners of the leaves
and the labels of these corners is available, in the dy-
namic case we only have a part of the tree built and

Figure 4: MDT on the non-monotone data set

label leaf T

AN(T) = L(T);
Aa(T)) = M(T);
AM(T)) = MT);

Figure 5: The dynamic labeling rule

the new label should be based on partial informa-
tion. Therefore, for dynamic labeling, an important
factor is the search strategy used for building the
tree, i.e. which part of the tree is expected to be
built already and what kind of information will in-
fluence the new labels. In the following we assume
the depth-first strategy for growing the tree. First
we note an observation that holds for this strategy.

Lemma: Let T,T' € L(T) in the monotone tree
T generated with depth-first strateqgy. Let T < T'.
Then leaf T is generated before leaf T'.

(See (Bioch and Popova, 2002) for a proof.)

The general form of the dynamic labeling rule for
a non-homogeneous leaf T is given in figure 5 where
L is the labeling function. Two possible forms are
proposed for the labeling function as follows:

Le {Lmina Lmaac}

Linin(T) = maz{\(T")|T" < T}
Lyae (T) = min{\(T")|T < T'}
Theorem: Let T be a tree generated using the
extended MDT update rule for a threshold of at least
m points in a leaf, m > 1. Let the leaves be labeled
using the dynamic labeling rule of figure 5 where one
of the following strategies is applied:
1. L(T) = Lyin(T),VT € L,
2. L(T) = Lina(T),VT € L.

Then T is monotone.

Proof: Let the tree be generated using the left-
depth-first strategy. The newly generated leaf to be
labeled is denoted by 7. If T is the first leaf then
the current set of labeled leaves is monotone.

Let T be not the first leaf and let the current set, of
labeled leaves be monotone. We label A(T") = L(T').

Let L = Ly (T). Then

MT) = maz{\(T")|T' <T}.

Therefore, for each 7" < T', \(T") < XA(T'). Therefore
the state of the tree is still monotone. The proof is
analogous for L = Ly,q;-

In the same way it can be proved for right-depth-
first strategy. O

The following observations can help speeding up
the computation:

Observation 1: For the left-depth-first strategy
the following holds: L. (T) = MNb(T)).

Observation 2: For the right-depth-first strategy
the following holds: L.,;»(T) = Aa(T)).

The experiments showed that L,..(a) tends to
favor the lower classes while L,,;,(b) tends to favor
the higher classes. Therefore they provide a choice
to the decision-maker for a more pessimistic against
a more optimistic prediction.

4.2 Static labeling

As mentioned before, static labeling is performed
on the fully generated tree, where the information
about all the leaves is already available.

The earlier defined relation over the nodes/leaves
of a tree is not transitive. We define now a transi-
tive closure relation, denoted by <, in the following
way. For T T" e N: T' QT" & 3T, Ts,...., T, €
N such that T/ < Ty <Ty < ..<T,, <T".

In our implementations we used the algorithm of
Warshall (Warshall, 1962) for computing the transi-
tive closure.

We define A,,;, and A,,.. over the set of leaves £
as follows:

Apin(T) = maz{A(a(T))|Th € L, T1 AT}

Armaz(T) = min{A(b(Tx))|Ts € £, T < Ty}

Then A is defined as: A € {Apin, Amaz }-

It can be shown that Api < Anee and they
are monotone labelings, i.e. for leaves T7 < Tb,
Amzn(Tl) S Amzn(TZ) and Ama:t (Tl) S Amaz (T2)

Theorem: Let T be a tree generated without la-
beling. Let the leaves be visited following either left-
depth-first or right-depth-first order. The leaves are
labeled using one of the following strategies:

1. X(T) = Apin(T),¥T € L,
2. N(T) = Apao(T),¥T € L.

Then the resulting tree is monotone.

Proof: Let A = A,,;, and the order of visiting
the leaves is left-depth-first. Let the last leaf labeled
is T. If T is the first labeled leaf then the current
set, of labeled leaves is monotone.

Let T be not the first labeled leaf and let the cur-
rent set of labeled leaves be monotone.

A(T) = Amin(T) = maz{Aa(T")|T" ST}

Let us assume that the resulting set of labeled
leaves is no longer monotone. Using left-depth-first
means that there are no labeled leaves T' such that
T QT'. Therefore 37" < T,A(T") > X(T). Since
AT) > AMa(T")), then \(T") > A(a(T"))

= 37" T" AT, NT") = Aa(T"))

= T" QT = MT) > Ma(T")) = \(T")

which is a contradiction with the assumption.
The proof is analogous for A,,., and for right-
depth-first order. O

4.3 Comparison

In order to get more insight in the performance of
the two presented approaches for labeling, experi-
ments were conducted. The main goal was to com-
pare the results from the four possible combinations
of settings: dynamic labeling with L,,;,, dynamic
labeling with L., static labeling with A,,;, and
static labeling with A, qz-

The trees were generated using left-depth-first
search strategy with pre-pruning at predefined
thresholds for the minimal number of points in a
node. Therefore the size of the trees was almost al-
ways the same.

The results showed that:

e In general the dynamic labeling produces trees
with lower misclassification rate on unseen data.
The reason for that is most probably in the fact
that the tree changes dynamically and it is pos-
sible to generate trees that have different shape
while in the static case the shape of the tree is
already fixed and the only feature that changes
is the labels of the leaves.

e The difference between the two labeling func-
tions for both approaches was not so clear-cut
and no conclusion can be made yet on which
one is preferable.

Details on the experimental setting and the results
are given in section 6.

5 Splitting criteria for MDTs

One of the important rules in building a decision
tree is the splitting rule which defines how to split
the current node in two branches. For a binary tree a
split is a tuple of the type (a;, v;) where q; is the at-
tribute to split on and v; is the cut-off value. There
is a lot of research done on finding good criteria for
choosing good splits for the classical DT algorithms.
One of the most successful approaches is to choose
the split which produces the highest decrease in the
entropy or the highest information gain. These two
notions are usually defined as follows. The entropy
of a node T is:

Ent(T) = — Zpiloggpi
i=1

where p; is the proportion of data points with class
i in T for an n-class problem. Then the information
gain of an attribute a; and cut-off value v; is:

T;
Gain(T,a;,v;) = Ent(T) — Z MEnt(Tk)

ke{L,R} 7]

where T, /Tg are respectively the left and the right
child of T" when split on (a;, v;).

However for the specific case of MDT it is not clear
which splitting criteria are good. Intuitively they
should not only attempt to produce smaller trees
but also provide fast decrease in the inconsistencies
in the tree. One such criterion was suggested in
(Cao-Van and Baets, 2002) although no experimen-
tal results were presented on its performance com-
pared to other criteria. The criterion aims at reduc-
ing the number of non-monotone pairs of points in
the resulting branches. It chooses the split with the
least number of inconsistencies/conflicts.

Let the current node T be split into the following
non-overlapping subsets:

T' = {a(T") <z < b(T")}

and
T" ={a(T") <z < b(T")}.

Let T' be the left branch. Therefore 77 < T". If for
all points © € T',y € T" it is true that A(z) < A(y)
then the split is monotone. There might be however
points such that A(z) > A(y). The number of those
inconsistent pairs is counted for all possible splits of
the current node and the one with the lowest count
is chosen.

The experiments that were performed for this pa-
per aim at giving more insight in the performance of
the two mentioned criteria in the context of MDT.
The two main aspects for comparison are the size
and the accuracy of the generated trees. The exper-
imental results point at the following observations.

¢ On monotone data sets no criterion is system-
atically better than the other.

e With the increase of monotonicity noise in the
data, the entropy criterion tends to generate
smaller trees.

e With the increase of monotonicity noise in the
data the conflicts criterion generates more ac-
curate trees with lower misclassification rate on
unseen data.

Intuitively the reason for the difference is probably
in the orientation of the two criteria. The entropy
criterion strives at generating smaller trees by reduc-
ing the diversity of classes in the leaves as fast as pos-
sible. The conflicts criterion, on the other hand, only
cares about the consistency /monotonicity of the tree
and therefore produces trees that are larger but bet-
ter fit the ’character’ of the data. In this way it
handles more successfully monotonicity noise but at
the cost of generating bigger trees.

Details about the data used, the performed ex-
periments and the experimental results are given in
section 6.

6 Experiments

As it was mentioned in sections 4 and 5, experiments
were performed in two directions. The first direction
aims at comparing the dynamic and the static ap-
proach for labeling with their variations. The results
are presented in section 6.1. The other direction of
experiments aims at comparing the entropy and the
conflicts splitting criteria in the context of monotone
decision trees. The experimental setting and the re-
sults are presented in section 6.2. In all experiments
left-depth-first search strategy was used.

For all experiments, the starting data sets were
taken from UCI Machine Learning Repository
(Blake and Mertz, 1998). The Nursery data set is a
real-world monotone data set which represents appli-
cations for a nursery school, contains 12960 instances

described by 8 attributes and covers the whole in-
put space. The Cars data set is an artificial set
describing cars by their properties and classifying
them according to their acceptability for a buyer.
The original data was not strictly monotone and for
that reason one of the values of one attribute was re-
moved. The resulting set was monotone. It contains
1153 instances described by 6 attributes. Since both
data sets cover the whole input space, they were also
used as test sets in the experiments.

For the experiments random samples of size 200
points were drawn from both data sets. Monotone
inconsistencies were introduces in the data in the fol-
lowing way: a pair of comparable data points (such
that either x < y or & > y) from different classes
was chosen at random and the labels were switched.
That results in one or more inconsistent pairs. The
procedure can be repeated to introduce more noise.

Since both data sets cover the whole input space it
was possible to test the misclassification rate on the
whole data instead of using separate test samples.

6.1 Comparison of the dynamic and the
static labeling

For the comparison of the two labeling approaches,
four samples were used - one from the cars data set
and three from the nursery data. For each the algo-
rithms were applied for the thresholds of minimum
5, 10, 15 and 20 points in a node. For the static
case the leaves were left unlabeled and the labeling
was performed at the end. Eight different combina-
tions of settings were tested: entropy versus conflicts
splitting criteria, L, versus L., and A, ver-
sus Ajpaz- The results about the splitting criteria
are discussed in section 6.2 and for the purpose of
the current discussion the results will the averaged
over the two criteria.

As a test set, the full data sets were used as they
cover the whole input space (1153 points for the
cars data set and 12960 points for the nursery data
set). The number of misclassified points per sample
is given in table 2. The first column contains the
value of the threshold. Columns 2 and 3 give the
results for the tree labeled with static labeling for
Apin and A,,q, respectively Columns 4 and 5 give
the analogous results for dynamic labeling and Ly,
and L., respectively.

As it was mentioned before, the size of the trees
was the same for the static and the dynamic case
(per sample and threshold). Having this in mind,
it can be seen that the number of points misclassi-
fied by the trees which was labeled dynamically is
systematically lower than (often more than twice as
low as) that of the trees labeled statically.

On the other hand no definite answer can be given
to the question which labeling function to use: Ly,p
versus Lyee and Ay, versus Apee. In the static
case the choice of labeling function made hardly any

static dynamic
thr Amzn Amaz Lmzn Lmaz
5 205 205 93 285
10 | 350 350 156 407
15 | 408 408 217 425
20 | 408 408 219 434
5 | 2495 | 2495 | 1708 | 1915
10 | 4012 | 4012 | 2172 | 2154
15 | 4530 | 3524 | 2395 | 2292
20 | 4950 | 4950 | 2512 | 2424
5 | 2436 | 2436 | 1821 | 1694
10 | 3380 | 3380 | 2486 | 1892
15 | 4653 | 4653 | 2587 | 2404
20 | 5055 | 5055 | 2967 | 2404
5 | 4152 | 4152 | 2097 | 3351
10 | 5402 | 5402 | 2489 | 3509
15 | 6892 | 6892 | 2983 | 4219
20 | 7398 | 7403 | 3130 | 4555

Table 2: Experimental data on the labeling ap-
proaches

difference in the results while in the dynamic case
for some samples L,,;» is better and for the other
L4 gives better results.

These results are also confirmed by the experi-
ments performed by a master’s student (van Eikeren,
2002) working under the guidance of the authors of
this paper.

6.2 Comparison of the entropy and the
conflicts splitting criteria

The experiments were designed to answer two main
questions in the comparison of the two splitting cri-
teria:

e Which criterion performs better on monotone
data by means of generating smaller and/or
more accurate monotone trees?

e Which criterion handles better monotonicity
noise/inconsistencies by means of generating
smaller and/or more accurate monotone trees?

In order to give some insight on these questions
the experiments were conducted in two different set-
tings. In the first part 10 monotone samples were
drawn from the nursery data set. MDTs were gen-
erated from each of them using the two criteria. The
results - the number of misclassified points over the
full data sets and the number of tree nodes - are
given in table 3. It can be seen that the perfor-
mance of the two criteria is different on the different
samples and no definite conclusion can be made on
which one fits better monotone problems.

For the second part of the experiments, 4 samples
were chosen - 1 from the cars data set and 3 from
the nursery data set (rows 2, 3 and 7 from table 3).
For each data set 6 noisy versions (5 for the cars

entropy num conflicts
miscl | nodes | miscl | nodes
1612 321 1512 233
1516 95 1522 211
1520 87 1752 131
1645 85 1458 247
1478 143 1330 159
1354 151 1429 783
1277 163 1718 195
1266 107 1232 149
1087 401 1672 241
1504 343 1622 327

Table 3: Experimental data on the splitting criteria
for monotone samples

data) were generated by switching the labels of 1
to 7 pairs of points. For each such series, MDTs
were generated using the entropy and the conflicts
criteria.

The results per series are presented in table 4. The
first column contains the number of non-monotone
pairs of points in the set. Columns 2 and 3 give
the number of misclassified points on the full data
set and the number of nodes for the tree generated
with the entropy criterion, while columns 4 and 5
give the respective information for the number of
conflicts criterion.

It can be seen that with the increase of inconsis-
tencies the number of conflicts criterion gives sys-
tematically better misclassification rate while pro-
ducing bigger trees than the entropy criterion.

7 Conclusions and further research

This paper presents two approaches for labeling de-
cision trees in a way that guarantees the monotonic-
ity of the resulting trees. For each approach two
possible labeling functions are proposed and their
performance was compared experimentally. The re-
sults indicate that dynamic labeling approach pro-
duces more accurate trees than the static labeling
for trees of the same size.

The experiments used the left-depth-first search
strategy for generating the trees. The obvious next
step in this direction of research is to investigate
whether the results also apply for the right-depth-
first strategy.

The paper further investigates the performance of
two splitting criteria from the literature - the clas-
sical entropy criterion and the more 'monotonicity-
oriented” number of conflicts criterion. Although for
monotone samples the performance of none of the
criteria is systematically better, the experimental re-
sults confirm the intuition that with the increase of
monotonicity noise the entropy criterion produces
smaller trees while the conflicts criterion generates
more accurate trees.

incons entropy num conflicts

pairs | miscl | nodes | miscl | nodes
0 52 53 47 83
19 90 293 74 171
55 196 311 103 373
86 218 421 172 501
111 225 469 176 921
118 224 473 186 609
0 1516 95 1522 211
2 1500 115 1520 303
21 2326 561 1789 397
28 2496 993 1773 o83
31 2366 605 1737 289
40 2432 963 1763 639
42 2586 | 1787 | 1831 | 1069
0 1520 87 1752 131
2 1512 157 1812 125
7 1673 747 1850 317
39 3052 | 3655 | 2692 | 3497
64 3607 | 3719 | 3003 | 3829
66 3685 | 3353 | 3327 | 4339
69 3798 | 3751 | 3322 | 4437
0 1277 163 1718 195
39 3035 | 2093 | 3607 | 3945
59 3518 | 3755 | 4283 | 5645
74 4577 | 2969 | 4369 | 5737
78 4603 | 3137 | 4553 | 5863
81 4547 | 3125 | 4504 | 5887
83 4547 | 3135 | 4466 | 5861

Table 4: Experimental data on the splitting criteria
on non-monotone samples

These results point at one potential direction for
further research - is it possible to combine the good
properties of the two criteria in a new criterion that
both strives at generating smaller trees and reducing
the inconsistencies in the nodes in order to produce
trees that fit better monotone data and better han-
dle monotonicity noise.

References

A. Ben-David. 1995. Monotonicity maintenance in
information-theoretic machine learning algorithms.
Machine Learning, 19:29-43.

J. C. Bioch and V. Popova. 2000. Rough sets and ordi-
nal classification. LNAI, Proceedings of the 11th Int.
Conf. on Algorithmic Learning Theory (ALT’2000),
Sydney, Springer-Verlag, pages 291-305.

J. C. Bioch and V. Popova. 2002. Monotone classifica-
tion and noisy data. Technical Report ERS-2002-53-
LIS, Dept. of Computer Science, Erasmus University
Rotterdam, http://www.erim.nl.

J. C. Bioch and R. Potharst. 1997. Decision trees for
monotone classification. K. van Marcke and W. Dael-
mans (eds), Proceedings of the Dutch Artificial Con-
ference on Artificial Intelligence (NAIC’97), Antwerp,
pages 361-369.

J. C. Bioch. 1998. Dualization, decision lists and iden-
tification of monotone discrete functions. Annals of
Mathematics and Artificial Intelligence, 24:69-91.

C. L. Blake and C. J. Mertz. 1998. Uci repository of
machine learning databases. Irvine, CA: University of
California, Department of Information and Computer
Science [http://www.ics.uci.edu/ mlearn/ MLReposi-
tory.html].

K. Cao-Van and B. De Baets. 2002. Growing decision
trees in an ordinal setting. submitted to International
Journal of Intelligent Systems.

Y. Crama, P. L. Hammer, and T. Ibaraki. 1988. Cause-
effect relationships and partially defined boolean func-
tions. Annals of Operations Research, 16:299-326.

S. Greco, B. Matarazzo, and R. Slowinski. 1998. A new
rough set approach to evaluation of bankruptcy risk.
C. Zopounidis (ed.), Operational Tools in the Man-
agement of Financial Risks, Kluwer, Dordrecht, pages
121-136.

K. Makino, T. Suda, K. Yano, and T. Ibaraki. 1996.
Data analysis by positive decision trees. Proceedings
of International Symposium on Cooperative Database
Systems for Advanced Applications (CODAS), Kyoto,
pages 282-2809.

R. Potharst and J. C. Bioch. 2000. Decision trees for
ordinal classification. Intelligent Data Analysis, 4:1—
15.

W. van Eikeren. 2002. Monotone decision trees and
stacked generalization. Master’s thesis, Erasmus Uni-
versity Rorrerdam.

S. Warshall. 1962. A theorem on boolean matrices.
Journal of the ACM, 9(1):11-12.

Induction of Supermodels

Hendrik Blockeel
Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium
hendrik.blockeel@cs.kuleuven.ac.be

Abstract

It is rarely the case in machine learning and data
mining projects that only a single inductive pro-
cess is run. Often, experiments are performed
with a number of different algorithms, different
settings for a single algorithm, different feature
sets, and so on. While most research focuses
on algorithms that induce a single model, given
this practice it would be useful to look for al-
gorithms that induce a kind of modelgenerator
or “super”’-model, from which multiple concrete
models can efficiently be generated (this is a
kind of partial evaluation). Thus one can avoid
executing computationally heavy induction pro-
cesses many times in very similar contexts. The
process is similar to partial evaluation. This pa-
per discusses some possibilities and challenges
for research on supermodels.

1 Introduction

A lot of machine learning research is devoted to
induction of models (theories, hypotheses) from
data. In many cases the user is interested in
predictive models, which can be used to predict
properties of new instances (for instance, their
class, in the case of classification).

In the context of predictive induction there is
often a clear quality criterion, such as predictive
accuracy, expected misclassification cost, mean
squared error, etc. The user is interested in find-
ing a predictive model from a set of data that
performs as well as possible according to the
chosen criterion.

Now one problem with machine learning al-
gorithms is that their performance is often influ-
enced by a set of parameters. In many cases it
is unclear which parameter values will yield the
best model, so the user just runs the algorithm
several times in a row, varying the paramet-
ers in search for optimal parameter values, and

stopping when no further improvements to the
model are found.

This approach can be automated to some ex-
tent. One then wraps a script around a machine
learning algorithm; all the script does is execute
a loop that consists of adapting parameter val-
ues, running the learning algorithm, record the
performance of the resulting model, and based
on this performance exit the loop or re-iterate.
Such an approach is called a wrapper approach
(Kohavi, 1995).

Wrapper approaches have as main advantage
that they tend to yield close-to-optimal models
even when the result of the induction process
heavily depends on the parameter values, and
this without the user having to spend any effort
tuning these values. A potential danger is that
they are more prone to overfitting than building
a single model with fixed parameters, but as
long as the model validation is done carefully
this is not that much of a problem.

A more serious problem with wrappers is
that they strongly increase the time needed for
the induction process. Even if a single run of
the machine learning algorithm takes very little
time, a wrapper may easily run that algorithm
hundreds of times (note that if for instance ten-
fold cross-validation is used to determine the
expected performance of a model built with cer-
tain parameter values, the algorithm already
needs to be run ten times in each single itera-
tion), and a more extensive search for parameter
values may require many more runs. Obviously
such approaches do not scale very well to large
data sets, unless specific adaptations are made
to the algorithms.

It seems, however, that these problems of
computational complexity can be avoided in
some cases. The observation that lies at the
basis of this statement, is that in all these runs

of the same algorithm on the same data set,
many computations are exactly the same. One
could ask whether it would not be possible to
induce a kind of data structure that is inde-
pendent of specific parameter settings, but from
which specific models can be derived efficiently
by filling in the values for these settings. We
call such a structure a supermodel. We will see
in the remainder of this text that this is indeed
possible. In fact, certain already existing al-
gorithms can be viewed as instances of this ap-
proach. The main contribution of this paper is
that it puts these approaches into a new per-
spective and presents arguments for doing more
research in this direction.

The remainder of this paper is structured as
follows. In Section 2 we describe in more detail
the principle of induction of supermodels. In
Section 3 we relate the approach to existing ap-
proaches in machine learning and data mining.
We list a number of opportunities for further
research in Section 4 and discuss the expected
advantages and current challenges of the super-
model approach in Section 5. We summarize by
giving a generic approach to construction of su-
permodel algorithms in Section 6, then we con-
clude in Section 7.

2 Induction of Supermodels:
Principle

The principle of induction of supermodels can
be described as follows. Consider a machine
learning or data mining algorithm that from a
data set D induces a model M. The behaviour
of the algorithm is influenced by certain para-
meters P. Thus, the algorithm can be described
as a function that maps a data set and a set of
parameter values onto a model. We call this
function induce. In pseudo-code we could write
the induction process as

M := induce(D, P)

A supermodel should have the property that
it can be induced from the data without the
parameters P, and that a specific model can be
deduced from it by filling in values for P. Hence
we write

SM := induce_sm(D)
M := deduce(SM,P)

Note the similarity of the above process to
partial evaluation (Jones et al., 1993). The the-
oretical existence of supermodels follows imme-
diately from the S-m-n theorem (Kleene, 1952).
The practical computability of SM is of course
another issue.

Assuming P is not a single parameter but a
set of parameters, the above description of in-
duction of supermodels can be made more flex-
ible by distinguishing between that subset of the
parameters that can be postponed to the deduce
phase (i.e. which do not take part in the partial
evaluation), and those that cannot. If we call
these subsets P, and P, respectively, then the
normal induction process is described as

M := induce(D, P1, P)

and is equivalent to the following two-step
process of inducing a supermodel and deriving
a model from it:

SM := inducesm(D, Pp)
M := deduce(SM,P)

Now the practical computability of SM is less
of a concern. One simply defines P; and P
in such a way that the supermodel is comput-
able. Obviously the usefulness of the technique
increases with the size of Ps.

Now what does the two-step process buy
us? As mentioned previously, the idea is that
conceptually we wish to run the induction al-
gorithm many times with different parameter
values. If we wish to change only values for
P, then in the two step process we need only
run the deduce function multiple times. Note
that this function is independent of the data
set, so the complexity issues related to the data
set size and the search through parameter space
are decoupled. More specifically, if p combina-
tions of parameter values are tried out during
the parameter search, the complexity of both
induce and induce_sm is O(f(N)) with N the
size of the data set, and the complexity of de-
ducing a single model from the supermodel is
¢, then the complexity of the whole process be-
comes O(f(NN) + pc) instead of O(pf(N)).

Of course, in order to obtain real gains from
the two-step process for reasonably sized data
sets and parameter spaces, the computational

complexity of induce_sm should not be excess-
ively higher than that of induce and the com-
plexity of deduce should be low.

3 Concrete Examples

We have already mentioned the relationship of
our technique with partial evaluation. In fact
there exists a lot of work in data mining (more
than in machine learning, possibly because the
issue of scalability towards very large data sets
has received more attention in that domain)
that is related to our principle of supermodel
induction.

This work can be considered to go back to
Apriori (Agrawal et al., 1993). Apriori is an al-
gorithm for finding association rules. These are
rules of the form A;... A, — B where A; and
B are boolean attributes (called items) with se-
mantics “if attributes A4, ..., A, have the value
true, then B is probably true too”. Such rules
are said to hold with a certain confidence (pro-
portion of cases where B is true, out of all cases
where Aj,..., A, are true) and support (pro-
portion of cases in the whole database where
A1,..., Ay, B are all true). The task is to find
the set of all association rules with support and
confidence above certain thresholds min_support
and min_confidence.

Finding such a set is a non-trivial task. The
approach of Apriori is to compute a priori
some statistics on frequent itemsets and store
these statistics in a database, so that after-
wards association rules can efficiently be de-
rived from them. In our terminology, the set
of itemset counts is a supermodel that is de-
pendent on a parameter min_support?, and a
single model is then a set of association rules
with parameters min_support (> min_support2)
and min_confidence that contains all association
rules with support at least min_support and con-
fidence at least min_confidence. Variants in-
clude approaches where syntactical constraints
on the rules are added to either P, (in order
to make the itemset discovery process more ef-
ficient, e.g., Garofalakis et al., 1999) or P, e.g.,
query languages for data mining (De Raedt,
2000).

Imielinski and Mannila’s (1996) seminal pa-
per on inductive databases argues for consider-
ing the results of data mining as data objects
in themselves that can be stored in a database

and consecutively queried. This can be seen as
a generalization of the Apriori approach. Never-
theless, most work that has followed up on that
paper seems to have focused on the association
rule context, although the ideas have a much
broader application potential.

The notion of sufficient statistics is also rel-
evant. The idea is that from a data set a
kind of summary is produced that contains suf-
ficient information to perform a certain type
of computations afterwards. Moore and Lee
(1998) describe the use of AD-trees for stor-
ing sufficient statistics for building trees, rules,
bayesian nets, ... (This approach is quite sim-
ilar to counting frequent itemsets, but has cer-
tain advantages over the latter). In a related
vein, recently a number of approaches have been
proposed where a data set is summarized by a
probabilistic model that makes it possible to ap-
proximate the joint probability distribution; we
mention Pavlov et al. (2001) who perform a
comparative study of several such approaches,
and Getoor et al. (2002) who present a similar
approach for multiple relations in a relational
database.

In the context of decision trees, recent
work on efficient cross-validation (Blockeel and
Struyf, 2002) can be seen as presenting in-
stances of the supermodel approach proposed
here. In the cross-validation context a structure
is built that contains information on the differ-
ent trees resulting from the different folds. Also
some of Blockeel and Struyf’s (2001) Franken-
stein classifiers can be considered supermod-
els: multiple trees are derived from a single
tree that each are optimal under different con-
ditions, more specifically, in different areas of
ROC space (Provost and Fawcett, 1998).

While all this work implicitly or explicitly
promotes an approach similar to the one we pro-
pose here, it would appear that the idea in its
full generality remains little explored. For in-
stance, if we consider a spectrum of supermod-
els, with supermodels close to the data (e.g.,
probabilistic models) on the one side, and su-
permodels close to the final models (e.g., cross-
validation forests) on the other side, there is a
large gap in between these two extremes.

4 Opportunities

We have mentioned that approaches similar to
our supermodel approach exist mainly in the
“association rules” context. There are clearly
many other opportunities. Let us have a closer
look at decision tree induction.

Decision tree induction (Quinlan, 1993;
Breiman et al., 1984) typically makes use of a
heuristic such as information gain (ratio) that
can be computed entirely from class distribu-
tions, and these can themselves be computed
from attribute-value counts.! Suppose for in-
stance that in a certain node three levels be-
low the root all examples with values [z, z2, 3]
for attributes [X1, Xo, X3] are gathered, and we
need to compute the information gain of attrib-
ute X4. This information gain can be com-
puted from the joint frequency distribution of
[X4, Y] within the current node. Assuming that
for all values x4; and y; for the attribute X4
and target attribute Y the frequency of the
tuple [z1,x2,x3, 4i,y;] has been computed in
advance, the information gain can be computed
from these frequencies.

In general, if attribute-value frequencies are
computed up to level N using an Apriori-like
approach, then the first N — 1 levels of a de-
cision tree can be computed from these without
ever looking at the data. Of course counting
the attribute-value combinations may take more
work than inducing a single decision tree, but if
several trees may have to be built (e.g., for dif-
ferent target attributes), or if the sets have been
computed anyway (e.g., with the aim of deriv-
ing association rules), then this approach may
pay off.

There remain some possible problems with
this approach. The Apriori algorithm typic-
ally encounters complexity problems when it is
run with a very low support threshold, so that
many combinations are “frequent”. Increasing
the support threshold would means that the
quality of certain kinds of splits can only be
estimated. More specifically, if the treshold is ¢,
then an exact count of the number of instances
belonging to a certain class is only available if
there are at least ¢ of them. If for only one class
that number is missing, it can still be computed

!These are similar to itemset counts as computed by
Apriori, except that the “items” are now specific values
for an attribute.

from the other numbers. Otherwise, a pessim-
istic estimate of entropy can be made by assum-
ing classes for which no information is available
to be equally frequent. It is unclear how much
such estimates would influence the quality of the
induced tree.

Thus, apart from a number of issues that are
not settled yet, it seems safe to say that frequent
itemset (or attribute-value) counts deserve con-
sideration as a possible supermodel for decision
trees. This is even more the case for AD-trees

We have already mentioned the work on ef-
ficient cross-validation,where a kind of forest
structures are induced from which the spe-
cific decision trees obtained in different folds
of a cross-validation are efficiently computable.
These are also supermodels for trees. For induc-
tion of such forests one needs to know the parti-
tioning of the data used for the cross-validation.
In fact, if we assume that the data are extended
with a single attribute indicating for each ex-
ample in which fold it is left out of the training
set, and perform the attribute-value counting
with this attribute included, then all necessary
information for inducing such forests is avail-
able. In other words, attribute-value counts can
also be considered supermodels for these forests.

A maximal, unpruned tree can be seen as
a supermodel for all pruned versions of it.
In those cases where the stopping and prun-
ing methods are monotonically influenced by a
single numerical parameter, it suffices to add to
each node of the maximal tree a single threshold
that indicates for what values of the parameter
the subtree starting in that node would be col-
lapsed to a leaf. This means parameters of the
stopping and pruning criteria are good candid-
ates to belong to the P set of parameters.

It is clear from this that we can define a hier-
archy of supermodels for trees. Based on the
above the hierarchy could look as follows. At
the highest level we have attribute-value counts,
which are closest to the data and from which a
very general set of models could be computed.
Next is a forest of unpruned trees that for a
given cross-validation partitioning summarizes
the unpruned trees that would be obtained dur-
ing the cross-validation. The different unpruned
trees are at the next level, and at the lowest level
we obtain concrete pruned trees.

In our pseudocode scheme, the process

roughly looks like this:

Counts := induce_sm(D, min_support)
Forest := deduce; (Counts, various_param)
UTree := deduceg(Forest, fold)

Tree := deduces(UTree,pruning_threshold)

where wvarious_param contains all parameters
not mentioned elsewhere, such as which attrib-
ute is the target attribute, possibly the heuristic
to be used, ...

Clearly, in those cases where multiple cross-
validations are to be performed with varying
pruning parameter and target attributes, a lot
of efficiency can be gained by following the hier-
archical supermodel approach. Note that what
we have presented here is only one possible hier-
archy, not necessarily the most useful one.

We end our discussion of supermodel-based
tree induction here. It will be clear by now that
a more complete discussion of this approach
will require a much more extensive investigation
than is the scope of the current paper.

Besides decision tree induction, there are of
course other techniques that can benefit from
the supermodel approach. First of all, note that
rule induction is governed by largely the same
principles as decision tree induction: it typically
follows a greedy search, estimating rule qual-
ity based on class distributions in subsets of ex-
amples. The remarks given for decision tree in-
duction apply also in this context.

Genetic algorithms are computationally
burdened by the need to perform very many
evaluations of hypotheses. These evaluations
may be sped up significantly if statistical
information such as the one available in
attribute-value counts can be used.

Probabilistic approaches heavily rely on
frequency distributions; again attribute-value
counts are a reasonable supermodel to start
from. Other supermodels include those dis-
cussed in (Moore and Lee, 1998; Pavlov et al.,
2001; Getoor et al., 2002). On the other hand,
for models such as neural networks it is much
less clear what a supermodel should look like.

5 Promises and Problems

We briefly list a number of advantages that can
be expected from the supermodel approach, as
well as a number of current challenges that we
face before we can implement the approach.

5.1 Promises

An important advantage of the supermodel ap-
proach is that it will make wrapper approaches
much more feasible. In fact, if the deduce func-
tion is sufficiently efficient, then an extensive
search through model space becomes possible,
even in those cases where the size of the data
set precludes an extensive search through the
model space. Note that if n models are to
be investigated, the total time needed for in-
ducing these models is nT},guce for the normal
approach and Tinguce_sm + M1 geduce for the su-
permodel approach, so that a speedup close to
n or Tinduce/Tdeduce (Whichever is smallest) can
be obtained. Both numbers may be quite large
in practice.

We do not present experimental results in this
paper, but some existing results support our
claim that significant efficiency gains are pos-
sible with the supermodel approach. For in-
stance, Blockeel and Struyf (2002) report spee-
dup factors of about 3 for bagging and close to n
for certain n-fold cross-validation experiments,
with n up to 20. For wrapper approaches even
better speedups can be expected, as n (the num-
ber of different models considered) is typically
larger there. Moore and Lee (1998) report spee-
dup factors of over 4000 in specific cases, by
using AD-trees.

Another advantage of the supermodel ap-
proach is that it offers more flexibility, as full de-
tails on the models to induce need not be avail-
able in advance. Most of the computational ef-
fort can happen in advance and when full details
are available, the concrete models can quickly
be obtained. This is nicely illustrated by the
Apriori approach: one does not need to know
which kind of association rules one is interested
in to compute itemset counts. Once the user
expresses interest in association rules with item
A in the head and a certain minimal confidence,
these can very quickly be computed.

5.2 Problems

It is currently unclear in many cases to what
extent the supermodel approach can be fol-
lowed. Potential problems can be identified
with respect to inducing supermodels, repres-
enting them, and deducing concrete models
from them. In many cases a concrete view on
how this should be done does not exist yet.

Let us first focus on representation issues. A
supermodel contains information on many dif-
ferent concrete models. A trivial representation
of a supermodel is a set of couples (P, M) where
P is a combination of parameter values and M
is the model that the supermodel is instantiated
to if P is filled in. It is obvious that when mil-
lions of combinations of parameter values ex-
ist, this representation is infeasible because of
memory limitations. On the other hand, the
deduce function would become a simple lookup.

Supermodels should be designed in such a
way that they concisely summarize properties
of many different models. In the mentioned
work on efficient decision tree cross-validation,
for instance, the forests obtained are not im-
pressive but acceptable. In the worst case, they
take about as much space as the different trees
themselves. This is typically not a problem in
practice as the number of cross-validation folds
is typically in the order of 10.

Attribute-value counts may also consume a
large amount of memory; as mentioned before
the “minimal support” parameter may have to
be relatively high for them to be manageable.
Note that the option of storing this informa-
tion in a database on disk alleviates the problem
of memory-intensive representations somewhat.
The same could of course be done for any su-
permodel.

As supermodels contain information for many
different models, their induction may also re-
quire much more computational effort. For
instance, computing attribute-value counts re-
quires more work than building a single decision
tree. On the other hand, in the case of de-
cision tree cross-validation, the supermodel can
in some cases be induced with barely any over-
head over induction of a single model (Blockeel
and Struyf, 2002).

Obviously the amount of overhead caused
by the supermodel approach that is considered
acceptable will depend on how many specific
models will be derived from it later, and on
how efficiently this deductive derivation can be
performed. In the supermodel hierarchy for
decision trees discussed above, all deductive
steps are more efficient than the single induct-
ive step, although deduce; is computationally
heavier than the other deductive steps.

6 A Supermodel Building
Methodology

The following could be considered a generic ap-
proach to building algorithms for the induction
of supermodels:

Given an algorithm A:

- list its parameters P

- study which ones can easily be postponed
to the deductive phase (P2); P1 = P - P2

- design a representation for supermodels
based on P1

- write an algorithm that builds supermodels
using parameters P1

- write an algorithm that deduces models
from supermodels using P2

The choice of P, and P, will take into ac-
count the considerations mentioned above. In
general, a trade-off has to be found between the
complexity of the inductive and deductive steps
and the feasibility of the supermodel represent-
ation. There may be multiple “optimal” points
for splitting P into P1 and P2, in which case
it may be worthwhile to consider a supermodel
hierarchy.

Clearly the major opportunities for research
into supermodels are in the investigation of
which part of a set of parameters can be post-
poned, and how easily this can be done, taking
into consideration the issues mentioned above.

7 Conclusions

This paper introduces the concept of induction
of supermodels as a general approach to ma-
chine learning and data mining. The approach
is related to ideas such as inductive databases,
construction of sufficient statistics, etc. and en-
compasses several existing approaches as spe-
cific instances.

Induction of supermodels is very promising
in the sense that it may significantly redefine
our views of popular techniques such as wrap-
per approaches. It would enable one to perform
a search where each node in the search space
is generated efficiently and deductively, instead
of inductively and at high computational cost.
Because of this it may strongly reduce the need
for manual parameter tuning by users of ma-
chine learning or data mining algorithms. Even
though users might be guided by some intuition
about which parameter values are promising,

the additional efficiency brought about by the
supermodel approach may enable such extens-
ive searches that a brute force search for good
parameter values becomes feasible.

The idea of supermodel induction is currently
still quite immature. Although specific ex-
amples of the approach exist and convincingly
show the potential of the approach, in many
other cases it is not clear what a supermodel
could look like. A few suggestions are given in
this paper for the case of decision trees. In gen-
eral there is a certain trade-off between repres-
entation complexity and the complexity of the
inductive and deductive steps, and some kind of
optimum should be searched for. Clearly, there
are ample opportunities for further research on
this. Finally, an intriguing question in this re-
spect is how existing results in partial evalu-
ation might help with the discovery of good su-
permodels.

Acknowledgements

The author is a post-doctoral fellow of the Fund
of Scientific Research of Flanders, Belgium.

References

R. Agrawal, T. Imielinski, and A. Swami. 1993.
Mining association rules between sets of items
in large databases. In P. Buneman and
S. Jajodia, editors, Proceedings of ACM SIG-
MOD Conference on Management of Data,
pages 207-216, Washington, D.C., USA, May.
ACM.

H. Blockeel and J. Struyf. 2001. Frankenstein
classifiers: Some experiments. In V. Hoste
and G. De Pauw, editors, Proceedings of the
Eleventh Belgian-Dutch Conference on Ma-
chine Learning, pages 5—12.

H. Blockeel and J. Struyf. 2002. Efficient al-
gorithms for decision tree cross-validation.
Journal of Machine Learning Research. In
press.

L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone. 1984. Classification and Regres-
sion Trees. Wadsworth, Belmont.

L. De Raedt. 2000. A logical database mining
query language. In J. Cussens and A. Frisch,
editors, Proceedings of the Tenth Interna-
tional Conference on Inductive Logic Pro-
gramming, volume 1866 of Lecture Notes in
Artificial Intelligence, pages 78-92. Springer-
Verlag.

M. N. Garofalakis, R. Rastogi, and K. Shim.
1999. SPIRIT: Sequential pattern mining
with regular expression constraints. In The
VLDB Journal, pages 223-234.

L. Getoor, D. Koller, and B. Taskar. 2002. Stat-
istical models for relational data. In Proc.
of the KDD-02 Workshop on Multi-Relational
Data Mining.

T. Imielinski and H. Mannila. 1996. A database
perspective on knowledge discovery. Commu-
nications of the ACM, 39(11):58-64.

N.D. Jones, C.K. Gomard, and P. Sestoft. 1993.
Partial Evaluation and Automatic Program
Generation. Prentice Hall.

S. Kleene. 1952. Introduction to meta-
mathematics. D. van Nostrand, Princeton,
New Jersey.

Ron Kohavi. 1995. Wrappers for Performance
Enhancement and Oblivious Decision Graphs.
Ph.D. thesis, Computer Science department.

A. W. Moore and M. S. Lee. 1998. Cached suf-
ficient statistics for efficient machine learning
with large datasets. Journal of Artificial In-
telligence Research, 8:67-91.

D. Pavlov, H. Mannila, and P. Smyth. 2001.
Beyond independence: Probabilistic models
for query approximation on binary transac-
tion data. ICS TR-01-09, Information and
Computer Science Department, UC Irvine.

F. Provost and T. Fawcett. 1998. Analysis and
visualization of classifier performance: com-
parison under imprecise class and cost distri-
butions. In Proceedings of the Third Inter-
national Conference on Knowledge Discovery
and Data Mining, pages 43-48. AAAI Press.

J. R. Quinlan. 1993. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann series in
machine learning. Morgan Kaufmann.

Improving the efficiency of ILP systems using an
Incremental Language Level Search

Rui Camacho
LTIACC, Rua do Campo Alegre, 823, 4150 Porto, Portugal
FEUP, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
rcamacho@fe.up.pt
http://www.fe.up.pt/~rcamacho

Abstract

We propose and evaluate a technique to im-
prove the efficiency of an ILP system. The tech-
nique avoids the generation of useless hypothe-
ses. It defines a language bias coupled with a
search strategy and is called Incremental Lan-
guage Level Search (ILLS). The techniques have
been encoded in the ILP system IndLog. The
proposal leads to substantial efficiency improve-
ments in a set of ILP datasets referenced on the
literature.

1 Introduction

Inductive Logic Programming (ILP) has
achieved considerable success in a wide range
of domains. It is recognised however that
efficiency is a major obstacle to the use of
ILP systems in applications requiring large
amounts of data. Relational Data Mining
applications are an example where efficiency is
an important issue. In this paper we address
the problem of efficiency in ILP systems by
proposing a technique to improve it. Our
proposal is called Incremental Language Level
Search (ILLS) and is a language bias coupled
with a search strategy. It is a correct language
bias as defined by De Raedt (De Raedt, 1992).
ILLS imposes a partition (and a meta-order)
in the subsumption lattice (the search space
of hypothesis). Language levels are defined
based on the repetitions of predicate symbols
in the clauses and since in most of the target
theories of common applications the repetitions
of literals in the clauses is very small or non -
existent the most likely clauses are investigated
first. A very useful admissible pruning rule is a
corollary of this technique. Our proposal is a
general technique that can be implemented in
any ILP system to improve performance.

A typical ILP system carries out a search
through an ordered hypothesis space. During
the search hypotheses are generated and their
quality estimated against the given examples.
Improvements in efficiency may be obtained in
avoiding to generate useless hypothesis or/and
improving their evaluation.

Avoiding to generate useless hypotheses may
be achieved with the specification of language
bias limiting therefore the size of the search
space (Nédellec et al., 1996). One my consider
a procedure where there is a sequence of “space
boundaries” that are increased if the system
does not find an acceptable hypothesis within
the current space. This technique is generally
called shift of bias (De Raedt, 1992). Our ILLS
proposal is a an example of a shift of bias tech-
nique. Another approach considers the study
of refinement operators that allow to efficiently
navigate through a hypothesis space (van der
Laag and Nienhuys-Cheng, 1998).

The problem of efficient testing of candidate
hypotheses has been tackled by two lines of re-
search: improving sequential execution of an
ILP system and; improving hypothesis evalu-
ation by a parallel or a distributed execution.
We first consider the sequential execution.

Sebag and Rouveirol (Srinivasan, 1999; Se-
bag and Rouveirol, 1997) (and later Botta et al.
(Botta et al., 1999)) suggest the use of stochas-
tic matching to speedup hypothesis evaluation.
These approaches reduce the evaluation effort at
the cost of being correct only with high proba-
bility. Another approach is proposed by Costa
et al.. They carried out a study on exact trans-
formations of queries when evaluating hypothe-
ses (see (Santos Costa et al., 2000) and (Costa
et al., 2002 to appear)). In (Santos Costa et al.,
2000), the authors illustrated that query execu-
tion was a very high percentage of total running

time. Some exact transformations on the gener-
ated hypotheses were proposed that make them
more efficient to execute on a Prolog engine.

There is a great number of common liter-
als in a clause and its refinements and even
with the refinements of its refinements. A query
pack technique (Blockeel et al., 2002) takes ad-
vantage of the great number of shared literals
among a clause and its refinements. Queries
with a great lot of common computations are
grouped in sets called query packs that are ex-
ecuted in a way to avoid redundant computa-
tions.

Lazy evaluation of examples (Camacho,
2000) as used in IndLog produces considerable
speedups. The technique consists in avoiding
or postponing the evaluation of each hypothesis
against all the examples. Two kinds of lazy eval-
uation of examples is distinguished: negatives
and positives. The rationale supporting lazy
evaluation of negative examples is as follows.
The purpose of evaluating a hypothesis on the
negative examples is to determine if it is con-
sistent, that is to find out if it covers less than
“noise number” of negative examples. If the
hypothesis covers more than “noise number” of
negative examples it has to be refined (it is too
general). In lazy evaluation of negative exam-
ples the system stops as soon as the clause cov-
ers “noise number” + 1 negative examples since
that is enough to determine the lack of consis-
tency of the clause. In the lazy evaluation of
positives the system stops the evaluation of the
clause as soon as it covers 1 more than the best
positive cover so far. That number is enough to
avoid pruning it away. The complete positive
coverage is done only for consistent clauses. In
most applications the negative examples over-
whelm the positives and lazy evaluation of neg-
atives may be very useful. These techniques
prevent the use of negatives or positives counts
in the heuristic functions but in most cases the
speedups of using these techniques overcome the
use of more powerful heuristics.

One last line of research followed by Dehasp
and De Raedt (Dehaspe and De Raedt, 1995)
and by Ohawada et al. (Ohwada et al., 2000),
and enphasised by David Page (Page, 2000), is
the parallel or distributed execution of an ILP
system. It is also a very promising direction to
overcome the efficiency bottleneck. Yu Wang

(Wang, 2000) claim to have achieved super-
linear speedup in their implementation. Gra-
ham et al. (Graham et al., 2000) report a lin-
ear speedup in their implementation. Work in
this line of research has been essentially in dis-
tributing parts of the search space among the
processors. One alternative would have a mas-
ter slave architecture where each slave gets just
one set of the examples partition. The mas-
ter then sends each hypothesis to the slaves for
evaluation on the subsets of the examples. This
approach makes Data Mining applications hav-
ing millions of examples amenable for ILP sys-
tems since each slave processor would process
“just” a subset of the examples, requiring there-
fore less memory resources. A challenging ap-
proach would be to have a parallel execution of
an ILP engine on top of a parallel Prolog engine.
In some datasets it is the large number of ex-
amples that requires parallelization of the ILP
engine whereas in some others evaluating each
hypothesis is hard. In the later case a parallel
Prolog engine could be very useful. Combing
the workload of the ILP and Prolog engine is a
very hard problem.

Most of the techniques we just referred are
applicable in a parallel or distributed execution
setting and therefore substantial improvements
on efficiency may be gained through the com-
bination of the results of all of these lines of
research.

The evaluation of our proposal was done
using the IndLog system (Camacho, 2000).
IndLog is an example of an empirical ILP
system, according to the classification proposed
by De Raedt (1992). It is based on the Mode
Directed Inverse Entailment Muggleton (1995).
IndLog can handle non-ground background
knowledge, can use nondeterminate predicates,
uses a strongly typed language and makes
use of explicit bias declarations such as mode,
type and determination declarations. It has
admissible pruning strategies and can handle
numerical and imperfect data. To handle
numerical data IndLog has the possibility
of lazy evaluation of literals (Srinivasan and
Camacho, 1999) and performs a user-defined
cost search. To handle large amounts of data
IndLog may perform lazy evaluation of the
positive and negative examples. For a complete

description of IndLog refer to (Camacho, 2000).

The structure of the rest of the paper is as
follows. In Section 2 we present the Incremen-
tal Language Level Search strategy. The exper-
iments that empirically evaluate our proposal
are presented in Section 3. The last section
draws the conclusions.

2 Incremental Language Level
Search

IndLog uses a particular strategy of searching
through the hypothesis space that is based on a
structural organization imposed on this space.
We now present the hypothesis space organiza-
tion by language levels and then describe the
search procedure that takes advantage of such
layered organization.

Let D be the set of definite clauses and £; a
set of clauses of level i. Consider a partition® of

D= U L;. Each subset L; is called a language
i=0
level land is defined as:

Definition 2.1 Language level

L; = {clause | mazimum number of occurrences
of a predicate symbol in the body of clause is i}

A clause belongs to the language level i if it
has a predicate symbol P that occurs i times in
the body of that clause. No other predicate sym-
bol Q (# P) of that clause occurs more than i
times.

The maximum number of occurrences of
predicate symbols in the body of the clauses de-
termines to which partition the clause belongs.
The language Ly is composed of definite clauses
with just the head literal. The language L£; is
composed by definite clauses whose literals in
the body have no repeated predicate symbols.
The language Lo will contain clauses whose lit-
erals in the body have a maximum number of
occurrences of the same predicate symbol of
two. Table 1 shows some examples of clauses
classified according to language level. The lan-
guage level definition is applicable to both re-

!The 0o sign in the upper limit of the union represents
a value limit smaller than infinity since definite clauses,
by definition, have a finite number of literals.

illegal(A, B, C, D, E, D) € Lo
multiplication(A,B,C) :-

dec(A,D), multiplication(D,B,E), € L
plus(E,B,C)

gSort(X,Y) :-
part(X,Z,W), qSort(Z,Z1), € Lo

qSort(W,W1), app(Z1, W1, Y)

fold(imglobuli, A) :-
1(A,B), i(50,B,173), a(A,C), i(0,C,)1), € Ls
b(A,D), i(7,D,10)

p(X) :-
b(X)7 a(X7U)7 a(X7Y)7 € L4
a(X,Z), a(X,W), b(X)

Table 1: Examples of clauses belonging to dif-
ferent language levels.

cursive and non-recursive clauses. Clauses be-
longing to £; will have a minimum length of i+1
(including the head literal) and a maximum of
p*i4 12

One very important property of the partition-
ing by language level is that all clauses in lan-
guage L;y1 are subsumed by at least one clause
in language £; as stated in Theorem 2.1. The
subsumption relation among language levels is
illustrated in Figure 1.

Theorem 2.1 Let C; and Cy be clauses and 1
an integer (i > 0).

chﬂck : (Cj ELi1)N(Cre L) = Cp = Cj

Any clause belonging to language level Liy1 is
0-subsumed by at least one clause in language
level L;.

Proof. We prove that for each clause C;y; in
L; 11 there is at least one clause C; in £; whose
literals are a subset of C;;;. Then we prove
that there is a substitution that completes the
subsumption relation (C; < Cj;1).

If C;41 is in L;4; then it has at least one
predicate symbol that occurs i+1 times in its
body. We will call it p. Since in each language
level i all clauses have in their body a maximum
of i occurrences of at least one predicate sym-
bol, then necessarily £; has a clause (C;) with
just 4 literals in the body having the predicate
symbol p. Assuming that we found a correct

*Where p is the maximum number of predicate sym-
bols usable in the body of a clause.

definite clauses

Figure 1: Partition of the set of definite clauses
by Language Level.

substitution then clause C; is a subset of C; .
To prove the subsumption relation we have to
find the assumed substitution. The empty sub-
stitution is enough to establish the subsumption
relation. We just have to choose C; such that
the variables in its body literals are renaming
of the literals p of C;;;. With this choice, all
body literals of C; unify with the literals p of
Ci+1 and therefore C;0 C C;41.
|

The suggested partition by language level ap-
plies directly to the subsumption lattice that
is traversed by the induction algorithm when
constructing the hypothesis clause. The sub-
sumption lattice is subdivided into sub-lattices,
each corresponding to a particular language
level. The search algorithm using the Incre-
mental Language Level Search is summarised
in Algorithm 2.1. As can be seen it involves,
at each step of the main cycle, a call to a
“traditional” hypothesis induction procedure.
At each cycle the “traditional” hypothesis in-
duction procedure may only generate clauses
within the current language level. After each
cycle the language level is increased. The cy-
cle terminates when one of three conditions is
met: i) search constraints C are no longer sat-
isfied; ii) there has been no improvement in
coverage during current level or; iii) there are
no more clauses to refine because they are al-
ready refined or pruned away. If the quality
of a hypothesis is its coverage® then we may
use Theorem 2.2 to establish a stopping con-
dition. The search may be terminated after a
language level has been search through and no
hypothesis was found that would bring improve-
ments when compared to the hypotheses found
in previous levels. Search constraints C typi-

3

3As is common in most ILP systems.

cally include the maximum number of clauses
constructed and the maximum length of the
constructed clauses.

Theorem 2.2 If there is no hypothesis at lan-
guage level i that subsumes (covers) more posi-
tive examples than the best of positive coverage
in levels j (< i), then there will be no better
clauses at levels k > 1.

Proof. The proof follows from Theorem 2.1
and from the observation that a clause sub-
sumed by another cannot cover more positive
examples than the clause which subsumes it.

|

Algorithm 2.1
Incremental Language Level Search (ILLS)

input:
C /* search constraints */
D /* a dataset */
=0 /* the empty clause */
i=0 /* language level counter */
SearchStrategy /* a search strategy for the

refinement step */
language = Lo /* initial language is Lo */
improvement = true /* flag */

output: » /* best consistent hypothesis */

while improvement and satisfying C do

/* induce hypotheses */
I =genHypothesis (SearchStrategy,language,C,D)

/* update */
if (h = I’) then improvement = false
h = bestOf(h,K') /* update best hypothesis */
i =1+l

language = L; /* update language level */

endwhile

Language level is not directly related to i-
determinacy* as can be seen by the following
examples: p(X) :- q(X,Y), r(Y,Z) belongs to
level 1 and has i-depth of 2; p(X) :- q(X,Y),
q(Y,Z) belongs to level 2 and has i-depth of 2.

An advantage of the search by language
levels is that the most probable sub-lattices are
searched first. In most of the target theories of
common applications the repetitions of pred-
icate symbols in the clauses is very small or
non - existent. Support for this statement can

4First introduced by Muggleton and Feng (Muggleton
and Feng, 1990).

be found in the books by Stephen Muggleton
(Muggleton, 1992) and the one by Nada Lavra¢
(Lavra¢ and Dzeroski, 1994). Those books
present some theories induced by ILP systems
for real world applications. With the exception
of some biochemical applications where the
atoms positions are used, the repetition of
predicate symbols in the body of the clauses
rarely surpasses 2.

Varsek and Urbanéic (1993) used a language
restriction that specifies that only one “at-
tribute = value” test is allowed to appear in
the body of the induced rules. This restriction
is equivalent to specifying a language level limit
of one.

The shift of language bias was already de-
scribed by De Raedt (De Raedt, 1992). How-
ever in ILLS the different languages defined are
organised in a subsumption relationship order
that as several advantages as the one of Theo-
rem 2.1. In the work by De Raedt there is no
such concern with the different languages de-
fined.

3 The experiments

To empirically evaluate our proposals we run
IndLog (Camacho, 2000) on several well known
datasets. The experiments aim at estimating
the efficiency gains when adopting the ILLS.
By efficiency gain we mean a reduction in the
number of useless hypotheses generated during
search. This measure is machine and imple-
mentation independent. For each dataset we
used in the experiments the final set of induced
clause(s) are the same with and without ILLS.
Therefore the accuracy of the induced theories
does not change by adopting the proposed tech-
nique.

Settings

The IndLog V1.0 system was used in the exper-
iments. The datasets used in the experiments
are characterised in Table 2 and were down-
loaded from the Oxford® and York ¢ Universities
Machine Learning repositories.

To evaluate ILLS we run IndLog imposing
a limit on the number of clauses constructed

*URL:www.comlab.ox.ac.uk/oucl/groups/machlearn/
SURL: www.cs.york.ac.uk/mlg/index.html

Dataset positive negative | background
examples | examples | predicates

carcinogenesis 162 136 38
choline 663 663 32
cyclic 2 2 2
member 20 6 2
mesh 2272 223 29
multiplication 9 15 3
mutagenesis 114 57 18
pyrimidines 1394 1394 244
suramin 7 4 2
train 5 5 10

Table 2: Characterisation of the datasets used
in the experiments.

during search”. The IndLog parameter settings
used in the experiments are shown in Table A
of Appendix A. We then measure the percent-
age of constructed clauses that are above the
Language Level of the target theory of each
dataset. This number represents useless clauses
that would never been constructed if ILLS were
active. In some datasets (like mutagenesis or
carcinogenesis) where we do not know the tar-
get theory, we tested several values for the
maximum language level and for the maximum
clause length. Table 3 shows the results of our
experiments.

The results indicate that there can be a lot
to be gained if the language level of the tar-
get theory is 1. The values shown in Table 3 for
language level 1 may reach 70 % (multiplication
dataset) useless clauses that could be avoided.
The ILLS is also recommended if the language
level of the target theory is 1 (or small), clause
length is large (greater than 4) and the target
predicate is determined by a small number of
predicates. If there is a small number of predi-
cate symbols for the body literals and the sys-
tem has to assemble a long clause it is more
likely that repetitions will occur and the ILLS
may be useful.

It may also be noticed that the gain of using
ILLS decreases quite significantly when the tar-
get theory is in language level 2 (see the choline
and the mesh datasets).

4 Conclusions

In this paper we proposed a general technique
that improves the efficiency of an ILP system.

"IndLog's nodes parameter.

dataset max | max useless
length | L.L. | clauses (%)
carcinogenesis 4 1 29.6
carcinogenesis 6 1 27.6
choline 4 1 9.9
choline 4 2 0.2
choline 6 1 10.2
choline 6 2 0.3
cyclic 3 1 23.8
mutagenesis 4 1 29.4
pyrimidines 4 1 9.6
pyrimidines 6 1 9.9
suramin 4 1 ol.1
member 2 1 26.2
mesh 6 2 1.5
multiplication 4 1 70.7
train 4 1 17.4

Table 3: Percentage of useless clauses generated by
IndLog when not using ILLS. The parameter set-
tings are shown in Table A of Appendix A.

It is called Incremental Language Level Search
(ILLS) and avoids the generation of useless hy-
potheses. The ILLS is a language bias coupled
with a search strategy that imposes a partition
(and a meta-order) on the subsumption lattice.

ILLS achieved significant reductions (up to
70.7 %) in the number of useless clauses gener-
ated by the induction algorithm.

Acknowledgments

We thank Universidade do Porto and Fundacao
para a Ciéncia e Tecnologia that fund our re-
search. We thank the reviewers for their helpful
comments.

References

Hendrik Blockeel, Luc Dehaspe, Bart Demoen, ,
Gerda Janssens, Jan Ramon, and Henk Van-
decasteele. 2002. Improving teh efficicency of
inductive logic programming through the use
of query packs. Journal of Artificial Intelli-
gence Research, 16:135-166.

M. Botta, A. Giordana, L. Saitta, and M. Se-
bag. 1999. relational learning: hard prob-
lems and phase transitions. In Proc. of the
6th Congress AI*IA, LNAI 1792, pages 178—
189. Springer-Verlag.

R. Camacho. 2000. Inducing Models of Human

Control Skills using Machine Learning Algo-
rithms. Ph.D. thesis, Department of Electri-
cal Engineering and Computation, Universi-
dade do Porto.

Vitor Costa, Ashwin Srinivasan, Rui Cama-
cho, Hendrik Blockeel, Bart Demoen, , Gerda
Janssens, Jan Struyf, Henk Vandecasteele,
and Wim Van Laer. 2002 (to appear). Query
transformations for improving the efficiency
of ilp systems. Journal of Machine Learning
Research.

Luc De Raedt. 1992. Interactive Theory Revi-
sion: An Inductive Logic Programming Ap-
proach. Academic Press, London, UK.

L. Dehaspe and L. De Raedt. 1995. Parallel
inductive logic programming. In Proceedings
of the MLnet Familiarization Workshop on
Statistics, Machine Learning and Knowledge
Discovery in Databases.

J. Graham, David Page, and A. Will. 2000.
Parallel inductive logic programming. In Pro-
ceedings of teh Systems, Man and Cybernetics
Conference (SMC-2000).

N. Lavra¢ and S. Dzeroski. 1994. Inductive
Logic Programming: Techniques and Appli-
cations. Ellis Horwood.

S. Muggleton and C. Feng. 1990. Efficient in-
duction of logic programs. In Proceedings
of the 1st Conference on Algorithmic Learn-
ing Theory, pages 368—-381. Ohmsma, Tokyo,
Japan.

S. Muggleton, editor. 1992. Inductive Logic
Programming. Academic Press.

S. Muggleton. 1995. Inverse entailment and
Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-
4):245-286.

C. Nédellec, C. Rouveirol, H. Adé,
F. Bergadano, and B. Tausend. 1996.
Declarative bias in ILP. In L. De Raedt,
editor, Advances in Inductive Logic Program-
ming, pages 82-103. IOS Press.

Hayato Ohwada, Hiroyuki Nishiyama, and Fu-
mio Mizoguchi. 2000. Concurrent execution
of optimal hypothesis search for inverse en-
tailment. In J. Cussens and A. Frisch, ed-
itors, Proceedings of the 10th International
Conference on Inductive Logic Programming,
volume 1866 of Lecture Notes in Artificial In-
telligence, pages 165—173. Springer-Verlag.

David Page. 2000. ILP: Just do it. In

J. Cussens and A. Frisch, editors, Proceed-
ings of the 10th International Conference on
Inductive Logic Programming, volume 1866 of
Lecture Notes in Artificial Intelligence, pages
3-18. Springer-Verlag.

Vitor Santos Costa, Ashwin Srinivasan, and Rui
Camacho. 2000. A note on two simple trans-
formations for improving the efficiency of an
ILP system. In J. Cussens and A. Frisch, ed-
itors, Proceedings of the 10th International
Conference on Inductive Logic Programming,
volume 1866 of Lecture Notes in Artificial In-
telligence, pages 225-242. Springer-Verlag.

M. Sebag and C. Rouveirol. 1997. Tractable in-
duction and classification in first-order logic
via stochastic matching. In Proceedings of the
15th International Joint Conference on Ar-
tificial Intelligence, pages 888-893. Morgan
Kaufmann.

A. Srinivasan and R.C. Camacho. 1999. Nu-
merical reasoning with an ILP program capa-
ble of lazy evaluation and customised search.
Journal of Logic Programming, 40(2,3):185—
214.

A. Srinivasan. 1999. A study of two sampling
methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery,
3(1):95-123.

Patrick van der Laag and Shan-Hwei Nienhuys-
Cheng. 1998. Completeness and properness
of refinement operators. Journal of Logic
Programming, 34(3):201-226, March.

Alen Varsek, Tanja Urbanci¢, and Bogdan Fil-
ipi¢. 1993. Genetic algorithms in controller
design and tuning. IEEFE Transactions on
Systems, Man and Cybernetics, 23(5):1330—
1339.

Yu Wang. 2000. Parallel inductive logic in data
mining. Technical report, Department of
Computing and Information Science, Queen’s
University, Kingston, Canada.

A IndLog Settings

Table A shows the settings of the most relevant
IndLog parameters. Parameter nodes specifies
the maximum number of the subsumption lat-
tice nodes visited during the inductive search.
Noise specifies the maximum number of nega-
tive examples a clause may cover in order to
be accepted. Min cover specifies the minimum
number of positives examples a clause has to

dataset max | noise | i-depth | min
nodes cover
carcinogenesis | 1000 15 4)
choline 200 10 4 20
cyclic 100 0 2 1
mutagenesis 1000) 2 10
pyrimidines 200 20 4 50
suramin 200 0 4 1
member 100 0 1 1
mesh 1000)) 10
multiplication | 1000 0 3 1
train 1000 0 2 1

Table 4: IndLog parameter settings used in the
experiments. The heuristic was set to length
(breadth-first search).

cover in order to be accepted (avoids the gener-
ation of clauses with a very poor coverage, pos-
sibly overfitting the data). i-depth specifies the
maximum depth of a literal with respect to the
head literal of that clause. A literal that has an
input argument that is connected to the head is
said to be at i-depth 1. If an input argument of
a literal is connected to an output argument of a
literal of i-depth j then that literal is at i-depth
of j+1.

Non-Universal Suffrage Selection Operators Favor Population
Diversity in Genetic Algorithms

Federico Divina, Maarten Keijzer, Elena Marchiori
Vrije Universiteit
Amsterdam
{divina,mkeijzer,elena} @cs.vu.nl

Abstract

State-of-the-art concept learning systems based
on genetic algorithms evolve a redundant pop-
ulation of individuals, where an individual is a
partial solution that covers some instances of
the learning set. In this context, it is fundamen-
tal that the population be diverse and that as
many instances as possible be covered. The uni-
versal suffrage selection (US) operator is a pow-
erful selection mechanism that addresses these
two requirements. In this paper we compare ex-
perimentally the US operator with two variants
of this operator that incorporate information on
the hardness of the instances to be covered dur-
ing the evolutionary process. The results of the
experiments indicate that a strong search bias
on non-covered instances is most beneficial for
promoting population diversity, while maintain-
ing the crucial property of US selection of favor-
ing coverage of many instances.

1 Introduction

Learning from examples can be viewed as a
search problem in the space of all possible hy-
potheses (Mitchell, 1982). Given a description
language used to express possible hypotheses, a
background knowledge, a set of positive exam-
ples, and a set of negative examples, one has to
find a hypothesis which covers all positive exam-
ples and none of the negative ones (cf. (Kubat
et al., 1998; Mitchell, 1997)). This problem is
NP-hard even if the language to represent hy-
potheses is propositional logic.

Powerful learners like FOIL (Quinlan, 1990)
and Progol (Muggleton, 1995) adopt a progres-
sive coverage approach. Starting from a training
set containing all positive and negative exam-
ples, a (if-then) rule is constructed which covers
some of the positive examples; the covered posi-
tive examples are removed from the training set

and the learner continues with the search for the
next rule. When the process terminates (after a
maximum number of iterations or when all pos-
itive examples have been covered), the resulting
set of rules is reviewed and redundant rules are
eliminated.

Concept learners based on genetic algorithms
(GA) act on more rules at the same time. Sys-
tems like GIL (Janikow, 1993), GLPS (Leung
and Wong, 1995) and STEPS (Kennedy and
Giraud-Carrier, 1999) use an encoding where a
chromosome represents a set of rules. Other
recent state-of-the-art GA based systems like
STAO1 (Augier et al., 1995), REGAL (Giordana
and Neri, 1996), G-NET (Anglano et al., 1998),
DOGMA (Hekanaho, 1998), and ECL (Divina
and Marchiori, 2002) evolve a population rep-
resenting a redundant set of partial solutions,
where a chromosome encodes a rule (typically
a Horn clause). Both approaches present ad-
vantages and drawbacks. Encoding a whole
hypothesis in each chromosome allows an eas-
ier control of the genetic search but introduces
a large redundancy, that can lead to popula-
tions hard to manage and to individuals of enor-
mous size. Encoding one clause in each chromo-
some allows for co-operation and competition
between different clauses, but requires the use
of suitable strategies for promoting population
diversity and coverage of many positive exam-
ples.

REGAL and its descendant G-NET address
these issues with a selection operator specifi-
cally designed to act on a redundant popula-
tion of rules, called universal suffrage selection
(US) operator (Giordana and Neri, 1996). A
positive example is randomly selected, and a
roulette wheel on the set of chromosomes cover-
ing that example is performed in order to select
a fit chromosome (in case the example is not

covered by any individual of the population, a
new individual is created that covers that ex-
ample). The selection operator is called ‘uni-
versal suffrage’ because examples can be viewed
as voters, chromosomes as candidates, and all
examples have the same right (probability) of
vote. The US operator does not distinguish be-
tween examples that are harder to cover, and
this can favor the emergence of so called super-
individuals that cover many (easy) examples.
In REGAL and G-NET this problem is tack-
led by using a distributed architecture of nodes
where each node evolves a single population act-
ing on a different set of examples, and the nodes
co-evolve in order to favor the formation of dif-
ferent species. In (Divina and Marchiori, 2002)
a less involved approach is implemented in the
system ECL, which acts on a single population
and modifies the US selection operator in or-
der to take into account the hardness of exam-
ples. Each example gets a weight linearly pro-
portional to the number of rules that cover that
example. Weights are updated during the evo-
lutionary process, and examples are selected by
performing a roulette wheel with sectors pro-
portional to the inverse of their weights.

That paper investigates the performance of
the ECL system as a whole and does not address
an interesting question: how do US and modi-
fied US selection operators affect population di-
versity and coverage? In this paper we tackle
this issue and analyze experimentally how pop-
ulation diversity and coverage vary when the US
selection is made less and less ‘universal suf-
frage’ by giving more power to examples that
are harder to cover. More specifically we intro-
duce another variant of the US operator, where
the weight associated to an example is expo-
nentially proportional to the number of rules
covering that example, and we compare experi-
mentally the three US based selection operators.
Experiments on an artificial dataset and on real
life datasets show that giving more power to
examples that are harder to cover favors pop-
ulation diversity and maintains the coverage of
many examples.

2 US Selection Operator and
Variants

Selecting individuals from the population is a
fundamental operation in a genetic algorithm,

because new individuals are generated from
them. We will here describe the US selec-
tion operator and two variants of it, called
Weighted US (WUS) and Exponential Weighted
US (EWUS) selection operators. In the next
section we will discuss some aspects related to
each operator and the reasons why we intro-
duced the variants of the US selection operator.

2.1 US Selection Operator

This selection operator was first introduced in
(Giordana and Neri, 1996). The basic idea be-
hind this operator is that individuals are candi-
dates to be elected, and positive examples are
the voters. The US selection operator operates
in two steps:

1. randomly select n examples from the posi-
tive examples set;

2. for each selected positive example e;, 1 <
i < n, let Cov(e;) be the set of individuals
covering e;. If Cov(e;) = 0 then call a seed
procedure for creating an individual that
covers e;. If Cov(e;) # (), choose one indi-
vidual from Cov(e;) with a roulette wheel
mechanism, where the sector associated to
an individual z € Couv(e;) is proportional
to the ratio between the fitness of and
the sum of the fitness of all individuals oc-
curring in Cov(e;).

In this way, each positive example has the same
voting power, i.e. has the same probability of
being selected in the first step of the US selec-
tion operator.

The US selection operator was used within a
distributed system. In this system various ge-
netic nodes perform a GA on some training ex-
amples. A supervisor process assigns the train-
ing example sets to each node, changing these
sets periodically. The supervisor can, in this
way, shift the focus of the genetic search, per-
formed by each genetic node, toward specific re-
gions of the hypothesis space.

2.2 WUS Selection Operator

A first variation of the US selection operator
is represented by the Weighted US (WUS) se-
lection operator (Divina and Marchiori, 2002).
The difference between this operator and the
US selection operator lies in the first step of
the selection. Examples have different voting

power, i.e. examples are no longer chosen at
random. A weight is associated to each ex-
ample, where smaller weights are associated to
examples harder to cover. More precisely the
weight for an example e; is equal to:

o |Cov(e;)| (1)
" [Popl
1 <4 < P, being |Pop| the population size
and P the number of positive examples. If the
population is empty, then each example has the
same weight. The weight of each example is ad-
justed at each iteration. Examples are now cho-
sen with a roulette wheel mechanism, where the
sector associated to each example is inversely
proportional to its weight. So the less individ-
uals cover an example, the more chances that
example has of being selected in the first step
of the selection.

2.3 EWUS Selection Operator

The WUS selection operator selects with higher
probability examples that are harder to cover,
by means of the weights assigned to each ex-
ample. The Exponential Weighted US (EWUS)
selection operator continues this line, with the
difference that now the weight w; of an example
e;, 1 <1 < P, is given by the following formula:

e—|Cov(e;)|

RS PR @)

Examples are still selected with a roulette
wheel mechanism, where the sector associated
to each example is proportional to its weight.
In this way the selection pressure toward

examples harder to cover will be much higher
than in the WUS selection operator.

In both the WUS and the EWUS operators,
the second step of the selection is the same as
the one performed by the US operator. At the
end of each iteration the weights are updated.

3 Discussion

With the introduction of the two weighted vari-
ants of the US selection operator we wanted to
achieve the following aims:

e Good coverage of positive examples.

e Diversity in the population.

One would usually like to have the final hy-
pothesis found by the GA to cover as many pos-
itive examples as possible and as few negative
examples as possible. The variants of the US
selection operator deal with the coverage of pos-
itive examples, while the fitness function deals
also with the second aspect besides the coverage
of positive examples. By having the learning
system focusing more and more on difficult ex-
ample to cover, it is easier to have each positive
example covered by at least one individual.

Maintaining a good diversity in the popula-
tion would also lead to a good coverage of ex-
amples. Generally it is a good idea to have the
population spread across the hypothesis space,
so that all the areas of the hypothesis space can
be searched. There are various way of doing
that, e.g. with distance measures, (Burke et al.,
2002).

The US selection operator considers all the
examples as equally important. In this way
the search can focus mainly in the areas where
the concentration of positive examples is higher,
and seldom touches less inhabited areas of the
hypothesis space. With the weighted variants
of the US operator, examples difficult to cover
will have higher chance of being selected. In
this way, if we have many individuals covering
the same subset of training examples, those in-
dividuals will be seldom selected for reproduc-
tion, because that area of the hypothesis space
is already crowded. Instead we will select, or
create, individuals that occupy, or will occupy,
less exploited regions.

Formally, let E;} be the set of positive ex-
amples covered by the individual . Then the
probability that an individual z has of being
selected can be written as:

P(z)= > P(zle;)- Ple;)
eiEE':—
where P(z|e;), the probability of = being se-
lected conditioned to the selection of example
e; in B, is equal to

)
EwECov(ei) f(ZE)

with f(z) the fitness of individual z. The
three US based selection operators induce dif-
ferent probability P(e;) of selection of example
€;.

In the US selection operator P(e;) = 5. No
distinction is made among positive examples, so
individuals with a high recall are favored in this
scheme, because they cover many positive ex-
amples. A possible effect of this could be the
presence of super individuals, that will domi-
nate the population and will be often selected,
leading to a low diversity in the population.
Also some examples could stay uncovered, be-
cause not selected and difficult to cover.

In the WUS selection operator P(e;) is pro-
portional to ﬁ, with w; defined in equation
2.2. In this way WUS tries to favor not only
examples that are uncovered, but in general it
favors examples that are difficult to cover. In-
dividuals with a high recall will still have more
changes of being selected. However the system
will focus more and more on examples harder to
cover. In this way it is more probable that at the
end of the evolution process all positive exam-
ples are covered. The weights given to examples
by the WUS operator increase linearly with each
individual that cover the example. This means
that the chances that an example covered by
one individual is selected are almost the same as
the ones of an uncovered example. The EWUS
selection operator deals with this problem, by
choosing P(e;) = w;, with w; defined in equa-
tion 2.3, which changes exponentially. If there
are uncovered examples, then the probabilities
that they have of being selected with the EWUS
operator are very high, and also examples cov-
ered by few individuals are likely to be chosen.

In this way a good coverage of positive ex-
amples is encouraged, leading also to a good
diversity in the population.

Individuals with an high recall will be selected
more often only if there are not multiple copies
of them, because in this case the examples that
they cover will have an high coverage rate, and
if these individuals do not cover only easy ex-
amples.

4 Experimental Setup

In order to substantiate the beneficial properties
of the variants of the US operator stated above,
we perform experiments on both artificially gen-
erated as well as real life datasets. The genetic
algorithm used in the experiments is based on
ECL, and is summarized in pseudo-code in fig-
ure 1. A detail description of the system can

be found in (Divina and Marchiori, 2002). Here
we will give a general explanation of the main
features used in the algorithm.

ALGORITHM ECL
Sel = positive_examples
repeat
Select partial Background Knowledge
Population = Initial_pop
while (not terminate) do
Select n chromosomes using Sel
for each selected chromosome chrm
Mutate chrm
Optimize chrm
Insert chrm in Population
end for
end while
Store Population in Final Population
Sel = Sel - { positive examples
covered by clauses in Population
until max iter is reached
Extract final theory from Population

Figure 1: The overall learning algorithm ECL

In the repeat statement of the algorithm a
Final population is iteratively built. At each
iteration a part of the background knowledge is
chosen by means of a simple stochastic sampling
mechanism. This partial background knowledge
will be used for building and evaluating individ-
uals inside each iteration of the algorithm.

A Population is evolved by the repeated ap-
plication of selection, mutation and optimiza-
tion. At each iteration n individuals are se-
lected. Individuals are selected with one of the
three selection operators described in section 2.

Each individual undergoes a mutation and an
optimization phase. The mutation consists in
the application of one of the four generaliza-
tion/specialization operators. A clause can be
generalized either by deleting a predicate from
its body or by turning a constant into a vari-
able. With the dual operations a clause can be
specialized. After that an individual has been
mutated, the optimization phase is performed.
This phase consists of the repeated application
of one of the four mutation operators, until the
fitness of the individual increases (in this case
the last mutation is retracted), or a maximum
number of optimization steps has been reached.

Each mutation operator has a degree of greedi-
ness. In order to make a mutation, a number of
mutation possibilities is considered and the one
leading to the best improvement is applied.

The system does not make use of any
crossover operator. Experiments with a sim-
ple crossover operator, which uniformly swaps
atoms of the body of the two clauses, have been
conducted. However the obtained results did
not justify its use.

The so modified individuals are then inserted
in the population. If the population is not full
then the individuals are simply inserted. If the
population has reached its maximum size, then
n tournaments are made among the individu-
als in the population and the resulting n worst
individuals are substituted by the new individ-
uals.

At the end of the run a logic program is ex-
tracted from the final population. The the-
ory has to cover as many positive examples
as possible, and as few negative ones as pos-
sible. This problem can be translated into an
instance of the weighted set covering problem as
follow. Each individual is a column with posi-
tive weight equal to the fitness of the individual.
The rows are positive and negative examples.
The columns relative to each positive example
are the clauses that cover that example, while
the columns relative to the negative examples
are the clauses that do not cover that example.
A fast heuristic algorithm (Marchiori and Steen-
beek, 2000) is applied to this problem instance
to find a “best” theory.

The fitness of an individual z is given by the
inverse of its accuracy:

— 1 _ P+ N
= Ace(xz) T posz+(N-—ng)

fitness(x)

In the above formula P and N are respectively
the total number of positive and negative exam-
ples in the training set, while p, and n, are the
number of positive and negative examples cov-
ered by the individual . We take the inverse
of the accuracy, because ECL was originally de-
signed to minimize a fitness function.

ECL uses a high level representation simi-
lar to the one used by SIA01, where a rule
p(X,Y) < r(X,Z),q(Y,a). is described by a
list of the form:

p, XY

r, X, Z

’ aQaYaa‘

In this way it is easy to represent rules of vari-
able length, and to access and process atoms
contained in the rule.

Toy Mutagenesis Vote
pop-size | 30 30 30
mut_rate 1 1 1
n 10 10 10
max_gen 1 1 1
max_iter | 8 10 10

Table 1: Parameter settings for the various
datasets. All the experiments were done using
the whole background knowledge.

The parameter settings used in the experi-
ments are given in table 1. These values have
been obtained after a few experiments on the
training sets.

5 An Artificially Generated Example

In order to assess the validity of each selec-
tion operator a dataset was built. The dataset
is made of five hundred positive examples and
five hundred negative examples. Each example
can be described by three attributes ¢,p and r,
that can assume respectively the values {a, b},

{c,d,e} and {f,g}.

Attr. | Pos | Neg
a,c | 0.50 | 0.05
a,d | 0.30 | 0.05
a,e | 0.05 | 0.50
b,c | 0.05 | 0.20
b,d | 0.05 | 0.10
be | 0.05 | 0.10

f 0.70 | 0.30
g 0.30 | 0.70

Table 2: Probabilities of having a particular
combination of attributes/values describing an
example, given a positive (Pos) or a negative
(Neg) example in the dataset.

The dataset was generated with the proba-
bilities given in table 2. For instance, the prob-
ability of having a positive example described
by the attribute ¢ with value a and by the at-
tribute p with value c is 0.5, while the probabil-
ity of having a negative example described by
the same pair of attributes values is 0.05.

a(@).p(©)3%

1(f):35% P(0):30%

q(a),p(d):3% a(a).r(f):5%

q(a):24%

Figure 2: Distribution of different rules in the
final population obtained with the use of the US
selection operator.

others3%

q(a),p(c)15%
1():26%

q(@).r(0:3%

4(2),p(d):3%

p©):22%

q(a):28%

Figure 3: Distribution of different rules in the
final population obtained with the use of the
WUS selection operator.

9(2):8%
q(@).r(f).p(d):1%

p(c)13%

others:49%

9%

a(@).p(d):2%
9(@).1(0:1%

9(a).p(c)6%

p(A):10%
i

(f).p(c):1%

Figure 4: Distribution of different rules in the
final population obtained with the use of the
EWUS selection operator.

Figures 2, 3 and 4 show the percentage of
different kind of individuals in the final pop-
ulation after that the system was run for five
times for each operator. The difference between
the US and the EWUS selection operator is ev-
ident here. In the population obtained with
the US selection operator, there are three kind
of rules that dominate the population, namely
r(X, f),q(X,a) and p(X,c). Instead, in the
population obtained with the EWUS operator
the distribution of different kind of rules is more
homogeneous. There are not individuals that
dominate the population. Also the WUS opera-
tor shows better results regarding the diversity
in the population. There are still individuals
that dominate the population, but the distribu-
tion of different kind of rules is more even.

US WUS EWUS
Unc | 13.5 (3.53) | 13 (0.01) | 0.67 (0.58)
Avg | 19.80 (0.24) | 17.20 (3.11) | 9.00 (0.23)

Table 3: The first row of the table shows how
many positive examples were still uncovered af-
ter the GA ended. The second row shows the
average of the dimension of the coverage sets,
which is how many individuals cover a positive
example.

Table 3 shows another result in which we were
interested: how the positive examples are cov-
ered by population evolved by the system using
the three selection operators. Again, results ob-
tained with the EWUS operator are better than
the ones obtained with the other two operators.
Practically with the use of the EWUS operator,
all the positive examples are covered, while with
the other two variants thirteen positive exam-
ples are still uncovered after the GA has ended.
This is due to the more variety in the popula-
tion evolved by the system with the use of the
EWUS selection operator. The second row of
table 3 also indicates that the population ob-
tained with the EWUS operator is more spread
through the hypothesis space then the ones ob-
tained with the other two operators. For this
result the WUS operator performed a little bit
better than the US operator, however these re-
sults are not comparable with the ones obtained
by the EWUS operator.

In the previous results, the new created in-

dataset comes from the field of organic chem-
istry, and concerns the problem of learning the
mutagenic activity of nitroaromatic compounds.
The concept to learn is expressed by the pred-
icate active(C'), which states that compound
C has mutagenic activity. There are 188 com-
pounds, of which 125 are active and 63 are inac-

Clause US WUS EWUS
f 0.62 (0.06) | 0.58 (0.04) | 0.15 (0.01)
a 0 (0) 0.01 (0.01) | 0.11 (0.01)
C 0 (0) 0.02 (0.01) | 0.03 (0.04)
a,d 0 (0) 0.01 (0.01) | 0.04 (0.03)
a,f 0.1 (0.05) | 0.14 (0.11) | 0.06 (0.05)
a,c 0.16 (0.05) | 0.14 (0.08) | 0.07 (0.04)
d 0 (0) 0 (0) 0.02 (0.01)
others | 0.12 (0.03) | 0.11 (0.03) | 0.52 (0.05)
Table 4: Diversity in the final populations

evolved using the three selection operators with
a different replacement strategy.

dividuals replaced the worst individuals in the
whole population. Table 4 shows results where
new individuals replace the worst individuals
among those individuals that cover the exam-
ple selected in the first step of the selection pro-
cess. It can be seen that also in this setting
the diversity obtained by the EWUS operator
is higher than the one obtained by the other
two operators. With this replacement strategy
the system was not able to find some rule, e.g
r(X, f),p(X,c), regardless of the selection op-
erator used.

Table 5 shows the results regarding the cov-
erage. Also here the EWUS performed better
than the other two operators, the higher diver-
sity obtained led to a better coverage of the pos-
itive examples.

tive. Five runs were performed on this dataset,
with different random seeds.

US WUS BEWUS
Div | 8 (0.82) 9.34 (32) | 21 (1.63)
Unc | 10 (2.45) | 7.67 (3.09) | 0.33 (0.47)
Avg | 17.36 (7.85) | 15.33 (7.35) | 6.97 (2.81)
Acc | 0.85 (0.08) | 0.86 (0.08) | 0.89 (0.06)

US WUS EWUS
Unc | 56 (24.04) | 24.67 (3.68) | 3.67 (0.47)
Avg | 16.48 (11.11) | 17.69 (10.45) | 9.77 (3.96)

Table 5: Number of positive examples uncov-
ered and average dimension of covering sets for
the alternative substitution method.

6 Experiments

After having validated the effectiveness of the
EWUS selection operator in the previous sec-
tion, we will test again the three operators on
two well known problems. For these problems
the evaluation method used is ten-fold cross val-
idation.

The first problem is represented by the mu-
tagenesis dataset (Debnath et al., 1991). This

Table 6: The first row of the table shows how
many different rules are present in the final pop-
ulation obtained with the three selection oper-
ators on the mutagenesis dataset. The second
row shows the number of uncovered positive ex-
amples at the end of the evolution. The third
row shows the average dimension of the cover-
age sets. The fourth row shows the accuracy
of the solutions found. The results are averages
over five runs with standard deviation reported
between brackets.

Table 6 shows the results obtained on the mu-
tagenesis dataset by the three variants of the
selection operators. The use of the EWUS op-
erator led to a population with a much higher
diversity than the two population evolved with
the use of the other two selection operators.
This is also reflected in the coverage of posi-
tive examples. Also the accuracy obtained by
the system with the EWUS operator is better
than the other two.

US WUS EWUS
Div | 8.67 (1.47) | 13.5 (1.50) | 13 (1.12)
Unc | 2.33 (0.47) | 0.80 (0.75) 0 (0)
Avg | 21.13 (7.42) | 20.50 (8.38) | 22.87 (5.16)
Acc | 0.92 (0.05) | 0.93 (0.06) | 0.94 (0.04)

Table 7: Results for the vote dataset. Di-
versity, number of uncovered examples, aver-
age dimension of covering sets and accuracy are
shown.The results are averages over four runs
with standard deviation given between brack-
ets.

A second problem is represented by the vote
dataset (Blake and Merz, 1998). This dataset
contains votes for each of the U.S. House of Rep-
resentatives Congressmen on the sixteen key
votes. The problem is learning a concept for dis-
tinguishing between democratic and republican
congressmen. The dataset consists of 435 in-
stances, of which 267 are examples of democrats
and 168 are republicans.

The results obtained on the vote dataset are
shown in table 7, after having run the system
for four times with different random seeds. In
this case the EWUS and the WUS operator per-
formed substantially in the same way. Both op-
erator helped the system to evolve a population
with higher diversity than the population ob-
tained with the US operator. The average di-
mension of the covering sets is practically the
same. It must be said, however, that for the US
operator this figure was influenced by the num-
ber of uncovered examples. Also in this case the
EWUS operator led to a better accuracy.

7 Conclusion

In this paper we considered variants of the US
selection operator which incorporate informa-
tion on the difficulty of the examples to be cov-
ered. We analyzed experimentally the effect of
these operators on the diversity in the evolved
population as well as on the coverage of positive
examples. The results suggest that ‘less’ uni-
versal selection schemes are more effective for
promoting diversity while maintaining the key
property of the US selection operator of cover-
ing many positive examples.

References

C. Anglano, A. Giordana, G. Lo Bello, and L. Saitta.
1998. An experimental evaluation of coevolu-
tive concept learning. In Proc. 15th International
Conf. on Machine Learning, pages 19-27. Morgan
Kaufmann, San Francisco, CA.

S. Augier, G. Venturini, and Y. Kodratoff. 1995.
Learning first order logic rules with a genetic al-
gorithm. In Usama M. Fayyad and Ramasamy
Uthurusamy, editors, The First International
Conference on Knowledge Discovery and Data
Mining, pages 21-26, Montreal, Canada, 20-21.
AAAT Press.

C.L. Blake and C.J. Merz. 1998. UCI repository of
machine learning databases.

R. Burke, S. Gustafson, and G. Kendall. 2002. A
survey and analysis of diversity measures in ge-

netic programming. In GECCO 2002: Proceed-
ings of the Genetic and FEvolutionary Computa-
tion Conference, pages 716723, New York, 9-13
July. Morgan Kaufmann Publishers.

A.K. Debnath, R.L. Lopez de Compadre, G. Deb-
nath, A.J. Schusterman, and C. Hansch. 1991.
Structure-Activity Relationship of Mutagenic
Aromatic and Heteroaromatic Nitro Compounds.
Correlation with molecular orbital energies and
hydrophobicity. Journal of Medical Chemistry,
34(2):786-797.

F. Divina and E. Marchiori. 2002. Evolutionary
concept learning. In GECCO 2002: Proceed-
ings of the Genetic and FEvolutionary Computa-
tion Conference, pages 343-350, New York, 9-13
July. Morgan Kaufmann Publishers.

A. Giordana and F. Neri. 1996. Search-intensive
concept induction. FEwvolutionary Computation,
3(4):375-416.

J. Hekanaho. 1998. DOGMA: a GA based relational
learner. In D. Page, editor, Proceedings of the 8th
International Conference on Inductive Logic Pro-
gramming, LNAT 1446, pages 205-214. Springer
Verlag.

C.Z. Janikow. 1993. A knowledge intensive ge-
netic algorithm for supervised learning. Machine
Learning, 13:198-228.

C. J. Kennedy and C. Giraud-Carrier. 1999. A
depth controlling strategy for strongly typed evo-
lutionary programming. In GECCO 1999: Pro-
ceedings of the First Annual Conference, pages 1-
6. Morgan Kauffman, July.

M. Kubat, I. Bratko, and R.S. Michalski. 1998. A
review of Machine Learning Methods. In R.S.
Michalski, I. Bratko, and M. Kubat, editors, Ma-
chine Learning and Data Mining. John Wiley and
Sons Ltd., Chichester.

K.S. Leung and M.L. Wong. 1995. Genetic logic
programming and applications. [EFE FExpert,
10(5):68-76.

E. Marchiori and A. Steenbeek. 2000. An Evolution-
ary Algorithm for Large Scale Set Covering Prob-
lems with Application to Airline Crew Scheduling.
In Real World Applications of Evolutionary Com-
puting. Springer, pages 367-381. Springer-Verlag.

T.M. Mitchell. 1982. Generalization as search. Ar-
tificial Intelligence, 18:203—226.

T.M. Mitchell. 1997. Machine Learning. Series in
Computer Science. McGraw-Hill.

S. Muggleton. 1995. Inverse entailment and PRO-
GOL. New Generation Computing, 13:245-286.
J.R. Quinlan. 1990. Learning logical definition from

relations. Machine Learning, 5:239-266.

On Using Guidance in Relational Reinforcement Learning

Kurt Driessens

SaSo Dzeroski

Department of Computer Science Department of Intelligent Systems

K.U.Leuven
Belgium
kurt.driessens@cs.kuleuven. ac.be

Abstract

Reinforcement learning, and Q-learning in par-
ticular, encounter two major problems when
dealing with large state spaces. First, learning
the Q-function in tabular form may be infeas-
ible because of the excessive amount of memory
needed to store the table and because the Q-
function only converges after each state has
been visited multiple times. Second, rewards in
the state space may be so sparse that with ran-
dom exploration they will only be discovered ex-
tremely slowly. The first problem is often solved
by learning a generalization of the encountered
examples (e.g., using a neural net or decision
tree). Relational reinforcement learning (RRL)
is such an approach; it makes Q-learning feas-
ible in structural domains by incorporating a
relational learner into Q-learning. To solve the
second problem a use of “reasonable policies”
to provide guidance has been suggested. In this
paper we investigate the best ways to provide
guidance in two different domains.

1 Introduction

Q-learning (Watkins, 1989) is a form of rein-
forcement learning where the optimal policy is
learned implicitly in the form of a Q-function,
which takes a state-action pair as input and out-
puts the quality of the action in that state. The
optimal action in a given state is the action with
the largest Q-value.

One of the main limitations of standard Q-
learning is related to the number of differ-
ent state-action pairs that may exist. The Q-
function can in principle be represented as a
table with one entry for each state-action pair.
When states and actions are characterized by
parameters, the number of such pairs grows
combinatorially in the number of parameters
and thus can easily become very large, making

Jozef Stefan Institute
Slovenia
saso.dzeroski@igs. si

it infeasible to represent the Q-function in tab-
ular form, let alone learn it accurately (conver-
gence of the Q-function only happens after each
state-action pair has been visited many times).
This problem is typically solved by integrat-
ing into the Q-learning algorithm an inductive
learner, which learns a function that general-
izes over given state-action pairs. Thus reason-
able estimates of the Q-value of a state-action
pair can be made without ever having visited it.
Examples include neural networks (Bertsekas
and Tsitsiklis, 1996), nearest neighbour meth-
ods (Smart and Kaelbling, 2000) and regression
trees (Chapman and Kaelbling, 1991).

A relational learner is employed by Dzeroski
et al. in(Dzeroski et al., 1998), hence the name
“relational reinforcement learning” or RRL.
RRL uses first order representations for states
and actions, and learns a first order regres-
sion tree (Kramer, 1996; Blockeel et al., 1998)
that maps these structural descriptions onto
real numbers. The use of first order repres-
entations gives RRL a broader application do-
main than classical Q-learning approaches. Ex-
amples of such relatively complex applications
are described in more detail in this paper, in-
clude learning to solve simple planning tasks in
a blocks world, or learning to play certain com-
puter games (such as Tetris).

When dealing with large state spaces, as is
usually the case in structured domains, an-
other problem encountered by Q-learning is
that rewards may be distributed very sparsely
throughout this space. In previous work (Dries-
sens and Dzeroski, 2002), we have suggested
to supply guidance to the learning system at
the start of the learning process to provide it
with enough knowledge to explore the rest of
the state-space on its own. In this work we will
try to explore other ways of supplying guidance

to RRL.

The remainder of the paper is structured as
follows. In Section 2 we discuss different ways
in which guidance can be incorporated in a Q-
learning approach. In Section 3, we present a
number of structural domains and discuss spe-
cific difficulties that are encountered when solv-
ing tasks in these domain. In Section 4, we
present experimental results in these domains,
comparing different ways of providing guidance
to RRL and we conclude in Section 5. For re-
lated work we would like to refer to previous
work (Driessens and Dzeroski, 2002).

2 The Approach
2.1 The RRL-TG System

We make use of the RRL-TG algorithm as de-
scribed in (Driessens et al., 2001). The RRL
system is a Q-learning system that uses a first
order representation for the encountered states,
actions and the resulting Q-function. RRL
starts with running a normal episode just like a
standard reinforcement learning algorithm but
uses this episode to generate a set of examples
for tree induction. At the end of each epis-
ode, a first order regression tree builder TG is
supplied with the encountered (state, action, g-
value)-triplets and incrementally builds a first
order regression tree that represents the Q-
function. In the next episode, the g-values pre-
dicted by the generated tree are used to calcu-
late the g-values for the next set of examples.

2.2 On Providing Guidance

Although random policies can have a hard time
reaching sparsely spread rewards in a large
world, it is often possible to reach these rewards
in a reasonable number of steps by using “reas-
onable” policies. While optimal policies are cer-
tainly “reasonable”, non-optimal policies are of-
ten easy (or easier) to implement or generate
than optimal ones. One obvious candidate for
an often non-optimal but reasonable controller
would be a human expert.

To integrate the guidance that these reason-
able policies can supply with our relational re-
inforcement learning system, we use the given
policy to generate a number of behaviour traces,
together with the rewards that the actions in
such a trace would receive. In case of a human
controller, one can log the normal operation of

a system together with the corresponding re-
wards. The generated traces are translated to
state-action-qvalue triplets and then presented
to the RRL algorithm. The generalisation al-
gorithm responsible for the generation of the Q-
function in RRL can use the state-action-qvalue
triplets generated this way to build a partial Q-
function.

In earlier work (Driessens and Dzeroski,
2002), we supplied all of the guidance (traces)
in the beginning of the learning experiment. Al-
though this generally turned out to help RRL
reach higher levels of performance, we also no-
ticed the occurrence of overgeneralization in the
regression algorithm TG. We propose in this
work to counter this overgeneralization-effect
caused by the supply of optimal state-action
combinations only, by interleaving the guided
traces with the exploration traces. We will com-
pare different rates at which the guidance is sup-
plied.

In the guided traces, the actions are chosen
by a pre-defined (reasonable) policy and are
only observed by RRL. In the exploration
traces, actions are chosen autonomously by
RRL, using the current estimate of the Q-
function and the Boltzmann statistics (Kael-
bling et al., 1996). For the generalization en-
gine Ta, there is no difference between the
two types of traces. It will simply transform
each encountered (state, action, g-value) triplet
into one training example to learn from. A
more formal explanation of this approach can
be found in (Driessens and Dzeroski, 2002).

We will test the different suggestions on two
example applications: the Blocks World and
the computer game Tetris. While we will use
an optimal policy to provide guidance in the
Blocks World, it is very difficult — and maybe
impossible — to construct an optimal policy
for Tetris. We will therefore compare guidance
given by two different — but still fairly simple
— policies, of which one performs considerably
better than the other.

In the case of the Blocks World we will try to
go one step further in the kind of guidance we
provide. Since we test the performance of the
strategy generated by RRL at regular time in-
tervals, we can tell RRL in which cases it failed.
Next time RRL asks for some guidance, we can
allow it to ask for help in one of the cases that it

clear(d).
clear(c).
on(d,a).
on(a,b).
on(b,floor).
on(c,floor).

move(d,c).

0

b c

Figure 1: Example state and action in the
blocks-world.

could not solve. We have named this approach
“active” because of the similarity of this tech-
nique to “active learning” strategies in classific-
ation tasks (Cohn et al., 1994).

3 The Domains
3.1 The Blocks World

We use the blocks world with 10 blocks as our
first testing environment. Blocks can be on the
floor or can be stacked on each other. We rep-
resent the states and actions in the blocks-world
as shown in Figure 1 (Prolog notation). The
available actions are move(z,y) where z # v,
z is a block and y is a block or the floor.
There is no limit on the number of blocks that
can be on the floor. In addition, we supply
the RRL algorithm with the number of blocks,
the number of stacks and the following back-
ground predicates: equal/2, above/2, height/2
and difference/3 (an ordinary subtraction of two
numerical values).

With 10 blocks, the blocks world becomes
large enough to illustrate the effect of guidance
in Q-learning, while remaining simple enough
to explore different guidance strategies. With
10 blocks, there are close to 59 million possible
states in the blocks world.

We study the goal of putting one specified
block on top of another specified block. Please
note that the use of RRL permits the use of
variables in the description of the goal and the
Q-function and thus allows us to learn to stack
any two given blocks, without having to restart
the learning process when changing the names
of the blocks. In a blocks world with 10 blocks,
there are 1.5 million states that satisfy a specific
on(A, B) goal. A reward of 1 is given in case a
goal-state is reached in the optimal number of
steps; the episode ends with a reward of 0 if it

Figure 2: The TETRIS Game.

is not. This limits the number of steps allowed
per episode.

3.2 The Tetris Game

Tetris! is a well known puzzle-video game
played on a two-dimensional grid. Differently
shaped blocks fall from the top of the game field
and fill up the grid. The object of the game is
to keep the blocks from piling up to the top of
the game field. To do this, one can move the
dropping blocks right and left or rotate them
as they fall. When one horizontal row is com-
pletely filled, that line disappears and the player
scores points. When the blocks pile up to the
top of the game field, the game ends.

In the tests presented, we only looked at
the strategic part of the game, i.e., given the
shape of the dropping and the next block, one
has to decide on the optimal orientation and
location of the block in the game-field. Using
low level actions — turn, move left or move
right — to reach such a subgoal is rather trivial
and can easily be learned by RRL. However,
the dropping of the block is instantaneous.
It is impossible in our setup to slide a block
into place sideways. We represent the full
state of the Tetris game, the type of the next
dropping block included. We allow RRL to
use the following predicates (among others):
blockwidth/2, blockheight/2, rowSmaller/2,
topBlock/2, holeDepth/2, holeCovered/1,
fits/2, increasesHeight/2, fillsRow/2 and

!Tetris was invented by Alexey Pazhitnov and is
owned by The Tetris Company and Blue Planet Soft-
ware.

fillsDouble/2. The system gets a reward after
each action of 1 point for each (with that
action) deleted line.

3.3 Comments

Both domains have large state spaces and are
hard to solve with ordinary Q-learning. Al-
though some of these problems can be tackled
by using RRL, Q-learning in both of them has
been shown to benefit from the added guidance
(Driessens and Dzeroski, 2002).

In Tetris, a good policy can supply a reward
every 4 or 5 steps, which is quite frequent. How-
ever, a single bad action can have long lasting
effects, thereby hiding obvious rewards from the
learning algorithm. This, together with the fact
that Tetris is a stochastic game (the shape of the
next falling block is unknown) makes it a very
hard application for Q-learning. For the Tetris
game, an optimal policiy is hard — and may be
impossible — to construct.

4 The Experiments

We expect that spreading the presented guid-
ance will have two influences on the learning
performance. In terms of learning speed, we ex-
pect the guidance to help the Q-learner to dis-
cover high yielding policies earlier in the learn-
ing experiment. Through the early discovery of
important states and actions and the early avail-
ability of these state-action pairs to the general-
ization engine, we also expect that it is possible
for the Q-learner to reach a higher level of per-
formance — i.e., a higher average reward when
testing the current strategy — in the available
time.

To test these effects, we compare RRL with
different guidance frequencies in the following
setup: First we run RRL in its natural form
and in the form where we supply all the guid-
ance in the beginning of the learning episode
(Driessens and Dzeroski, 2002). We give it the
possibility to train for a certain number of epis-
odes; at regular time intervals we extract the
learned policy from RRL and test it on a num-
ber of randomly generated test problems. For
RRL with guidance, we replace a given num-
ber of episodes with traces from a hand-coded
policy. We test the result in the same manner
as the original RRL. Note that no matter what
frequency we use to supply RRL with guidance,

Blocks World
1
09 r . * ****xx**********xx**s‘(xx****x*x—
08 . '3 ¥ 4
°T 07} % o *xx‘x‘x%)(xr—
g y * oo g XX
& 0.6 ; 1
o 05 ¥k , N
2 %
5 04f]]
< 03 /
H > X
e I N L s —
01}t /. / '1000 guided traces at start’ ----x---
xR /1 guided every 10 traces’ -—x-

0 L
0 2000 4000 6000 8000
Number of Episodes

10000

Figure 3: The Learning Curves for the Blocks
World.

the total amount of guided traces will be the
same in all cases.

4.1 The Blocks World

As is clearly shown in Figure 3 the spreading
of the guidance helps in terms of both learn-
ing speed and level of performance. Provid-
ing an equal amount of guidance in the be-
ginning of learning gives a (relatively) compar-
able increase in level of performance, but not in
terms of learning speed. This can be explained
by the interaction of the Tag-algorithm with
the fact that only optimal traces are presen-
ted. When we supply RRL with only optimal
traces, overgeneralization occurs. The general-
ization engine never encounters a non-optimal
action and therefore, never learns to distinguish
optimal from non-optimal actions. It will create
a QQ-tree that separates states which are at dif-
ferent distances from the goal-state and later,
during exploration, expand this tree to account
for optimal and non-optimal actions in these
states. These trees are usually larger than they
should be. RRL is often able to generalize over
non-optimal actions in states that are close to
the goal and optimal actions in states that are
a little further from the goal in one leaf of its
tree.

By spreading the guidance and supplying
the optimal traces not all at once but inter-
leaved with random — at least in the begin-
ning of the learning process — traces avoids
this overgeneralization. Of course, this prob-
lem (and as a consequence the solution as well)
is strongly related to model building generaliz-

Blocks World

0.9
0.8 | R R
0.7
0.6 [
05 |-
0.4
0.3
0.2 |
0.1

S
KRR H KK

Average Reward

'1 guided every 10 traces’ —+— |
'10 guided every 100 traces’ - -
100 guided every 1000 tracqs' B

0 2000 4000 6000 8000
Number of Episodes

10000

Figure 4: Comparing different Guidance Fre-
quencies.

ation algorithms such as tree-builders or rule-
based systems. Other generalization techniques
such as instance-based approaches might not
suffer from this problem.

Figure 4 shows the influence of different fre-
quencies used to provide guidance. Note that
in all cases, an equal amount of guidance was
used. Intuitively, it seems best to spread the
available guidance as thin as possible and the
performed experiments do not show any negat-
ive results of doing so. However, spreading out
the guidance when there is only a small amount
available (e.g. 1 guided trace every 10000 epis-
odes) might prevent the guidance from having
any effect.

As a specific solution to the sparsity of guid-
ance for the RRL-TaG-algorithm we could let
RRL ask for guidance episodes whenever it is
bound to make a permanent decision. (In the
case of the tree-learner TG this would be when
it is about to make a new split in a leaf.) Even
when this guidance is not case specific, it could
be used to check whether a reasonable policy
does not contradict the proposed split. Altern-
atively, one might decide to store (some of) the
guided traces and re-use them: at present, all
traces are forgotten once a split of the TG tree
has been made.

When looking for a more general solution, one
could try to provide a larger batch of guidance
after RRL has had some time to try and ex-
plore the state-space on its own. This is related
to a human teaching strategy, where provid-
ing the student with the perfect strategy at the
start of learning is less effective than provid-

Blocks World
1
09
0.8 |
§ 0.7 + /X/X,W_xX**x)‘%wXXﬁ«XQ
& 0.6 '>,<-><*XIX‘X Xxx‘xy»xxxx***x’x*]
o 05| jooo .
% Vo
§ 0.4 ! i
< 03+ |
0.2 1
0.1 f '1 guided every 10 traces’ —— -
o ¥ ‘ , 1000 guid‘ed after 1000" —>—
0 2000 4000 6000 8000 10000
Number of Episodes
Figure 5: Comparing Spread Guidance to

Delayed Batch Guidance.

ing the student with that strategy after he or
she has had some time to explore the systems
behavior. Although Figure 5 shows inferior res-
ults for this approach when compared to the
spread out guidance, this is probably due to the
large size of the presented batch. Note also that
learning here takes place faster than when all
guidance is provided at the beginning.

4.2 The Tetris Game

The guidance strategy used in the Tetris exper-
iment was very simple and included only the
following rules:

1. Take an action that creates no new holes
and does not increase the current height of
the wall in the playing field.

2. If no action of type 1 can be found, take an
action that does not increase the current
height of the wall in the playing field.

3. If no action of type 1 or 2 can be taken,
take an action that does not create a new
hole.

4. If no action of type 1, 2 or 3 exists, take a
random action.

This strategy scores an average of 6.3 lines per
game.

Due to the lack of sufficient time to run more
experiments, the shown graphs are performance
curves of single learning experiments and as
such show some erratic behavior. We will have
better results for the final version.

Tetris
14
a. a B
12t _ goea, e 07 "]
DEIDDE‘ =
° 10 [=ha)
g L ‘original RRL' —+—
o 8 57 P '20 guided traces at start’ - -
e« A '1000 guided traces at start’ -
2 6l e ’1 guided every 10 traces’ @
21->') a” > o Xx"(x\ Koex XX
< 4+ g o X
EI" L /
0 1 > | | |
0 2000 4000 6000 8000 10000

Number of Episodes

Figure 6: The Learning Curves for Tetris.

Tetris
16
14 + w4
* **
- 12 + xoxs o
< | A * *x‘**gg_x,xx’*xx oo
% 10 X** ¥ ‘*‘ .);gx’% s
14 gl *% Fxxsl X
X INEHSHK
o | WK Y
o 6 ,?‘x’;x*
< al)(x
e 1 guided every 10 traces’ ——
2 Qm '10 guided every 100 traces’ -
0 A ‘ '100 guided every 1000 traces’ -~x -
0 2000 4000 6000 8000 10000

Number of Episodes

Figure 7: Comparing different Guidance Fre-
quencies.

Figure 6 shows the improvement of RRL with
guidance. Since the problem of overgeneral-
ization is more apparent in the Tetris exper-
iments — the experiment with 1000 starting
traces does not perform better than the original
RRL — we included an experiment where we
gave RRL only 20 guided traces at the start of
the experiment, to show that RRL does benefit
from early guidance as well. However, the im-
provement received from spreading the guidance
is even more apparent than in the Blocks World.
Also note that the average number of lines de-
leted by RRL rises above 12 per game while the
strategy used for guidance only reaches 6.3 lines
per game.

Figure 7 shows the comparison of guidance
frequencies. As we already noticed in the
blocks-world experiments, although providing
a lot of guided traces in the beginning of the

Tetris

18
16 L o
XXYXX* XK
14t N 1
%
S 12t P e 1
B W Hxod
- 2
% 10 N . /Xx’ 7
L Tk i
g 8r
5 y
> 6 X —
< vl
4t .
2 ’* 'simple strategy’ ——
0 ‘ ’petter strategy’ ——

0 2000 4000 6000 8000
Number of Episodes

10000

Figure 8: Comparing different Guiding Policies.

experiment will slow down the progress made
by the RRL-system during the initial stages of
the experiment, there is little to no difference
between the performances later on in the ex-
periment.

To test the influence of the performance of
the policy used for guidance, we designed an-
other (simple) strategy for Tetris. With the ad-
dition of a few more rules that tested the num-
ber of deleted lines a block would cause, we got
the performance of the guidance strategy up to
16.7 lines per game on average. The results of
using the two different strategies are shown in
Figure 8. The graph shows that there is a sig-
nificant increase in performance for using the
better policy to guide RRL. This shows that
the exploration insensitivity of table-based Q-
learning (Kaelbling et al., 1996) does not carry
over to Q-learning with generalization. How-
ever, one should notice that although the “guid-
ance strategy” improved by approximatly 10
lines per game, the improvement of the resulting
strategy learned by RRL is smaller.

4.3 “Active” Guidance

As stated at the end of Section 2, in the Blocks
World where each episode is started from a ran-
domly generated starting position, we can let
RRL know in which cases it failed to reach the
goal state, and give RRL the opportunity to ask
for guided traces starting from some of these
states. This will allow RRL to explore parts
of the state space where it does not yet have
enough knowledge and supply the TG-algorithm
with examples which are not yet correctly pre-
dicted.

Blocks World

T
236 36 96 % 3¢ Kogg XX N e

0.9
0.8 [
0.7 1
0.6
05
04
0.3
0.2 r

01| ; '1 guided every 10 traces’ —— |
/ "1 every 10 actiye' R

Average Reward

0 2000 4000 6000 8000
Number of Episodes

10000

Figure 9: The Learning Curves for the Blocks
World.

Figure 9 shows the results of this active guid-
ance. Although there is little difference between
the performance of the two approaches in the
beginning of the learning experiments, the act-
ive guidance succeeds in pushing RRL to better
performance at the end of the learning experi-
ment. The percentage of cases where RRL does
not reach the goal state is reduced from 11% to
3.9%. This is completely consistent with what
one would expect. In the beginning, both sys-
tems will see more than enough new examples
to both be able to increase the accuracy of their
Q-function. However, when both the algorithms
have a large part of the state-space covered by
their Q-function, the specific examples provided
by the active guidance allow for the Q-function
to be extended to cover the outer reaches of the
state-space.

Although this idea of “active” guidance seems
very attractive both intuitively and in practice,
it is not easy to extend this approach to applic-
ations with stochastic actions or a fixed start-
ing state such as the Tetris game where the next
block to be dropped is chosen randomly and the
starting state is always an empty playing field.
For the Tetris game one could imagine remem-
bering the entire sequence of blocks and asking
the guidance strategy for a game with the given
sequence, however, given the large difference in
the state provided by only a few different ac-
tions, we anticipate the effect of this approach
to be very small. Another step towards act-
ive guidance in stochastic environments would
be to keep track of actions (and states) with a
large negative effect. For example in the Tet-

ris game we could notice a large increase of
the height of the wall of the playing field. We
could then use these remembered states to ask
for guidance. However, this approach requires
not only a large amount of administration inside
the learning system but also needs some a priori
indication of bad and good results of actions.

5 Conclusions

In this paper, we explored several ways of in-
cluding guidance into reinforcement learning.
Although we have used relational reinforcement
learning (RRL) in our experiments, we assume
that the results carry over to all forms of Q-
learning that use regression to approximate the
Q-function. We have shown that spreading this
guidance during the entire learning eposide can
have a large influence on both the speed of learn-
ing and the overall level of performance that is
obtained.

According to the results we obtained the ap-
proach does not suffer when the guidance is
spread out thinly. We feel that spreading out
the guidance as much as possible would yield
the best results, provided there is enough guid-
ance available to not lose its influence to noise
elimination.

The influence of the performance of the
strategy used for guidance seems small. Assum-
ing the use of a “reasonable” policy, i.e. a policy
that is able to discover the rewards in the state-
space at a reasonable rate, the policy learned
by RRL depends little on the performance of
the policy used for guidance. The RRL-system
is able to improve on the performance of the
guidance policy.

The use of “active” guidance seems to help
improve the performance of RRL even more in
the case of deterministic applications. The spe-
cific examples provided by this active guidance
helps the Q-function to cover a larger area of the
state-space by allowing the learning algorithm
to zoom in on unknown areas of the state-space.
However, it seems hard to expand this approach
to stochastic applications while maintaining the
simplicity and elegance of the original idea.

Possible directions for further work include
tighter integration of the use of guidance and
the generalization engine used (RRL-TaG), on
one hand, and the investigation of the effects
of using guidance with other types of learn-

ing algorithms (e.g., instance-based) within Q-
learning, on the other hand.

References

Bertsekas and Tsitsiklis. 1996. Neuro-Dynamic
Programming. Athena Scientific.

H. Blockeel, L. De Raedt, and J. Ramon. 1998.
Top-down induction of clustering trees. pages
55-63.

D. Chapman and L. P. Kaelbling. 1991. Input
generalization in delayed reinforcement learn-
ing: An algorithm and performance compar-
isions. pages 726-731.

D. Cohn, L. Atlas, and R. Ladner. 1994. Im-
proving generalization with active learning.
15:201-221.

K. Driessens and S. Dzeroski. 2002. Integ-
rating experimentation and guidance in re-
lational reinforcement learning. In C. Sam-
mut and A. Hoffmann, editors, Proceedings
of the Nineteenth International Conference
on Machine Learning, pages 115-122. Mor-
gan Kaufmann Publishers, Inc.

K. Driessens, J. Ramon, and H Blockeel. 2001.
Speeding up relational reinforcement learning
through the use of an incremental first order
decision tree learner. In Proceedings of the
13th European Conference on Machine Learn-
ing, pages 97-108. Springer-Verlag.

S. Dzeroski, L. De Raedt, and H Block-
eel. 1998. Relational reinforcement learn-
ing. In J. Shavlik, editor, Proceedings of the
15th International Conference on Machine
Learning (ICML’98), pages 136-143. Morgan
Kaufmann.

L. Kaelbling, M. Littman, and A. Moore. 1996.
Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237-285.

Stefan Kramer. 1996. Structural regres-
sion trees. In Proceedings of the Thir-
teenth National Conference on Artificial In-
telligence, pages 812-819, Cambridge/Menlo
Park. AAAI Press/MIT Press.

W. D. Smart and L. P. Kaelbling. 2000. Prac-
tical reinforcement learning in continuous
spaces. In Proceedings of the 17th Inter-
national Conference on Machine Learning,
pages 903-910. Morgan Kaufmann.

Christopher Watkins. 1989. Learning from
Delayed Rewards. Ph.D. thesis, King’s Col-
lege, Cambridge.

Datasize-Based Confidence Measure for a Learning Agent

Wojciech Jamroga
Parlevink Group
University of Twente, Netherlands

jamroga@cs.utwente.nl

Abstract when she has several alternative models to choose

In this paper a confidence measure is considered for aMONg or combine. _

agent who tries to keep a probabilistic model of her envi- This paper is focused on the first source of the
ronment of action. The measure is meant to capture onlagent’s uncertainty: how much confidence can she
one factor of the agent’s doubt — namely, the issue whethenave in her knowledge when there is not enough data
the agent has been able to collect a sufficient number ofp support it? The problem is analyzed in a very sim-
observations. In this case stability of the agent's currenhe setting: the agent is assumed to be a 1-level agent
knowledge may give some clue about the trust she can put

in the model — indeed, some researchers from the field oé L.e. an agent that models other agents as stochas-

probability theory suggest that such confidence should b ¢ agents (Sen 6_1nd Welss,' .19.99) . a_nd the user_s are
based on the variance of the model (over time). -level agents with probabilistic policies. The rein-

In this paper two different measures are proposed, botforcement is known beforehand for every decision of
based on aggregate variance of the estimator provided biie agent, given a response from the user, and the do-
the learning process. The way the measures work is inmain of action is stateless (or at least the agent’s per-
vestigated through some simple experiments with simulatedeption doesn't let her distinguish between different
software agents. It turns out that an agent can benefit fromtates of the environment). The agent tries to estimate
using such measures as means for 'self-reflection’. Thene actyal policy of the user calculating a frequency
simulations suggest that the agent’s confidence should “?iistribution, which can be further used to find the de-

flect the deviation of her knowledge from the reality. TheyCision with the maximal expected reward. The aim of
also show that it can be sometimes captured using very sim: P :

ple methods: a measure proposed by Wang is tested in thig§€ confidence is to represent meta-(un)certainty about
context, and it works seldom worse than the variance-basefl€ agent's knowledge, so when she has several alter-
measures, although it seems completely ad hoc and not welative models available she can choose among them or
suited for this particular setting of experiments at the firstcombine their output. Thus, the actual confidence val-
sight. ues should range from 0 (complete distrust) to 1 (full

Keywords: multiagent systems, confidence measure confidence).

uncertainty, machine learning, user modeling 2 The Leaming Method: Counting with

1 Introduction Decay

There are roughly two possible sources of doubt fofb‘gtssuvr\ﬂfh asr(')rﬁgtg?ﬁé?ggzéo(magfaﬁnggﬂ'?ng];%re

a learning agent. First, the agent may have coIIectean agent representing a bank @dnay be a potential
too little data. For instance, when the agent starts incustomer — a user of an Internet banking service). The
teraction with a completely new user, her knowledgeinteraction with the 'user’ is sequential and it consists
about the user is virtually none. However, the knowl-0f subsequent turns: first chooses to proceed with an

edge is utilized in the same way by most algorithms,aCtion ax from a finite setActA, then B replies with
omebx € ActB, then A doesa’ € ActA and so on.

regardless of the number of learning steps that havéet pr(bla) = ps(a,b) denote the current probability
been taken so far. of agentB choosing actiorb as a response td’s ac-
Next, the environment might have changed considtion a. A tries to estimate the policy with a relative
erably, so the data do not reflect its current shape. frequency distributiorpz:
The knowledge produced by a learning algorithm is Ol N (@)A1
often no more than a working hypothesis. It's nec- TN@arr . e=ahb=bt
essary for the agent that she can make her decisions; pla) e a=a bz (1)
however, trusting the knowledge blindly implies some p(la) else
additional assumptions which are nottrue in mostreal- n() — { %8 At e @
life situations. It's good for the agent to have some

measure of uncertainty in her own knowledge — to where X € [0,1] is the decay rate implementing the
minimize the risk of a decision, especially in the caseway A 'forgets’ older observations in favor of the more

recent ones to model users that may change their pref- It has been suggested that, when the model is a prob-
erences dynamically (Kumar, 1998) (Koychev, 2000)ability distribution, the agent’s self-confidence may be
(Koychev, 2001). N(a) represents the data size after yefined using the variance of the distribution treated as
collectingn observations. Since the oIderobservatlonsa random quantity itself (Pearl, 1987; Kyburg, 1988)

are used only partially (the first one with weigtit—1, . k
the secondA}L/—Ig etc.),ytr(le real quantity of datghwe use Thus, the confidence measures being proposed and

is studied in this paper are based on the notion of aggre-
N(a) = i”‘_i [22 foro<a<t gate variance of the estimator provided by the learning
B o o n forA =1 process.

The nil distribution 0(b|a) = 0 is used as the ini- 3.1 B|nd|ng the Variance of Samp“ng

tial one. If the decay rate is allowed to vary then Handbooks on statistics like (Berry and Lindgren,

actoal dosay ot b the moments winen the subsequAl3o6) SUggest a way to determine whether an amount
y WL data is enough to estimate the population mean

observations and updates were made.) >
Note that}(bla) is basically a sample mean of a EX with a sample meaX: we assume some accept-

Bernoulli variableResp(b|a), although it's anean with ~ @ble error levek and as soon as the sampling devia-

decay tion (standard deviation, for instance) gets below this
value: o(X) < ¢, we feel satisfied with the estimation
Pn(bla) = My, , (Respi=1,..,n(bla)), 3 itself. Since the real deviation value is usually hard to
where Resp(bla) = { (1) gtﬁ;sn:l?:euser’s response o, pbtain, an upper bound or an estimation can be used
R instead.
My, Xierm) = Zimtlizin 2% 5) If we want the 'satisfaction measure’ to be continu-
R i Hjmira A ous, it seems natural that the satisfaction is fulthen

Note also that for, = 1 we obtain an ordinary fre- 'E)he C?ﬂd'tg?n h?l?snfo‘fr:v\(l)’ anI(EI ilt dercreaseg tr?"‘;a“tjﬁ t
guency distribution with no temporal decay. as ?’d spe fso ? OWS. 3 P %po_se ere tha
M, has some standard properties of a mean (the proof8€ confidence for a frequency distributipt|a) can

are straightforward): be somehow proportional tb— ", disp(bla), and the
variancevar(p(bla)) is used to express the dispersion
My, ,(X+Y) = My (X)+M=1..0Y)) disp(bla). The reason for choosing the variance is that
My, ,(aX) = aMy, ,(X) ™ 0 < Y, var(p(bla)) < 1 in our case, while the same
> My, ., (pi=1.m(b)) = 1if p; are probability functions (8) is not true for the standard deviatienas well as the
b mean deviationn.a.d.

We assume that the old observations are appropri-
ate only partially with respect to the (cumulative) data
3 Self-Confidence with Insufficient Data decay encountered so far. Let> 1 be an arbi-
_ _ trary number. By the properties of the variance and
It is often assumed that the (un)certainty an agengiven that Resp: (ba), ..., Respa(bla) represent a ran-
can have about her knowledge is nothing but a metadom sampling of the user’s responses:

probability or meta-likelihood — cf. (Draper, 1995)

for instance. On the other hand, there are researchers var(pn(bla)) = wvar (MA(Respi:Ln(b|a))) =
who argue against it (Kyburg, 1988; Wang, 2001). Sy Resp;(bla)A" !
This seems to reflect the assumption that the meta- = ”‘”‘(Zflznﬂ P) =
uncertainty should refer to the usability of the model. -

S . . S, var(Resp; (bla))A2(n—1)
Indeed, meta-probability isn't very useful in this case: - e

even if we know for sure that the model is slightly

different from the reality (in consequence, its meta- var(Resp;(bla)) is a population variance at the mo-
probability is exactly0), it doesmatter whether it's ment when theth observation was made. #f(b|a)
close to the real situation or not (Wang, 2001). Thiswas the real probability of user responding with action
is also the perspective adopted in this paper. In thi€ at that particular moment, then:

respect, some authors propose approaches based on 5

sorge notion of error or fi?ting obtair?gd through a pos-wr(Resm(b‘a)) - pi(?a) ;pi (bla) ,

terior verification of the model (Hochreiter and Mozer, s~ ., ;. b/a)) iy XY (pri(b\“') 2T
2001, Spiegelhalter et al., 1998; Marshall and Spiegel<; iz An)?

halter, 1999). However, the disconfidence studied here

is a priori not a posteriori by definition — therefore S, p2(bla) is minimal for the uniform distribution
any posterior reasoning can do no good here. In cong,(b|a) so:

sequence, purely practical solutions may be very use-

ful and work surprisingly well in particular situations R 2= 1

(Kumar, 1998; Wang, 2001). zb:”””(”"(’"“” < (Zz;;ll iz g O

_ 1
= TActB|!

Let

e = DX
dispb(a) = (S i)z 1- ActB]) (10)
Cbounda) = 1 — dispb(a) (11)

Now the confidence is never higher tharcén be —
the agent is playing it safe:

Chounda) <1 - var(pn(bla))
b

(12

Note also thatdispb(a) is a decreasing function of
A for A € (0,1], so its value is always betweegn —

_—lAthl)/n (the value forx = 1), and1 — 7 (which
is limy_q dispb(a)). Thus also
1 n—1 1
O Tap) = UM =t st @

In the more general case wheiis variable:

Z var(pn(bla)) var (M)\Zlun(Respi:Ln(b\a))) =
b

2 i1 (ITf—i 1 Ag)?var (Resp; (bla))
i I M)?

2?:1(H?:i+1 Aj)? 1_ 1

(ZZ‘L:1 H?:i-u Aj)? |ActB|

<

)
It is possible to compute

n
Lsqry (H A2 =M Lsqrp—1 +1

i=1 j=it+1

NagE

—s

+

M-

and L, Aj=ALn_1+1

2 i+1

1J

clue about the expected (real) deviation from the esti-
mationp,, obtained through the sampling. This value
can be approached through its upper bound — as pro-
posed in section 3.1. Alternatively we can try to ap-
proximate the variability we may expect from our esti-
mator in the future (possibly with temporal discount).

It is worth noting that insufficient data can be seen
as generating 'future oriented distrust’: even if the
agent's knowledge doesn’'t change much during the
first few steps (e.g. the corresponding user’s responses
are identical) it may change fast in the very next mo-
ment. When the evidence is larger, the model of the re-
ality being produced gets more stable and it can hardly
be changed by a single observation. If we assume that
the learning algorithm is correct — i.e. the model con-
verges to the true user characteristics as the number
of input data increases — then the agent can base her
self-assessment on the possible future-oriented disper-
sion (possibly with a temporal discount— to make
the closer entries matter more than the farther ones):

Csize\ (a)
fdisp, (a)

(1 — fdispy (@)™
Jim B fdisp (a) =

Jim E(37 Va@ntr(bla), . pn(bla))) 17)
b

(16)

wherep is the agent’s current model of the user, ev-
ery pnyi(-la),i = 1..k is obtained fromp,, +;—1(-|a)
through responsk’, and the mean is taken over all the
response sequencés, ..., by). The sample variance

with discount/decay can be defined in a natural way
as:
Va(X) = Mp(X — My X)? (18)

By properties (6), (7)Va(X) = Mx(X?) — M3(X).
Assuming uniform a priori likelihood for all the possi-

ble sequences, the expected value can be approximated
with simple averaging:

in an incremental way. Then the confidence can be

defined as

1
|ActB|

Lsqry
(Ln)?

Chounda) =1 — 1-) (14)

which is never greater than- Y, var(p, (bla)).

3.2 Adjusting the Confidence Value

The value ofdispb(a) proposed above can give some
idea of the uncertainty the agent should havg(ifu).
The most straightforward solutiorCbounda) = 1 —
dispb(a) may not always work well for practical rea-

sons, though. The agent can use a 'magnifying glass’

parametem to sharpen her judgment:

Cbounda) = (1 — dispb(a))™ (15)

Since different learning methods show different dy-

namics of knowledge evolutiom offers the agent an

opportunity to 'tune’ her confidence measure to the ac-

tual learning algorithm.

3.3 Forward-Oriented Distrust
In a perfect case we would be interested in thal

variation of the sampling made so far — to have some

1

TAciBIF . fdisgk (a)

>

=11

avger_,) fdispi (a) = (19)

The limit in (17) can be then approximated iter-
atively for the generalized frequency counting pre-
sented in section 2. Let:

Mpsar® (a) = avgx |y D Ma(Biik(bla), ..., b (bla))
b

Msqr* (a) = avg(px

i=

) > MZ(Bnyk(bla), ... pn(bla)
b
MP*(a) = avgpr_) D Ptk (bla) MA(Bpix(bla), ..., pn(bla))
b
Psqr’“ (a) = avger_,) Zﬁi+k(b\a)
b

Thenforo < A <1

avg@x_ | fdisp (a) = Mpsar* (a) — Msqr* (a)

— Ak — A)AF
Mpsqr® (a) = ﬁMpsql’“_l(a) + %Psqr’“(a)
(1 —Ak)? _ 2(1 — A)AF
Msqr* (a) = mqur"c Ya) + WMPk(a)
~AZR(1 - A)?

A AFTE Psqr(a)

fdisp (p, a, A, A\, N, precision);

Iterative approximation dfdisp, (a). Returns the approximate value
the average future-oriented temporally-discounted dispersion (with
poral discoun < A < 1). X is the current temporal decay rate on tl
observation level]N represents the number of observations collected s¢
that takes into account the cumulative time degais the current model
of the user.

Mpsqr, Msqr, M P, Psqar— >, p%(bla); [* initial values */

k «—0;
V «—0;
repeat
Vota < V;
k—k+1;
—1\? 2(N-1
Psqr (NNl) Psqr+ \A(ctB\]\;2 + 72
(1-AF)(N=-1) (1—A)AF 1—AF .
MP — (-ARFL)N MP+ 1_M=+1kpsqr+\Aczzf\(l—/\zkﬂ)zv'
1-A 2(1-A)AF A2k(1-A
Msqr — (1(7Ak+)1)2 Msqr + 20 AP — WPsqn
—AF 1-A)AF
Mpsqr— 14—+ Mpsqr-+ (1_Ak)+1 Psqr,

V «— Mpsqr— Msqr,
until |V — V14| < precision;

. becaus® < Mpsqr, Msqr, M P, Psqr< 1 by (8). Thus

NP AR = A) ARQ—A) | ARQ-A)
far = (1= ARH1)2 (1 — ARFD)2 T (1 — AR+1)2
AR(1—A) AR(1 —A)
+2 <
(1 — Ak+1)2 (1 _ Ak+1)2
A*R(1—A) < 7Ak(1 —-A) 7 I
T (@ =AR)Z T (1-A)2 1A
QED. I

Note also that, for every, V* > 0 (because it's
a sum of nonnegative elements); on the other hand
Vk < 1 (becauseV® = Mpsgt — Msgr®, and0 <
Mpsqgr, Msgr* < 1). In consequence:

0 < Csizgy(a) <1 (20)

The way both measures work has been studied

return(/);

through some experiments in section 4.

4 Simulations

Figure 1: The algorithm for iterative approximation of

fdisp(a).
_ Ak _
MPk(a) = %M}Dk—l(a) +
(1 — A)AF 1—AF
AR PSR,
Psq (a) = (Nk — 1)2Psq|’“*1(a) + 7‘212];%?]\}2) %
k k

whereN, = NA¥ + Y% i andN = Y27,)\ is the
actual (decayed) data sizei=)\, is the current obser-

The experiments were inspired by the following sce-
nario: a software agent is designed to interact with
users on behalf of an Internet banking service; she can
make an offer to a user, and the user’s response de-
termines her output at this step of interaction. The
banking agent is a 1-level agent, i.e. an agent that
models other agents as stochastic (0-level) agents. The
user is simulated as a random 0O-level agent — in other
words, his behavior can be described with a random
probabilistic policy. The agent estimates the user’s
policy with a relative frequency distribution, count-
ing the user’s responses; at the same time she com-

vation decay rate. The resulting algorithm is shown orputes a confidence value for the profile acquired so far.
figure 3.3. Moreover, the limit can be proved to exist,1000000 independent interactions (a sequence @f

so the algorithm is convergent.

Proof: to prove the convergence of the sequevi¢e-
avg:_,) fdispk(a), we will find an (ax) such that
\Vk—Vk1| < g4 for everyk, andy ", a, forms a con-
vergent series. Then the sergy_, (Vi — V=) = vk
is also convergent.

Note that:

[VE — vE=1| = [Mpsg’ — Mpsg—! + Msqr* ~! — Msqr®| =
1— Ak (1 —AF)?

— -1 -1
=77~ DMpsar*~! + (1 — m)qur’“
(1 — A)AF 2(1 — A)AF e AZE(1—A)?
T P - ARy s
AR(A —1) _1, AF(2—2A — AR 4 ARH2) 1
< \mMqufk [+ (1 = AkT1y2 Msqr |
(1 — A)AF 2(1 — A)AF e AZE(L = A)?
e P I e MR e Psaf
A1 —A) AF(1—A)(2 - A1+ A))
= 1 ARFL (1 — AR+1)2
AR(1—A) 2AF(1 —A) AR - A)?
+ 1 — Ak+1 1 — Ak+1 (1 _ Ak+1)2

rounds each) with a random user process have been
simulated; the average results are presented on the fol-
lowing chartst

In the actual experiments the agent has had 3 possi-
ble offers at hand: the risky offer’, the 'normal offer’
and the 'safe offer’, and the customer could respond
with: 'accept honestly’, 'cheat’ or 'skip’. The com-
plete table of payoffs for the game is given below. The
risky offer’, for example, can prove very profitable
when accepted honestly by the user, but the agent will
lose much if the customer decides to cheat; as the user
skips an offer, the bank still gains some profit from the
advertisements etc.

accept cheat skip
risky offer 30 -100 1
normal offer 6 -20 1
safe offer 15 -1 1

| Figures 2 and 3 show how the confidence values
evolve for a static user (a user whose policy does

! only the output of the first0 rounds is presented on most
charts to emphasize the part where the main differences lie. The
results for roundd1 — 100 were more or less the same.

100% 7 It ofoTososotorororosvtvevorvs make her decisions. If a numerical evaluation can be
- computed for every decision with respect to a partic-
ular model (the expected payoff, for instance), then
the agent’s decision may be based on a linear com-
bination of the evaluations, with the confidence val-

80% T

60% + |

ues providing weights. For example, the agent can use
1-expdev ,
| _ iy two models: the users profile (frequency distribution
Csize, =0.99, m=10+N computed from available data) and some default user
—— Csize, A=0.8, m=10+N"® model. If the agent trusts the user’s profile in, say,
e Ceize, A0.8, m=5 70% — the final evaluation may depend on the pro-
file in 70%, and the remaining 30% can be derived
0% ‘ from the default model. In consequence, the decision
° s % % * is based on both models at the same time, although
)) _ in different proportions — weighting the partial evalua-
Figure 2: Confidence vs. accurateneSsize tions with the confidence she has in them.
100% T 2T

80% T

60% T

/i
1-expdev 0 1
!
—— Cbound, m=1 : 7
i
40% T i i
—=— Cbound, m=2 1T '\ I
i ! profile only
! i
20% + [
) i | default only
2+
v
[profile+default, Csize as the confidence, /A=0.99,
0% ‘ i m=10+N""
0 10 20 30 40

—— profile+default, Cbound as the confidence, m=1

i
1

[

!

1’ - profile+default, fixed confidence=0.9
1
|

Figure 3: Confidence vs. accurateneSbound

100% -

80%

60%

1-expdev

— Cwang ket Figure 5: Hybrid agents vs. single-model agents: the
40% 1 average payoffs

—x— Cwang, k=2

20%

»»»»»»

0%
profile+default, Cwang as the
confidence, k=1
o— profile+default, Cwang as the
confidence, k=2
—+— profile+default, Csize as the
confidence, A=0.99, m=1 0+N'®

—— profile+default, Csize as the
confidence, A=0.8, m=10+N1-5

not change throughout the experiment) and decay rati ~ o 0 0 %0 40

A = 1, while figure 4 show the characteristics of the

Wang's confidenc&€wang= N/(N + k). The confi- Figure 6: Hybrid agents vs. single-model agents: the

dence values are compared against the expected absgrerage payoffs continued

lute deviation of the learned profile from the real pol-

icy of the user:expdev = 3=, [(b) — p(b)| - p(b), or The user’s profile is computed as a plain frequency

rather the "accurateness’ of the profile, ile: exzpdev. distribution. The default model, on the other hand,
The motivation behind the measures proposed hens defined in the Game Theory fashion: the user

is that an agent can use several alternative models i8 assumed an enemy who always cheats. To get

Figure 4: Wang'’s confidence far= 1 and2

100% 7

80% -

profile+default, Cwang as the confidence, k=1
profile+default, 1-expdev as the confidence

60% -
/ —— profile+default, Csize as the confidence, /A\=0.8,

m=10+N"15 i 1
—x— profile+default, Cbound as the confidence, m=2 expdev

40% T i

T T T T T T T T — Cbound, m=2
0 10 20 30 40

—— Csize, A=0.8, m=10+N""®

Figure 7. Hybrid agents vs. single-model agents: the] j -+~ Cwang, k=1
average payoffs continued

0%

rid of the exploration/exploitation tradeoff we assume
also that the user is rather simple-minded and his reFigure 8: Confidence: interaction with a dynamic user,
sponse doesn't depend on the actual offer being made: = 0.95
p(cheat), p(accept) andp(skip) are the same regardless
of the offer (if he's dishonest, he cheats for a small 2
reward as well as a big one, for instance). Now the
agent can evaluate her actions with their expected pay | |
offs. She computes the evaluation based on the user’
profile: e, (a), and the evaluation based on the default | /™
model as welle,(a); then she chooses the action with © f
maximal value of C'-e,(a) + (1 — C) - eq(a). In con-
sequence — as the charts show — the agent doesn’t los, |
money at the beginning of an interaction (becadse
is low and therefore she’s using mostly the default
model). On the other hand, the confidence is almosi? |
1 by the time the acquired knowledge becomes more X profilerdefaull, Cbound as the confidence, m=2
accurate so the agent can start using the user profil ; |
successfully.

Figures 5, 6 and 7 show that an agent using suct
a hybrid model of the reality can be better off than *|
an agent using either the profiles or the default usel
model alon€. Cwang(for & = 1) andCbound(form = s |
2) give best results, whil€sizefares slightly worse
despite quite complicated parameters settitg=(0.8
and variablen = 10 + N'-3). Experiments with other
payoff tables gave similar results. +g’§j'u‘j]§"a'§ o confdonce, mea

The measures presented here are primarily designe Csize as the confidence, A=0.8, m=10+N'"5
to tackle lack of data, not the user's dynamics. How- | Cwang as the confidence, k=1
ever, some experiments with dynamic users have als Tepdores e confaence wM
been run. Figure 8 presents the confidence evolutior M
for a dynamic user and = 0.95. Figure 9 shows
the results of the "banking game’ in the dynamic case. | L
Here, the hybrid agent usingboundfares best, with 40 50 60 70 80 % 100
other hybrid agents close behind. Most notably, the
Chboundagent is never worse than both single-modelrigure 9: Hybrid agents vs. single-model agents:

agents. The agent using only the default model is omitp|aying with a dynamic opponent, = 0.95
ted on the chart to make it clearer: as before, her aver-

age payoff has been abdut per round all the timé.

profile only

profile+default, Csize as the confidence, /A=0.8,
m=10+N"15

profile+default, Cwang as the confidence, k=1

profile+default, 1-expdev as the confidence

It should be obvious that the confidence needed
2 unfortunately, it isn't possible to present all the results ontg combine alternative models in the manner pre-
a single chart because the chart would be completely unreadabléanted here is neither meta-probability nor meta-
then. I . . .
3 a similar chart forA = 1 shows the same regularities, Ilkellhoo_d. The simulations _suggest that the practlce_ll
although the payoffs are generally worse because the learningNCertainty concerned here is rather related to the dis-

method is less flexible. tance/deviation of the model from the reality in a way.

Interestingly, an agent using— expdev as her confi- discussions and all his suggestions.

dence measure gets positively best payoff in the initial

phase of the interaction (and after that plays slightyR€ferences

worse) — see figures 7 and 9. Perhaps the expectddlA. Berry and B.W. Lindgren. 1996Statistics: Theory

absolute deviation isn’t the best deviation measure for and Methods Wadsworth Publishing Company : Bel-

this purpose but it seems a close shot at least. mont, CA. _ _ _
One issue should be made clear at the end, nameR/' Carmel and S. Markovitch. 1996. Learning and using

the way the dynamic users were simulated. It wasn't opponent models in adversary search. Technical Report

b h hardl d ith CIS9609, Technion, Haifa.
easy, because human users are hardly random with Iy a56r 1995, Assessment and propagation of model

spect to their policies. True, humans’ preferences drift certainty.Journal of the Royal Statistical Society Se-
— and the drift is never completely predictable — but ries B(57):45-97.

neither is it completely chaotic. Real users are usus. Hochreiter and M.C. Mozer. 2001. Beyond maximum
ally committed to their preferences somehow, so the likelihood and density estimation: A sample-based crite-
preferences drift more or less inertly (the drift changes rion for unsupervised learning of complex modefsi-

its direction in a long rather than short run). Here, Vvances in Neural Information Processing Systefits
random initial and final policieg,, p1oo Were gener- _ Proceedings of NIPS'2000.

ated for every simulation, and the user was chang®-J: Klir 1999. Uncertainty and information measures for
) . . :) imprecise probabilities: An overview. IAroceedings of
ing his preferences from, to pigo in a linear way:

_ the First International Symposium on Imprecise Proba-
pi(b) = po(b) + 15(Pro0(b) — po(b)). It should be noted pjjies and Their Applica)l/tiorr)ls P

that the learning method used in the experiments (i.§. koychev. 2000. Gradual forgetting for adaptation to con-
counting with decay) isiotlinear, so it's not true that cept drift. InProceedings of ECAI 2000 Workshop "Cur-
this particular type of user simulation dynamics was rent Issues in Spatio-Temporal Reasoningages 101—

chosen to suit the learning algorithm. 106.
I. Koychev. 2001. Learning about user in the presence of
5 Conclusions hidden context. IfProceedings of Machine Learning for
. . User Modeling: UM-2001 Workshompages 101-106.
The experiments showed that the confidence measuresyy. . dfki.de/ ~rafer/lumO1-ml4um-

can be useful — at least in some settings_. Two mea- ws/proceedings.html
sures have been propose@boundand Csize both S, Kumar. 1998. Confidence based dual reinforcement g-
based on the variance of the potential model evolu- routing: an on-line adaptive network routing algorithm.
tion. In the simulations the agent usit@poundre- Master’s thesis, Department of Computer Sciences, The
ceived slightly better results, especially for ‘'magni- University of Texas at Austin. Tech. Report AI98-267.
off was concerned). Moreover, the experiments with vals. International Journal of Approximate Reasonjng

. o o 2:195-209.
Csizerevealed its important deficiency: in most cases

fixed d id h : fid %.C. Marshall and D.J. Spiegelhalter. 1999. Strategies for
Ixedm proved too mild so the agent's confidence Was jnterence robustness in complex modelling: An appli-

reachingl almost at once (which is usually too fast). cation to longitudinal performance measures. Technical

In consequence, the agent whose strategy was basedreport, MRC Biostatistics Unit, Cambridge, UK.

uponCsizehad to employ quite complicated 'tuning’ J. Pearl. 1987. Do we need higher-order probabilities and,

scheme = 10 + N'°) plus an additional parame- if so, what do they mean? Idncertainty in Artificial

ter A, while the agent usin@boundtook (almost) the Intelligence Workshap

raw value of the bound. This suggests that the ager- Sen and G. Weiss. 1999. Learning in multiagent sys-

usingCsizemay expect serious problems with success- t€ms. In Weiss G., editoMultiagent Systems. A Mod-

ful tuning of the confidence value in any real-life ap- €M ApProachto Distributed Artificial Intelligencpages
L . . . 259-298. MIT Press: Cambridge, Mass.

plication, where the dynamics of the environment is

h . dth ’ itself hardl bD.J. Spiegelhalter, N.G. Best, and B.P. Carlin. 1998.
changing, and the tuning process itself can hardly be Bayesian deviance, the effective number of parameters,

cost-free. and the comparison of arbitrarily complex models. Tech-
The results of the simulations suggest that such nical report, MRC Biostatistics Unit, Cambridge, UK.

practical uncertainty measure can be somehow basad Wang. 2001. Confidence as higher-order uncertainty. In

upon the estimated deviation of the model from the Proceedings of the Second International Symposium on

real state of affairs instead of the meta-probability of Imprecise Probabilities and Their Applicationpages

the model correctness or even the (potential) mode| 352-361. _

variability over time. They show also that it may G.Wldrr_]er. 1997_. Tracklng contfaxtchanges through meta-

be captured approximately using very simple means: '€2™Ming-Machine Learning27:256-286.

Cwang= N/(N + 1) for instance — in many domains

of application.

The author would like to thank Mannes Poel for the

An approach to noncommunicative multiagent coordination
in continuous domains

Jelle R. Kok

Matthijs T. J. Spaan

Nikos Vlassis

Intelligent Autonomous Systems Group, Informatics Institute
Faculty of Science, University of Amsterdam, The Netherlands*
{jellekok,mtjspaan,vlassis}@science.uva.nl

Abstract

Principled game-theoretic techniques exist for
solving the problem of action coordination in a
group of agents, however they typically suffer
from an exponential blowup of the action space
when many agents are involved. Coordination
graphs (Guestrin et. al., 2002) offer tractable
approximations via a context-specific decompo-
sition into smaller coordination problems, and
they are based on an iterative communication-
based action selection procedure. We propose
two extensions that apply when the agents are
embedded in a continuous domain and/or com-
munication is unavailable.

1 Introduction

Multiagent Systems (Weiss, 1999) is a relatively
new field that has received considerable atten-
tion both in theory and applications. From an
AT perspective, we can think of a multiagent
system as a collection of agents that coexist in
an environment, interact (explicitly or implic-
itly) with each other, and try to optimize a per-
formance measure.

In this work we are interested in fully coop-
erative multiagent systems in which all agents
share a common goal. A key aspect in such
a system is the problem of coordination: how
the individual agents can best choose their ac-
tions in order to successfully achieve a common
goal (Boutilier, 1996).

Although in principle game theoretic tech-
niques can be applied to solve the coordina-
tion problem (Osborne and Rubinstein, 1994),
in practical situations involving many agents,
even modeling an n-person game is intractable:
the joint action space is exponentially large in

* This project is supported by PROGRESS—Dutch
Technology Foundation STW project AES 5414.

the number of agents. However, one can often
exploit the particular structure of a coordina-
tion problem in order to reduce its complexity.

A recent approach involves the use of a coor-
dination graph (CG) (Guestrin et al., 2002a).
This is a graph where each node represents
an agent, and edges between nodes indicate
that the corresponding agents have to coor-
dinate their actions. In a context-specific
CG (Guestrin et al., 2002b) the topology of the
graph is dynamically updated based on the cur-
rent context.

In this paper we extend a CG in two ways.
First, we focus on agents that are embedded
in a continuous domain (for example robotic
agents in a soccer field) and are able to per-
ceive their surroundings with sensors. For such
a multiagent system, connectivity relationships
between nodes in the coordination graph imply
spatial relationships between agents, while the
context is characterized by a continuous state
variable. We propose a way to ‘discretize’ the
context by appropriately assigning roles to the
agents (Spaan et al., 2002) and then coordinat-
ing the different roles.

A second extension involves the way the
agents compute their joint action. In the orig-
inal formulation of CG, an agent needs to ex-
change information to and from its neighbors in
order to compute its optimal action. This re-
quires a communication channel which can be
sometimes either unavailable or very costly to
use. We propose a modification to the variable
elimination algorithm of (Guestrin et al., 2002a)
that allows each agent to efficiently predict the
optimal action of its neighboring agents, making
communication unnecessary.

The setup of the paper is as follows. In Sec-
tion 2 we review the coordination problem, and
in Section 3 we explain the concept of a CG. In

thriller comedy
thriller 1,1 0,0
comedy 0,0 1,1

Figure 1: A coordination game.

Section 4 we describe our extensions, the role-
dependent context and the noncommunicative
case. In Section 5 we show some examples and
in Section 6 we conclude and give hints for fur-
ther research.

2 The coordination problem

We review here the agent coordination problem
from a game theoretic point of view. A strategic
game (Osborne and Rubinstein, 1994) is a tuple
(n, A1 n, R1.n) where n is the number of agents,
A; is the set of actions of agent i and R; is the
payoff function for agent ¢. This payoff function
maps the selected joint action A = Ay x ... x A,
to a real value: R;(A) — IR. Each agent inde-
pendently selects an action from its action set,
and then receives a payoff based on the actions
selected by all agents. The goal of the agents
is to select, via their individual decisions, the
most profitable joint action.

A fully cooperative setting corresponds to a
so-called coordination game in which all agents
share the same payoff function Ry = ... = R, =
R. Figure 1 shows an example of a coordina-
tion game between two agents. Each agent can
choose between two types of movies, either a
thriller or a comedy. They do not know in ad-
vance which movie the other agent will choose.
Choosing the same movie results in an optimal
joint action which offers them payoff 1, other-
wise they receive payoff 0. It is clear that the
agents have to coordinate their actions to max-
imize their payoff.

Formally, the coordination problem can be
seen as the problem of selecting one out of
many Nash equilibria in a coordination game. A
Nash equilibrium defines a joint action a* € A
with the property that for every agent ¢ holds
Ri(a},a*;) > Ri(a;,a*;) for all a; € A;, where
a_; is the joint action for all agents excluding
agent ¢. Such an equilibrium joint action is a
steady state from which no agent can profitably
deviate given the actions of the other agents.
For example, the strategic game in Figure 1 has
two Nash equilibria corresponding to the situa-

tions where both agents select the same action.
There are several ways to solve a coordination
game (Boutilier, 1996), for example by using
communication or by imposing social conven-
tions. The latter are constraints on the possible
action choices of the agents. If we assume that
the agents have the ability to identify one an-
other, we can create a simple lexicographic con-
vention using the following three assumptions:

e The set of agents is ordered.
e The set of actions of each agent is ordered.

e These orderings are common knowledge
among agents (Geanakoplos, 1992).

The choice for an optimal joint action pro-
ceeds as follows. The first agent in the agent
ordering chooses an optimal action (that cor-
responds to a Nash equilibrium) that appears
first in its action ordering. The next agent
then chooses its first optimal action in its ac-
tion ordering given the first agent’s choice.
This procedure continues until all agents have
chosen their actions. This general, domain-
independent method will always result in an op-
timal joint action and moreover it can be im-
plemented offline. During execution the agents
do not have to explicitly coordinate their ac-
tions, e.g., via negotiation. If we would impose
the ordering ‘1 > 2’ (meaning that agent 1 has
priority over agent 2) and ‘thriller > comedy’
in our example, the second agent knows from
the social conventions that the first will select
the thriller and will therefore also choose the
thriller.

In the above cases it is assumed that the Nash
equilibria can be found and then coordination is
the problem of selecting the same equilibrium.
However, the number of joint actions grows ex-
ponentially with the number of agents, making
it infeasible to determine all equilibria in the
case of many agents. This calls for methods
that first reduce the action space before solving
the coordination problem. One such approach,
explained next, is based on the use of a coor-
dination graph that captures local coordination
requirements between agents.

3 Coordination graphs

A coordination graph (CG) represents the coor-
dination requirements of a system (Guestrin et

G
N
Go Gs

v

Figure 2: A CG for a 4-agent problem.

al., 2002a). A node in the graph represent an
agent, while edges in the graph define depen-
dencies between agents. Only agents that are
interconnected have to coordinate their actions
at any particular instant. Figure 2 shows a pos-
sible CG for a 4-agent problem. In this example,
G5 has to coordinate with G1, G4 has to coor-
dinate with G3, GG3 has to coordinate with both
G4 and G1, and (G7 has to coordinate with both
G5 and (3. Using such a graph, the global coor-
dination problem can be replaced by a number
of easier local coordination problems.

If the global payoff function can be decom-
posed as a sum of individual payoff functions,
then solving for the joint optimal action can
be done efficiently using a variable elimination
algorithm (Guestrin et al., 2002a). The algo-
rithm assumes an a priori elimination order that
is common knowledge among the agents, and
that each agent knows its neighbors in the graph
(but not necessarily their payoff function which
might depend on other agents). Each agent
is ‘eliminated’ from the graph by solving a lo-
cal optimization problem that involves only this
agent and its neighbors: the agent collects from
its neighbors all relevant payoff functions, then
optimizes its decision conditionally on its neigh-
bors’ decisions, and communicates the resulting
‘conditional’ payoff function back to its neigh-
bors. A next agent is selected from the list and
the process continues. When all agents have
been eliminated, each agent communicates its
decision to its neighbors in the reverse elimina-
tion order.

The local payoff functions can be matrix-
based (Guestrin et al., 2002a) or rule-
based (Guestrin et al., 2002b). In the latter case
it is possible to use context-specific information
to dynamically update the graph topology. A
‘value rule’ specifies how an agent’s payoff de-
pends on the current context, the latter being

defined as a propositional rule over the state
variables and the actions of the agent’s neigh-
bors. By conditioning on the current state the
agents can discard all irrelevant rules, and this
way the CG can be dynamically updated and
simplified. Consider for example the situation
where two plumbers have to fix the drainage sys-
tem in a house. A value rule can specify that
when the two plumbers are working in the same
house they will get in each other’s way, in which
case the total payoff is decreased. In case the
two plumbers are working in different houses,
this value rule will not apply and the depen-
dency in the graph is dynamically removed.

A limitation of this approach is that it is
based on propositional rules and therefore only
applies to discrete domains. Furthermore, in
the variable elimination algorithm all coordinat-
ing agents must explicitly communicate their lo-
cal payoff functions and their chosen actions us-
ing a message passing scheme. In the following
we show how we can obtain context-specificity
in a coordination graph when the agents reside
in a continuous domain, and show how it is pos-
sible for each agent to predict the selected ac-
tions of its neighbors when communication is
unavailable.

4 Coordination graphs in continuous
domains

We are interested in problems where the agents
are embedded in a continuous domain, have
sensors with which they can observe their sur-
roundings, and need to coordinate their actions.
As a main example we will use the RoboCup
simulation soccer domain (see (de Boer and
Kok, 2002) and references therein) in which a
team of eleven agents have to fulfill a common
goal (scoring more goals than your opponent).
Depending on the situation, certain agents on
the field have to coordinate their actions, for
example the agent that controls the ball must
decide to which nearby agent to pass, etc. Such
dependencies can be modeled by a CG that sat-
isfies the following requirements: (i) its connec-
tivity should be dynamically updated based on
the current (continuous) state, (ii) it should be
sparse in order to keep the dependencies and the
associated local coordination problems as sim-
ple as possible.

We show an example of a continuous-domain

/,:/'/,/, \\\\\‘*-— -
& :3‘::3}';\:\0
N e °
T o
° R °
[
(a) Coordination graph.
o
. g ‘
o) Q\:;‘O []
o
o
o o °
[

(b) Reduced graph.

Figure 3: A coordination graph (a), and its
context-specific reduction (b).

CG using the soccer domain. Figure 3(a) shows
a picture of an a priori defined full coordina-
tion graph in which the dependencies between
the teammates (represented by the open circles)
are displayed. Based on the current context,
e.g., the position of the ball in the field, the
graph can be reduced as shown in Figure 3(b).
The subgraph located in the left side of the field
represents the relationship between the defend-
ers trying to keep up a well-balanced defense.
The subgraph on the right illustrates the local
coordination game of the agent controlling the
ball and the potential pass receivers. During
the game, the coordination graph is continu-
ously updated to reflect the current situation
on the field.

Each node in such a CG has a natural ‘loca-
tion’ within the domain while coordination de-
pendencies automatically imply spatial relation-
ships among agents. Moreover, contrary to the
rule-based approach of (Guestrin et al., 2002b),
the graph topology must depend on a context
that is defined over a continuous state variable.

In the above example, the context is based on
the position of the ball which is a real variable
having the soccer field as domain. We elaborate
on this issue next.

4.1 Context-specificity based on roles

Conditioning on a context that is defined over
a continuous domain is difficult in the origi-
nal rule-based CG representation. A way to
‘discretize’ the context is by assigning roles to
agents (Spaan et al., 2002). Roles are a natural
way of introducing domain prior knowledge to
a multiagent problem and provide a flexible so-
lution to the problem of distributing the global
task of a team among its members. In the soc-
cer domain for instance one can easily identify
several roles ranging from ‘active’ or ‘passive’
depending on whether an agent is in control of
the ball or not, to more specialized ones like
‘striker’, ‘defender’, ‘goalkeeper’, etc.

Given a particular local situation, each agent
is assigned a role that is computed based on a
role assignment function that is common knowl-
edge among agents. The set of roles is finite
and ordered, so the most ‘important’ role is as-
signed to an agent first, followed by the sec-
ond most important role, etc. By construction,
the same role can be assigned to more than one
agent, but each agent is assigned only a single
role. Environment-dependent ‘potential’ func-
tions can be used to determine how appropriate
an agent is for a particular role given the cur-
rent context. For details on the assignment of
roles to agents see (Spaan et al., 2002).

Such an assignment of roles provides a nat-
ural way to parametrize a coordination struc-
ture over a continuous domain. The intuition is
that, instead of directly coordinating the agents
in a particular situation, we assign roles to the
agents based on this situation and subsequently
try to ‘coordinate’ the set of roles. For this, a
priori rules exist that specify which roles should
be coordinated and how.

As an example, consider again the left sub-
graph in Figure 3(b) involving four agents that
organize the defense. The leftmost agent takes
the role of sweeper while the other three all
take the role of defender. It is common knowl-
edge among the agents that the sweeper has to
cover the space between the defenders and the
goalkeeper to allow the defenders to advance to
support the attack. As long as the four agents

agree on their role assignment the problem of
their coordination is simplified: the defenders
only need to take into account the action of the
sweeper in their strategy (apart from other fac-
tors such as the opponents) making sure it is
the most retracted field player. In their local
coordination game they do not need to consider
other teammates such the goalkeeper or the at-
tackers. Several other local coordination games
could be going on at the same time (e.g., in the
attack) without interfering with each other.

The roles can be regarded as an abstraction
of a continuous state to a discrete context, al-
lowing the application of existing techniques for
discrete-state CGs. A particular assignment of
k roles to a group of agents with the roles or-
dered according to their importance, can be
regarded as instantiation of a discrete context
variable that can take O(k!) possible values,
corresponding to all possible assignments of the
roles to agents.

In practice, a simple hierarchical role assign-
ment scheme can be used, for example the two
roles ‘active’ and ‘passive’ can be first assigned
based on who is in control of the ball, then
among all ‘passive’ agents additional roles can
be assigned like ‘sweeper’ or ‘striker’, etc. In
other cases, a particular context may reduce the
number of required roles to a manageable quan-
tity. In soccer, for example, k is often equal to
2, which resembles the situation where a player
needs to pass the ball to another player (see also
Section 5).

Roles can reduce the action space of the
agents by ‘locking out’ specific actions. For ex-
ample, the role of the goalkeeper does not in-
clude the action ‘score’, and in a ‘passive’ role
the action ‘shoot’ is deactivated. Such a reduc-
tion of the action space can offer computational
savings, but more importantly it can facilitate
the solution of a local coordination game by re-
stricting the joint action space to a subspace
that contains only one Nash equilibrium. For
example, in Figure 1, if agent 2 is assigned a role
that forbids him to select the action ‘thriller’
(e.g., because he is under 16), then agent 1, as-
suming he knows the role of agent 2, can safely
choose ‘comedy’ resulting in coordination. Note
there is only one Nash equilibrium in the sub-
game formed by removing the action ‘thriller’
from the action set of agent 2.

4.2 Non-communicating agents

Variable elimination in a CG requires that each
agent first receives the payoff functions of its
neighboring agents, and after computing its op-
timal conditional strategy it communicates a
new payoff function back to its neighbors. Sim-
ilarly, in the reverse process each agent needs
to communicate its decision to its neighbors in
order to reach a coordinated joint action. The
elimination order is a priori defined and is com-
mon knowledge among the agents.

When communication is unavailable the vari-
able elimination algorithm can still be used if
we further impose the requirement that the pay-
off function of an agent i is common knowledge
among all agents that are reachable from 7 in the
CG. Since only agents that are reachable in the
CG need to coordinate their actions, the second
requirement in fact frees agents from having to
communicate their local payoff functions during
optimization.

Moreover, in the noncommunicative case the
elimination order neither has to be fixed in ad-
vance nor has to be common knowledge among
all agents as in (Guestrin et al., 2002a), but
each agent is free to choose any elimination or-
der, e.g., one that allows the agent to quickly
compute its own optimal action. This is pos-
sible because a particular elimination order af-
fects only the speed of the algorithm and not
the computed joint action.

In summary, each agent ¢ maintains a pool
of payoff functions, corresponding to all payoff
functions of the agents in its subgraph. Start-
ing from itself, agent ¢ keeps eliminating agents
using an appropriate elimination order, until it
computes its own optimal action uncondition-
ally on the actions of the others. For each elim-
inated agent j, the newly generated payoff func-
tions are introduced into the pool of payoff func-
tions of agent ¢ and the process continues. In
the worst case, agent ¢ needs to eliminate all
agents j # i, for j reachable from i. Note that,
although each agent computes its own action in
a different way (during optimization the pool
will look different for different agents), the re-
sulting joint action will always be the optimal
one.

In terms of complexity, the computational
costs for each individual agent are clearly in-
creased to compensate for the unavailable com-

munication. Instead of only optimizing for its
own action, in the worst case each agent has to
calculate the action of every other agent in the
subgraph. The computational cost per agent
increases thus linearly with the number of new
payoff functions generated during the elimina-
tion procedure. Communication, however, is
not used anymore which allows for a speedup
of the complete algorithm since these extra in-
dividual computations may now run in parallel.
This is in contrast to the original CG approach
where computations need to be performed se-
quentially.

Finally, we note that the common knowledge
assumption is strong and even in cases where
communication is available it cannot always be
guaranteed (Fagin et al., 1995). In multia-
gent systems without communication common
knowledge can be guaranteed if all agents con-
sistently observe the same world state, but this
is also violated in practice due to partial ob-
servability of the environment (a soccer player
has a limited field of view). In our case, when
the agents have to agree on a particular role
distribution given a particular context, the only
requirement we impose is that the role assign-
ment in a particular local context is based on
those parts of the state that are, to a good ap-
proximation, fully observable by all agents in-
volved in the role assignment. For example, in
the left subgraph of Figure 3(b) the particular
role assignment may require that all four agents
observe the position of each other in the field, as
well as the positions of their nearby opponents,
and have a rough estimate of the position of the
ball (e.g., ensuring that the ball is far away).
As long as such a context is encountered, a lo-
cal graph is formed which is disconnected from
the rest of the CG and can be solved separately,
as explained above.

5 Experiments

We have applied the above ideas in our simula-
tion robot soccer team (de Boer and Kok, 2002)
with promising results. In the current phase we
have not developed the CG framework to its full
extent, but have tested it on simple situations
where useful intuition can be gained.

We have implemented a simple role assign-
ment function that assigns the role ‘active’ or
‘passive’ to a teammate based on whether it has

Figure 4: A simple situation involving one ac-
tive and three passive agents.

the ball or not (for simplicity we focus here on
the case where our team has the ball). At any
instant only one agent is active and all the other
10 teammates are passive. Such a situation is
shown in Figure 4 where one active and three
passive teammates have to pairwise coordinate
their actions.

Moreover, by construction an agent in a
passive role always performs the same action,
namely, moving towards its strategic position.
The latter is computed based on the agent’s
home position (which is fixed throughout the
game and known to all agents) and the position
of the ball in the field which serves as an attrac-
tion point. As mentioned in section 4.1, such a
drastic reduction of an action set greatly simpli-
fies the local coordination game, because now
the action choices of the three passive agents
do not depend on the action choice of the ac-
tive agent. In Figure 4 this is depicted by the
directed edges between the agents.

Assuming the assignment of roles to the
agents is common knowledge among reachable
agents, the coordination problem resides now
fully by the active agent. The latter has to
choose one of the three teammates to pass the
ball to, while we have assumed that the team-
mates follow their strategy independently of
what the active or other passive agents do.
Moreover, assuming that the active agent can
also observe the position of the ball, it can pre-
dict the strategic position and thus the optimal
action of each passive agent. The active player
can now select to pass to the teammate that re-
sults in the highest future reward for the local
coordination game; it will pass to the predicted
position of the teammate with the maximum
clearance from the opponents. Since the simula-

| [With CG | Without |

Wins 7 1
Draws 2 2
Losses 1 7
Avg. score 2.1 0.9
St. dev. 1.05 0.9

Table 1: Results of 10 games against ourselves,
with and without CG.

tion server dynamics are known, predicting the
one-step look-ahead reward is trivial (de Boer
and Kok, 2002).

To test this approach we played games
against ourselves, with one team using a CG
and one team using no coordination at all dur-
ing passing. In the latter case an active player
would simply pass the ball to the last observed
position of its teammate. Table 1 shows the
results over the course of 10 full-length games.
The results show that even the use of such a
limited-scope CG has a positive effect on the
performance on the team as a whole. Moreover,
it turned out that the only statistically signif-
icant difference between the two teams was in
passing. The successful passing percentage over
these 10 matches was 80.12% for the team with
the CG and 72.56% for the team without. These
percentages indicate that due to the better coor-
dination of the teammates, fewer mistakes were
made when the ball was passed from one team-
mate to the other.

6 Conclusions and future work

We proposed two extensions to the framework
of coordination graphs (Guestrin et al., 2002a)
for the cases where the agents are embedded in
a continuous domain and/or communication is
unavailable. We argued that context-specificity
is possible by appropriately assigning roles to
the agents given a local situation. We also
showed that we can dispense with communica-
tion if additional assumptions about common
knowledge are introduced. We have not fully
exploited the proposed framework in practice,
but preliminary experiments in simulated soc-
cer give promising results.

As future work, we first want to investigate
the connotations of the common knowledge as-
sumptions and how such knowledge can be ob-

tained in practical situations. Second, we are
interested in applying reinforcement learning
techniques to a continuous-domain CG in order
to learn the payoff functions in an automatic
way, and we are looking for ways to efficiently
plan ahead in a CG when an environment model
is available. Finally, from an application point
of view we want to apply the CG model to its
full extent to the simulation RoboCup, where
the agents need to continuously coordinate their
actions, the context is time- and space-varying,
and communication is restricted.

Acknowledgements

We thank the reviewers for their motivating com-
ments. This research is supported by PROGRESS,
the embedded systems research program of the
Dutch organization for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the
Technology Foundation STW, project AES 5414.

References

C. Boutilier. 1996. Planning, learning and coordi-
nation in multiagent decision processes. In Proc.
Conf. on Theoretical Aspects of Rationality and
Knowledge.

R. de Boer and J. R. Kok. 2002. The incremental
development of a synthetic multi-agent system:
The UvA Trilearn 2001 robotic soccer simulation
team. Master’s thesis, University of Amsterdam,
The Netherlands, February.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.
1995. Reasoning about Knowledge. The MIT
Press, Cambridge, MA.

J. Geanakoplos. 1992. Common knowledge. J. of
Economic Perspectives, 6(4):53-82.

C. Guestrin, D. Koller, and R. Parr. 2002a. Multia-
gent planning with factored MDPs. In Advances
in Neural Information Processing Systems 14. The
MIT Press.

C. Guestrin, S. Venkataraman, and D. Koller.
2002b. Context-specific multiagent coordination
and planning with factored MDPs. In AAAI 8th
Nation. Conf. on Artificial Intelligence, Edmon-
ton, Canada, July.

M. J. Osborne and A. Rubinstein. 1994. A course
in game theory. MIT Press.

M. T. J. Spaan, N. Vlassis, and F. C. A. Groen.
2002. High level coordination of agents based on
multiagent Markov decision processes with roles.
In A. Saffiotti, editor, IROS’02 Workshop on Co-
operative Robotics, Lausanne, Switzerland, Octo-
ber.

G. Weiss, editor. 1999. Multiagent Systems: a
Modern Approach to Distributed Artificial Intel-
ligence. MIT Press.

Model Growth

Jeroen van Maanen
Jeroen.van.Maanen@xs4all.nl

Abstract

The algorithmic method of inductive in-
ference that Ray Solomonoff proposes
in (Solomonoff, 1964) is mnot interactive.
Marcus Hutter defines how to add interactivity
to the inductive method based on the assump-
tion that the environment supplies a utility
function (Hutter, 2000). This paper discusses
the possibility of a framework based on a utility
function that is internal to the learning subject
and independent of the environment. The
internal utility function should measure the
amount of information extracted from the in-
teraction with the environment. The Minimum
Description Length principle (MDL) proposed
by Jorma Rissanen (Rissanen, 1989)) supplies a
framework that clearly separates a statistical
model that represents the extracted infor-
mation from the exact representation of the
data. Algorithmic Statistics (Gacs et al., 2001)
should be able to bridge the gap between the
algorithmic approach of Solomonoff and the
statistical approach of Rissanen.

1 Introduction

Learning is not only about predicting the right
answer to questions. The hard part of learn-
ing is often to ask the right questions. See
also (van Maanen, 2002). Marcus Hutter de-
fines how to add interactivity to the inductive
method based on the assumption that the envi-
ronment supplies a utility function. His reason
for this set-up is that (Hutter, 2000)

eventually we (humans) will be the en-
vironment with which the system will
communicate and we want to dictate
what is good and what is wrong, not
the other way round.

If the context would be control theory this
would be a reasonable assumption, but the con-
text is artificial intelligence. Intelligent systems
determine their own priorities. Even when the
environment is highly optimised for teaching the
teachers have to apply techniques that try to
align the learning goals of the pupils with the
teaching goals of the school. Even then, many
students aim for average grades that let them
pass major milestones with a more or less safe
margin rather than maximal grades. They op-
timise a function that differs significantly from
the externally supplied utility function.

What would be a more natural utility func-
tion for a learning system than its own learn-
ing rate? A learning system can be seen as
a system that communicates with its environ-
ment and builds an internal model of that en-
vironment. The growth of that model, or the
complexity of it, can be used as an exact mea-
sure for the learning rate of the learning sys-
tem. When the results on Algorithmic Statis-
tics (Gacs et al., 2001)) are applied to a slightl
modified version of Hutters model called AT
we can expect to find that it is possible to de-
fine a universal autonomous learning system.

2 Example

We will introduce an example of an environ-
ment that is stripped of all real-world complex-
ities. This example is used in later sections to
illustrate relevant aspects of formal models of
learning. We use some abstract terminology to
remind us where we would like to apply our re-
sults. With the subject we mean the person,
animal or hypothetical device that learns. With
the environment we mean the real or simulated

LAI¢ is pronounced ‘aixi’ and can be written as ‘AIXT’
when Greek letters are not available.

environment that can be accessed by the sub-
ject. With the interface we mean the sensors
and actors with which the subject interacts with
the environment. The interaction between the
subject and the environment results can be seen
as a sequence of events. Each event is composed
of an action that is performed by the subject
and a response from the environment. We as-
sume that actions as well as responses can be
finitely encoded.

We will closely follow the notation used by
Hutter. See (Hutter, 2000) for details and dis-
cussion. Without loss of generality we can
assume that there are prefix-free sets of bi-
nary strings X and Y that encode responses
and actions respectively. For our example we
restrict ourselves to single bits: X = Y =
B! = B = {0,1}. Strings over X are de-
noted s = xyx9--- 2, with 2 € X. I(s) =
l(z1) + l(z2) + -+ + I(zy) is the length of s.
Analogous definitions hold for y;, € Y. The
elements of X and Y are called words rather
than letters. The string s = y1x1 - - - yn Ty, repre-
sents action/response pairs in chronological or-
der. Due to the prefix property of X and Y, s
can be uniquely separated into words. We fur-
ther use the following abbreviations: ¢ is the
empty string, Tn.m = ZTnTnil-: Tm—1Tm for
n < m and ¢ otherwise. ., = Z1.,—1. Analo-
gous abbreviations are used for y. Furthermore
We USe Y, = YnTn, Yy = YWy Yy, and so
on. We will disregard the encoding process and
refer to yr; as the k-th event. The string yr_
represents the entire history of events up to, but
not including, the k-th iteration.

The example environment that is used in
this paper acts like a Markov Decision Pro-
cess (MDP). The behavior of the process is in-
formally presented in the following diagram.

90
Co =g
77\
O
break Each circle in the diagram represents a
possible state of the environment. The word

that the environment produces when it enters a
state is printed inside the circle. A wide arrow is

originating from each state for every action that
the subject can perform. The word correspond-
ing to the action is inscribed in the arrow. The
thin arrows originating from each action arrow
represent possible state transitions of the envi-
ronment. Each state transition is labelled with
a probability. The sum of the probabilities of
the state transitions that originate from an ac-
tion arrow is unity.

The essence of this example is that it has two
modes: stationary and alternating, and that the
subject can switch between these modes at will.
The subject will see only half of the environment
if it chooses the same action for every cycle. If
it acts randomly it will be hard to spot the reg-
ularities. Therefore we expect that a learning
subject will exhibit some interesting behavior
in this environment.

For a more formal treatment of this exam-
ple we introduce a notation for probabilities
of responses that is similar to Hutter’s. Let
te (Y xX),yeY,ze X, and p € R,
then ¢(tyz) = p means that for all sequences of
events s the probability that the next response
is z, given that the history is sty, equals p. An
underlined variable z represents a variable and
other non-underlined variables represent condi-
tions. The value is only defined when the condi-
tions are sufficient to determine the probability.
The response has to be independent of events
that are more than £ — n cycles in the past.
As the state of the environment depends only
on the last few words of the history, it can be
formally defined as follows:

q(01) 0
q(0011) = 0.5
q(1011) = 1
q(1111) 0

The fact that the environment happens to act
like a Markov Decision Process with a finite
number of states is an artefact of the example.
It does not imply any general constraints on the
environment or the models that the subject con-
structs of the environment. For example, the
example could be refined with a rule that de-
pends on more data that gives more information
about ¢(0011). The new rule could depend on
the last response on a 1-action and the number

of preceding 00 events, e.g.,

q(10 0" 0011) =
q(11 0" 0011)

1/2 42772
1/2 — 272

for n € N, where 0?" represents a string of
n times the 00 event. That would rule out a
finite number of states for the process that gen-
erates the environment. The refinement could
be done in such a way that, for simple strate-
gies to generate the actions, the interaction with
the original MDP would have the same station-
ary distribution as the interaction with the more
complex model.

Analogous to probabilities of responses we in-
troduce probabilities of actions: p(ywwy,) is
the probability that the k-th action is zj given
that the history ends with wyr_,. If we look
at the unmodified example we can analyse its
behavior for three simple ways to choose the
actions: p(el) = 0 (always zero), p(el) =1 (al-
ways one), and p(el) = 1/2. In the first case the
interaction will consist of a constant sequence of
pairs of zeros. In the second case the interaction
will look like:

.--10111011 10 11---

In the third case the interaction can be de-
scribed as a Markov Chain over events with the
following stationary distribution:

event 00 01 10 11
probability 1/2 0 1/4 1/4

3 The algorithmic approach

Ray Solomonoff proposes to use the probability
that a universal Turing machine reproduces the
history as basis for establishing the likelihood of
new data given the history (Solomonoff, 1964).
This corresponds to Bayesian prediction using
all effectively enumerable probability distribu-
tions over infinite strings as a hypotheses class
using a universal prior. The prior is universal in
the sense that it attributes a positive probability
to all hypotheses in the class and that it dom-
inates all possible effectively enumerable priors
save for a multiplicative constant that depends
on the pair of priors, but not on the hypotheses.

Marcus Hutter adds actions to this frame-
work. In his AI{ model a learning system, a
subject in our terminology, has to act upon its

model of the environment. The model of the en-
vironment and the strategy for choosing actions
are almost symmetrically described by condi-
tional probability distributions over histories.
The AI¢ model is defined in terms of chronolog-
ical Turing machines instead of the monotonous
Turing machines used by Solomonoff. Chrono-
logical Turing machines alternately read one
word from a one-way input-tape and write one
word to a one-way output-tape. The words are
chosen from prefix-free sets as described in Sec-
tion . The symmetry between the model of
the environment and the strategy for generat-
ing actions is broken in the AI¢ model because
only the output of the environment gets spe-
cial treatment. It is split in an credit part
and a residue. The credit defines the util-
ity function that the subject has to optimise.
Like Solomonoff the AI£ model fixes one univer-
sal chronological Turing machine U as a refer-
enceld. Every chronological Turing machine M
that we would like to consider as a candidate
for a model of the environment can be simu-
lated on U. In other words: there exists a pro-
gram qp; such that U(qyy<k) = M(y<k). The
function &(gar) = 2719) can be interpreted as
the probability that U will use M to simulate
the environment. Using & as a universal prior
distribution over possible models of the envi-
ronment and a utility function Ciy,, (p,q) the
AI¢ model defines the optimal action ¢ as

> &(q) - Crmy (p:q)

qEQy

Uk = maxarg max
yx PEPL(yk)

where Pyp(yx) = {p € B* | Ulp #<k) = J<ryr}
and Qr = {q € B* | U(q Yy<k) = <k }. The dots
above z .y and y, indicate that these are actual
values that have been exchanged between the
subject and the environment. The utility func-
tion Cipm, (p,q) computes the credits that the
subject would receive on cycles k to my when it
uses strategy p and when ¢ is a perfectly accu-
rate model of the environment. The AI§ model
converges to models where £(q) is replaced by
another recursively enumerable prior on (pro-
grams for) chronological Turing machines. We
need knowledge about the environment for a

2The prefix-free set that defines the words on the in-
put tape has to be extended to allow for a program to
be read before or together with the first word of the sim-
ulated input

better prior as well as for an optimal univer-
sal Turing machine. Given that we are study-
ing learning, i.e., processes that increase knowl-
edge, all prior knowledge is dangerous. We
could forget to measure it beforehand and count
it as obtained by the subject afterwards. Prior
knowledge can also reduce a potential learning
situation to a mere search for some global maxi-
mum. Therefore we cannot expect subjects that
have to learn about the environment while in-
teracting with it to do much better than the
AI¢ model

Application to the example

To apply Hutter’s approach to the example we
need to specify a credit function for the output
words that the environment can produce. As
X = B every possible credit function is equiva-
lent with either C(z) =z or C(z) = 1 — .

If the credit function is C'(x) = x a subject
that uses the AI£ model will find out quickly
that the best strategy is to always choose the
l-action. Likewise, if the credit function is
C(z) = 1 —x a subject that uses the AI¢ model
will find out quickly that the best strategy is
to always choose the 0-action. In either case
no further information is gathered about the
transitions between the left and the right half
of the state diagram. The difference between
the simple example and the extended example
will never become apparent in the history. If
we want to ‘teach’ the complete environment
to the subject, we need to extend it in such a
way that the subject can ‘tell’ the environment
what its model is, i.e., include ¢ps in yg. Then
we would have to let the environment evaluate
the accuracy of M and return a credit that is
based on both the accuracy of M and the length
of gys. That is quite a burden to place on the
environment.

4 The Minimum Description Length
approach

Rissanen’s Minimum Description Length prin-
ciple (MDL) is explicitly formulated in terms of
hypotheses (Rissanen, 1989). The process of re-
vising evaluations of hypotheses is clearly a form
of inference. MDL is based on reproducing a se-
quence of symbols exactly, just like Solomonoff’s
inductive inference procedure. MDL assumes
that we are given a hypotheses class C. Every
hypothesis in the given class is a distribution

over all infinite sequences of symbols from our
alphabet. MDL also requires that every hypoth-
esis H in the hypotheses class can be finitely
described by a code cyy.

For learning subjects the hypotheses are func-
tions that compute the conditional probabil-
ity of responses of the environment given ac-
tions by the subject. Using the Kraft inequal-
ity (Li and Vitanyi, 1993) we can construct an
encoding ep,,_, for finite sequences of symbols
such that for each finite history yr_, we have

l(eH,y<k(fE<k)) ~ —logy H(y1Zy+ Yk—1Zp_1)

Now for each hypothesis H a transcription of
the symbols that were exchanged on the inter-
face yr . can be described by concatenating cg,
Y« and ey (yrp). According to MDL the best
hypothesis is the hypothesis that minimizes the
length of this description. As y; is given and
thus fixed we can therefore minimize

Uen) + ey, (T<k))

Application to the example

We could take all Markov Decision Processes
with finitely many states and probabilities that
are rational numbers as our model class C. Each
model can be described as follows:

n
Ls1P0,s1,50 * " P0,s1,5n Pl,51,50 " " Pl,s1,5p
xsnp(),snysl o 'pO,Sn,Sn71 pl,sn,SI o 'pl,sn,sn,1

where n is the number of states, z,, is the re-
sponse of the process when entering state s;, and
Py ,s:,5; 18 the probability of a state change to s;
given state s; and action y;. The probability
that the state will not change given an action
can be found by subtracting the probabilities of
the non-trivial state changes from unity.

A simple way to specify a number n € N in
a binary alphabet in such a way that the set of
codes of numbers is prefix-free is to precede the
binary notation of n+ 1 with |log,n+ 1] times
a 0 bit. As the binary representation of a non-
zero natural number always starts with a one bit
we can recover a number from a string by the
following procedure. First we count the leading

zeros and read that many digits after the lead-
ing one bit. Then we decode the binary sting
that consists of all the bits we read, the initial
zeros don’t harm, and subtract one. Fractions
are encoded by specifying numerator and de-
nominator.

If we follow these rules for the generating
model of the example we have three states and
twelve fractions to encode. The number three
is encoded in five bits. Six of the fractions are
zero and are encoded in two bits each. The
other fractions are encoded in six bits each. The
length of the model totals 5 + (1 +2 x 2 + 2 x
6)+2x (142 x (24 6)) =56 bits. The trivial
model requires 3 + 2(1 +2 x 1 x 6) = 29 bits.
If the actions are determined by coin tosses, the
generation model can be expected to be better
than the trivial model after n action/response
pairs, where:

56+%n<29+n

So n > 108. It should be clear much earlier that
choosing 1 actions leads to an earlier expected
model growth. This can be seen by evaluat-
ing models that compress the data (temporar-
ily disregarding the length of the encoding of
the model) and evaluating the probability that
such a model will become the MDL model given
that it fits and given a potential strategy. If, for
example, it is established that xj is always zero
when yj, is zero when k£ = 10, then the gener-
ating model becomes a candidate for the MDL
hypothesis for & = 66 if all actions are chosen
to be 1.

After the discovery the subject will continue
to search for possible extensions of the model.
The subject will alternate between sequences of
zeros and ones of varying length to search to
explore ¢(001z). If the example is extended as
described in Section [2] it will find longer and
longer finite truncations of the infinite Markov
Decision Process and the model that the subject
has of the environment will converge to the true
model.

The most important aspect of the algorith-
mic approach that is lacking in the MDL ap-
proach is universality. So far we have discussed
a hypotheses class that contains models that are
arbitrarily close to the ‘true’ behavior of the
environment. That means that the hypothe-

ses class contains hidden information about the
environment. We would rather have the sub-
ject learn the fact that the environment acts
like a Markov Decision Process by itself. Anal-
ogous to the algorithmic approach the hypothe-
ses class should consist of all recursively enu-
merable semi-measures on the set of infinite bi-
nary strings. With a hypotheses class that con-
tains all regularities that can be effectively de-
scribed we could plug MDL into Hutter’s frame-
work and define a universal autonomous learn-
ing system.

5 Algorithmic statistics

In the algorithmic approach the subject eval-
uates descriptions of the total known history
of the interaction with its environment. The
lengths of these descriptions are used to de-
termine the relative predictive value of the al-
gorithmic processes behind those descriptions.
In the MDL approach descriptions of the his-
tory consist of two parts: a description of a hy-
pothesis and a description of the history given
this hypothesis. This separation of the descrip-
tion in two parts is relevant, because we want
to use the length of the first part to guide
the actions of the subject. Murray Gell-Mann
and Seth LLoyd discuss a similar separation
of a description of a finite binary string into
two parts (Gell-Mann and LLoyd, 1996]). The
first part of their description defines a set of
strings that describes the regularities in the
given string. This set is chosen in such a way
that the given string is a ‘typical’ member of
the set. The second part of the description pin-
points given the string in this set. They call
the length of a smallest description of a string
its total information and the length of a smallest
description of a set, such that the string is a typ-
ical member of that set, its effective complexity.
In their conclusion Gell-Mann and LLoyd even
make the connection to learning systems. Given
our observation about the MDL approach we
come to a different analysis of the importance of
these information measures to learning. A small
total information just means that there are reg-
ularities to be found in the history, but if the
effective complexity rises as words are added to
the history the subject learns in the sense that
new regularities are added to its description of
the environment. Therefore the growth rate of

the effective complexity of the history would be
a good measure for the learning rate of the sub-
ject.

In their article about algorithmic statistics
Péter Géacs, John Tromp, and Paul Vitanyi
analyse the relation between data and models in
depth (Gécs et al., 2001)). Although their con-
clusions about the practical applicability of the
universal information measures they found are
sobering, it would still be worthwhile to inves-
tigate whether it is possible to avoid uncom-
putability limits. This could be done, for exam-
ple, by introducing a cut-off on the computa-
tion time necessary to produce the history from
its description. The universal information mea-
sures can also be used to prove bounds on the
learning speed of subjects that use randomness
to sample the hypotheses space that might be
hard to prove otherwise.

6 Conclusion

To remove the external utility function from
Hutter’s AI£ model while preserving its univer-
sality we can take the following steps.

1. Use algorithmic statistics to define a uni-
versal form of MDL.

2. Use universal MDL models instead of the
raw descriptions of the history.

3. Evaluate actions based on expected model
growth instead of the externally supplied
utility function.

Further research

The steps above should be formalized. The re-
sulting formal model should be studied to find
bounds on learning speed and subjectiveness.
To determine the subjectiveness of the model
we must ask the question: how far can universal
subjects based on different universal machines
be apart when interacting with the same envi-
ronment? This question is especially interesting
because we need to define what it means for two
subjects to interact with the same environment.
As the subjects act differently they might learn
different things about the environment and face
entirely different questions rather quickly. An-
other important direction would be to construct
practicable algorithms that approach the uni-
versal model as closely as possible.

References

Péter Gécs, John T. Tromp, and
Paul M.B. Vitanyi. 2001. Algorith-
mic statistics. IEEETIT: IEEE Trans-
actions on Information Theory, 47.

http://citeseer.nj.nec.com/gacsOlalgorithmic.html,

Murray Gell-Mann and Seth LLoyd. 1996. In-
formation measures, effective complexity and
total information. Complexity, 2:44-52.

Marcus Hutter. 2000. A theory of universal
artificial intelligence based on algorith-
mic complexity. Technical report. 62 pages,
http://xxx.lanl.gov/abs/cs.AI/0004001.

Ming Li and Paul M.B. Vitanyi. 1993. An In-
troduction to Kolmogorov Complexity and its
Applications. Springer Verlag.

Jorma J. Rissanen. 1989. Stochastic Complez-
ity in Statistical Enquiry. World Scientific,
Singapore.

Ray J. Solomonoff. 1964. A formal theory of
inductive inference, part I. Information and
Control, 7:1-22.

Jeroen van Maanen. 2002. Towards a formal
theory of learning systems. Unpublished.

http://www.sollunae.net/zope/wiki/EnglishSummary.

http://citeseer.nj.nec.com/gacs01algorithmic.html
http://xxx.lanl.gov/abs/cs.AI/0004001
http://www.sollunae.net/zope/wiki/EnglishSummary

Context-based policy search: transfer of experience across problems

Leonid Peshkin

Harvard Center for Artificial Intelligence
Dworkin Bld. 134, Cambridge, MA 02138

Edwin D. de Jong

Artificial Intelligence Department
Vrije Universiteit Amsterdam

Abstract

An important question in reinforcement
learning is how generalization may be per-
formed. This problem is especially impor-
tant if the learning agent receives only par-
tial information about the state of the en-
vironment. Typically, the bias required for
generalization is chosen by the experimenter.
Here, we investigate a way for the [learn-
ing method to extract bias from learning one
problem and apply it in subsequent prob-
lems. We use a gradient-based policy search
method, and look for controllers that consist
of a context component and an action compo-
nent. Empirical results on a two-agent coor-
dination problem are reported. It was found
that learning a bias made it possible to ad-
dress problems that were not solved other-
wise.

1. Introduction

Reinforcement learning problems with large state
spaces typically require the use of generalization. Any
form of generalization implies that choices must be
made regarding the similarity of different situations,
and any such choices constitute a bias. The success
of a particular method for generalization depends on
whether this bias is appropriate for the problem at
hand [12].

For standard Markov Decision Processes (MDPs) the
observation of the learner captures all relevant infor-

°Originally presented at: ICML 2002 Work-
shop on the Development of Representations, see
http://demo.cs.brandeis.edu/icml02ws/. Cur-
rent version and related work available from
http://www.eecs.harvard.edu/~pesha/papers.html

pesha@ai.mit.edu

edj@cs.vu.nl

mation about the state of the environment. In Par-
tially Observable MDPs (POMDPs), the choice of the
appropriate action may in principle depend on all pre-
vious observations. Thus, the learner has to extract
relevant information from the history of its interac-
tions with the environment. This renders the need for
appropriate generalization even more pressing.

While in general it may not always be possible to
recover all required information about the state of
the environment from observations, a certain class of
POMDPs can be transformed into MDPs by distinguish-
ing among different contexts in which the agent may
find itself, and providing the current context as an ex-
tra input. A context here refers to a subset of the
possible histories of interaction between the agent and
its environment, which consist of observations, actions,
and rewards. If contexts with the above property can
be extracted from the interaction history, then the
remaining problem can be addressed using the stan-
dard reinforcement learning methods. For information
about reinforcement learning in general the reader may
consult [15, 16, 10].

For problems having the above structure, the optimal
policy can be described as a set of behaviors, each
of which corresponds to a particular context. In this
paper, we suggest that this structure has a poten-
tial for meta-learning. If related environments require
similar behaviors, while differing in their correspon-
dence between contexts and input observations, then
behaviors can be transferred from previously solved
problems to more difficult variants of those prob-
lems. Thus, we have identified a particular mechanism
for extracting useful bias from related problems (see
e.g. [5, 4, 2, 3, 6]), and a corresponding class of prob-
lems which could benefit from this mechanism. We
investigate this method for a simple case, and report
empirical results.

2. Architecture and Learning
Mechanism

Partial observability of the environmental state re-
quires the policy representation to include some form
of memory in order to specify the optimal policy. In
our case, this is achieved by using a finite state con-
troller (see e.g. [11]). Furthermore, in order to find
optimal policies for partially observable problems, the
learning method must be able to search for policies
that use memory. To this end, we employ a gradient-
based method for policy search, see [13, 1] for the gen-
eral method and [14] for the discussion of cooperation
without explicit coordination in agents controlled by
FSCs.

The main idea of this paper is to search for policies
that can be described as a set of contexts and cor-
responding behaviors, so that the behaviors can be
transferred between problems. To make this possible,
we construct the agent from two components, see fig-
ure 1. The first component, called the context compo-
nent, determines the current context from the interac-
tion history. In general this history may include past
observations, actions and rewards. In this particular
problem, the context component uses the current ob-
servation and the context at the previous time step to
determine the current context. The action component
receives the current context and, optionally, the ob-
servations as input, and specifies a behavior or partial
policy for each context.

context

context
component

observation

action action
L component

Figure 1. Proposed architecture. The context component
determines the current context from the previous observa-
tion and context. The action component uses this informa-
tion, possibly in combination with the current observation,
to produce a corresponding behavior.

Separating the context and action components in the
representation of a policy allows these components to
be learned separately. Other examples of taking ad-
vantage of such controller structure are presented in
[9] and [7, 8]. The former uses a controller consist-
ing of two disjoint neural networks, while the latter
demonstrates how to use the natural continuity of the
Euclidean coordinate system to generalize over the ob-

servation space.

In order to transfer experience, we find an optimal
controller on a small instance of the problem at hand,
and retain the action component of the controller when
scaling up to a larger instances of the problem. This
provides a natural way to incorporate bias into the
learning process.

The finite state controller will now be described in
more detail. The controller consists of an internal state
transition function that determines the context from
observations, and an action function that associates
each context with a corresponding behavior.

@ s(t+1)
: m(t)) m(t+1))
Figure 2. An influence diagram for agent with FsScCs in
POMDP, showing the relations between environmental

states (s), observations (o), internal states (m), and ac-
tions (a) at subsequent time steps.

The complete controller for an agent with action space
A and observation space O is a tuple (M, pa, tim),
where M is a finite set of internal controller states
(contexts); pm : M xO — P(M) is the internal state
transition function that maps an internal state and ob-
servation into a probability distribution over internal
states; and p, : M — P(A) is the action component
that maps an internal state into a probability distri-
bution over actions. We assume that both the internal
state transition function and the action function are
stochastic, that their derivatives exist, and that these
are bounded away from zero. Figure 2 depicts an in-
fluence diagram for an agent using this controller.

We consider series of problems that require similar be-
haviors. Thus, by retaining the part of the policy u,
that specifies the behaviors learned on a small prob-
lem, a useful starting point for addressing larger but
similar problems is obtained. The context component
m on the other hand must be learned anew, since the
particular observations that identify each context may
vary across different environments. In the following
sections, we first describe the task in detail, then ex-
periments are reported that illustrate the advantage of

aforementioned learning with bias.

3. Task Description: Block Moving

The metaphor for the task used in the experiments is
“block moving” which is a multi-agent problem derived
from the “load-unload” problem [11, 13]. It requires
the cooperation of two agents and constitutes a coor-
dination problem in the sense that the agents need to
adjust their actions to one another. This produces a
non-trivial form of partial observability. In the real-
world version of this problem, the activity of the two
people lifting a heavy block should be synchronized
for satisfactory results, and thus requires coordinating
the moment at which to start moving. The informa-
tion about the state of each agent is exchanged through
(possibly non-verbal) communication.

r r

FE—C S—

Figure 3. State transition function. The diagram shows
three states: load (S3), one intermediate state (S2), and
unload (S1)

In the simple, abstract task we study here, the process
is modeled as follows. Each agent can move indepen-
dently between several locations (see figure 3 for an
example involving three locations). When two agents
are in state S3, they automatically load a block. From
then on, they must move in synchrony in order not
to drop the load. Since the agents perceive only their
own location and not that of the other agent, commu-
nication is necessary.

The reward function for the task is depicted in figure 4.
The states in this diagram are collective states, speci-
fying the state of both the first and second agent (Al
and A2). Connections without arrows mark transi-
tions that can have either direction. The projection of
the diagram onto either horizontal axis yields the state
transition diagram for a single agent shown above in
figure 3.

The reward function not only depends on the current
state of both agents, but also on a history of both
of their states. The only aspect of this history that is
relevant to the reward function is whether the load has
been lifted and not dropped since it was lifted. The
two collective states with this property are in the upper
level of the diagram, marked loaded. All remaining
collective states are at the lower, unloaded level.

A potential for communication is provided as follows.
In addition to the action an agent can select to move

Loaded o @ v

unload
A2:S1

Unloaded

ALS3 AL:S2 AlSl

Figure 4. The reward structure for “block moving” do-
main.

between states, each agent has a single bit that it can
set or reset. Fach agent reads the bits of all other
agents, in addition to the sensor information speci-
fying its own location. If both agents would always
start in state S1, they could learn to move to state S3
as quickly as possible, and return to S1 from there.
This ballistic policy would cause them to move in syn-
chrony, without any need for communication. In order
to disallow this strategy, the initial position of each
agent is selected randomly from all locations except
“load”.

For the three-location instance depicted in figure 3 the
optimal strategy has the following form. Each agent
moves to state S3, informs the other agent of its pres-
ence there and, if necessary, waits for the other agent
to arrive. Then each agent moves to S2, and from
there back to S1. If both agents execute this policy,
they move together after picking up their load. Thus,
by the use of communication, the agents can synchro-
nize their behavior and collect the maximum amount
of reward.

Part of the difficulty of this task is that it requires es-
tablishing a convention. While it is clear that the only
possibility for communication is for each agent to set
or reset its bit, the sending and receiving agent must
converge on the same choice of which setting to use for
which case. Since both agents are equivalent and may
function both as sender and as receiver, this problem
needs to be solved twice (not necessarily in the same
way). A greater difficulty than the selection of such
a convention however is that of settling on sending
and receiving behavior simultaneously; while the first
agent to arrive can only determine whether the second
agent has arrived through communication, the second

0.9 .
in-
08
i
07k ¥ size5 biased 4
0.6 b
size 4, unbiased
05 q
0.4 q
03 —
0.2 —
0.1 —
size5 unbiased
0 . . . e — . n -
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5. Empirical comparison of biased and unbiased
learning by policy search in Fscs for the “block lifting”
environment of various size.

agent can only discover that signaling this information
is useful if the first agent acts on it, using the same
convention. The necessity to simultaneously arrive at
compatible communication and action policies makes
the block moving problem a challenging one.

The difficulty of the problem strongly depends on the
size of the problem instance. A version of the prob-
lem with three states has been described, involving
a “load” state (S3), an intermediate state (S2), and
an “unload” state (S1). To obtain larger versions of
the problem, we introduce one or more additional in-
termediate states. Since the part of the policy space
that must be considered grows exponentially with the
length of the smallest optimal policy, even adding one
or two states makes the problem considerably more
difficult.

4. Empirical Results

In our experiments we begin by learning the optimal
policy with no initial bias in the instance of the prob-
lem with three locations all together, counting load
and unload locations. For this trivial instance of the
domain even an exhaustive evaluation of all policies
would be feasible, so it comes as no surprise that agents
rapidly converge to a good policy. The resulting action
function is used as a bias - a starting point for action
functions in learning policies for larger instances of the
domain.

Figure 5 illustrates the advantage of learning with bias
in our domain. All plots are averaged over 10 runs.
The learning rate is kept constant. A policy is learned
in the space of three-state finite space controllers. For

the domain with four locations, both biased and un-
biased learning converge, but unbiased does so after a
significant delay. For the domain with five locations
unbiased learning never picks up for the trial length
used. Using the bias learned on a smaller version of
the problem makes it possible to learn even on this dif-
ficult instance, and turns out to be even more efficient
than unbiased learning for a smaller domain with four
locations.

In the experiments, the action function from a smaller
problem instance was used as a starting point in the
learning process, and could in principle be modified. In
practice, we found that the action component did not
change, and only the context component was learned
anew.

5. Discussion

The signal from the other agent in our environment
formed a part of the observation. A potential change
in the representation of the controller would be to sep-
arate the location from the signal and feed the signal
part of the observation directly into the action func-
tion. This would be justified by the fact that as we
increase the size of the domain, the number and the
semantics of the messages does not change. The loca-
tion numbering on the other hand does change, and
needs to be learned for every instance. Another alter-
native approach to the approach that has been inves-
tigated would be to fix the action function and only
learn internal state transition function. We plan to
experiment with some of these variants of the setup in
future experiments.

In a sense, an agent that develops a categorization into
different situations and learns what behavior to use in
each situation, establishes a convention with itself in
the form of a mapping between contexts and behaviors.
Given a mapping from possible world states to internal
states, there is a corresponding mapping from internal
states to partial policies that in combination leads to
the optimal complete policy.

The issue of arising at a convention becomes more pro-
nounced in problems such as that used here, where
multiple agents have the ability to exchange signals.
This variant of establishing a mapping between inter-
nal states and signals to produce can be seen as a rudi-
mentary form of communication development; while
any consistent signaling convention is sufficient to al-
low agents to produce optimal behavior, and the spe-
cific signaling convention that will be used is therefore
arbitrary, arriving at such a convention is a difficult
coordination problem.

6. Conclusion

We investigated an approach to partially observable
reinforcement learning problems where the represen-
tation of the policy is separated into a context compo-
nent and an action component.

Useful bias was extracted from a simple version of the
problem by retaining the action component. When put
to use on more difficult problems, this method solved
problems which an unbiased approach was unable to
address (within the given amount of computation). In
future work, we hope to explore other mechanisms for
extracting bias from learning and utilizing it to aid
subsequent learning. We believe this may in principle
make it possible to address problems that can not prac-
tically be addressed by conventional learning methods.

Acknowledgement

EdJ gratefully acknowledges an NwoO Talent-
fellowship.

References

[1] Leemon C. Baird.
Through Gradient Descent.
Pittsburgh, PA, 1999.

Reinforcement Learning
PhD thesis, CMU,

[2] Eric Baum. Neural Networks and Machine Learn-
ing, chapter Manifesto for an Evolutionary Eco-
nomics of Intelligence, pages 285-344. Springer-
Verlag, 1998.

[3] Eric Baum. Toward a model of intelligence as an
economy of agents. Machine Learning, 35:155—
185, 1999.

[4] Eric B. Baum. Evolution of cooperative problem
solving in an artificial economy. Neural Compu-
tation, 12:2743-2775, 2000.

[5] Jonathan Baxter. A model of inductive bias learn-
ing. Journal of Artificial Intelligence Research,
12:149-198, 2000.

[6] Edwin D. De Jong and Jordan B. Pollack. Utiliz-
ing bias to evolve recurrent neural networks. In
Proceedings of the International Joint Conference
on Neural Networks, volume 4, pages 2667-2672,
2001.

[7] G. Z. Grudic and L. H. Ungar. Localizing policy
gradient estimates to action transitions. In Pro-
ceedings of the Seventeenth International Conf. on
Machine Learning. Morgan Kaufmann, 2000.

[8] G. Z. Grudic and L. H. Ungar. Localizing search
in reinforcement learning. In Proceedings of the
Seventeenth National Conf. on Artificial Intelli-
gence, 2000.

[9] Dean F. Hougen, Maria Gini, and James Sla-
gle. An integrated connectionist approach to re-
inforcement learning for robotic control. In Pro-
ceedings of the Seventeenth International Conf. on
Machine Learning. Morgan Kaufmann, 2000.

[10] Leslie P. Kaelbling, Michael L. Littman, and An-
drew W. Moore. Reinforcement learning: A sur-
vey. Journal of AI Research, 4:237-277, 1996.

[11] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim,
and Leslie P. Kaelbling. Learning finite-state con-
trollers for partially observable environments. In
Proceedings of the Fifteenth Conf. on Uncertainty
in Artificial Intelligence, pages 427-436. Morgan
Kaufmann, 1999.

[12] Tom M. Mitchell. The need for biases in learning
generalizations. Technical Report CBM-TR-117,
Department of Computer Science, Rutgers Uni-
versity, New Brunswick, New Jersey, May 1980.

[13] Leonid Peshkin. Reinforcement Learning by Pol-
icy Search. PhD thesis, Brown University, Provi-
dence, RI, 2001.

[14] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau,
and Leslie P. Kaelbling. Learning to cooperate
via policy search. In Proceedings of the Sixzteenth
Conf. on Uncertainty in Artificial Intelligence,
pages 307-314, San Francisco, CA, 2000. Morgan
Kaufmann.

[15] Christian R. Shelton. Importance Sampling for
Reinforcement Learning with Multiple Objectives.
PhD thesis, MIT, Cambridge, MA, 2001.

[16] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. The MIT
Press, Cambridge, MA, 1998.

Selecting Relevant Features for Splice Site Prediction by
Estimation of Distribution Algorithms

Yvan Saeys', Sven Degroeve!, Dirk Aeyels?, Yves Van de Peer

1

! Department of Plant Systems Biology, Ghent University, Flanders Interuniversity Institute of
Biotechnology (VIB), K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
2 SYSTeMS Research Group, Ghent University, Technologiepark - Zwijnaarde 9, Zwijnaarde,

9052, Belgium
3 Laboratoire associé¢ de 'INRA (France)

1 Introduction

For many biological processes, it is still not clear
which elements contribute to the observed be-
haviour. One example is the occurence of splice
sites in gene sequences, an important charac-
teristic for gene finding in genome sequencing
projects, as well as for better understanding
the molecular mechanism of gene expression.
The DNA sequence of most genes are coding for
messenger RNA (mRNA) themselves encoding
proteins. While in lower organisms (prokary-
otes) the mRNA is a mere copy of a fragment
of the DNA, in higher organisms (eukaryotes)
the DNA contains non-coding segments in genes
(introns) which should be precisely spliced out
to produce the mRNA. The splice sites we re-
fer to here are the border sides of such introns.
The splice site on the left (upstream part) of
the intron is called the donor site, the other
site is termed the acceptor site. Due to the
completion of the sequencing of the genome of
Arabidopsis thaliana, a model system for plants,
much data became available, allowing the use of
supervised learning methods to automate the
process of splice site prediction. As it is not
clear which features are relevant for an accu-
rate splice site prediction these learning meth-
ods are usually provided with many features,
assuming that this will increase the probability
of including relevant information. Since not all
features are important, and some of the features
might be correlated, there is a need to search
for an optimal subset of features that maxi-
mizes the predictive accuracy of the classifica-
tion system. Traditional Feature Subset Selec-
tion (F'SS) methods are sequential and are based
on a greedy heuristic. Sequential Forward Elim-
ination (SFE) starts with the empty feature
set and iteratively adds features, while Sequen-
tial Backward Elimination (SBE) starts with

the full feature set and iteratively discards fea-
tures. More advanced methods use heurstics to
search the space of feature subsets, like e.g. ge-
netic algorithms. Recently, Estimation of Dis-
tribution Algorithms (EDAs; Miihlenbein and
Paaf, 1996) emerged as a more general frame-
work of genetic algorithms. Instead of using
the traditional crossover and mutation opera-
tors to create the new population, a more sta-
tistical approach is used to estimate the distri-
bution of the parameters from a selected group
of individuals. Creation of the new popula-
tion is then performed by sampling individu-
als from the estimated distribution. EDAs have
proven to outperform the standard genetic al-
gorithms in many problems where multiple de-
pendencies among parameters exist, and they
usually need fewer fitness evaluations to obtain
good solutions. We combined the use of Esti-
mation of Distribution Algorithms with a wrap-
per approach for feature subset selection. The
results of our experiments show that it clearly
outperforms the traditional sequential methods
for FSS.

2 Methods

2.1 Splice site data sets

The Arabidopsis thaliana data set was generated
by aligning mRNAs obtained from the public
EMBL database with the BAC-sequences that
were used for the Arabidopsis chromosome as-
sembly. Redundant genes were excluded re-
sulting in a data set containing 1495 genes.
From each gene only these introns confirming
the GT-AG consensus were used to construct
the set of positive instances. All GT dinu-
cleotides at the start of these introns are pos-
itive donor instances and all AG dinucleotides
at the end of these introns are positive acceptor
instances. The negative donor instances are de-

and Pierre Rouzé'?

fined as, for all genes, all GT dinucleotides that
are located between 100 nucleotide positions up-
stream of the first donor and 100 nucleotide po-
sitions downstream of the last acceptor in that
gene and that are not donor sites. The negative
acceptor instances are defined as all AG dinu-
cleotides within the same range and that are not
acceptor sites. More information on the proce-
dure for creating these datasets can be found in
(Degroeve et al., 2002).

Splice site prediction can be divided into two
subtasks : prediction of donor sites and predic-
tion of acceptor sites. Each of these subtasks
can be formally stated as a two-class classifi-
cation task : {donor site, non-donor site} and
{acceptor site, non-acceptor site}. The features
describing the positive and negative instances
can be divided into two subsets : position-
dependent and position-independent features.
In our experiments we used a fixed window of
p nucleotide positions to the left (upstream the
splice site) and ¢ positions to the right (down-
stream the splice site) where p = ¢ = 50.
From this local context, 100 position-dependent
and 128 position-independent features were ex-
tracted. The position-dependent features were
then converted into binary format using sparse
vector encoding. This results in 400 position-
dependent and 128 position-independent fea-
tures. A training data set with balanced class
distribution was compiled by random selection
of 1000 positive instances and 1000 negative in-
stances (GTap00 and AGyggg). For the test data
set we extracted all candidate splice sites within
the interval as defined above from 50 genes.
This results in a test data set GTgg with 281
positive and 7505 negative instances and a test
data set AGgy with 281 positive and 7643 nega-
tive instances.

2.2 Estimation of Distribution
Algorithms

During the last years, Estimation of Distribu-
tion Algorithms (EDA’s) emerged as a more
general framework for genetic algorithms. The
main critics for standard genetic algorithms in-
clude the large number of parameters that have
to be tuned, the difficult prediction of the move-
ments of the populations in the search space and
the fact that there is no mechanism for cap-
turing the relations among the variables of the
problem. EDA’s try to overcome these difficul-

ties by providing a more statistical analysis of
the selected individuals, thereby explicitly mod-
elling the relationships among the variables.

‘ Generate initial population PO ‘

>

Select a number of individuals ‘

Estimate the underlying probability
distribution of the selected individuals

v

Generate the new population by
sampling the estimated distribution

Termination
criteria met ?

Figure 1: Schematic overview of the EDA algo-
rithm.

Figure 1 illustrates the main scheme of the
EDA approach. The actual estimation of the
underlying probability distribution of the se-
lected individuals represents the core of the new
EDA paradigm, and can be considered an op-
timization problem on its own. Depending on
the domain (discrete or continuous), different
estimation algorithms with varying complex-
ity (modelling univariate, bivariate or multi-
variate dependencies) were designed. For an
overview see Larranaga and Lozano (2001). In
the most complex case of multivariate depen-
dencies, Bayesian Networks are frequently used.
A greedy search algorithm is then used to find
a suitable (and often constrained) network that
is likely to generate the selected individuals.

2.3 Classification models

As described above, our data sets contain pos-
itive and negative instances that are described
by ¢ nucleotide positions downstream and p nu-
cleotide positions upstream the consensus. For-
mally, a data set 7T contains [instances x;
(¢ = 1,...,1) with each x; labelled as y* or
y~ (known as classes), indicating a positive or
negative instance, respectively. Each index z;;
(j =1,...,n) in vector x; is a feature F}.

Two methods for discriminating between posi-
tive and negative instances are described below.
They are supervised classification methods that
induce a decision function from the instances
in T" which can then be used to classify a new
instance z not seen in 7.

2.3.1 Support Vector Machines

The Support Vector Machine (SVM) (Boser
et al., 1992; Vapnik, 1995) is a data-driven
method for solving two-class classification
tasks. The Linear SVM (LSVM) separates
the two classes in 1" with a hyperplane in the
feature space such that:

(a) the “largest” possible fraction of instances
of the same class is on the same side of the
hyperplane, and

(b) the distance of either class from the hyper-
plane is maximal.

The prediction of a LSVM for an unseen instance
z is 1 (classified as a positive instance) or —1
(classified as a negative instance), given by the
decision function

pred(z) = sgn(w * z + b). (1)
The hyperplane is computed by maximizing a
vector of Lagrange multipliers « in

l l
1
W(a) =3 ai—5 > aiagyiy; K(xi %),
i=1 i,j=1
l
constrained to: 0 < a; < C and Zai yi =0, (2)
i=1

where C' is a parameter set by the user to regu-
late the effect of outliers and noise, i.e. it defines
the meaning of the word “largest” in (a).
Function K is a kernel function and maps the
features in T', called the input space, into a fea-
ture space defined by K in which then a linear
class separation is performed. For the LSVM
this mapping is a linear mapping:

K(xi, %)) = X * Xj. (3)
The non-linear mappings used in this paper is
the Polynomial-SVM (PSVM):

K (xi,%;) = (x; x5 + 1), (4)

After calculating the «;’s in (2), the decision
function (1) becomes:

!
pred(z) = sgn(d_ oy K(xi,2) +b). ()
i=1

For the LSVM this function reduces to (1) with

!
w:Zaixiyi. (6)
i=1

In (5) each «; is associated with x;. After opti-
mizing (2) many «;’s will become zero and the
corresponding x; will not be used in the deci-
sion function (5). All x; for which the «; is not
zero are called the support vectors. Typically
the size of the set of support vectors is much
smaller than .

The run-time complexity for training a Support
Vector Machine is low order polynomial, usually
approximately quadratic in the number of train-
ing samples (Hush and Scovel , 2000; Joachims,
1998).

2.3.2 Naive Bayes Classifier

The NBC (Duda and Hart, 1973) follows the
Bayes optimal decision rule, that tells us to as-
sign a class ¢ (c in {+,-}) to an unseen instance
z with features (Ff, F5, ..., F?) that maximizes
P(y°|Ff, ..., F}?), or the probability of the class
y© given the features (Ff, F§,..., F?). By using
Bayes’ rule we can write pred(z) = y° as:

P(Fi,...,F}ly°) x P(y°)

(7)

c_
yY° = argmax,,

The naive Bayes method then simplifies the
problem of estimating P(Ff...F?|y°) by mak-
ing the arguable naive independence assump-
tion that the probability of the features given
the class is the product of the probabilities of
the individual features given the class:

P(Ff,....Fily) = JI P(Ffly).
1<j<n

(8)

The time complexity of the naive Bayes method
is essentially linear in the number of training
samples (McCallum and Nigam, 1998).

2.4 Feature subset selection methods

For selecting an optimal subset of features from
{F1, Fy,...,F,}, given the instances in T', one
needs to define what is meant by “optimal sub-
set of feature” (referred to as the selection cri-
terion), and define a search algorithm to search
for this optimal subset of features in the space
of feature subset candidates. A review of dif-
ferent search algorithms can be found in (Ko-
havi and John, 1997; Boz, 2002) and tech-
niques to combine feature subset selection and
naive Bayes have been discussed in the litera-
ture (Hall, 1999; Langley and Sage, 1994)

As the number of feature subsets increases expo-
nentially with increasing n (number of features)
and n is relatively large, two techniques are jus-
tified : greedy search and heuristics. In this
paper we will compare three methods : greedy
search combined with SVM, greedy search com-
bined with NBC, and heuristic search by using
the EDA-approach combined with the NBC.

2.4.1 Greedy search

Both the SVM and NBC are known to perform
well in high-dimensional input spaces because
they implicitly avoid overfitting. This allows
us to start the search algorithm with the full
feature set. This set is known to be a good
point to start our search in the space of fea-
ture subset candidates. The candidate space
is explored with just one operator which elim-
inates a feature from the current subset. This
bottom-up search procedure is called a sequen-
tial backward elimination (SBE) procedure and
is greedy enough for our data sets. A simple cri-
terion consists in selecting that feature that de-
creases the predictive performance of the model
the least. We tested the SBE procedure both
on the SVM and the NBC. For the NBC this
can be done as follows. At iteration [the fea-
ture set consists of n; features and n; models
can be trained, leaving out each feature once
in each model. At iteration [4+ 1 the feature
set is then chosen belonging to the model with
the best predictive performance. For SVM a
slightly varying procedure is used : at iteration
1 for each feature F still in the feature subset we
evaluate the generalization performance of the
SVM model when setting F' to its mean value
in T (training set). This means that when con-
sidering a feature F' for elimination, no model
is retrained, but the alphas (2) of the previous

model are reused, while setting xz;; to its mean
value for all training instances. More details can
be found in (Degroeve et al., 2002; Guyon et al.,
2000).

2.4.2 Heuristic search

We combined the use of Estimation of Distribu-
tion Algorithms with a wrapper approach (Ko-
havi and John, 1997) for feature subset selec-
tion. The individuals in the population are rep-
resented as binary feature vectors, a 0 indicating
an irrelevant feature, a 1 indicating a relevant
feature. The goal of the EDA is then to look for
the best subset with respect to some optimiza-
tion criterion. In our case, the optimization cri-
terion is a combination of the accuracy of the
classification system coupled to the EDA and
the number of features used to reach this accu-
racy. If two feature subsets achieve the same
accuracy with respect to the same classification
system, then the subset with the least number
of features will result in a better fitness.
As the number of features in our real-world
problem is quite large, we need to use quite
large populations to allow a good estimation.
Furthermore, a considerable amount of time is
spent in analysing the fitness of each individ-
ual. For each individual a new model has to
be trained, and this model has to be evaluated
on a test set. Therefore, we need a fast clas-
sification algorithm and a fast estimation algo-
rithm. In our experiments we used the NBC
as the classification system, and the Univari-
ate Marginal Distribution Algorithm (UMDA;
Miihlenbein, 1998) as the estimation algorithm.
Just like NBC, UMDA simplifies the estima-
tion by assuming all features are independent
pi(z) = [Iinqpi(z;). Although using the
naive assumption that parameters are indepen-
dent both NBC and UMDA have shown to per-
form well in several fields such as text and
image classification. As an adaptation to the
standard UMDA we slightly modified the al-
gorithm by replacing zero/one probabilities by
very small/large probabilities.

3 Results

3.1 Ignoring feature dependencies

To investigate the effect of ignoring feature de-
pendencies, we first compare the simple EDA-
UMDA approach to a standard genetic algo-
rithm (GA) with two-point crossover. Both

Accuracy

EDA-UMDA ——
| GA2pt ———

L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 2: EDA versus GA fitness comparison.

EDA and GA used a NBC as a classification
system. In both algorithms the fitness is de-
fined as the accuracy obtained by the NBC on
the test set for the selected subset of features.
Both algorithms used a population of 500 indi-
viduals and an elitist approach where in each
iteration the 50 best individuals survive. In
both cases truncation selection was used, for the
GA the crossover and mutation rate were set to
0.8 and 0.01. Figure 2 shows the comparison
of both algorithms for a feature set of 528 fea-
tures. Similar results were obtained on the fea-
ture set of 400 features. Clearly the EDA con-
verges faster than the traditional GA (the EDA
needs less iterations to achieve the same fitness
as the GA) and also converges to better solu-
tions than the GA. This suggests that ignoring
feature dependencies can lead to good solutions.
A similar conclusion was stated in (Canti-Paz,
2002), where the author concluded that the
complicated dependency learning EDA’s are not
needed, and the simple compact GA (Harik et
al., 1998) will suffice. It has to be pointed out
that the EDA-UMDA approach is very similar
to the compact GA, or to a GA with uniform
Crossover.

3.2 Feature subset selection

To compare greedy and heuristic feature selec-
tion for splice site prediction we evaluated both
techniques for the Naive Bayes Classifier. The
greedy algorithm starts with the full feature set
and iteratively removes features, the heuristic
algorithm finds an optimal subset of features

with regard to the classification accuracy of
the NBC. Afterwards the greedy algorithm
is applied to the solution found by the EDA,
iteratively discarding features. Furthermore
we evaluated the results for a Support Vector
Machine with a second degree polynomial
kernel (PSVM) also using the greedy approach.
As a selection criterion, different measures
can be used : accuracy, correlation coefficient,
harmonic mean of sensitivity and specificity, or
a combination of measures such as a weighted
sum of accuracy and the number of eliminated
features. The figures show the results when
such a combination of the accuracy and the
number of feature is used as selection criterion,
but similar results are obtained with the other
possible criteria.

Accuracy

0 50 100 150 200 250 300 350 400
#Features Removed

Figure 3: FSS on a set of position-dependent
features.

Figure 3 and 4 show the accuracy of the
three FSS methods, once for a feature set
containing only position dependent features
(400 features, figure 3) and once for a feature
set containing position-dependent and position-
independent features (528 features, figure 4).
In the case of position-dependent features the
SVM-model clearly performs better than the
NBC. However, when applying the EDA heuris-
tic method to the NBC, it clearly outperforms
the SVM with a greedy approach. In the case
of a mixture between position-dependent and
position-independent features, the SVM-model
starts with higher accuracy, but the NBM ap-

Accuracy

08 L L L L L

0 100 200 300 400 500
#Features Removed

Figure 4: FSS on a set of position-dependent
and position-independent features.

proach achieves higher accuracies with less fea-
tures. Also here the EDA heuristic method
achieves a better accuracy than both SVM and
NBC with a greedy approach.

3.3 Biological relevance

The use of more position-independant fea-
tures strongly influences the number of fea-
tures needed to obtain good classification re-
sults. This can be demonstrated by comparing a
set containing only position-dependent features
with a set consisting of both position-dependent
and position-independent features. For both
feature sets we performed feature selection with
EDA-UMDA, combined with the SBE greedy
search algorithm. We then selected for each set
the features that were sufficient and necessary
to obtain a sensitivity of 0.93 and a specificity
of 0.25. In the case of a set with only position-
dependent features, 47 features were needed to
achieve these values for accuracy and specificity.
In the case of an extended set including also all
triplets, only 25 features were needed to achieve
these values. Clearly these features thus capture
significant position-independent characteristics
allowing a better discrimination of splice sites.

4 Related work

Genetic algorithms have been frequently used
for feature subset selection in small scale (less
than 100 features) domains (Kudo and Sklansky
, 2000; Siedelecky and Sklansky, 1988; Vafaie

and De Jong, 1993). The use of EDA’s for fea-
ture subset selection was pioneered by (Inza et
al., 1999) and the use of EDA’s for F'SS in large
scale domains was reported to yield good re-
sults (Larranaga and Lozano, 2001). Canti-Paz
(2002) compared several EDA’s with the simple
GA for small scale domains (at most 35 fea-
tures) using a Naive Bayes classifier, and con-
cluded that the complicated dependency learn-
ing EDA’s are not significantly better than the
simple compact GA.

Recently the technique of feature distributional
clustering was combined with Support Vector
Machines for text categorization (Bekkerman et
al., 2001). This method performs feature selec-
tion by distributional clustering of words via the
information bottleneck method (Tishby et al. |
1999) and can be considered a sophisticated fil-
ter method.

5 Conclusions and future work

Feature subset selection by estimation of distri-
bution algorithms is able to select highly rel-
evant features for splice site prediction. Fu-
ture research will focus on including more
position-independent information, possibly also
structural information to achieve better results.
More advanced feature selection frameworks
such as a combined filter/wrapper model will
then be needed, as the feature sets will get very
large. Other interesting future directions are
the combination of EDA with more advanced
classification systems, and the development of
faster estimation algorithms for multiple depen-
dencies.

References

Bekkerman, R., El-Yaniv, R., Tishby, N. and Win-
ter, Y. 2001. On Feature Distributional Clus-
tering for Text Categorizatio. In Proceedings of
SIGIR-01, 24th ACM International Conference
on Research and Development in Information Re-
trieval, pp. 146-153.

Boser,B., Guyon,l. and Vapnik,V.N. 1992. A train-
ing algorithm for optimal margin classifiers. In
Proc. COLT (Haussler,D. ,ed.), ACN Press, 1/4-
152.

Boz, O. 2002. Feature subset selection by wus-
ing sorted feature relevance. In Proc. Int. Conf.
on Machine Learning and Applications (ICMLA
2002).

Cantu-Paz, E. 2002. Feature subset selection by
estimation of distribution algorithms. In W. B.

Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D.
Davis, R. Poli, K. Balakrishnan, V. Honavar, G.
Rudolph, J. Wegener, L. Bull, M. A. Potter, A.
C. Schultz, J. F. Miller, E. Burke, N. Jonoska
(Eds.), GECCO-2002: Proceedings of the Genetic
and Ewvolutionary Computation Conference. (pp.
754). San Francisco, CA: Morgan Kaufmann.
Degroeve,S., De Baets,B., Van de Peer,Y. and

Rouzé,P. 2002. Feature Subset Selection for
Splice Site Prediction. In Bioinformatics, 18-
2:75-83.

Duda,R.O. and Hart,P.E. 1973. Pattern classifica-
tion and scene analysis. New York, NY, Wiley.
Guyon, 1., Weston, J., Barnhill, S. and Vapnik, V.
2000. Gene selection for cancer classification us-
ing support vector machines. In Machine Learn-

ing, 46:389-422.

Hall, M.A. 1999. Correlation based feature selection
for machine learning. Doctoral dissertation, De-
partment of Computer Science, The University of
Waikato, Hamilton, New Zealand.

Harik,G.R., Lobo, G.G. and Goldberg, D.E. 1998.
The compact genetic algorithm. In Proceedings
of the International Conference on Fvolutionary
Computation 1998 (ECEC 98), pp. 523-528. Pis-
cataway, NJ: IEEE Service Center.

Hush, D. and Scovel, C. 2000. Polynomial-time de-
composition for support vector machines. Techni-
cal report, Los Alamos National Laboratory, Los
Alamos, NM 87545.

Kudo, M. and Sklansky, J. 2000. Comparison of al-
gorithms that select features for pattern classifiers.
In Pattern Recogn. 33:25-41.

Inza, 1., Larrafiaga, P., Etxebarria, R. and Sierra, B.
1999. Feature subset selection by Bayesian net-
works based on optimization. In Artifical Intelli-
gence, 27(2):143-164.

Joachims, T. 1998. Making large-scale support vec-
tor machine learning practical. In B. Scholkopf,
C. Burges, A. Smola. Advances in Kernel Meth-
ods: Support Vector Machines, MIT Press, Cam-
bridge, MA, December 1998.

Kohavi,R. and John,G. 1997. Wrappers for feature
subset selection. In Artificial Intelligence Journal,
97:273-324.

Langley, P. and Sage, S. 1994. Induction of selec-
tive Bayesian classifiers.. In Proceedings of the
Tenth Conference on Uncertainty in Artifical In-
telligence, pp. 399-406. Morgan Kaufmann, Seat-
tle, WA.

McCallum, A. and Nigam, K. 1998. A comparison
of event models for naive Bayes text classifica-
tion.. In AAAI/ICML-98 Workshop on Learning
for Text Categorization, pp. 41-48. AAAI Press,
1998..

Miihlenbein,H. and Paag G. 1996. From recombi-
nation of genes to the estimation of distributions.

Binary parameters.. In Lecture Notes in Com-
puter Science 1411 : Parallel Problem Solving
from Nature, PPSN IV, (pp. 178-187).

Miihlenbein,H. 1998. The equation for response to
selection and its use for prediction. In Evolution-
ary Computation 5, pp. 303-346.

Larranaga,P. and Lozano,J.A. 2001. Estimation of
Distribution Algorithms. A New Tool for Evolu-
tionary Computation. Kluwer Academic Publish-
ers.

Siedelecky, W. and Sklansky, J. 1988. On automatic
feature selection. Int. J. Pattern Recogn. 2: 197-
220.

Tishby, N., Pereira, F.C. and Bialek, W. 1999. The
information bottleneck method. In Proc. of the 37-
th Annual Allerton Conference on Communica-
tion, Control and Computing, pp. 368-377.

Vapnik,V.N. 1995. The nature of statistical learning
theory. Springer-Verlag.

Vafaie, H. and De Jong, K. 1993. Robust feature
selection algorithms. Proceedings Fifht Interna-
tional Conference on Tools with Artificial Intel-
ligence, pp. 356-363.

Identifying Mislabeled Training Examples
in ILP Classification Problems

Sofie Verbaeten
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
Sofie.Verbaeten@cs.kuleuven.ac.be

Abstract

We consider the problem of noisy training ex-
amples, more precisely mislabeled training ex-
amples, in the context of ILP classification
problems. We address this problem by pre-
processing the training set, i.e. by identifying
and removing outliers from the training set. We
study a number of filtering techniques, some
of which were proposed in the literature for
attribute-value problems. We evaluate these
techniques on a Bongard data set, which we ar-
tificially corrupt with different levels of classifi-
cation noise.

1 Introduction

In many applications of machine learning the
data to learn from is imperfect. Different kinds
of imperfect information exist, and several clas-
sifications are given in the literature. In (Lavrac
and Dzeroski, 1994) the following types of im-
perfect data for Inductive Logic Programming
(ILP) tasks are discussed: 1) noise, that is,
random errors in training examples and back-
ground knowledge, 2) too sparse training exam-
ples, from which it is difficult to reliably de-
tect correlations, 3) inappropriate or insufficient
background knowledge, and 4) missing argu-
ment values in the training examples. In this
paper, we consider the problem of noise or ran-
dom errors in training examples. We address
this problem in the context of ILP classification
problems.

One of the problems created by learning from
noisy data is overfitting, that is, the induction
of an overly specific hypothesis which fits the
(noisy) training data well but performs poor
on the entire distribution of examples. Many
techniques exist which allow ILP algorithms to
handle noisy data and to prevent overfitting.
Classical noise-handling mechanisms are based

on appropriate search heuristics and stopping
criteria used in the hypothesis construction, or
on some form of post-processing of hypotheses.
These techniques modify the learning algorithm
itself to make it more noise-tolerant. Another
approach is to pre-process the input data be-
fore learning. This approach consists of filtering
the training examples (hopefully removing the
noisy examples), and applying a learning algo-
rithm on the reduced training set. As pointed
out in (Gamberger et al., 2000), this separation
of noise detection and hypothesis formation has
the advantage that noisy examples do not influ-
ence the hypothesis construction. We will follow
this approach here.

In the context of attribute-value learning
there are a number of proposals for identifying
and removing noisy examples from the train-
ing data. Our filtering techniques for ILP are
based on some of these proposals, more precisely
on the ideas presented in (Brodley and Friedl,
1999) and (John, 1995).

Many of the methods for filtering training
data are motivated by the technique of removing
outliers in regression analysis (Weisberg, 1980).
An outlier is a case that does not follow the
same model as the rest of the data and appears
as though it comes from a different probability
distribution. As such, an outlier does not only
include erroneous data but also surprising cor-
rect data. One of the difficulties in removing
noisy data is that also correct exceptions might
be removed. One work addressing this problem
is (Srinivasan et al., 1992). We will not cover
this topic here.

In classification problems noise in the training
examples can be caused by erroneous argument
values and/or erroneous classifications. Quin-
lan (Quinlan, 1986) demonstrated that, for high
levels of noise, removing noise from attribute in-

formation decreases the predictive accuracy of
the resulting classifier if the same attribute noise
is present when the classifier is subsequently
used. This is not the case for noise in the clas-
sification of examples. In this paper, we will
consider misclassified examples in the training
data.

Summarising, we consider the problem of
noisy training examples, more precisely erro-
neous classifications, in the context of ILP clas-
sification problems. We address this problem
by pre-processing the training set, more pre-
cisely by identifying and removing outliers from
the training set. We study a number of filter-
ing techniques, some of which were proposed in
the literature for attribute-value problems. We
evaluate these techniques on a Bongard data
set, which we artificially corrupt with different
levels of classification noise.

In the next section, we briefly recall the first
order decision tree induction system Tilde. Our
filters are based on Tilde, and Tilde is also used
to evaluate the filtering techniques. In section
3, we introduce the different filtering techniques.
These techniques are evaluated in section 4 on
a Bongard data set. We conclude and discuss
topics of future research in section 5.

2 Tilde

Tilde (Top-down Induction of Logical Decision
Trees) (Blockeel and De Raedt, 1998) is an ILP
extension of the C4.5 decision tree algorithm
(Quinlan, 1993). Instead of using attribute-
value tests in the nodes of the tree, logical
queries are used. As in C4.5, Tilde builds the
decision tree in a top-down way, starting with
the empty tree and all training examples. In
each node, Tilde generates all possible tests
and computes an heuristic value, in our experi-
ments information gain ratio, for each of these
tests. The test which scores best is placed in
the node. The examples in the current node are
then sorted down the tree: the examples passing
the test are propagated to the left, the other ex-
amples to the right. The procedure is repeated
for the left and right subtree. A node is turned
into a leaf when the examples it covers are of a
single class. After a tree is constructed, a post-
pruning algorithm is used. The post-pruning
algorithm that we will use here is the C4.5 post-
pruning method which is based on an estimate

of the error on unseen cases.

Note that the logical queries in the nodes of
a first order decision tree may contain logical
variables. These variables may be shared among
different nodes under the restriction that a vari-
able that is introduced in a node (that is, it does
not occur in higher nodes) must not occur in
the right branch (the “no”-branch) of that node.
The reason for this restriction follows from the
semantics of a first order decision tree. A vari-
able that is introduced in a node is existentially
quantified within the conjunction of that node.
When this conjunction fails (and we thus enter
the right subtree) no further reference to that
variable is needed.

3 Filtering Algorithms

In this section we introduce the different filter-
ing techniques: Robust Tilde, Voting filters and
Iterated Voting filters.

3.1 Robust Tilde

The first filtering technique is based on the pro-
posal of John (John, 1995). There, a robust
version of the decision tree system C4.5 is pre-
sented, but in fact it can be applied to any de-
cision tree learner. Here we apply it to Tilde.

Robust decision trees take the idea of prun-
ing one step further: training examples which
are locally uninformative and harmful, that is,
examples which are misclassified by the pruned
tree, are also globally uninformative. Therefore,
after pruning a decision tree, the training exam-
ples which are misclassified should be removed
from the training set and the tree needs to be
rebuilt using this reduced set. This process is
repeated until no more training examples are re-
moved. The robust decision tree algorithm can
be described as follows:

1. learn a decision tree from the training set,
and prune this tree,

2. for each example in the training set, if the
pruned tree misclassifies the example, then
remove the example from the training set,

3. if no examples are removed from the train-
ing set in the previous step, then stop, else
go to step 1.

Note that in the case of robust decision trees,
the final learning algorithm is the same as the

learning algorithm used during filtering. We ap-
ply this technique to Tilde and call the resulting
system Robust Tilde (abbreviated as “R” in the
next section).

3.2 Voting Filters

In (Brodley and Friedl, 1999) a general method
for filtering training sets with classification noise
is proposed. The idea is to use a set of learn-
ing algorithms to create classifiers that act as a
filter for the training data. More precisely, the
general method is as follows:

1. m learning algorithms (called filter algo-
rithms) are chosen,

2. the training data is divided in n non-
overlapping parts,

3. for each of the n parts, the m algorithms
are learned on the other n — 1 parts,

4. the m resulting classifiers are used to label
each instance in the excluded part (in this
way each example gets m labels),

5. the filter compares the original class of each
example with the m labels it got, and de-
cides whether or not to remove the exam-

ple,

6. the filtered set of training examples is given
as input to the final learning algorithm, the
resulting classifier is the end product.

A variation of instances of this general scheme
exists depending on the choice (and the number
m) of filter algorithms, the value of n and the
decision procedure used in step 5. In (Brod-
ley and Friedl, 1999), different instances of this
scheme are studied and empirically evaluated:
the Single Algorithm filter (mn = 1), and the
Consensus and Majority Vote filter (m > 1).
Step 5 in the Single Algorithm is simple: if the
class of a training example differs from the (one)
label it got, the example is removed. In the Con-
sensus filter, a training example is removed only
if all the labels it got (m) differ from its class.
And in the Majority Vote filter, a training ex-
ample is removed if the majority of the labels it
got (m/2 — or (m +1)/2 in case m is odd — or
more) differ from its class.

We next discuss in more detail which Voting
filters we evaluate here.

3.2.1 Single Algorithm Filter

We consider a Single Algorithm filter with Tilde
as filter algorithm. We use three different val-
ues for n, namely 2,5 and 10. In the next sec-
tion, our Single Algorithm filter is abbreviated
as “S(2)” (for n = 2), “S(5)” (for n = 5), and
“S(10)” (for n = 10).

Note that the Single Algorithm filter is re-
lated to the Robust decision tree method.
The difference between the two approaches is
that the Single Algorithm filter uses a cross-
validation over the training data with one iter-
ation whereas the Robust decision tree method
deals with all the training examples and per-
forms multiple iterations.

3.2.2 Consensus Filter and Majority
Vote Filter

Our Consensus and Majority Vote filters differ
from the ones described in (Brodley and Friedl,
1999) in the sense that we do not use m differ-
ent filter algorithms, we only use Tilde. More
precisely, we divide the training set in n parts,
and for each of the combinations of n — 1 parts,
Tilde learns on this combination. The resulting
classifiers will be used to give labels to the ex-
amples in their own training sets.! In this way,
each training example gets n — 1 labels (since
it belongs n — 1 times to a training set). Note
that the resulting filter method might be more
conservative?, since votes are given to the ex-
amples in the training set. We consider such a
Consensus and Majority Vote filter for n = 6
(each example gets 5 labels) and n = 10 (each
example gets 9 labels). In the next section, our
Consensus filter is abbreviated as “C(6)” (for
n = 6), and “C(10)” (for n = 10), and our Ma-
jority Vote filter as “M(6)” (for n = 6), and
“M(10)” (for n = 10).

Our Voting filters are in a way dual to our Sin-
gle Algorithm filter: instead of using the learned
decision tree to classify examples in the sub-
set excluded from the training set, the tree is
used to classify the examples in its own training
set. Our Voting algorithms have some similari-
ties with the Robust approach. More precisely,
in the Robust decision tree method, the learn-
ing algorithm learns on the training data and

! As described in Section 2, Tilde with pruning is used,;
this is of course essential for this approach.
*meaning that it will remove less examples

removes those training examples that are mis-
classified by the learned (and pruned) tree. Our
Voting algorithms also learn trees which classify
the examples in their own training set. The dif-
ference is that, for the Voting algorithms, these
training sets consist of n — 1 of the n parts, and
hence each example gets n — 1 votes. Also, the
Voting algorithms are run only once, whereas
Robust Tilde consists of a number of iterations
(it keeps on running until no more training ex-
amples are removed). In the next subsection,
we present a hybrid approach combining Robust
Tilde and our Voting algorithms: the Voting fil-
ters will be repeated until no more examples are
removed.

3.3 Iterated Voting Filters

The Iterated Voting filters combine the Robust
method with the Voting filters. The method
works as follows:

1. filter the training data using a Voting filter
(Single Algorithm filter, Consensus filter or
Majority Vote filter),

2. if no training examples are removed in the
previous step, then the reduced set of train-
ing examples is given as input to the final
learning algorithm, else repeat the previous
step with the reduced training set.

When the basic filtering method (of step 1)
is a Single Algorithm filter S(n), we call the re-
sulting filter the Iterated Single Algorithm filter
IS(n); when the basic filtering method is a Con-
sensus filter C(n), we call the resulting filter the
Iterated Consensus filter IC(n); and when the
basic filtering method is a Majority Vote filter
M(n), we call the resulting filter the Iterated
Majority Vote filter IM(n). In the experiments,
we consider the following Iterated Voting filters:
1S(2), IS(5), IS(10), IC(6), IC(10), IM(6), and
IM(10).

4 Empirical Evaluation

We first describe the data set that we used in the
experiments. Then we explain how the exper-
iments were carried out, and finally we discuss
the results.

4.1 Data Set and Noise Introduction

We want to evaluate how well the different filter-
ing techniques perform on data sets with differ-

ent amounts of classification noise. Since real
world data sets often contain already an un-
known number of noisy examples, we chose to
do the experiments on a Bongard problem.
Bongard data sets consist of configurations
of geometrical objects, more precisely triangles,
squares and/or circles. The direction in which
triangles point can be up or down. An object
can be inside another object. A typical Bongard
example is shown below.
circle(ol).
square(02).
triangl e(03).
circle(od).
in(o2,01).

i n(o4, 03).
config(o3, up).

The advantage of using such a Bongard data
set is that we can generate a noise-free Bongard
set and introduce a controlled amount of noise
artificially. The Bongard data set with which
the experiments were performed contains 392
examples, 128 of them are classified as positive,
the other 264 as negative.

Different levels of noise were introduced. A
noise level of % means that for a randomly cho-
sen subset of 2% of the training examples, the
class-value of these examples was flipped.> We
introduced noise levels of 0%, 5%, 10%, 15%,
20%, 25%, 30%, 35% and 40%.*

4.2 Experimental Method

All the filters are based on Tilde. Tilde was also
used to evaluate the performance of the different
filtering techniques.

In order to obtain a more reliable estimate of
the performance of the filters, all experiments
were carried out in 10-fold cross-validation and
the results were averaged over all 10 folds. For
each of the 10 runs, we made a training set (9
parts) and a test set (remaining 1 part). The
training set was corrupted by introducing clas-
sification errors using noise levels of 0%, 5%,
10%, 15%, 20%, 25%, 30%, 35% and 40%. Each
of the above described filtering techniques was
then run on the (noisy®) training set. After fil-
tering the training set, Tilde was used to learn a

3Positive examples are made negative and vice versa.

*More precisely, taking the total number of exam-
ples into account, these (rounded) percentages were 0%,
5.10%, 9.92%, 15.02%, 20.07%, 24.94%, 30.05%, 35.09%
and 39.97%.

SFor each noise level and each of the 10 training sets,

decision tree on the reduced training set. This
decision tree was validated on the (noise-free)
test set. Results were obtained by taking the
mean of the results of the 10 runs. For each of
the 9 noise levels and each of the 10 runs, we
also run Tilde directly on the (unfiltered, noisy)
training set.

In the next subsections, we report results con-
cerning filter precision, tree size and accuracy.
Because of lack of space, we can not include all
the results, we refer to (Verbaeten and Cardoen,
2002) instead.

4.3 Filter Precision

For each of the 9 noise levels (N), we report the
following: the percentage of examples which are
removed (F), the percentage of examples which
are removed and are actually noisy (N & F),
the percentage of noisy examples in the filtered
data sets (RN), and the probability of making
an error of type 1 and of type 2.

A type 1 error (E;) is made when a correct
example is filtered. The probability of making

a type 1 error is estimated as P(E;) = u(ﬁgc)’

where F is the set of filtered examples and C is
the set of correct (non-noisy) examples. A type
2 error (F3) is made when a noisy example is not
removed from the training set. The probability
of making a type 2 error is estimated as P(Es) =

ﬁ(?ﬂﬂ/\f) where 7 is the complement of the set F

(i.e. the examples which are not removed) and
N is the set of noisy examples.

We only report the results for the filters R,
S(5), IS(5), M(6) and IM(6).

Single Algorithm Filter, n =5

[N [F [F&F[RN [P(E)]P(E)
0 0.17 0 0 0.002 NA
5.10 6.60 4.93 0.18 0.018 0.033
9.92 12.16 9.78 0.16 0.026 0.014
15.02 || 17.60 | 13.97 1.28 0.043 0.070
20.07 || 24.83 | 18.79 1.69 0.076 0.064
24.94 || 29.65 | 22.53 3.42 0.095 0.097
30.05 || 36.48 | 26.96 4.85 0.136 0.103
35.09 || 42.01 | 27.83 | 12.50 | 0.218 0.207
39.97 || 46.43 | 29.68 | 19.11 | 0.279 0.257

Iterated Single Algorithm Filter, n =5

[N [F [N&F[RN [P(E)[P(E)]
0 0.37 0 0 0.004 NA

5.10 8.02 5.06 | 0.06 | 0.031 | 0.011
9.92 || 13.78 | 9.89 | 0.03 | 0.043 | 0.003
15.02 || 19.45 | 14.17 | 1.06 | 0.062 | 0.057
20.07 || 27.13 | 19.30 | 1.04 | 0.098 | 0.038
2494 || 33.68 | 23.84 | 1.64 | 0.131 | 0.044
30.05 || 42.66 | 28.91 | 1.94 | 0.196 | 0.038
35.09 || 48.30 | 30.38 | 892 | 0.276 | 0.134
39.97 || 55.39 | 33.70 | 13.5 | 0.361 | 0.157

Majority Vote Filter, n =6

[N [F [N&F[RN [P(B) [P(E)

0 0.03 0 0 0.0003 NA

5.10 5.47 4.90 0.21 | 0.006 | 0.039
9.92 || 1040 | 9.72 0.22 | 0.008 | 0.020
15.02 || 15.48 | 13.83 1.41 0.019 | 0.079
20.07 || 20.35 | 18.62 1.81 0.022 | 0.072
24.94 || 25.00 | 22.53 | 3.20 | 0.033 | 0.097
30.05 || 28.23 | 25.77 | 593 | 0.035 | 0.142
35.09 || 31.80 | 25.96 | 13.28 | 0.090 | 0.260
3997 || 34.21 | 24.71 | 23.16 | 0.158 | 0.382

Iterated Majority Vote Filter, n =6

Robust Tilde [N [F [N&F] RN | P(E) [P(E)]
N [F [N&F] RN | P(Ey) [P(Es) | 0 0.03 0 0]00003| NA
0 0.03 0 0 10.0003] NA 510 | 556 | 496 | 0.15 | 0.006 | 0.028

510 || 558 | 490 | 0.21 | 0.007 | 0.039 992 | 11.14 | 9.72 | 023 | 0.016 | 0.020
9.92 | 1029 | 9.81 | 0.13 | 0.005 | 0.011 15.02 | 15.73 | 13.92 | 1.32 | 0.021 | 0.074
15.02 || 15.09 | 13.95 | 1.29 | 0.024 | 0.072 20.07 || 21.32 | 18.79 | 1.62 | 0.032 | 0.064
20.07 || 21.68 | 1840 | 2.14 | 0.041 | 0.083 24.94 || 25.93 | 23.10 | 2.49 | 0.038 | 0.074
2494 || 2528 | 22.79 | 2.87 | 0.033 | 0.086 30.05 || 31.09 | 27.32 | 3.94 | 0.054 | 0.091
30.05 || 30.27 | 25.74 | 6.13 | 0.065 | 0.143 35.00 || 35.40 | 27.78 | 11.32 | 0.117 | 0.208
35.00 || 33.82 | 27.35 | 11.67 | 0.100 | 0.221 39.97 || 39.31 | 26.79 | 21.66 | 0.209 | 0.330
39.97 || 3832 | 25.71 | 23.08 | 0.210 | 0.357

the classification errors were introduced only once (in a
random way), and the different filtering techniques were
run on the same noisy training sets.

From all our experiments (see (Verbaeten and
Cardoen, 2002)), we can conclude that, except
for the (Tterated) Consensus filters, all filters
perform well up to a noise level of 25% (or
higher). That is, in the reduced training sets
only a small percentage of the examples are

noisy.

If we look at the different Single Algorithm fil-
ters, we see that (if we are concerned with filter
precision), S(10) should be preferred over S(5),
which in turn should be preferred over S(2).
Indeed, our experiments show that the higher
the parameter n in the Single Algorithm filter,
the less aggressive the filter is (i.e. throwing out
less examples) and the smaller the probabilities
P(E;) and P(E3) are. We might explain this by
observing that the classifiers, which act as filter,
are trained on n — 1 parts of the training set.
So, the higher n, the more training data is avail-
able. However, it should be observed that this
training data is noisy as well. It can be easily
seen that the higher the parameter n, the more
time the filtering takes. We were not concerned
with efficiency in this paper.

Comparing S(10) (the “best” filter of the Sin-
gle Algorithm filters) with the Robust filter,
we notice that S(10) is more aggressive (re-
moves more examples) than the Robust filter.
More precisely, S(10) removes more correct ex-
amples (higher P(F7)) than the Robust filter
but removes also more noisy examples (smaller
P(E5)) than the Robust filter.

For the iterated versions of the Single Algo-
rithm filters, we see that IS(10) is less aggressive
than IS(5), which in turn is less aggressive than
IS(2). Also, IS(5) is more precise than IS(2)
(smaller P(E;) and P(E>)), and IS(10) is more
precise than IS(5) (smaller P(E}), but P(E») is
more or less the same).

From all filters presented here, IS(2) is the
most aggressive one (removes the most exam-
ples).

Comparing the Single Algorithm filters S(n)
with their iterated versions IS(n) (n = 2,5, 10),
we observe that IS(n) is more aggressive than
S(n), has higher P(E}) and smaller P(E2). This
can be easily explained since IS(n) is just S(n)
run several times (until no examples are re-
moved anymore).

Comparing IS(10) (and IS(5)) and the Ro-
bust filter: the Robust filter is less aggressive
than IS(10) (and hence IS(5)), IS(5) and IS(10)
have smaller P(FE5) than the Robust filter, and
the Robust filter has smaller P(E;) than IS(10)
(and hence IS(5)).

The Consensus filters C(6) and C(10) are the
most conservative (the less aggressive) filters.

From all filters, they have the smallest P(E})
and highest P(FEy) values. One can choose to
use a Consensus filter if the training set is small
and the cost of adding new training examples
is high. The iterated versions of the Consen-
sus filters are (as can be easily understood) less
conservative (but in comparison with the other
filters, still more conservative). This results in a
slightly higher, but still acceptable, P(FE}), but
a smaller P(E5).

The Majority Vote filters M(6) and M(10)
have a precision comparable with the precision
of the Robust filter. The precision of the it-
erated versions of the Majority Vote filters are
comparable with (but slightly higher P(E}) and
slightly lower P(FE5) than) the precision of the
Majority Vote filters.

4.4 Tree Size

We tabulate the number of nodes in the trees
induced from the filtered sets. We also report
the number of nodes in the trees induced
from the unfiltered sets (column under “T”).
Note that, since we take the mean over 10
runs, the values in the tables below are not
always integers. When the number of nodes
in a tree induced from a filtered set is smaller
than or equal to the number of nodes in the
tree induced from the unfiltered data set, the
number is put in bold.

| N [T [R [S()[ISG) | M(6) [M) |

0 72 | 7.2 7 7 7.2 7.2

5.10 8.8 8 8 7.4 7.7 7.7

9.92 92 | 83 | 7.9 6.9 8.2 8

15.02 || 83 | 7.3 7 5.9 7.8 7.8

2007) 85 | 7.8 | 6.9 | 5.3 8.7 8.5

2494 93 | 83 | 84 | 5.4 8.2 7.7

30.05 || 12.3 | 10.9 | 8.2 | 4.5 7.9 7.8

35.09 || 116 | 12.2 | 8.8 | 4.5 | 11.4 9.2

3997 || 94 | 105 | 7.5 | 4.2 11.7 9.5

The trees induced by Tilde from a filtered
training set are almost always smaller than the
trees induced by Tilde from the noisy training
set (except for the (Iterated) Consensus filters
where the trees are larger for noise levels from
15-20% to 40%). Using the IS(2) filter results in
the smallest trees (see the following subsection).

4.4.1 Comparison with Random Data

Reduction
In (Oates and Jensen, 1997) it is empirically
shown that for many data sets there is a nearly

linear relationship between training set size and
tree size, even after accuracy has ceased to in-
crease. This suggests that all data reduction
techniques will see some decrease in tree size
simply because they are reducing the size of
the training set. Therefore, each data reduction
method should be compared with random data
reduction. Only then one can have an idea of
how much of the reduction in tree size is directly
attributable to how a data reduction method se-
lects instances to remove.

In (Oates and Jensen, 1997) this analysis was
done for Robust C4.5 (John, 1995) and it was
shown that 41.67% of the decrease in tree size
is attributable to reduction in training set size.
The remainder is due to the removal of uninfor-
mative examples.

We investigated this issue for some of our fil-
ters, and report our results for the 1S(2) filter®
here. To determine how much of IS(2)’s effect
on tree size for a given data set is due to reduc-
tion of training set size alone, we need to know
the following (we follow the approach of (Oates
and Jensen, 1997)):

e the size of the tree that Tilde builds on the
entire data set (T),

e the size of the tree that Tilde builds on the
filtered data set (IS(2)),

e the size of the tree that Tilde builds on the
data set from which we randomly removed

the same percentage of examples as 1S(2)
did (RDR).

The percentage of IS(2)’s effect on tree size
which is due to reduction in training set size
can then be computed as:
T - RDR

100 = T-1502)
This percentage is shown in the following
table in the column under “Effect”. In the
column under “F” the percentage of training
examples that were removed by the IS(2) filter
is reported (note that this is also the percentage
of randomly removed training examples).

SRecall that, using the IS(2) filter results in the small-
est trees.

[N [T [1S@] F |RDR | Bffect |

0 7.2 6.3 6.26 8.1 -100
5.10 8.8 5.4 | 12.70 9 -5.88
9.92 9.2 5.1 1797 | 8.5 17.07
15.02 || 8.3 4.4 | 2231 | 7.9 10.26
20.07 || 8.5 3.9 | 3254 | 8.1 8.70
24.94 || 9.3 4.2 | 3724 | 8.5 15.69
30.05 || 123 | 3.8 |48.04 | 7.4 57.65
35.09 || 11.6 | 2.2 | 57.06 | 9.7 20.21
39.97 | 9.4 2.3 | 58.84 | 6.6 39.44

L N [TR

We see that, for all noise levels, a great
percentage of the reduction in tree size is at-
tributable to how IS(2) selects examples to re-
move. For the noise level of 10% (17.97% of the
examples are removed) and higher, we also see
a reduction in tree size using random data re-
duction, but this reduction is never as big as the
reduction we observe when we use IS(2).

4.5 Accuracy

We tabulate the accuracies of the trees induced
from the filtered sets (on the non-noisy test
sets). We compare them with the accuracies
(also on the non-noisy test sets) of the trees in-
duced from the unfiltered, noisy sets (reported
in the column “T”). We only report our results
for the filters R, M(6), and IS(2).

In the column under “RDR” we report the
accuracies of the trees induced on the training
set from which we randomly removed the same
percentage of training examples as the IS(2) fil-
ter did (see previous subsection).

When the accuracy obtained by using Tilde
on a filtered training set is equal to or higher
than the accuracy obtained by using Tilde on
the unfiltered training set, it is put in bold.

[M(©) [1S?) [RDR

0 1 1 1 0.93 1
5.10 || 0.99 |1 0.99 | 0.99 || 091 | 0.97
9.92 |1 099 |1 0.99 | 099 || 092 | 0.98
15.02 || 0.94 | 0.94 | 0.95 || 091 | 0.94
20.07 || 0.95 | 0.95 | 0.96 || 0.86 | 0.94
2494 || 0.93 | 0.94 | 0.92 0.87 | 0.90
30.05 || 0.90 | 0.90 | 0.93 || 0.84 | 0.83
35.09 || 0.85 | 0.86 | 0.85 0.74 | 0.72
39.97 || 0.75 | 0.75 | 0.74 || 0.70 | 0.69

From the experiments (see (Verbaeten and
Cardoen, 2002)) we see that using a (Iter-
ated) Single Algorithm filter before learning
with Tilde does not increase accuracy (except
for a few cases). More interestingly in this re-
spect is Robust Tilde and the (Iterated) Major-

ity Vote filters, which perform best w.r.t. accu-
racy. We also observe that the (Iterated) Con-
sensus and (Iterated) Majority Vote filters are
especially useful for noise levels of 15% and 20%.
Because Majority Vote filters perform better
than Consensus filters, we might conclude that
retaining noisy examples hinders performance
(in terms of accuracy) more than throwing out
correct examples. This trend is particularly im-
portant when one has an abundance of data.
This was also observed in (Brodley and Friedl,
1999) for other (non-artificial) data sets.

Strangely enough, we observe that up to a
noise level of 25%, the accuracy of Tilde us-
ing RDR is always higher than” the accuracy of
Tilde using the IS(2) filter. This is not what we
expected, and we plan to investigate this issue
further.

Finally, we should note that the accuracy of
Tilde on an unfiltered noisy training set is still
very good: Tilde® is very noise-tolerant.

5 Conclusion and Future Work

We addressed the problem of training sets with
mislabeled examples in ILP classification prob-
lems. We proposed a number of filtering tech-
niques for identifying and removing noisy exam-
ples. We experimentally evaluated these tech-
niques on a Bongard data set which we artifi-
cially corrupted with different levels of classi-
fication noise. We reported results concerning
filter precision, tree size and accuracy.

There are several issues which remain to be
studied. First of all, we only validated the fil-
tering techniques on one (artificial) data set. It
remains to be seen if our conclusions also hold
for other (non-artificial) data sets.

A hypothesis of interest is whether a majority
vote ensemble classifier can be used instead of
filtering. This hypothesis was tested in (Brod-
ley and Friedl, 1999). There, two majority vote
ensemble classifiers were formed: one from the
filtered and one from the unfiltered data. The
resulting classifiers were then used to classify
the uncorrupted test data. The experiments in
(Brodley and Friedl, 1999) show that the ma-
jority vote classifier performed better than the
individual classifiers, but that it cannot replace

"but still not higher than the accuracy of Tilde
trained on the unfiltered noisy data set
®Recall that we use Tilde with pruning.

filtering when data are noisy. It is concluded
that the best approach is to combine filtering
and voting. We are currently testing this hy-
pothesis in our setting.

We were not concerned with efficiency in this
paper. But it can be easily understood that
some of our filters take quite some time. The
Robust filter and the Iterated Voting filters run
Tilde several times on slightly modified (re-
duced) training sets. An efficient algorithm for
updating first-order trees would be beneficial in
this respect.

References

H. Blockeel and L. De Raedt. 1998. Top-down in-
duction of first order logical decision trees. Arti-
ficial Intelligence, 101(1-2):285-297, June.

C.E. Brodley and M.A. Friedl. 1999. Identifying
mislabeled training data. Journal of Artificial In-
telligence Research, 11:131-167.

D. Gamberger, N. Lavra¢, and S. Dzeroski. 2000.
Noise detection and elimination in data prepro-
cessing: experiments in medical domains. Applied
Artificial Intelligence, 14:205-223.

G.H. John. 1995. Robust decision trees: Remov-
ing outliers from databases. In U.M. Fayyad and
R. Uthurusamy, editors, Proceedings of the First
International Conference on Knowledge Discov-
ery and Data Mining, pages 174-179. AAAT Press.

N. Lavrac and S. Dzeroski. 1994. Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood.

T. Oates and D. Jensen. 1997. The effects of train-
ing set size on decision tree complexity. In Pro-
ceedings of The Fourteenth International Confer-
ence on Machine Learning, pages 254—262. Mor-
gan Kaufmann, Nashville, TN.

J.R. Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1:81-106.

J.R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann series in machine
learning. Morgan Kaufmann.

A. Srinivasan, S. Muggleton, and M. Bain. 1992.
Distinguishing exceptions from noise in non-
monotonic learning. In Proceedings of the 2nd
International Workshop on Inductive Logic Pro-
gramming.

S. Verbaeten and T. Cardoen. 2002. Techniques
for identifying mislabeled training examples in
ilp classification problems. Technical Report CW-
347, Department of Computer Science, Katholieke
Universiteit Leuven.

S. Weisberg. 1980. Applied linear regression. John
Wiley & Sons.

Locally Linear Generative Topographic Mapping

J.J. Verbeek and N. Vlassis and B. Krose
Intelligent Autonomous Systems Group
Informatics Institute, University of Amsterdam
{verbeek,vlassis,krose} Qscience.uva.nl

Abstract

We propose a method for non-linear data pro-
jection that combines Generative Topographic
Mapping and Coordinated PCA. We extend
the Generative Topographic Mapping by using
more complex nodes in the network: each node
provides a linear map between the data space
and the latent space. The location of a node
in the data space is given by a smooth non-
linear function of its location in the latent space.
Our model provides a piece-wise linear mapping
between data and latent space, as opposed to
the point-wise coupling of the Generative To-
pographic Mapping. We provide experimental
results comparing this model with GTM.

1 Introduction

The Generative Topographic Mapping (GTM)
(Bishop et al., 1998b) is a tool for non-linear
data projection that has found many applica-
tions since its introduction. The idea is to fix a
set of points in a latent space (which is used for
visualization), these points are mapped through
a Radial Basis Function Network (Ripley, 1996)
into the data-space, where they are the means
of the components of a Gaussian mixture. For
projection, the data posterior probabilities on
the mixture components are computed and the
latent-space coordinates are averaged accord-
ingly.

In this paper we extend the GTM by us-
ing more expressive covariance structure for the
Gaussians in the mixture and, more impor-
tantly, by attaching to each mixture component
a linear map between data and latent space.

The model may also be regarded as a re-
stricted form of the Coordinated Principal Com-
ponent Analysis (CPCA) model (Verbeek et
al., 2002) (on its turn a restricted form of the
coordinated factor analyzers model (Roweis et

al., 2002)). CPCA extends probabilistic Prin-
cipal Component Analysis (PCA) (Tipping and
Bishop, 1999; Roweis, 1997) by integrating the
mixture of probabilistic PCA’s into one non-
linear mapping between a data and a latent
space. This is done by assigning a linear map
from each PCA to a single, global, latent space.
The objective function of CPCA sums data log-
likelihood and a measure of how consistent the
predictions of the latent coordinates are. With
consistent we mean that PCA’s that give high
likelihood to a data point in the data space
should give similar predictions on the (global)
latent coordinate.

Here, we restrict the locations of the mixture
components in the D-dimensional data space to
be given by a smooth (non-linear) function of
their location in the d-dimensional latent space
(d < D). The relation between the proposed
model and the CPCA is analogue to the re-
lation between the GTM and Kohonen’s Self-
Organizing Map (Kohonen, 2001).

CPCA can be used for data visualization,
however the model only aims at data log-
likelihood maximization and at uni-modal dis-
tributions on the latent coordinate given a data
point (consistency). What we would also like
is uni-modal distributions in the other direc-
tion: the density on the data-space given a la-
tent coordinate. By constraining the data-space
centers of the Gaussian mixture components to
be given by a smooth non-linear mapping of
their latent space centers we safeguard CPCA
against mixture components that are close in
latent space but widely separated in the data
space (which can cause multi-modal distribu-
tions from latent to data space).

The rest of the paper is organized as fol-
lows: in the following section we will discuss
GTM and PCA and CPCA in some more detail.

Then, in Section 3 we present the new genera-
tive model and an EM-style learning algorithm
is given in Section 4. Experimental results are
presented and discussed in Section 5. We end
the paper with a discussion and some conclu-
sions in Section 6.

2 Generative Topographic Mapping,
PCA and Coordinated PCA

Generative Topographic Mapping The
Generative Topographic Mapping (GTM)
(Bishop et al., 1998b) model is a tool for
data visualization and data dimensionality
reduction. Typically GTM is used for high
dimensional numerical data. The data density
is modeled by a mixture distribution that
is parameterized in a way that enables low
dimensional visualization of the data.

The generative model of GTM is a mixture of
k spherical Gaussians, all having the same vari-
ance o2 in all directions. The components of
the Gaussian mixture are also called nodes, and
play a similar role as the nodes in Kohonen’s
Self-Organizing Map (Kohonen, 2001). With
each mixture component s, a fixed latent coordi-
nate ks is associated (typically the latent space
is a two dimensional Euclidean space, and the
K are chosen on a rectangular grid). In the la-
tent space a set of m fixed (non-linear) smooth
basis-functions ¢;, ..., ¢, are defined, the vec-
tor ¢(ks) denotes the response of the m basis
functions on input ks;. The mean of mixture
component s is given by We(ks), where W is
a D x m matrix. Hence, due to the smooth-
ness of the basis-functions and because the mul-
tiplication with W is just a linear map, com-
ponents with close latent coordinates will have
close means in the data space.

Suitable parameters ¢ and W of GTM
are typically found by employing a sim-
ple Expectation-Maximization (EM) algorithm.
Like most EM algorithms, the algorithm can get
stuck at locally optimal solutions, there is no
guarantee to find globally optimal parameters

In order to visualize the high dimensional
data in the latent space, for each data point
the posterior distribution on the mixture com-
ponents is computed. The latent coordinates of
the nodes are then weighted according to the
posterior distribution to give the latent coordi-
nate for the data point.

Principal Component Analysis Principal
Component Analysis (PCA) (Jolliffe, 1986) is a
widely known and used method for data visual-
ization and dimensionality reduction. Assuming
the data has zero mean, the data vectors {xy}
are modeled as x,, = Ag, +¢€,. Here, x,, isa D
dimensional data vector, g, the corresponding
latent coordinate, A a D x d dimensional matrix
and €, a residual vector. PCA uses the linear
mapping A that minimizes sum of the squared
norms of the residual vectors to map the data
into a d dimensional representation.

The PCA linear map (matrix) A can also be
found as the limiting case of ¢ — 0 of fitting
a Gaussian density to the data where the co-
variance matrix is constrained to be of the form
021+ AAT The latter model is known as Prob-
abilistic PCA (Roweis, 1997).

Coordinated PCA Several Probabilistic
PCA’s can be combined in a mixture, by tak-
ing a weighted sum of the component densi-
ties (Tipping and Bishop, 1999). In the mix-
ture case a set local PCA’s is fitted to the data.
Data can now be mapped in either one of the
PCA models, however coordinates of the differ-
ent PCA spaces cannot be related to each other.
The coordinated PCA model (Roweis et al.,
2002; Verbeek et al., 2002) resolves this prob-
lem. Each PCA space is mapped linearly into
a global low dimensional space. The global low
dimensional space provides a single low dimen-
sional coordinate system for the data. The ques-
tion is which linear maps between the PCA’s
and the global latent space we would like.

It turns out that the data log-likelihood is in-
variant for how the different PCA spaces are
coordinated, i.e. mapped into the global space.
Therefore in (Roweis et al., 2002; Verbeek et
al., 2002) a penalty term is added to data
log-likelihood to find a coordinated mixture of
PCA’s. For every data point x,, we can com-
pute the posterior probability on every PCA
s. Furthermore, a prediction p(gy|s, x,) on the
global latent coordinate can be made using ei-
ther PCA. The penalty term measures for every
data point the ambiguity of the prediction on its
global latent coordinate as given by p(gn|xn) =
> s P(8|%n)p(8nls, xpn). The measure of ambigu-
ity is the smallest Kullback-Leibler divergence
between p(g,|x,) and any Gaussian density.

It turns out that adding this penalty term

is exactly the same as using a variational EM
algorithm (Neal and Hinton, 1998). Hence, it
is relatively straightforward to derive EM algo-
rithms to optimize the parameters of the model
for this objective function.

In the next section we describe a generative
model that combines the ideas of GTM and Co-
ordinated PCA.

3 The Generative Model of Locally
Linear GTM

The generative model is best understood by
starting in the latent space. First one of the
k ‘units’ is chosen uniformly random, let’s call
it s. Then, a latent coordinate is drawn from
p(g | s). Finally, an observation x is drawn from
p(x | g,s). Using N (i,) to denote a Gaussian
distribution with mean g and covariance matrix
3%, the distributions, collectively parameterized
by 68 = {o,p,a, W, Ay,..., Ay}, are:

1
p(s) = %
p(g|s) = N(ks,a’po?)
p(x]g,s) = N(We(ks) + As(g — Ks)/a, 0°T)

The marginal distribution on x given s reads:
p(x | 5) = N(We(k,), o> (L+ pA,A])

Each mixture component p(x | s) is a Gaussian
with variance o2 in all directions except those
directions given by the columns of A where the
variance is p times larger. The form of the co-
variance matrix is that of probabilistic PCA,
however here the vectors spanning the PCA sub-
space (given by the columns of A) all have the
same norm.

The distribution on latent coordinates is a
mixture of isotropic Gaussians (spherical covari-
ance matrix) with equal mixing weights. The
columns of the matrix A; span the PCA sub-
space of mixture component s, and provide the
mapping for component s between the latent
space and the data space. The parameter « is
a magnification factor between latent and data
space.

The generative model is almost the same as in
(Verbeek et al., 2002), the only difference is that
we constrain the data-space mean of the mix-
ture component s to W¢(ks) and keep the {k4}

fixed. The mapping is a linear sum, parameter-
ized by the D x m matrix W, of m non-linear
basis functions ¢1, ..., ¢, of d inputs. The out-
put of the function ¢;(k) is the i-th element of
the vector ¢p(k). In fact, we also add one con-
stant basis function and d linear functions which
just output one of the components of the input
vector. These basis-functions can be used to
capture linear trends in the data. In our model
we consider the basis functions {¢;} to be fixed
as well as the {ks}, all other parameters are
fitted to a given data set.

To compare, the generative model of GTM,
which is a special case with p = 0 of the model
used here, looks like:

1
p(s) = A
p(gls) = d(ks)
p(xls,g) = N(We(ks),o?1),

where d(ks) denotes the distribution that puts
all mass at kg. This is similar to the model
used in this paper, but (1) GTM uses a mixture
of spherical Gaussians for the data space model
and (2) GTM uses a mixture of delta peaks to
model the density in the latent space.

Note that in our model, given a specific mix-
ture component, the expected value of x de-
pends linearly on g and vice versa, see Section
4.3. Whereas using GTM, given a mixture com-
ponent s, there is no modeling of uncertainty in
the latent coordinate g corresponding to a data
point x, it is simply assumed that g = k.

4 Learning

The learning algorithm tries to achieve two
goals. On the one hand we want a good fit on
the observed data, i.e. high data log-likelihood.
On the other hand, we want the mappings from
data to latent space to give ‘consistent’ predic-
tions, i.e. if a data point is well modeled by
two mixture components in the data space, then
these should give similar predictions on the cor-
responding latent coordinate of the data point.
In the following subsections we first discuss the
objective function, then we describe how we ini-
tialize all the model parameters, and finally we
discuss the learning algorithm.

4.1 The Objective Function

As shown by Roweis et. al. (Roweis et al., 2002)
the double objective can be pursued with a vari-
ational Expectation-Maximization (EM) algo-
rithm. The free-energy interpretation of EM
(Neal and Hinton, 1998) clarifies how we can use
EM-like algorithms to optimize penalized log-
likelihood objectives. The penalty term is the
Kullback-Leibler (KL) divergence between the
posterior on the hidden variables and a specific
family of distributions, in our case uni-modal
Gaussian distributions. The objective function
sums data log-likelihood and the KL divergence
which is a measure of how uni-modal the pre-
dictions on the latent coordinate are.

The objective ® can be decomposed in two
ways, given in equations (1) and (2) below,
which can be associated respectively with the E
and M step of EM. The first is the log-likelihood
minus the KL-divergence, which is convenient
for the E-step. The second decomposition iso-
lates an entropy term independent of @, which
is convenient in the M-step.

&= 2 W+ Y logp(x:0)
— " Dkr(@Qn(g,) [p(g. s | xn30)) (1)

A
= _5 H w ||2 +ZEQn logp(xn,g,s;H)

+> H(Qu(g: 9)), (2)

where Dk, and H are used respectively to de-
note Kullback-Leibler divergence and entropy
(Cover and Thomas, 1991). The first term
in both decompositions implements a Gaussian
prior distribution over the elements of the ma-
trix W, with inverse variance A on each ele-
ment. It makes sense to put a uniform prior on
on the weights for the linear and constant basis-
functions. However, to keep notation simple, we
assume equal prior on all weights here.

The distributions @, (g, s) over mixture com-
ponents s and latent coordinates g are restricted
to be independent over s and g, and of the form:

Qn(ga 5) = QnsQn(g) and Qn(g) = N(gm En)

It turns out that ® is maximized w.r.t. X, if
3, = v !, where v = (p + 1)/(a?pc?) is the

inverse variance of p(g | x,s). Hence, in the
following we assume this equality and do not
use X, as a free parameter anymore. The {g,s}
play the role of the ‘responsibilities’ in normal
EM. Finally, g, is the expected latent coordi-
nate for data point x,, if we approximate the
true distribution on the latent coordinate with
a uni-modal Gaussian. Hence, we might use the
g for visualization purposes.

4.2 Initialization

We initialize the model using Principal Com-
ponent Analysis (PCA) (Jolliffe, 1986). Sup-
pose, without loss of generality, that the data
has zero mean. We use a projection of the data
to the two dimensional PCA subspace to initial-
ize the locations g, of the distributions Q,(g).
The columns of the loading matrices {As} are
initialized as the principal eigenvectors of the
data covariance matrix. The variance o2 is ini-
tialized as the mean variance in directions out-
side the PCA subspace. The {k} are initialized
on a square grid such that they have zero mean
and the trace of their covariance matrix matches
that of the covariance of the {g,}. The W is
then taken as to map the {ks} onto {Agks}.
Then, we assign the data point n to the compo-
nent with kg closest to g,,. Using the non-empty
clusters, we compute the p and «. To initialize
p, we use the mean value (over all non-empty
clusters) of the total variance in the cluster in
the data space minus Do? and divide the sum
over do?. For a? we use the average of the mean
variance in the cluster in the latent space and
divide it over po?. Finally, we can compute op-
timal ¢,s and start the learning algorithm with
a M-step of the EM-algorithm described in the
next section.

The inverse variance A of the prior on the ele-
ments of W can be made larger to get smoother
functions. In our experiments we used \ = 1.
4.3 Updating the Parameters
Using the notation:

LT v.,T -2 -1.T
5715 - ﬁxnsxns + ignsgns —0 "« anAsgns
d
+Dlogo + 3 log (p+1),

Xns = Xp — Wd)(K’S)a and gns = 8n — Ks.

The objective (2) can be written as:

A
¢ = D) | W H2 _ZQns[IOans+gns +c,

ns

where c is some constant in the parameters. All
the update equations below can be found by set-
ting the derivative of the objective to zero for
the different parameters. First, we give the E-
step update equations:

e_gns

Zs/ 6_8”5/ ’

where for all NV data points the expected latent
coordinate given component s is:

Gns =

gn = Z Gns(8n) s>
s

ap
(8n)s = Ep(g\x,s) 8] = ks + ﬁA;—X”S.

Next, we give the M-step update equations. For
A we have to minimize:

> GnsX, o Asgns-
n

This problem is known as the ‘weighted Pro-
crustes rotation’ (Cox and Cox, 1994). Let

C= [\/ q1sX1s """/ qNSXNS] [\/ q1s81s " "/ QngNs]T

with SVD: C = ULT', (the gy,s have been
padded with zeros to form D-dimensional vec-
tors). The optimal Ay is given by the first d
columns of UT'T. For W we find:

W = [Z Qns(xn - Oés_lAsgns)d)(K's)T}
XY ansd(0)Blrs) " + Aol -

For the updates of the three variance parame-
ters we use the following notation:

A= Z QnsXZsAsgnSa B = Z QnerTLan&
ns ns

C - Z Qnsgr—fsgns-
ns

Simultaneously setting the derivatives of ®
w.r.t. a, p and o to zero gives:

(D — d)A? Clp+1)

1= 7 — —_\F "7
P S amBo— Ay YT T 4
, B-a'A

=7 ND

5 Experimental Illustration

In this section we provide experimental results
comparing the presented model with GTM. The
first two experiments use artificially generated
data. In the last experiment we use chemical
chromatogram data from the Unilever research
department.

Artificial data The first data set consisted of
points in IR? drawn along the sine function. We
used GTM (20 units, 5 basis-functions) and our
new model (5 units, 3 basis-functions) to map
the data to a one dimensional latent space. The
fitted models and the latent space representa-
tions are given in Figure 1. We see that for
GTM the distribution of the latent coordinates
clusters around the mixture component loca-
tions. For our model, while using 4 times fewer
mixture components, the latent coordinates do
not show this clustering due to the piece-wise
linear maps.

Next, we generated a data set in IR? by first
drawing uniformly random from the unit square
in IR?, then to every data point x, we then

added a third coordinate XS’) with:

x®) = (x(V —1/2)2 + 2(xP —1/2)3 + ¢,
where € is a random variable with distribution
N(e;0,10071). In Figure 2 we show the pro-
jections found by our method and GTM. Again
we see that GTM concentrates the latent coor-
dinates around the locations of the units, the
projection ‘clumps’ around the units. Whereas
our method gives a projection that matches the
original distribution on the unit square better.

Chromatogram data We demonstrate the
performance of the proposed method and GTM
on a problem from high-throughput screening
of Maillard reactions, which involves the heat-
ing of sugars and amino acids, giving rise to
complex mixtures of volatile flavor compounds.
The reaction product mixtures are character-
ized through fast gas chromatography. At
Unilever R&D labs, it was found that a single
GTM plot of the chromatographic data, based
on two latent variables, is equally informative as
the screening of many score plots from various
PCA combinations. The data was preprocessed
by mapping it with PCA onto a 20 dimensional
linear subspace of the original 2800 dimensional
space.

Figure 1: Top left panel: GTM fit (disks give means of mixture components, dashed line the
ordering of the components in latent space) on data (dots). Top right panel: our new model (the
sticks depict vectors /poA, used for the linear maps). Bottom panel: (top) latent coordinates for
our method, and GTM (middle 20 nodes, bottom 10 nodes). Both sets of latent points have the

same variance.

Figure 2: Projections of (from left to right) the proposed model, GTM and original 2D coordinates

(which are rotated).

We call an ingredient separable if all the mea-
surements on compounds which contain, or do
not contain, the ingredient form a cluster in the
projected data. In our experiment we found
that most ingredients which were separable us-
ing GTM were also separable with our new pro-
jection method. In the experiments GTM used
400 nodes and 16 basis-functions, our model
used only 36 units and 16 basis functions.

6 Discussion and Conclusions

Discussion Constraining the means of the
mixture components to the manifold spanned
by a smooth mapping ensures that components
that are close in latent space will also be close
in the data space. This makes the constrained
version of Coordinated PCA more suitable for
visualization purposes.

Comparing the presented model with GTM,
we observe that we extended the point-wise cou-

pling between data and latent space to a lo-
cally linear coupling. This removes the effect
of ‘clumpy’ projections, as discussed in the pre-
vious section.

Several variations on the presented model are
possible. For example, we might model the
variances per mixture component and make the
{Ks} free parameters. However, here we wanted
to keep the model close to GTM. As for the
last option, the optimization w.r.t. the {Kks}
is a somewhat more involved due to the non-
linear mappings ¢. However, using local linear
approximations of the non-linear functions we
could do the optimization.

Note that the component covariance struc-
ture is not aligned with the non-linear function.
However, in practice we do expect the local sub-
spaces to be more or less aligned with the man-
ifold due to the coordination (see Figure 1). To
speed-up the algorithm, we might set the {A,}

Ingredient 1

Ingredient 2

Ingredient 3

e o
o,
ST age i ¥
o oe o o . S
Y . L
& o ¥ SR A & o P ¥
a S LEE a 9
ﬁgiﬁ““ ¥
oo o0 &
o5 ¥D%g"é’ 8 3 8, f
Ba o
o & ..
Aa
£
g 8 " o
0 g® o
s
DB o B8° %

Figure 3: Projections of all the data for the proposed model (top) and GTM (bottom). From left
to right we highlight compounds with one of three ingredient with boxes.

as manifold aligned and check whether this in-
creases the objective function. We only need
re-compute the {A;} with SVD if taking them
manifold aligned does not increase the objective
function.

In (Bishop et al., 1998a) an extension of GTM
is discussed where the the covariance matrix of
p(x]|s) is taken to be of the form o?I +nDDT,
where the d columns of the D x d matrix D
contain the partial derivatives of the RBF net-
work.! This generative model has a similar form
of the covariance matrix in the data space as we
use, however in the latent space it uses the same
discrete distribution as GTM. Therefore, the ex-
tension described in (Bishop et al., 1998a), just
like normal GTM, doesn’t have the linear de-
pendence of the expected value of g on x given
s.

Conclusions We proposed a generative
model and corresponding learning algorithm
for visualization and projection of high-
dimensional data. The model integrates the
GTM and Coordinated PCA.

Experimental results show that the model
does not suffer from the ‘clumpy’ projections
of GTM. Furthermore, in the latent-space we
have a true density function where GTM only
provides a discrete ‘spike’ distribution on the
latent-space. Also, the proposed model provides

1The M step of the proposed EM algorithm is not
exact, due to the dependence of D on W.

a density p(x | g), whereas for GTM this distri-
bution is not clearly defined.

Finally, the proposed model provides a mea-
sure of uncertainty on the found latent coordi-
nates summarized in the distributions Q,(g).

Acknowledgments

We would like to thank Dick de Ridder and Sam
Roweis for fruitful discussions. We would also
like to thank Claire Boucon and Sijmen de Jong
(Unilever R&D Vlaardingen, The Netherlands)
for providing the Maillard reaction data and ex-
perimental results. This research is supported
by the Technology Foundation STW (project
nr. AIF4997) applied science division of NWO
and the technology program of the Dutch Min-
istry of Economic Affairs.

References

C. M. Bishop, M. Svensén, and C. K. L
Williams. 1998a. Developments of the gen-
erative topographic mapping. Neurocomput-
ing, 21:203-224.

C. M. Bishop, M. Svensén, and C. K. I Williams.
1998b. GTM: The generative topographic
mapping. Neural Computation, 10:215-234.

T. Cover and J. Thomas. 1991. Elements of
Information Theory. Wiley.

T.F. Cox and M.A.A. Cox. 1994. Multidimen-
sional Scaling. Number 59 in Monographs on
statistics and applied probability. Chapman
& Hall.

I.T. Jolliffe. 1986. Principal Component Anal-
ysis. Springer-Verlag.

T. Kohonen. 2001. Self-Organizing Maps.
Springer Series in Information Sciences.
Springer-Verlag, Heidelberg, Germany.

R. M. Neal and G. E. Hinton. 1998. A view of
the EM algorithm that justifies incremental,
sparse, and other variants. In M.I. Jordan,
editor, Learning in Graphical Models, pages
355-368. Kluwer Academic Publishers, Dor-
drecht, The Netherlands.

B.D. Ripley. 1996. Pattern Recognition and
Neural Networks. Cambridge University
Press, Cambridge, U.K.

S.T. Roweis, L.K. Saul, and G.E. Hinton. 2002.
Global coordination of local linear models. In
T.G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Informa-
tion Processing Systems 14, Cambridge, MA,
USA. MIT Press.

S.T. Roweis. 1997. EM Algorithms for PCA
and SPCA. In M. Jordan, M. Kearns, and
S. Solla, editors, Advances in Neural Infor-
mation Processing Systems, volume 10, pages
626-632. MIT Press.

M.E. Tipping and C.M. Bishop. 1999. Mixtures
of probabilistic principal component analy-
sers. Neural Computation, 11(2):443-482.

J.J. Verbeek, N. Vlassis, and B. Krose. 2002.
Coordinating Principal Component Analyz-
ers. In J.R. Dorronsoro, editor, Proceedings
of International Conference on Artificial Neu-
ral Networks, Lecture Notes in Computer Sci-
ence, pages 914-919, Madrid, Spain, August.
Springer.

Detecting orthogonal class boundaries in entropy behaviour

Floor Verdenius
Agrotechnological Research Institute (ATO BV)
Wageningen University & Research Centre
PO box 17
6700 AA Wageningen
The Netherlands

F.Verdenius@ato.wag-ur.nl

Abstract

One of the key problems in machine
learning is technique selection. Machine
learning techniques construct models of a
particular class. Finding an appropriate
model class for a domain is an important
step in technique selection. Here we focus
on the model class of nested hyper-
rectangles, orthogonal to numerical
variables. We show that patterns in this class
produce sharp and deep cusps in the
distribution of information gain over
variables. Cusps correspond to points on the
scale of a variable where the distribution of
information gain is non-differentiable. Next
we describe a method based on wavelets that
can recognise such cusps in noisy
distributions. Using artificially generated
data and UCI data sets, we show that the
cuspiness of information gain distributions
can be used to choose between methods for
nested hyper-rectangles and methods for
linear hyperplanes.

Introduction

Machine learning techniques construct models
of data within a particular model class. That
model class is usually characterised by the
technique’s hypothesis language. Heuristic
machine learning techniques typically maximise
a multi-attribute criterion that includes
simplicity and fit with the data. Such
maximisation approximates the best hypothesis
within its model class. Given a set of data with a
learning goal and a set of available techniques
the choice of an appropriate technique is often
difficult to make. One of the key factors in
determining a technique is the choice of an

Maarten van Someren
Department of Social Science Informatics
University of Amsterdam
Roetersstraat 15
1018 WB Amsterdam
The Netherlands

Maarten@swi.psy.uva.nl

appropriate model class. An inappropriate
choice of model class and associated induction
method leads to sub-optimal models in terms of
generalisation, comprehensibility and model
efficiency. For example, if class separation
requires a split of the instance space that
corresponds to a hyperplane, then learning a
univariate decision tree will at best produce a
complex tree as an approximation of the actual
pattern. Vice versa, a hyperplane will be a poor
approximation of a pattern that has the shape of
nested hyper-rectangles, orthogonal to the
variables. Both accuracy and comprehensibility
will be sub-optimal.

This paper investigates whether it is possible to
detect strict class boundaries for single
attributes. Strict boundaries suggest on a single
attribute suggest orthogonal nested hyper-
rectangles as class boundaries. A gradual
increasing probability of a class along an
attribute suggests a hyperplane that is not
orthogonal to attributes. We shall call "strict"
boundaries orthogonal boundaries because they
suggest orthogonal models and gradual
distributions /inear because they suggest a linear
hyperplane model. Section 1 introduces entropy
behaviour of the different concept types. Section
2 presents the Continuous Wavelet Transform
(CWT) technique and how it is used to analyse
entropy behaviour. Section 3 presents
experimental evaluation of the approach. The
results from our preliminary work lead to
various discussion topics in section 4.

1 Entropy behaviour

1.1 Definition of Entropy behaviour

The entropy H(X) of a discrete random variable
X is defined as

RETHELLEPN

Proportion \
positive/

negative + \ —
classes \

a1 a; o

Attribute A;
Figure 1. Class distributions for an orthogonal class
boundary (dotted) Ai=a. and a linear class boundary
over A; =[a;,, ai].(dashed)

A ,min a; ,max

H(X)=-)" p(x)log p(x,)° 1

with the log to the base 2, and p(x) being the
probability of X=x;. The class distribution of a
classified data set D with kp elements serves as a
random variable. The entropy over the class
distribution of a data set is often used in machine
learning techniques, such as decision tree
learning (Mitchell, 1997, ch. 3, e.g. C4.5:
Quinlan, 1993) and rule learning (Clark &
Niblett, 1989) to evaluate the predictive value of
a "split" of a variable into intervals. The variable
and split that are most predictive (gain most
information) is selected for building a decision
tree or a rule. Here, however, we propose to
analyse the distribution of information gain over
the entire range of a variable to assess how well
a complete "ONHS" model will explain the data.
Let Hy,; be the entropy over the class distribution
of the total data set. When partitioned at A = a,,
the data set falls apart in two subsets Da.,; and
Daiai. For these subsets, the partial entropies are
H(Da<.) and H(Dpsy). If the number of
instances in the respective data sets is ks, and
ka-ai respectively, the joint entropy of the
partition A = a; is defined as:

L L 2
H(D,,)= ;7‘ H(D,,)+ ; ~H(D,,) ()

D D

Entropy behaviour Ba(a;)) over numerical
variable A is the function that couples every
possible value a; in A to the information gain:
H-H(Da—;)). Given a new, previously unseen
data set with an unknown underlying class
distribution, the analytical form of B, is
unknown. However, it can be approximated in
case a variable contains sufficient potential
partition points a;, that is, if the variable counts a
substantial amount of different values.

Entropy behaviour for orthogonal class boundary: x-05

0.9

0.8

— 25%
- -10%
0%

0.7

06

0.5

0.4]

0.3

0.2

01

Figure 2. Theoretical entropy behaviour for an
orthogonal class boundary at noise levels 0%, 10%
and 25%.

Entropy behaviour, Inear class boundary

4
[XIIENN

0.8

[0.45,0.55]
- -[0.25,0.75]
— 0.1

0.7

06

0.5

0.4]

0.3

0.2

01

Figure 3. Theoretical entropy behaviour for linear
class boundaries over three intervals A; = [a; 1, a;,] (see
legend), at noise levels 0%, 10% and 25%.

1.2 Class boundaries and

behaviour

entropy

Figure 1 shows the class distributions for an
orthogonal class boundary at A; = a, and for a
linear class boundary over the interval A; = [a;;,
a;2]. Figure 2 shows the resulting entropy
behaviour for a,=0.5 for three noise levels. If we
assume a noise free orthogonal class distribution
with the class boundary at A; = a,, we have
complete class information, and consequently
H(Ar=a,) = 0. The minimum entropy value
increases when the noise increases, but for all
noise levels the curve steeply declines to a sharp
minimum at A; = a,, independent of the noise
level. For the example of a linear class boundary
(figure 3) the overall entropy value is higher. In
this case, there is a minimum as well, and we see
it is lower if there is less noise. There is,
however, no sharp cusp at the minimum.

Filling formula (2) with partial entropies, it can
be proven that the entropy behaviour B,; cannot
be differentiated towards A; in A; = a,. This
proof is omitted here due to space constraints.

Entropy behaviour orthogonal boundary x = 0.5

Entropy behaviour linear dlass boundary [0.25, 0.75]

to one of two classes c¢;

0% nolise:
— - 10% noise
—— 25%noise

(i.e. *') or ¢, (i.e. ™). The
data space is split by a

- | class boundary, dividing
the space into two
distributions. Probabilities

are for class c; being
p(C=cy) = n and p(C=c,) =
1-n respectively.
Consequently the

o 02 0.4 06 08 1 o 02 0.4

(a)

Figure 4. Entropy behaviour of a data sample from the class distributions of
figure 1 with 0%, 10% and 25% noise. (a) orthogonal class boundary (b) linear

class distribution.

We note, however, that for li¥n and lifn the
derivative results in -k and k respectively, with
k depending on the noise level.

Figure 3 shows the entropy behaviours for the
linear class boundary of figure 1, over three
different values [a;;, a;2] for A;. Filling in the
partial entropies in (2) is more complex. The
resulting entropy behaviour consists of three
parts: A<a;;, A >a;z, with a behaviour that
follows the entropy behaviour for orthogonal
class distributions, and A;e<a;, a;,]. The latter
shows a gradual curve. It can be proven that at
A=a;; and A=a;,, the entropy behaviour is
differentiable.

1.3 Characteristics of entropy behaviour

In principle, when the underlying class
distribution is known, the entropy behaviour can
be modelled, as shown in the above sections.
Figure 2 and 3 depict the theoretical behaviour
of the orthogonal and linear class distributions.
Orthogonal class boundaries are characterised by
a steep cusp in the entropy behaviour, which is
characterised by a discontinuity in the first
derivative.

In the real world the underlying class
distributions for a data set are unknown. The
data set itself serves as sample from the
underlying class distribution, and class
boundaries reflect in entropy behaviour. To
characterise the underlying class distribution, we
can scan the entropy behaviour for the presence
of cusps in the entropy behaviour.

Data sets of 2000 points are drawn from a 2-
dimensional data space. Points are uniformly
distributed over the data space. All cases belong

probabilities for class c,
() are p(C=c;) = 1= and
p(C=c;) = n. The accuracy
level n defines the
probability that a record is
classified correctly, and is
supposed to be uniformly distributed over the
data space. From this data set the entropy
behaviour is derived. Attribute axes are scanned
by defining partition points at the end of dyadic
intervals (#intervals = 2%, here d = 12). Every
interval boundary A=a; is used to calculate
H(Da-,;). Figure 4 shows the entropy behaviour
for orthogonal and linear class distributions at
different noise levels.

The entropy behaviour of these data sets, as in
the case of real world data, is not smooth. This is
both due to noise in real-world data and
irregularities in data distributions as a result of
the sampling. Until now, we have discussed
simple patterns in simulated data. Subtle
wrinkles in the entropy behaviour can be
indications for class boundaries at a deeper level
in a concept hierarchy, or indications for
multiple orthogonal class boundaries for a
variable. We therefore need an analysis
technique that can help to detect and quantify
singularities in a noisy signal.

2 Continuous Wavelet Transform

Continuous Wavelet Transform (CWT; Mallat,
1999) is a mathematical instrument to analyse
the local behaviour of signals at various levels of
detail. The basic idea behind wavelet analyses is
to describe a complex signal relative to a
constant prototype signal, the mother wavelet.
To gain local insight, this wavelet is translated
over the total space of the complex signal to
cover the total wvariable range, and
dilated/contracted to cover the relevant
frequency ranges. At each frequency, and at
each translation, this results in a similarity

I laar Wavelet D4 Daubechies

01 01
0
0
0.1
0.1 02
0.4 0.6 0.

0.2

C3 Coiflet S8 Symmlet

0.1 0.1
0 0
0.1 0.1

=0. -0.2
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 5. Four mother wavelets

measure between the complex signal and the
wavelet. In other words, a CWT is a 2-
dimensional data structure that describes at each
point over the variable range, and at each scale
level, the match between the signal at hand and
the mother wavelet. The mother wavelet is
chosen from a specific set of mother wavelets,
whose analytical properties are readily
accessible. This way the CWT reveals a wealth
of information on the original signal. CWT is
used for various applications, including signal
analysis, denoising and signal compression. It is
especially applicable to non-stationary signals
(in which it differs from Fourier analysis).

2.1 CWT Basics

A wavelet is a function y(x) with as two main
properties that it integrates to zero (Jy(x)dx = 0,
Waving above and below the x-axis) and that it
has a compact support, that is, if x ¢ [a,b], with
a<b, then y(x) =0. Numerous mother wavelets
w(x) have been proposed. Wavelab, a wavelet
library (Stanford 1996) for Matlab, counts about
ten different mother wavelets. Figure 5 presents
some often-used mother wavelets.

In accordance with Mallat (1999, pp 80), we
adopt y¥(x) to be the second derivative of the
Gaussian kernel, the Mexican hat function:

2 -
y@)=——— 2 (tz - ljez“z 3
7430 o
not shown in figure 5, here normalised for mean
7 and standard deviation c. A signal f(x) is
analysed by convoluting it with a contracted and
dilated version of this mother wavelet. The

result is a multidimensional numerical
representation: the continuous wavelet transform

W (ts):

W (z,5) = } | f(x)w(" - Tjdx,)

N

with t being the translation over the x-axis, and
s the scale of analysis.

Figure 1 depicts an orthogonal class distribution.
The entropy behaviour for a sample, drawn from
this distribution, is shown in figure 4. The
resulting continuous wavelet transform is shown
in figure 6a and 6b. Figure 6a contains a surface
plot. Large absolute values for cwt coefficients
are coloured white, small absolute values are
coloured black. Figure 6b also represents that
CWT, but now, a curve for each scale level s is
drawn. The curve with minimum and maximum
values and the gradual curvature represent the
lowest CWT scale (top of figure 6a), while the
relative flat, but turbulent curves represent the
finer scales (bottom of figure 6a).

2.2 Detecting singularities

The task is to detect discontinuities in the
derivative of entropy behaviours. In the wavelet
vocabulary, these discontinuities are
characterised as singularities, or cusps. The
Lipschitz o describes the regularity of signal. A
singularity is characterised by a a<1. A function
f(x) is Lipschitz a in X, if:

o+)= f(x) <KIH® ®)

for some positive value of K if h—0. The
quantity o can be understood as the continuous
equivalent of times differentiable. A bounded
discontinuity at x, has a Lipschitz a of 0 in X,.
For points x, with a local 0 <« < 1, the function
is not differentiable in x,,.

Mallat (1999, pp 169-173) shows that the local
regularity of a signal at a specific point xg
depends on the decay at fine scales of [Wf(1,s)|
in the neighborhood of xy. This decay can be
measured directly from Wf{t,s), but this is
unnecessarily complex. It can also be obtained
from the local absolute maximum values.

In the CWT, at each scale s, strict local maxima
are called modulus maxima. A maxima line is a
line across scales, for which all points are
modulus maxima. The collection of all maxima
lines for a CWT Wi(u,s) is called the Wavelet
Transform Modulus Maxima (WTMM). Figure
6¢ shows the maxima lines for the CWT (the
numbered lines) of figure 6a.

)

One point of caution in drawing conclusions
from a WIMM is maxima line interference.
CWT analyses a signal with a dilated and
translated version of the mother wavelet. At
each scale, signal effects in the environment of
the point of analysis, influence the CWT
coefficients. In order to draw conclusions from
the maxima lines, they may not be too closely
related, where too closely is defined in terms of
the Cone of Influence. This Cone of Influence
(COI) is the area around a ridge where other
ridges, if present, may influence the coefficient
values. When analysing ridges, the section of the
COI where no other ridges interfere is prone for
analysis. Figure 6¢ gives the COI for the
significant ridges 1 and 2 (unnumbered lines).
Mallat shows that a local singularity (a0 < 1)
only exists for x, when there is a maxima line
converging to X, at finer scales.

Mallat (1999) further shows that for an isolated
singularity in x, the following holds for a cusp
singularity:

1
PPf (u,5) < As 2 < log,|Wf(u,s) <log, A+ (a + %)1og2(s)

(6)
Now, cusp singularities can be detected and their
o can be estimated from the decay of the CWT
coefficients along the modulus maxima line.
More specifically, the local Lipschitz regularity
of a function at a singularity is estimated from
the maximum slope a of the “log|Wf{u,s)| as a
function of “Jog(s) along the maxima lines by:
a+05=a (7
At coarse scales, the maxima related to the
signal behaviour (including cusps) dominate. In
the finest scales the wavelet maxima become
unstable, due to noise induced interactions
between fine scale maxima. Consequently,
determining o« requires selection of the
appropriate S.y, such that the largest scale J is
smaller than the distance between to maxima. In
practice, the value for s, are fixed (e.g. max(s)
—5). For the coarsest level, two options exist.
Mallat proposes a small range from s, upwards.
Struzik (2001) suggests taking it up to the
coarsest scale. We follow Struzik in case of
stable slope. When the slope is unstable, we
determine the maximum slope over a smaller
range:

_ zlog‘Wf(Slo}_210g‘Wf(scrit1
*logls,,|-*log

; ®)

s crit

with s;, begin the coarsest scale in case of stable
behaviour, and the scale range for the maximum
slope in the case of unstable behaviour. In all,
this analysis is restricted to that scale range in
the COI that is free of other curves. By
following the WTMM line towards the finest
scale, the location of a singularity can be
detected.

2.3 CWT analysis of Entropy behaviour

With this definition of v entropy behaviour is
analysed. Given a signal and the mother wavelet,
the CWT (3) and WTMM are -calculated.
Significant ridges are identified, and for each of
the significant ridges the o« value is calculated
(7) to assess whether the ridge describes a cusp
in the data, or a differentiable extreme. The free
interval in the COI is assessed, and if the free
interval fulfils a selection criterion, a ridge is
supposed to identify an orthogonal class
boundary. The criterion assesses:

o Cusp scale persistency (persist), the scale
interval where the ridge lies free in the COL
We use values of around 0.5.

o Dynamic amplitude range (dynrange), the
relative amplitudes of a cusp. These
parameters lead to relatively small (opposed
to the norm of all cusps) wrinkles being
ignored. Typical values are in [0.7,0.75].

o Statistical significance threshold, the
significance of the entropy gain. This
measures whether the entropy gain at the
actual location is significant at all. This
threshold is set at 0.1 %.

3 Evaluation

Generated data

This section assesses in two experiments the
potential of the CWT approach for identifying
orthogonal class boundaries on artificial data. A
first experiment uses data with known
underlying class distributions. Goal of this
exploration is to explore the limitations of
distinguishing orthogonal class boundaries from
linear boundaries. In line with figure 1, 2-
dimensional data sets (x, y € [0,1]) are
generated with orthogonal and linear class
boundaries. The slopes of the linear boundaries
vary from 1 to 5. Class boundaries cross the
point (0.5, 0.5). Set sizes vary from 1000 to

5000 records to assess the influence of the
number of records. For each setting 5 repeats are
drawn. Noise levels are set at 0% and 25%.
Records are drawn randomly with a
homogeneous distribution.
In table 1 the results are presented. Attribute Al
contains sharp cusps in the orthogonal case, and
gradual minima in the case of slopes € [1,5].
With dynrange=0.7 and persist= 0.5 all cusps in
Al are detected when noise is 0%. With 25%
noise, some cusps are omitted, especially in
small data sets where the impact of random
fluctuations in the data distribution increases.
When looking at the various linear data sets it
shows that for several slope-#records
combinations relatively high numbers of cusps
are detected (yellow cells in table 1; e.g. 25%
noise, slope=2.5, #records =3000: 3 cusps). The
Aj-values for assumed cusps however, are fairly
constant in the case of an orthogonal class
boundary (64;<0.5% of the variable range) but
highly variable for the linear class boundaries
(up to 6,>10% of the variable range, with a
minimum of 65> 2%).
In a second experiment a data set with 5
attributes [A;..As] € [0,1] was generated. Class
labels were assigned according to the following
schema:
Table 1. Number of identified cusps in 5-fold 2-
dimensional orthogonal (orth) and linear data sets
with (slopee[1,5]), (a) 0%noise, (b) 25% noise.

A1

slope

orth 5 25 1.67 1.25 1
nr of 1000 5 0 0 1 0 0
records 2000 5 2 0 2 0 2
3000 5 1 0 0 1 2
4000 5 1 0 0 1 0
5000 5 0 1 1 0 0

A2 slope
orth 5 25 1.67 1.25 1
nr of 1000 0 0 1 0 0 0
records 2000 0 0 2 0 1 0
3000 0 0 1 1 0 0
4000 0 0 0 0 0 1
5000 0 0 3 0 1 1

(@)

A1 slope
orth 5 25 1.67 1.25 1
nr of 1000 4 1 0 1 0 2
records 2000 4 1 0 2 1 0
3000 5 1 3 0 3 1
4000 5 1 1 1 0 0
5000 5 1 1 0 3 0

A2 slope
orth 5 25 1.67 1.25 1
nr of 1000 0 1 0 0 1 0
records 2000 0 0 0 1 1 1
3000 0 0 1 0 4 0
4000 0 1 0 0 1 1
5000 0 0 0 0 1 0

Class Cl:

A;> 0.5 AND 2A,<0.3, OR
A;> 0.5 AND A;>0.7, OR

A< 0.5 AND A,<0.3, OR
A< 0.5 AND Ag>0.7
Class C2:

Otherwise
The class distribution over A, is fairly constant
(cf. XOR distributions) and consequently
exhibits no expressive entropy behaviour. The
other attributes show cusps. All cusps are
detected with parameter values dynrange=0.75
and presists=0.5. Figure 6 gives the entropy
behaviour, CWT and WTMM for attribute A,.
Cusps 1 and 3 are tested on significance (0<0.5),
which only applies to cusp 1.

UCI data

From the UCI machine learming repository we
extracted two data sets with numeric attributes
with large numbers of different values: Abalone
and the Wisconsin breast cancer (wdbc). The
data set abalone with 29 classes was transformed
to a 2-class data set. The class labels small and
large are determined such that the set splits in
portions of equal size (2096 and 2081
respectively). Moreover, the nominal attribute
sex was removed from the set. In both data sets
cusps are detected, but the largest entropy
reductions are not coinciding with these cusps.
In a univariate decision tree learner, abundant
partitions may occur. Evaluation was done with
the j48 decision tree learner in WEKA (Witten
and Frank, 1999) and the linear classification
tree generator Quest (Loh and Shih, 1997), both
with standard settings. The results on these data
sets are listed in table 2.

In the abalone case, there are three significant
cusps in three related weight parameters
(correlations of .93, 91 and .88). It seems
justified to state that there is one clear cusp in
this data set, but that this attribute does not
deliver the maximum entropy gain. The resulting
univariate decision tree counts 191 branches and
96 leaf nodes. Each variable occurs 20 to 38
times. A lack of cusps suggests that a linear
classification tree may be more appropriate. This
is confirmed by the results, especially by the
reduced model size.

For the wdbc data, the situation is somewhat
different. The data set consists of mean values
(mn), standard measurement errors (se) and
worst values (ws) for 10 measurements. The

Attribute at2; entropy behavior - 5 level test 0.7 05

0 0.1 0.2 03 0.4 05 06 0.7 0.8 09

Attribute ShIWght; entropy behavior — Abalone binary classification

0.1 02 0.3 04 05 0.6 0.7 08 0.9 1

data is linearly separable wusing all 30
parameters. Moreover, best predictive accuracy
results from a linear hyper-plane of 3 variables.
Cusp analysis shows that 12 variables are likely
to have cusp-like minima, while 18 variables
have non-cusp minima. Moreover, se-variables
show a typical frequency pattern that may
require normalisation (not yet included in our
approach), undermining cusp detection. The
decision tree for wdbc data counts 9 attributes.
For 5 of these attributes, cusp analysis shows
that linear tests could have been appropriate.
The performance of this decision tree (94.2%) is
not much less then a linear classification tree

(96.8%). These results suggest that univariate
decision points already give a reliable prediction
for class membership, which is in line with both
the statements in the data description and the
cuspy character of the data. Figure 7 presents
entropy behaviour, CWT and WTMM for two
attributes. Shell weight is the attribute that is
partitioned in the top decision node of the
abalone decision tree. It's entropy behaviour has
no significant cusps. Mean texture is an attribute
in wdbe, where the partition point corresponds
(almost exactly) with a partition point in the
decision tree.

Table 2. Results for Abalone and WDBC data set. For Our approach detects cusps in

explanation: see text

| Abalone | WDBC
Data set
#attributes 8 31
#records 4177 569
#eusps 3 13
Decision Tree
#nodes 191 25
#leaf nodes 96 13
Minimal repeat per attribute 20 1
Maximal repeat per attribute 38 2
Maximal depth 14 6
Accuracy(%) 77.68 94.2
#nodes on cusps 0 2(3)
Linear Classification Tree
#nodes 27 3
#leaf nodes 14 2
Accuracy(%) 79.1 96.8

Discussion and conclusion

We presented an approach to detect orthogonal
class boundaries in pre-classified data sets. One
of the goals of our work is to evaluate the model
class of a method before actually applying the
method. This is useful because it guides design
decisions by insight in underlying patterns and
because it may gain speed.

Detecting orthogonal class boundaries is non-
trivial problem. Even when we know the model
class of a learning method, using this knowledge
may be more expensive then simply trying out
the method. An early example of this type of
analysis is the observation that 2-layer
perceptrons cannot learn non-linear functions.
This knowledge does not give us a method for
detecting if a pattern has a linear structure that
enables to decide about 2-layer perceptrons. We
focused here on hyper rectangles as model class.
The presence of numerous orthogonal class
boundarics may lad to the induction of
univariate concept hierarchies as the appropriate
method. Absence of orthogonal class boundaries
on the other hand suggests that univariate
concept hierarchies may mnot be the best
representation. CWT are used as tool to detect
cusps in data. The experiments show that if the
density of the data is not very high, spurious
cusps can be found. The analysis still proves
sensitive for parameter adjustments, especially
cusp scale persistency and dynamic amplitude
range.

individual
variables. A further problem is what the
presence or absence of cusps says about the
overall pattern. We are considering two
approaches to this problem. One is an
application of cusp detection in hybrid methods
such as linear classification trees (LLoh and Shih,
1997) as in Van der Ham (2002). Cusp analysis
of entropy behaviour for the maximum entropy
gain may reveal whether a linear or orthogonal
split is appropriate.

The other approach is to combine information
about cusps with correlations between variables
and the information gained by constructing
intervals at cusps to assess if a hyperrectanglular
model class is appropriate.

Acknowledgements

Our thanks go to Zbigniew R. Struzik, Bob
Wielinga and Ferenc v.d. Ham for their
contributions, comments and discussions. This
work co-funded by DWK program 391 of the
Dutch Ministry of Agriculture, Nature
Management and Fisheries.

References

P. Clark and T. Niblett (1989), The CN2 Induction
Algorithm. Machine Learning, 3(4):261-283

U. Fayyad, K.B. Irani (1993). Multi-Interval
discretization of continuos attributes as pre-
processing for classification learning. In
Proceedings of the 13th international Join
Conference on Artificial Intelligence, Morgan
Kaufmann, pp. 1022-1027.

F. van den Ham (2002), Induction o multivariate
decision trees based on orthogonal class
boundaries (in Dutch), MSc thesis, Amsterdam

W.L. Loh and Y-S Shih (1997), Split Selection
Methods for Classification Trees, in: Statistica
Sinica, Vol. 7, pp. 815-840

S. Mallat (1999), A wavelet tour of signal processing
(2™ edition), Academic Press, San Diego (CA)

T.M. Mitchell (1997), Machine Learning, McGraw
Hill

J.R. Quinlan (1993), C4.5, Programs for Machine
Learning, Morgan Kaufmann, San Mateo (CA)

Stanford University (1996), Wavelab .701, at:
http://playfair.stanford.edu/~wavelab

I.H. Witten and E. Frank (1999), WEKA Machine
Learning Algorithms in Java, in: LH. Witten & E.
Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations,
Morgan Kaufman,

Supervised Learning of Bayesian Network Parameters Made Easy

Hannes Wettig*, Peter Griinwald®, Teemu Roos*, Petri Myllymaki*, and Henry Tirri*

* Complex Systems Computation Group
Helsinki Inst. for Inf. Tech. (HIIT)
University of Helsinki
& Helsinki University of Technology
P.O. Box 9800, FIN-02015 HUT, Finland
{Firstname} .{ Lastname} @hiit.fi

Abstract

Bayesian network models are widely used for su-
pervised prediction tasks such as classification.
Usually the parameters of such models are de-
termined using ‘unsupervised’ methods such as
maximization of the joint likelihood. In many
cases, the reason is that it is not clear how
to find the parameters maximizing the super-
vised (conditional) likelihood. We show how
the supervised learning problem can be solved
efficiently for a large class of Bayesian net-
work models, including the Naive Bayes (NB)
and tree-augmented NB (TAN) classifiers. We
do this by showing that under a certain gen-
eral condition on the network structure, the
supervised learning problem is exactly equiv-
alent to logistic regression. Hitherto this was
known only for Naive Bayes models. Since
logistic regression models have a concave log-
likelihood surface, the global maximum can be
easily found by local optimization methods.

1 Introduction

In recent years it has been recognized that for
supervised prediction tasks such as classifica-
tion, we should use a supervised learning al-
gorithm such as supervised (conditional) like-
lihood maximization (Friedman et al., 1997;
Greiner et al., 1997; Ng and Jordan, 2001; Kon-
tkanen et al., 2001; Greiner and Zhou, 2002).
Nevertheless, in most related applications the
model parameters are still determined using un-
supervised methods such as maximization of
the unsupervised (joint) likelihood or (ordinary,
unsupervised) Bayesian methods. One of the
main reasons for this discrepancy is the diffi-
culty in finding the global maximum of the su-
pervised likelihood. In this paper, we show that
this problem can be solved for Bayesian net-
work models, as long as they satisfy a particu-

° CWI
P.O. Box 94079

NL-1090 GB Amsterdam, The Netherlands.

Peter. Grunwald@cwi.nl

lar additional condition. The condition is satis-
fied for many existing Bayesian-network based
classifiers including the Naive Bayes (NB), TAN
(tree-augmented NB) and ‘diagnostic’ classifiers
(Kontkanen et al., 2001).

We find the maximum supervised likelihood
parameters by parametrizing our models in a
different manner; roughly speaking, the param-
eters in our parametrization correspond to log-
arithms of parameters in the standard Bayesian
network parametrization. In this way, each con-
ditional Bayesian network model is mapped to
a logistic regression model. However, in some
cases the parameters of this logistic regression
model are not allowed to vary freely. In other
words, the Bayesian network model corresponds
to a subset of a logistic regression model rather
than a ‘full’ logistic regression model.

We provide a general condition on the net-
work structure under which, as we prove, the
Bayesian network model is mapped to a full lo-
gistic regression model with freely varying pa-
rameters. The supervised log-likelihood for lo-
gistic regression models is a concave function
of the parameters. Since, under our condi-
tion, these parameters are allowed to vary freely
over R¥ for some k, our condition implies that
in the new parametrization the supervised log-
likelihood becomes a concave function of param-
eters in a convex set. This implies that we can
find the global maximum supervised likelihood
parameters by simple local optimization tech-
niques such as hill climbing.

We remark that viewing Bayesian network
classifiers as logistic regression models is not
new; it was used earlier in papers such as (Heck-
erman and Meek, 1997a; Ng and Jordan, 2001;
Greiner and Zhou, 2002). Also, the concavity
of the log-likelihood surface for logistic regres-
sion is known. Our main contribution is to sup-

ply the condition under which Bayesian network
models correspond to logistic regression with
completely freely varying parameters. Only in
this latter case can we guarantee that there are
no local maxima in the likelihood surface. As
a direct consequence of our result, we show for
the first time that the supervised likelihood of,
for instance, the tree-augmented Naive Bayes
(TAN) model has no local maxima.

This paper is organized as follows. In Sec-
tion 2 we introduce Bayesian networks and an
alternative so-called L-parametrization. In Sec-
tion 3 we show that the L-parametrization al-
lows us to consider Bayesian network classifiers
as logistic regression models. Based on ear-
lier results in logistic regression, we conclude
that in the L-parametrization the supervised
log-likelihood is a concave function. In Sec-
tion 4 we present our main result, giving con-
ditions under which the two parametrizations
correspond to exactly the same conditional dis-
tributions and the L-parametrization preserves
all the independence assumptions encoded by
the network structure. Conclusions are summa-
rized in Section 5.

2 Bayesian Networks

We assume that the reader is familiar with the
basics of the theory of Bayesian networks see,
e.g., (Pearl, 1988).

Consider a random vector X = (X, X1, ...,
X)), where each X; takes valuesin {1,...,n;}.
Let B be a Bayesian network structure over X,
which factorizes P(X) into

MI
P(X) =[] P(Xi | Pay), (1)
i=0

where Pa; C {Xy, ...
variable X; in B.

We are interested in predicting some class
variable X,, for some m € {0,..., M’} condi-
tioned on all Xj;, ¢ # m. Without loss of gener-
ality we may assume that m = 0 (i.e., Xj is the
class variable) and that the children of X in
B are {Xy,..., X} for some M < M'. For in-
stance, in the so-called Naive Bayes model (left-
most picture in Figure 1), we have M = M’ and
the children of the class variable X are indepen-
dent given the value of Xy. The Bayesian net-
work model corresponding to B is the set of all

, Xnr }is the parent set of

distributions satisfying the conditional indepen-
dencies encoded in B. It is usually parametrized
by vectors ©F with components of the form
03 defined by

ilpa;

05 pa; = P(Xi =i | Pa; = pa;), (2)
where pa; is any configuration (set of values)
for the parents Pa; of X;. Whenever we want
to emphasize that each pa; is determined by
the complete data vector x = (zg,...,zr), we
write pa;(x) to denote the configuration of Pa;
in B given by the vector x. For a given data vec-
tor x = (zg,z1,...,2)), we sometimes need to
consider a modified vector where zg is replaced
by z{, and the other entries remain the same.
We then write pa;(x(,z) for the same configu-
ration given by (zf, Z1,...,Zam).

We let M5B be the set of conditional distribu-
tions P(Xo | X1,..., X, 08) corresponding
to distributions P(Xo,..., Xpr | ©F) satisfy-
ing the conditional independencies encoded in
B. The conditional distributions in M? can be

written as

y LM 68)
B M' 9B
_ 9m0|pa0(m) Hi:l ewi\pai(w) (3)
M’)
=1 933 paoe) 1i=1 02, jpas)

extended to N outcomes by independence.
Given a complete data-matrix D = (z!, ...,
xV), the supervised log-likelihood, S®(D; @B) of

parameters ©8 is given by

P((L‘0|(II1,...

SB(D; 08 : ZSB (z7; 08), (4)

where

SB(z;08) :=log P(zq | 1, ..., z0, OF). (5)
Note that in (3), and hence also in (4), all

05 [pa; With @ > M (standing for nodes that are

nelther the class variable nor any of its chil-
dren) cancel out, since for these terms we have
pai(z) = pai(zh, z) for all . Thus the only
relevant parameters for determining the con-
ditional likelihood are of the form 9 - Ipai with
i € {0.M}, z; € {l.n;} and pa; any conﬁgura—
tion of values of Pa;. We order these parameters

lexicographically and define ®5 to be the set of

vectors constructed this way, with 9§i|pai >0
and Y7, in‘pai =1forallie{0,...,M}, z;

and all values (configurations) of pa;. Note that
we require all parameters to be strictly positive.

The model M? does not contain any notion
of the ‘unsupervised’ distributions: Probabili-
ties such as P(X; | Pa;), where M < i < M’,
are undefined, and neither are we interested
in them. Our task is prediction of Xy given
X1,...,X . Heckerman and Meek call models
such as MPB Bayesian regression/classification
(BRC) models (Heckerman and Meek, 1997a;
Heckerman and Meek, 1997b).

For an arbitrary supervised Bayesian net-
work model MPZ, we now define the so-called L-
model, another set of conditional distributions
P(Xo | X1,...,Xpr). This model, which we
denote M, is parametrized by vectors OF in
some set ®F that closely resembles ®2. Each
different M”B will give rise to a corresponding
MUY although we do not necessarily have MZ =

M¥E. For each component 05, Ipa; of each vector
1 7

OB € @5, there is a corresponding component

ei\pai of the vectors ©F € @L. The components

%i\pai take values in the range (—o0, 00) rather

than (0,1). Each vector ©F € @ defines the
following conditional distribution:

P(lEO | L1y
I M L

exp O o) [lim1 ©P Oy 1o, () (6)

no L M L ‘

2eap1 POyl gy Tzt ©XP O)

. ,(IIM/,@L) =

The model M’ is the set of conditional dis-
tributions P(Xp | X1,..., Xar, ©F) indexed by
O € O, extended to N outcomes by indepen-
dence. Given a data-matrix D, let S¥(D;©%)
be the supervised log-likelihood of parameters
O, defined analogously to (4) with (6) in place
of (3).

Theorem 1. M8 C MF.

Proof. The theorem is immediate from doing
the log-parameter transformation, i.e., setting
ei\pai = log Hi_”mi for all 4, z; and pa;. 1

In words, all the conditional distributions
that can be represented by parameters ©F ¢
®8 can also be represented by parameters

ol ¢ ol
parametrization we require

However, whereas in the usual

ni B —
2i=1 05, pa, = 1 for

each ¢ € {0,...,M'} and pa;, there is no cor-
responding condition for the parameters of the
L-model. Consequently, the converse of Theo-
rem 1, i.e., ML C MB, is true only under some
additional conditions on the network structure.
We return to this topic in Section 4 but first we
take a closer look at the L-model.

3 The L-model Viewed as Logistic
Regression

Although the L-model is closely related to and
in some cases formally identical to Bayesian net-
work classifiers, it can also be interpreted in
terms of logistic regression. We can think of
the conditional model M” as a predictor that
combines the information of the attributes using
the so-called softmaz rule (Bishop, 1995; Heck-
erman and Meek, 1997b; Ng and Jordan, 2001).
Figure 1 gives an interpretation of this, depict-
ing a Naive Bayes model and the corresponding
L-model in their Bayesian network guises.

In terms of logistic regression, the L-model
has one (binary) regressor variable for each con-
figuration of each of the parent sets Pa;, and one
(binary) output variable for each possible value
of the class variable. Having established that
the L-model is a logistic regression model, we
may use a well-known fact that holds for logistic
regression models in general. Namely, the su-
pervised log-likelihood in the L-parametrization
is a concave function of the parameters:

Theorem 2. (Santner and Duffy, 1989) The
parameter set OV is convex, and the supervised
log-likelihood S*(D;®%) is concave, though not
strictly concave.

) 0)(0) () ()00 ()
% %]

Figure 1: Standard Naive Bayes structure (left)
and the corresponding L-model (right). The
arcs of the network have been reversed and the
resulting product distribution has been replaced
by softmax (denoted by tildes).

Proof. The first part is obvious since each pa-
rameter can take values in (—oo0,00). Concav-
ity of S(D;©%) is a direct consequence of the
fact that M’ is a logistic regression model; see,
e.g., (Santner and Duffy, 1989, p. 234). For an
example where the supervised log-likelihood is
not strictly concave, see (Wettig et al., 2002).
|

From the theorem we directly obtain the fol-
lowing corollary.

Corollary 1. There are no local (non-global)
maxima in the likelihood surface of an L-model.

The conditions under which a global maxi-
mum exists are discussed in, e.g., (Santner and
Duffy, 1989) and references therein. A possible
solution in cases where no maximum exists is
to assign a prior on the model parameters and
maximize the ‘supervised posterior’ (Griinwald
et al., 2002; Wettig et al., 2002) instead of the
likelihood.

The global supervised maximum likelihood
parameters obtained from training data can be
used for prediction of future data. In addi-
tion, as discussed in (Heckerman and Meek,
1997a) they can be used to perform model se-
lection among several competing model struc-
tures using, e.g., the BIC (Schwarz, 1978) or
(approximate) MDL (Rissanen, 1978) criteria.
In (Heckerman and Meek, 1997a) it is stated
that for general supervised Bayesian network
models M5B, “although it may be difficult to
determine a global maximum, gradient-based
methods [...] can be used to locate local max-
ima”. What is more, Theorem 2 shows that
when dealing with L-models even a global max-
imum can be found if it exists.

In the original parametrization, the log-
likelihood surface is not necessarily concave, as
the following example shows.

Example 1. Consider a Bayesian network
where the class variable Xy has only one child,
X1, and both variables take values in {1,2}. Let
the training data be given by

D = ((1,1),(1,2), (2,1),(2,2).

SB(D; ©F)

| | | | | | | \ |
0 010203040506 070809 1
«

Figure 2: The supervised log-likelihood of Ex-
ample 1 peaks twice in the original parametriza-
tion along a line defined by « € (0,1).

Set the parameters ©F as follows:

g _ {01 i wm=1,
7009 if xp=2,

0.5 if o = l,xl = 1,

93 _ 0.5 if oy = l,xl = 2,
z1lzo a if zg=2,z1 =1,
l—a if zg=2,21 =2.

Figure 2 shows the supervised log-likelihood
given data D as a function of a. The figure
shows a bimodal curve that clearly violates con-
cavity. <

If the network structure B is such that
the two models are equivalent, MZ = MPF,
we can find the global maximum of the su-
pervised likelihood by reparametrizing MPZ in
the L-parameterization, and using some lo-
cal optimization method. Because the log-
transformation is continuous, it follows (with
some calculus) that in this case all local maxima
of the supervised likelihood are global maxima
also in the original parametrization ®5.

4 Main Result

Theorems 1 and 2 suggest that in order to
find parameters maximizing the supervised like-
lihood for any Bayesian network model, we
could use the L-model where optimization is
easy. However, the resulting parameters may
violate the ‘sum-up-to-one constraint’, i.e., we
may have Y 77) exp OmLi'paz_ # 1 for some i €

{0,..., M'} and pa;. This could correspond to

N

Figure 3: A simple Bayesian network (the class
variable is denoted by X)) Satlsfymg Condi-
tion 1 (left); and a network that does not satisfy
the condition (right).

a violation of the independence assumptions of
the model structure B as demonstrated by Ex-
ample 2 below. However, for some structures
B, we can show that even if ©F is such that
Zx _exp bk pas # 1 for some i € {0,...,M'}
and pa;, the conditional distribution indexed by
oL is still in MB.

Our main result is that the independence as-
sumptions encoded by B are guaranteed to be
preserved in the L-model if B satisfies the fol-
lowing condition:

Condition 1 For all j = 1..M, there exists
X; € Paj N {Xy,...,Xn} such that Pa; C
Pa; U {Xz}

Remark. Condition 1 holds for B (as can be
seen by induction) if and only if any parent set
Paj of a child X; of the class Xj is ‘condition-
ally fully connected’, i.e., fully connected mod-
ulo arcs (between parents of X,) that have no
effect on the conditional P(Xo | Pa; \ {Xo}).
A necessary but not sufficient condition is that
the class Xy must be a ‘moral node’, i.e., it can-
not have a common child with a node it is not
directly connected with; see Figure 4. <

Example 2. Consider the Bayesian networks
depicted in Figure 3. The leftmost network, By,
satisfies Condition 1, unlike the rightmost net-
work, By. Let M5 denote the ‘usual’ model
corresponding to By indexed by parameters in
©5, and let MZ denote the corresponding L-
model. The parameters used to define MY

are 0£ and @ where each z; varies in
@2|z0,21

{1,...,n;}. Consider the distributions in M¥Z
indexed by a ©% such that, for some zy and 1,
> po_y €xp HIQ‘IO s 7 1. Some of these distri-
butions violate the independence assumptions
of By, and therefore, are not in M5. For in-

G/ \/\N

Figure 4: A tree-augmented Naive Bayes (TAN)
model satisfying Condition 1 (left); and a net—
work that is not TAN (right). Note that even
though in both cases the class variable Xj is a
moral node, the network on the right does not
satisfy Condition 1.

stance, suppose that for zy = 1 = 1, summing
over the values of X5 gives something more than
one, whereas for o = 2,21 = 1, summing over
the values of X5 gives something less than one.
This would correspond to the situation where
given X; = 1 it is more probable to have Xy =1
than Xy = 2, i.e., X; and Xy would be depen-
dent without Xo being given. It follows that in
this case M contains some conditional distri-
butions that do not satisfy the independence as-
sumptions encoded by By. This can not happen
in the leftmost network By since the structure
allows all conditional distributions of X, given
X1 and Xg. &

As examples of network structures that sat-
isfy Condition 1, we mention the Naive Bayes
(NB) and the tree-augmented Naive Bayes
(TAN) models (Friedman et al., 1997). The lat-
ter is a generalization of the former in which the
children of the class variable are allowed to form
tree-structures; see Figure 4.

Proposition 1. Condition 1 is satisfied by
the Naive Bayes and the tree-augmented Naive
Bayes structures.

Proof. For Naive Bayes, we have Pa; C {Xo}
for all j € {1,...,M}. For TAN models, all
children of the class variable have either one or
two parents. For children with only one parent
(the class variable), we can use the same argu-
ment as in the NB case. For any child X; with
two parents, let X; be the parent that is not the
class variable. Because X; is also a child of the
class variable, we have Pa; C Pa; U {X;}. 1

Condition 1 is also automatically satisfied if

Xy only has incoming arcs® (‘diagnostic’ clas-
sifiers, see (Kontkanen et al., 2001)). For
Bayesian network structures for which the con-
dition does not hold, we can always add some
arrows to arrive at a structure B’ for which the
condition does hold (for instance, add an arrow
from X; to X3 in the rightmost network in Fig-
ure 4). Therefore, the model M5 is always a
submodel of a larger model MB’ for which the
condition holds. For these reasons, we regard
Condition 1 as relatively mild.

We are now ready to present our main result:

Theorem 3. If B satisfies Condition 1, then
ME = ME,

Together with Corollary 1, this shows that if
Condition 1 holds for B, then the supervised
likelihood surface of M® has no local (non-
global) maxima. Proposition 1 now implies
that, for example, the supervised likelihood sur-
face for the TAN classifiers has no local (non-
global) maxima. Therefore, this maximum can
be found by local optimization techniques.

Proof. In the following, we will often speak of
the parent configuration pag of Xy. In case X
has no parents (i.e., M = M'), Pay is the empty
set and pag(z) is constant with respect to z =
(:E(), cee ,(I:M/).

We introduce some more notation. For j €
{1,...,M}, let m; be the maximum number
in {0,...,M} such that X,,, € Paj, Pa; C
Pay,; U{Xp;}. Such an m; exists by Condi-
tion 1. Condition 1 implies that pa; is com-
pletely determined by the pair (2, pam;). We
can therefore introduce functions (); mapping
(Zm;»Pam;) to the corresponding pa;. Hence,
for all x = (zg,...,zpp) and j € {1,..., M} we
have

pa; = Qj(flfmj,pamj)- (7)

We introduce, for all 4 € {0,..., M} and for
each configuration pa; of Pa;, a constant c;

and define, for any ©F € L,

|pa;

(¢ ._ pL
9$i|pai T ewi\pai+cilpai_ Z Cj|Q;(wi,pas)- (8)

Jimj=i

Tt is easy to see that in that case the maximum su-
pervised likelihood parameters may even be determined
analytically.

(c)
T;|pa;
combined to a vector ©(9 which is clearly a
member of O,

After introducing this additional notation, we
proceed to the first stage of the proof.

The parameters 0 constructed this way are

Stage 1 In this stage of the proof, we show
that no matter how we choose the constants
Cilpai for all ©L and corresponding 0(©) we have
SH(D;0)) = S (D;0r).

We first show that, for all possible vectors x
and the corresponding parent configurations, no
matter how the ¢;,,, are chosen, it holds that

- (c) U
c L
Z 0$i|pai - Z gfﬂi\Pai + Cojpay- (9)

To derive (9) we substitute all terms of
M Hici)‘pai by their definition (8). Clearly, for
all j € {1,..., M}, there is exactly one term
of the form ¢;,,; that appears in the sum with
a positive sign. Since for each j € {1,..., M}
there exists exactly one i € {0,...,M} with
pj = 4, it must be the case that for all j €
{1,..., M}, a term of the form Cj|Q;(zi.pa;) AP
pears exactly once in the sum with a nega-
tive sign. By (7) we have ¢jiq;(z; pa;) = Cjlpa;-
Therefore all terms Cjlpa; that appear once with
a positive sign also appear once with a negative
sign. It follows that, except for cgq,, all terms
Cjjpa; cancel. This establishes (9). By plugging
in (9) into (6), it follows that S(D;©() =
SE(D;©F) for all D. This concludes Stage 1 of
the proof.

Stage 2 Set, for all z; and pa;,

5 = exp 0\

zi|pa; zi|pa;’

(10)

In this stage we show that we can determine the
constants c;|,, such that for all i € {0,..., M}
and pa;, the ’sum up to one’ constraint is satis-
fied, i.e., we have

n;

B _
zilpa; — 1

(11)

;=1

We will achieve this by sequentially determin-
ing values for ¢;,,, in a particular order. We
now need some terminology: we say ‘c; is de-
termined’ if for all configurations pa; of Pa;, we

have already determined c¢;),,,,. We say ‘c; is un-
determined’ if we have determined c;),,, for no
configuration pa; of Pa;. We say ‘c; is ready to
be determined’ if ¢; is undetermined and at the
same time all ¢; with p; = ¢ have been deter-
mined.

We first note that as long as some ¢; with
i € {0,..., M} are undetermined, there must
exist ¢y that are ready to be determined. To
see this, first take any ¢ € {0,...,M} with
¢; undetermined. Either ¢; itself is ready to
be determined (in which case we are done),
or there exists j € {1,...M} with p; = 4
(and hence X; € Paj) such that ¢; is undeter-
mined. If ¢; is ready to be determined, we are
done. Otherwise, there must exist some k with
X, € Pay, such that ¢ is undetermined. We can
now repeat the argument, and move forward in
the Bayesian network structure B restricted to
{Xo,..., X} until we find a ¢; that is ready to
be determined. Because B is acyclic, we must
find such a ¢; (within M + 1 steps).

We now describe an algorithm that sequen-
tially assigns values to c;|,, such that (11) will
be satisfied. We start with all ¢; undetermined
and repeat the following steps:

WHILE there exists ¢ € {0,..., M} such that ¢;
is undetermined
DO

1. Pick the largest ¢ such that c; is ready to be
determined.

2. Set, for all configurations pa; of Pa;, ¢;
such that S 65 =1 holds.

z;=1"z;|pa;

|pa;

DONE

The algorithm will loop M + 1 times and then
halt. Step 2 does not affect the values of
Cjlpa; for any j,pa; such that cj,,, has already
been determined. Therefore, after the algo-
rithm halts, (11) holds. This concludes Stage

2 of the proof.

Let © € @Y. Each choice of constants Cilpa; de-

termines a corresponding vector ©(¢) with com-
ponents given by (8). This in turn determines a
corresponding vector ©F with components given
by (10). In Stage 2 we showed that we can take

the cjjq, such that (11) holds. This is the choice

of ¢jpq; Which we adopt. With this particular

choice, ©8 indexes a distribution in M5. By
applying the log-transformation to the compo-
nents of O8 we find that for any D of any length,
SB(D;08) = SY(D;0), where SB(D;0")
denotes the supervised log-likelihood of ©F as
given by summing the logarithm of (3). The
result of Stage 1 now implies that ©F indexes
the same conditional distribution as ©%. Since
O € ®F was chosen arbitrarily, this shows that
MPE C MPB. Together with Theorem 1 this con-
cludes the proof. 1§

5 Concluding Remarks

We showed that by using the parameter trans-
formation described above, one can effectively
find the parameters maximizing the supervised
(conditional) likelihood of NB, TAN and many
other Bayesian network models. For an ar-
bitrary Bayesian network, this transformation
may yield a slightly more powerful model class,
i.e., remove some of the independence assump-
tions of the network structure. We also gave a
condition under which the transformation does
not change the class of models considered. Test
runs for the Naive Bayes case in (Wettig et al.,
2002) have shown that maximizing the super-
vised likelihood in contrast to the usual prac-
tice of maximizing the unsupervised (joint) like-
lihood is feasible and yields greatly improved
classification. In the future we intend to study
more complicated models as well as use the L-
parametrization for model selection.

Acknowledgments. This research has been
supported by the National Technology Agency,
and the Academy of Finland. The authors
thank Wray Buntine for many useful comments.

References

C.M. Bishop. 1995. Neural Networks for Pattern
Recognition. Oxford University Press.

N. Friedman, D. Geiger, and M. Goldszmidt. 1997.
Bayesian network classifiers. Machine Learning,
29:131-163.

R. Greiner and W. Zhou. 2002. Structural exten-
sion to logistic regression: Discriminant param-
eter learning of belief net classifiers. In Proceed-
ings of the 18th Annual National Conference on
Artificial Intelligence (AAAI-02), pages 167173,
Edmonton.

R. Greiner, A. Grove, and D. Schuurmans. 1997.
Learning Bayesian nets that perform well. In Pro-

ceedings of the 13th Conference on Uncertainty
in Artificial Intelligence (UAI-97), pages 198-
207. Morgan Kaufmann Publishers, San Fran-
cisco, CA.

P. Griinwald, P. Kontkanen, P. Myllymiki, T. Roos,
H. Tirri, and H. Wettig. 2002. Supervised poste-
rior distributions. Presented at the Seventh Va-
lencia International Meeting on Bayesian Statis-
tics, Tenerife, Spain.

D. Heckerman and C. Meek. 1997a. Embedded
bayesian network classifiers. Technical Report
MSR-TR-97-06, Microsoft Research.

D. Heckerman and C. Meek. 1997b. Models and
selection criteria for regression and classifica-
tion. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI-97),
pages 223-228. Morgan Kaufmann Publishers,
San Francisco, CA.

P. Kontkanen, P. Myllymaki, and H. Tirri. 2001.
Classifier learning with supervised marginal like-
lihood. In Proceedings of the 17th Conference
on Uncertainty in Artificial Intelligence (UAI-
01), pages 277-284. Morgan Kaufmann Publish-
ers, San Francisco, CA.

AY. Ng and M.I. Jordan. 2001. On discriminative
vs. generative classifiers: A comparison of logistic
regression and naive Bayes. Advances in Neural
Information Processing Systems, 14:605—610.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers, San Mateo, CA.

J. Rissanen. 1978. Modeling by shortest data de-
scription. Automatica, 14:445-471.

T. Santner and D. Duffy. 1989. The Statistical Anal-
ysis of Discrete Data. Springer Verlag, New York.

G. Schwarz. 1978. Estimating the dimension of a
model. Annals of Statistics, 6:461-464.

H. Wettig, P. Griinwald, T. Roos, P. Myllyméki,
and H. Tirri. 2002. On supervised learn-
ing of Bayesian network parameters. Techni-
cal Report HIIT-2002-1, Helsinki Institute for
Information Technology (HIIT). Available at
http://cosco.hiit.fi/ Articles/hiit2002-1.ps.

Evolving Causal Neural Networks

Marco A. Wiering
Institute of Information and Computing Sciences
Intelligent Systems Group
Utrecht University
PO Box 80.089, Utrecht
marco@cs.uu.nl

Abstract

We introduce causal neural networks, a generaliza-
tion of the usual feedforward neural networks which
allows input features and target outputs to be rep-
resented as input or output units. For inferring the
values of target outputs which are represented as in-
put units, we developed a forward-backward propa-
gation algorithm which uses gradient descent to min-
imize the error of the predicted output features. To
deal with the large number of possible structures and
feature selection, we use a genetic algorithm. Exper-
iments on a regression problem and 5 classification
problems show that the causal neural networks can
outperform the usual feedforward architectures for
particular problems.

1 Introduction

Bayesian belief networks (Pearl, 1988) are of large
interest due to their graphical structure modelling
independencies between variables, and the sound
Bayesian inference algorithm. Given a set of in-
stantiated values of particular observed features,
Bayesian belief networks can be used for inferring
the probability distribution of unobserved features.
Different neural network algorithms such as Boltz-
mann machines (Aarts and Korst, 1989) and Sig-
moid Belief networks (Neal, 1992) are quite similar
to Bayesian belief networks, but exact inference is
infeasible in all of these algorithms in case the mod-
els become more complex.

In this paper we introduce a much simpler class
of neural network architectures which we call causal
neural networks, since they also allow for represent-
ing causal relations between variables. The struc-
ture of the causal neural network allows us to repre-
sent target output values in the input layer and we
can also represent input feature values in the output
layer of a feedforward neural network. The latter
has already been studied in (Caruana and de Sa,
1997) and was shown to be effective for particular
problems. The causal neural network is a further
generalization of the well-known structure of feedfor-
ward neural networks. For inferring the value of an
output value which is represented as an input unit,

we can use backward propagation of error signals of
the predicted input feature values represented in the
output layer. This backward propagation algorithm
is a simple variant of the well known backpropaga-
tion algorithm (Rumelhart et al., 1986). The new re-
sulting forward-backward propagation algorithm is
used recursively for inference to minimize the error
of predicted feature values.

Similarly to Sigmoid Belief networks, causal neu-
ral networks try to find those values of target out-
puts which are useful for generating the desired in-
put feature values. Although there is no direct
causal relationship from input feature values repre-
sented by output units to target outputs represented
as input units, minimizing the reconstruction error
causes the system to infer those target outputs which
cause the generation of the given input feature val-
ues. The causal neural networks can therefore be
used to put causes in the input units and the effects
of these causes in the output units. This can simplify
the learning problem drastically and lead to better
generalization.

The learning algorithm for training the causal
neural networks is a simple extension of the normal
backpropagation algorithm and therefore learning is
quite fast. To deal with the large number of pos-
sible structures, we employ a genetic algorithm for
finding the best structures. In the following, we will
use the causal neural networks as a supervised learn-
ing algorithm which can deal with missing data and
causal relations in a principled way.

Outline of this paper. In section 2 we de-
scribe our causal neural networks with the forward-
backward algorithm for inference. In section 3 we
describe the genetic algorithm for evolving causal
neural network structures. In section 4 we describe
experimental results. Finally, section 5 concludes
this paper.

2 Causal neural networks

The learning task. We study supervised learning
on a dataset D consisting of L input vectors X* and
their target output vectors Y. The dataset may
consist of unknown input features which may make

the learning task more difficult. We assume that tar-
get outputs in the training data are always known,
but could be subject to noise.

In this section, we first describe the architecture,
and then the usual forward propagation and back-
propagation algorithms for training a causal neu-
ral network. To deal with unknown values, we add
an additional mean-input for all uninstantiated vari-
ables which is used to initialize the values of unin-
stantiated variables. Finally, we describe the recur-
rent forward-backward propagation algorithm for in-
ferring the desired output values and unknown input
features given the values of instantiated variables.

2.1 The architecture

The causal neural networks could have an arbitrary
(modular) structure, but in this paper we only con-
sider fully-connected feedforward neural networks
with a single hidden layer. The architecture con-
sist of one input layer with input units®: I, ..., I,
where |I| is the number of input units, one hidden
layer H with hidden units: Hy,..., H |, and one
output layer with output units: Oi,...,0|0|. The
network has weights: w;, for all input units 7; to hid-
den units Hp, and weights: wy, for all hidden Hj
to output units O,. Each hidden unit and output
unit has a bias by, or b, with a constant activation
of 1. The hidden units use Sigmoid activation func-
tions, whereas the output units use linear activation
functions. Finally, the input units and output units
have an additional mean-bias m; and m, (different
for every unit), which is used to deal with unknown
initial values for the uninstantiated variables.

We can represent input features and target out-
puts inside the input layer or in the output layer.
Input features could also not be used at all which
allows for feature elimination. The input features
which are represented in input (output) units form
the set F'I (FO), and the target outputs which are
represented in the input (output) units form the set
TI (TO). Figure 1 shows an example of a causal
neural network architecture. The figure also shows
the forward and backward propagation algorithms
used for inference.

The set FO is usually disjunct from the set FI,
since otherwise reconstruction of input feature val-
ues in F'O would be trivial and not useful for infer-
ring unknown values of target outputs. The input
feature values in F'O are useful, since the goal is to
reconstruct their values from the values of the inputs
units. In order to reconstruct these, causal explana-
tions of these values must be found in the (known
or unknown) input feature values and the unknown
target outputs of the set T'I. If the set F'I is empty,
the algorithm tries to infer the values of target out-
puts in 7T which minimize the reconstruction error.

LWhen we refer to a unit, we also mean its activation.

If FI is not empty, these feature input values serve
as a context for this reconstruction.

Input Features (FO) Target Outputs (TO)
Output Layer
(o) (o2 o3
A\ VARV
w
5 g
g S
g 3
8 H1 H2) Hidden Layer | &
B &
8
2 2
g S
Input Layer
Input Features (FI) Target Outputs (TI)

Figure 1: A causal neural network consisting of one
hidden layer. Input features and target outputs can
be represented as input or output units.

Transformation of examples. Given an exam-
ple (X, Y?) we can represent the input features and
target outputs as either input or output units. De-
pending on the neural network structure which maps
input features and target outputs to input and out-
put units, we get a new training example (X7, Y.
To deal with unknown values for variables (e.g. miss-
ing data or the target outputs) which are represented
as input units, we use the values of their mean-bias
m; learned by the delta rule.

2.2 Forward propagation

Given the values of all input units, we can compute
the values for all output units with forward propa-
gation. The forward propagation algorithm for an
instance X looks as follows:

1) Clamp the known input feature values € FI
in the input layer: I; = X;, and clamp the mean-
bias for unknown feature values € F'I and for target
output values € T'T to the input layer: I; = m;.

2) Compute the values for all hidden units H, € H
as follows:

Hyp =o(Z winl; + bp)
i€EFIVUTT

Where o(z) is the Sigmoid function: o(z) =
1
Tre—s

3) Compute the values for all output units O, €
FOUTO:

Oo - thlo + bo
h

2.3 Backpropagation

For training the system we extend the backpropa-
gation algorithm (Rumelhart et al., 1986) in which
we also learn the mean-bias values using the delta
rule. If feature values in FO are unknown, we use

their mean-bias as a target output value. Although
leaving them completely out in the learning algo-
rithm would be another possibility, preliminary ex-
perimental results indicate that our approach can be
more efficient. The learning goal is to learn a map-
ping from the transformed instance X to Y. For this
we first use forward propagation to compute the out-
puts values O, and then we use backpropagation to
minimize the squared error measure:

0€FOUTO

To minimize this error function, we update the
weights and biases in the network using gradient de-
scent steps with learning rate a:

OF N
A o — — = Y, -0,)H
wp, aawho af 0,)H},

and

Z (Yo - Oo)who

0€EFOUTO

Awih = aHh(l — Hh)Ii

Update the mean-bias values for input and output
units using the delta rule:

A~

m; = mi+a(Xi—mi); and m, =m,+a(Y,—m,)

2.4 Forward-backward propagation

For inferring the values of all unknown variables
given the instantiated values of known input features
we introduce the forward-backward propagation al-
gorithm:

1) Clamp the input units to their input feature
values. Unknown values for input features and tar-
get outputs € T will initially have their mean-bias
values as input value, after which their activations
will be continually updated.

2) Clamp the target output values in Y for all
input features € F'O to their value in the instance
X. For unknown values of input features we use
their mean-bias values as target output values in Y.

3) Use forward propagation to infer the output
values O; € FOUTO.

4) Use backward propagation to update the values
of uninstantiated input units by gradient descent on
the error over the predicted input features € FO:

Al =ay Y Hy(1 = Hp)win, Y (Yo = Op)who
h 0eFO

5) Repeat Step (3) until some termination condition
holds.

Here, a3 is the backward learning rate. We re-
cursively apply the forward-backward algorithm to
infer the values of all uninstantiated variables. The

algorithm may not always converge, however, since
values of uninstantiated variables in the input layer
may become infinite to best predict the output fea-
tures. In the experiments we iterate the algorithm
for 400 times which therefore makes inference much
slower than with the usual feedforward neural net-
works. The learning time is exactly the same, since
for learning we just make use of the backpropagation
algorithm.

3 Evolving causal neural networks

The additional freedom we gain with our causal neu-
ral networks can also give us problems, since how
can we decide whether we should represent an input
feature by an input or output unit, and should the
target output(s) be represented as input or output
unit(s)? For optimizing the structure of the causal
neural networks, we use genetic algorithms (Holland,
1975) and cross-validation. Thus, we divide the to-
tal dataset D in three data-sets: the learning dataset
D, the cross-validation (halting) dataset D., and
the test dataset D;. In our experiments, we use the
causal neural networks for regression and classifica-
tion purposes. For the regression task it is possible
that some of the target output values are represented
as input units and others as output units. Therefore
we can evolve mixed architectures. For the classifica-
tion task there is only one target output value (the
classification of an input pattern), and we use the
genetic algorithm only with populations of homoge-
neous structures in which the target output value is
always represented by an output unit or by an in-
put unit (we call the corresponding networks forward
networks (FN) or backward networks (BN)). Input
features can be used as input units, output units, or
not at all. When the target outputs are represented
as input units, the structure should contain at least
one input feature in the output layer. Furthermore,
we evolve the number of hidden units and the learn-
ing rate.

The genetic algorithm. We use crossover and
mutation operators for evolving the population of
structures. We use tournament selection with size 3
and the elitist strategy. Given a structure, we train
it n; times on the learning dataset D; and use cross-
validation after each ¢. iterations to look whether we
should stop the learning process. The best test-error
over these n; train-test trials is kept as fitness value
for the structure. After evolving G generations, we
compute the error of the best trained individual dur-
ing the last generation on the test dataset D, and
return this as a single experimental result.

4 Experiments

We performed a number of experiments to validate
the usefulness of our approach compared to the usual
feedforward neural networks structures trained with

backpropagation. We use two different experiments.
The first is a regression task in which there are 3
input features and 3 target outputs. In the second
experiment, we use 5 real-world datasets from the
UCI repository (Merz et al., 1997).

4.1 The regression problem

The input consists of three inputs X, X5, X3 which
are drawn from a random uniform distribution be-
tween 0 and 0.33. The target outputs are computed
as:

10.0
Y = -1
' Og(U(X1)+U(X2)+X3
s 10.0
Yo = (X7 + X5) % —log(U(Xl) s e _
10.0

Ys = (VX1 +/X2) x —log(

o(X1) +o(X2) + X5

Here o(x) denotes the Sigmoid function. This is
an artificial problem which we constructed to show
the advantage of using mixed architectures. We
can see that Y7 is a building block for Y5 and Y3,
which means that we could put Y; in the input
layer, together with X; and X, to infer Y3, Y3,
and also X3. We will refer to this architecture as
a mixed architecture. Another advantage of this
mixed architecture is that inferring X3 from Y7,
X, and X5 may be easier than inferring Y; from
X1, X, and X3, since the function is the same as:
X3 = 100(Y1) — 0(X1) — 0(X2). Thus, we do not
have to approximate the logarithmic function in this
way.

Simulation set-up. We compare the normal
feedforward network (FN) with no input features
in the output layer to the backward network (BN)
with all outputs in the input layer and no other in-
puts (which is of course not suited for this task),
and to the mixed architecture with Y; and X;, X5
in the input layer, and Y5,Y3 and X3 in the output
layer. We also evolve mixed architectures using the
genetic algorithm with a population size of 30, 50
generations, and n; = 1. For the non-evolving ar-
chitectures, the number of hidden units is 5. The
learning rate & = 0.2 and o = 0.1. We perform
100 simulations with different distributions for the
three datasets consisting of 100 examples, for which
10 networks of each type are trained and tested us-
ing cross-validation. The trained network with the
smallest cross-validation error is used for testing on
the test dataset D;. For this the root of the mean
squared error is computed. The results are shown in
table 1.

Experimental results. The figure shows that
the mixed architecture performs better than the
usual feedforward network. Thus, putting target
output values inside the input layer of a feedforward

Table 1: The Training results (RMSE) on the 3 in-
put 3 output function. Averages are computed over
100 simulations.

FN BN MIX-NN

GA MIX-NN

0.009540.0075 0.105+0.012 0.006840.0026

0.007140.0034

neural network can be useful. As expected, the com-
plete backward network is not suited for this task.

_ 1) The genetic algorithm is shown to be able to almost

always find the best possible architecture (the Mix-
NN architecture).

4.2 Experiments on real datasets

We also performed experiments on real datasets
from the UCI repository (Merz et al., 1997). We use
the following 5 datasets consisting of three medical
diagnosis datasets: Hepatitis (155 examples), Liver
disease (345), Pima Indians (768), and two other
datasets: Chess Kr-vs-kp (3196), and Vote (435).
We also make 10% of the input features in the four
datasets unknown to examine how unknown (miss-
ing) values affect the performance of the different
neural network architectures. For these binary clas-
sification problems, we threshold at 0 to compute the
output class. The results are given as percentage of
wrong classifications.

Simulation set-up. We run 10 simulations with
different random partitionings of the total dataset
into Dy, D., and Dy; all datasets have % of the num-
ber of examples of the total dataset. We use the ge-
netic algorithm on forward (GA-FN) and backward
networks (GA-BN) and let it run for 50 generations
using a population size of 30 and n; = 3. For the
normal forward and backward architectures which
are not evolved, we use 4 hidden units for which 500
networks are trained and tested each on the cross-
validation dataset. The best was used for testing on
the test dataset D;.

Table 2: The Training results on the 5 datasets with
and without adding missing (unknown) input feature
values.

Data Set Mis. FN BN GA-FN GA-BN
Hepatitis 0% 0.46+£0.11 0.37+0.04 0.38+0.07 0.37+0.05
Hepatitis 10% 0.51+0.09 0.36+£0.06 0.42+0.08 0.36+0.04
Liver Dis. 0% 0.43+0.04 0.39+0.05 0.44+0.05 0.40+0.04
Liver Dis. 10% 0.434+0.05 0.39+0.06 0.43+0.04 0.4140.07
Pima Ind. 0% 0.254+0.04 0.24+0.03 0.26+0.05 0.2440.03
Pima Ind. 10% 0.354+0.07 0.24+0.03 0.30+0.05 0.2440.03
Chess 0% 0.05+0.01 0.25+0.02 0.07+0.02 0.07+£0.01
Chess 10% 0.14+0.01 0.25+0.02 0.17+£0.02 0.14+0.01
Vote 0% 0.06+£0.02 0.11+£0.02 0.07+0.02 0.07+£0.01
Vote 10% 0.08+0.02 0.11+£0.02 0.07+0.01 0.08+0.02
Average 0.276 0.271 0.261 0.238

Experimental results. The results are given
in table 2. For the Hepatitis problem the neural
networks do not perform very well; this can be ex-
plained by the small number of learning examples
(there were only 52 examples used for training). Dif-
ferent learning rates or numbers of hidden units did
not improve the results. The forward networks per-
form better than the backward networks on Vote and
Chess, but it is interesting to see that the backward
networks perform better on the medical diagnosis
datasets in which the disease causes the observed
symptoms. The backward models also suffer much
less from missing data. Using the genetic algorithm
can help to find better structures, which is especially
clear for the backward networks which can combine
input features with target outputs in the input layer
to learn correct mappings for Vote and Chess.

5 Conclusion

We described a new neural network architecture
which is a generalization of normal feedforward neu-
ral networks. These causal neural networks can rep-
resent feature inputs and target outputs in the input
or output layer of a feedforward network. Although
we only used them for supervised learning tasks in
this paper, the causal neural networks can also be
used for pattern completion, and extended for unsu-
pervised learning purposes. The training algorithm
of the causal neural networks is very fast, since it
is a simple extension of the normal backpropagation
algorithm, although the question may arise whether
this is a valid thing to do if there are missing val-
ues. For inference in our causal networks we devel-
oped the forward-backward propagation algorithm
which should be executed recursively to infer all the
values of all uninstantiated variables. We want to
look closer at stopping conditions for this propaga-
tion and the effects of early stopping on the obtained
approximation.

Experiments on a regression task and 5 datasets
from the UCI repository show that the causal neural
networks with target outputs in the input layer can
outperform the usual feedforward neural networks
for medical datasets in which target outputs (dis-
eases) cause the input features (symptoms). Fur-
thermore, these backward networks are much less
sensitive to missing data. For other problems, ar-
chitectures found by a genetic algorithm which mix
input features and target outputs in the input layer
performs quite well compared to the usual feedfor-
ward neural networks.

The causal neural networks are similar to Sigmoid
Belief networks in some way, since they both try to
infer causal output variables given instantiated fea-
ture values. The difference is that Sigmoid Belief
network use a probabilistic setting and try to max-
imize the likelihood of generating the instantiated

feature values, whereas in causal neural networks the
goal is to minimize the squared error of the instan-
tiated feature values represented as ouput units.

It is interesting to analyse the meaning of hid-
den unit representations in the case of having tar-
get outputs represented by input units. In the case
of non-linear dimensionality reduction (DeMers and
Cottrell, 1993) with a four layer feedforward neural
network with a bottleneck, the hidden units in the
second layer represent a non-linear manifold for re-
constructing the input. This may also be applied for
supervised learning in which the input and output
consist of feature inputs and target outputs. Recon-
structing the output could then be done by propa-
gating the values of known feature inputs. A simi-
lar technique was applied in (Hancock and Thorpe,
1994) for training a car to follow roads. Here the
authors computed the eigenvectors of the generated
camera images and a given corresponding steering
command to train the system. Afterwards, the sys-
tem was applied by linearly combining the eigenvec-
tors for the newly generated camera images which
also gives the control commands. It remains a ques-
tion whether such reconstructions can always be
used to generate the correct output.

In causal neural networks, we are less interested
in dimensionality reduction, but try to evolve an ar-
chitecture which can use the input units to infer the
values of separate output units. In this case the hid-
den units repesentations should be mixed to infer the
values of output units. The mixture is dependent on
the values of input units. Therefore if an target out-
put is represented as input unit, forward-backward
propagation derives its value which causes the hid-
den units to be mixed in the best possible way for
reconstructing the given values of output units. It
should be clear that this cannot be done with all pos-
sible architectures, therefore a suitable architecture
needs to be evolved.

In future work, we want to study more general
graphical structures to model the dependencies be-
tween variables. For learning and inference we
can employ variations of the backpropagation and
forward-backward propagation algorithms.

References

AHL. Aarts and J.HM. Korst. 1989. Simu-
lated Annealing and Boltzmann Machines. Wiley,
Chichester.

R. Caruana and V.R. de Sa. 1997. Promoting poor
features to supervisors: Some inputs work bet-
ter as outputs. In M.C. Mozer, M.I. Jordan, and
T. Petsche, editors, Advances in Neural Infor-
mation Processing Systems 9. Morgan Kaufmann,
San Mateo, CA.

D. DeMers and G.W. Cottrell. 1993. Non-linear di-
mensionality reduction. In S.J. Hanson C.L. Giles

and J.D. Cowan, editors, Advances in Neural In-
formation Processing Systems 5, pages 580-587.
Morgan Kaufmann, San Mateo, CA.

J.A. Hancock and C.E. Thorpe. 1994. ELVIS:
Eigenvectors for land vehicle image system. In
CMU-RI-TR.

J.H. Holland. 1975. Adaptation in Natural and Arti-
ficial Systems. University of Michigan Press, Ann
Arbor.

C.J. Merz, P.M. Murphy, and D.W. Aha. 1997. UCI
repository of machine learning databases.

R.M. Neal. 1992. Connectionist learning of belief
networks. Artificial Intelligence, 56:71-113.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, CA.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams.
1986. Learning internal representations by error
propagation. In Parallel Distributed Processing,
volume 1, pages 318-362. MIT Press.

	maanen.pdf
	Introduction
	Example
	The algorithmic approach
	The Minimum Description Length approach
	Algorithmic statistics
	Conclusion

	maanen.pdf
	Introduction
	Example
	The algorithmic approach
	The Minimum Description Length approach
	Algorithmic statistics
	Conclusion

