
Parametric Search Made Practical

Reńe van Oostrum

Remco C. Veltkamp

institute of information and computing sciences, utrecht university

technical report UU-CS-2002-050

www.cs.uu.nl

Parametric Search Made Practical�

René van Oostrum and Remco C. Veltkamp

December 2002

Abstract

In this paper we show that in sorting-based applications of parametric search, Quicksort can replace
the parallel sorting algorithms that are usually advocated. Because of the simplicity of Quicksort, this
may lead to applications of parametric search that are not only efficient in theory, but in practice as well.
Also, we argue that Cole’s optimization of certain parametric-search algorithms may be unnecessary
under realistic assumptions about the input. Furthermore, we present a generic, flexible, and easy-to-use
framework that greatly simplifies the implementation of algorithms based on parametric search. We use
our framework to implement an algorithm that solves the Fr´echet-distance problem. The implementation
based on parametric search is faster than the binary-search approach that is often suggested as a practical
replacement for the parametric-search technique.

1 Introduction

Since the late 1980s,parametric search, the optimization technique developed by Megiddo in the late 1970s
and early 1980s [15, 16], has become an important tool for solving many geometric optimization queries
efficiently. The main principle of parametric search is to compute a valueλ� thatoptimizesan objective
function f with the use of an algorithmAs that solves the correspondingdecision problem. The decision
problem can be stated as follows: given a valueλ, decide whetherλ < λ�, λ = λ�, or λ > λ�. The idea is to
run a “generic” version ofAs on the unknown valueλ�. This generic algorithm uses the concrete version
of As to determine the outcome of the decision problem for a set of concrete values; for one of these values
λ, As will report thatλ = λ�. We will explain the technique in more detail in Section 2. Usually, applying
the concrete versionAs is expensive in terms of running time. Megiddo shows how using a parallel version
Ap of As as the generic algorithm may reduce the number of timesAs is called considerably.

The technique is rather complicated, as it requires the design of an efficient parallel algorithm. Fortu-
nately, the generic algorithm does not necessarily have to solve the same problem as the concrete decision;
in several cases, sorting can be used instead [3, 8, 11, 13, 16]. However, the existing parallel sorting algo-
rithms that have good worst-case time bounds are not easily implemented, and in some cases the hidden
constants in the asymptotic running times are enormous [2]. Cole [9] shows how sorting-based parametric
search can be optimized even further, but the optimization comes at the expense of making the technique
even more complicated than it already is.

In this paper we show that Quicksort can be used as the generic algorithm in sorting-based parametric
search, instead of a parallel sorting algorithm—see Section 3. Cole’s optimization cannot be applied in
this case, but in Section 4 we demonstrate that under certain assumptions that seem reasonable in practice,
Cole’s optimization is not needed to attain an efficient algorithm. These two observations considerably
simplify the practical application of sorting-based parametric search.

Nevertheless, implementing algorithms based on parametric search remains a challenging task if one
has to do it completely from scratch. Therefore, we implemented an object-oriented framework for para-
metric search in C++, that takes care of the most difficult parts of the technique. Using this framework,
implementing algorithms that use parametric search becomes substantially easier, and for some applica-
tions it even becomes nearly trivial. The framework is very small—it consists of eight classes, four of

�This research was supported by the Dutch Technology Foundation STW, project UIF 5055 (SHAME: Shape Matching Environ-
ment).

1

which are directly visible to the user. Each of these four classes has only a small number of member
functions in its interface, and they are very easy to use. The framework is described in Section 5. Based
on this parametric-search framework, we implemented Quicksort and Bitonic sort in such a way that they
can be used as the generic algorithm in sorting-based applications of parametric search. These two sorting
algorithms were then applied to two problems. The first one is the problem of finding the intersection of
the median function of a set of monotone increasing linear functions with thex-axis. This problem was
used by Megiddo to explain his technique [16], and has been used as a preliminary example in many other
papers on parametric search. The second one is the Fr´echet-distance problem [3]. We will give some de-
tails on these applications in Section 6. The experimental results presented in Section 7 indicate that the
application of parametric search can indeed result in algorithms that are efficient in practice. In fact, while
a simple binary-search approach is often advocated as a practical replacement for parametric search, it is
outperformed by our Quicksort-based algorithm for the Fr´echet distance problem.

2 Preliminaries

Megiddo’s parametric-search technique [16] works as follows: assume that we have a decision problem
P (λ) that is monotonous inλ, i.e., if P (λ0) is true, thenP (λ) is true for allλ < λ0. Our task is to find
λ�, the maximum value ofλ for which P (λ) is true. Suppose that we have an algorithmAs that solves the
decision problemP , and that can determine for any input valueλ whetherλ < λ�, λ = λ�, or λ > λ�. Also
suppose that the flow of control ofAs depends on comparisons, each of which depends on the sign of a
polynomial inλ. Megiddo’s idea is to runAs generically on the unknown inputλ�. It may seem strange
to run an algorithm on unknown input, while the outcome (namely, the verification that the input is equal
to λ�) is already known. However, we get to know the actual value ofλ� as a by-product of runningAs

on λ�. During the generic execution ofAs we maintain an open intervalI in which λ� is known to lie;
initially, I is (�∞;∞). Whenever a comparison has to be resolved, we need to determine the sign of a
polynomialp at the valueλ�. This can be done without knowing the value ofλ�, by running the concrete
version ofAs on the roots ofp. This determines the location ofλ� among the roots, i.e., it either gives us
two consecutive rootsri andri+1 such thatri < λ� < ri+1, or we find out that one of the roots isλ�. In
the latter case we are done and we abort the execution of the generic algorithm. Otherwise, since the sign
of a polynomial doesn’t change in between two consecutive roots, we can determine the sign ofp(λ�) by
evaluating the polynomialp for any valuex2 (ri ; ri+1). This determines the outcome of the comparison,
and, after updatingI to I \ (ri ; ri+1), we resume the generic execution ofAs. During the execution ofAs, I
gets progressively smaller, and we either runAs to completion, ending up with a final intervalI , or we find
λ� prematurely and abort the execution ofAs. In many applications of parametric searchλ� is one of the
roots associated with the comparisons, andAs will never run to completion in these cases. In other cases,
such as in the “median-of-lines” example that Megiddo used to explain his technique [16], the structure of
the problem restricted to the final intervalI is simple, and the value ofλ� can be easily computed, givenI .

If we denote the running time ofAs with Ts and the number of comparisons made byAs with Cs, then
the cost of running parametric search as described above isO(CsTs). This can be improved by computing
As(r) only when we really have to. Recall thatP (λ) is monotonous: ifP (λ0) is true, thenP (λ) is true
for all λ < λ0. Symmetrically, ifP (λ0) is false, thenP (λ) is false for allλ > λ0. This means that if we
can somehow batchk comparisons, we can resolve the associated roots as follows: we find the median
λm of the roots using a linear-time median-finding algorithm, and computeAs(λm). This determines the
outcome of the decision problem for half of the roots, and we recursively deal with the remaining roots.
It follows that if the number of roots associated with a comparison is bounded by a constant, we can
resolve thek batched comparisons in a binary-search fashion with onlyO(logk) calls toAs. Note that to be
able to batch comparisons, they should beindependent: the outcome of one comparison in a batch should
not depend on the outcome of another comparison in the same batch. Megiddo [16] therefore suggests to
replace the generic algorithm with a parallel versionAp, since the operations in one parallel step are usually
independent. IfAp usesP processors and runs inTp parallel steps, and we use the binary-search approach to
resolve the comparisons in each parallel step, then the total cost of parametric search isO(PTp+TpTs logP).
Usually, the running time is dominated by the second term. Note that we don’t actually runAp on a parallel
architecture; the parallelism is simulated and irrelevant in itself. The important point is the ability to collect

2

(preferably large) batches of comparisons in order to reduce the number of calls to the concrete decision
algorithmAs. Therefore, a weak model of parallelism, such as the parallel comparison model of Valiant,
suffices. In this model, the complexity of an algorithm is only determined by the comparisons being made,
and things like communication and synchronization between processes are ignored.

Cole [9] shows that in some applications of parametric search, the number of calls to the decision
process can be reduced by a log-factor, thus improving the running time toO(PTp+TpTs+TslogP). We
will explain his idea and comment on it in Section 4.

One of the drawbacks of parametric search mentioned by Agarwal and Sharir [1] is that it requires the
design of an efficient parallel algorithm for the generic version of the decision problem, which is not always
easy. However, it is instructive to point out that the generic algorithm does not necessarily have to solve
the same problem as the concrete version; all that is required is that the output of the generic algorithm
changes combinatorially atλ�. In quite some cases, sorting can play the role of the generic algorithm;
see for instance the spanning tree and scheduling problems studied by Megiddo [16], the slope-selection
problem [11], the Fr´echet-distance problem [3], the bottleneck-distance problem [13], and the problem of
finding the minimum Hausdorff distance, under rotation and rotation, between two sets of points, lines,
or polygons [8]. In several other cases, the generic algorithm consists of several steps, sorting being one
of them [17, 19]. For sorting-based parametric search we have several parallel sorting algorithms at our
disposal. The first sorting algorithm that sorts inO(logn) parallel steps usingO(n) processors is the sorting
network of Ajtai et al. [2], usually referred to as the ‘AKS-network’. When used for parametric search,
it leads to a running time ofO(nlogn+Tslog2 n), or O(nlogn+Tslogn) when Cole’s optimization [9] is
applied. However, as many researchers have commented, this algorithm is rather complex and the constants
hidden in theO-notation are very large. For practical use it is often suggested to use a sub-optimal parallel
sorting algorithm instead, such as Valiant’s merge sort [21], which runs inO(lognlog logn) parallel steps
usingO(n) processors. Less commonly known are the two sorting algorithms by Cole [10] that have the
same time bounds as the AKS-network and also useO(n) processors. One of these algorithms works under
the CREW PRAM model of parallel computation, and the constants in the running time are small. However,
it does not meet the conditions for applying Cole’s optimization [9]. The other one works under the EREW
PRAM model; it is more complex than the first algorithm, but Cole’s optimization can be applied to it.

In fact, parallelism is not a requirement for resolving the roots in a binary-search fashion. It suffices
to be able to collect the roots associated with independent comparisons in a small number of batches. In
this paper we show that Quicksort, quite surprisingly, meets the requirements, which leads to a consider-
able simplification of sorting-based parametric search, yielding an expected running time ofO(nlogn+
Ts log2n) (see Section 3). Cole’s optimization cannot be applied here, but we also show that under certain
conditions that seem not too unlikely in practical situations, the expected running time of parametric search
will be O(PTp+Tslog(P+Tp)), rather thanO(PTp+TpTs logP), even without Cole’s optimization. For
Quicksort-based parametric search this means that the expected running time isO(nlogn+Tslogn) if these
conditions, which we will explain in Section 4, are met.

Parametric-search has always been more popular with theoreticians than with practitioners. While
parametric search, when applied to the right problems, often leads to asymptotic running times that are
about an order of magnitude better than the alternatives, it is often advised against using the technique
in practice. The reason for this negative advice is usually twofold. Firstly, since parametric search is
a complicated technique, it is believed that implementing it must also be complicated and hard. To our
knowledge, the technique has been implemented only twice; the first time by Toledo [20], who applies
it to the “median-of-lines”-problem that Megiddo gave as a simple illustration of parametric search [16],
and to the “slope selection problem” [11]. The second implementation that we know of is by Schwerdt
et al. [19], who implement the algorithm for finding the minimum diameter of a set of moving points by
Gupta et al. [14]. The second reason why parametric search is hardly ever used in practice is that it is
generally assumed that the overhead involved (i.e., the hidden constants in theO-notation) are too large to
be of practical use. Partly because of the presumed difficulties with parametric search, alternatives have
been proposed for many specific problems; see for instance Agarwal and Sharir [1] and Chan [7]. However,
parametric search is currently still the most general method. We would like to counter-balance the advice
of avoiding parametric search in real-world applications by making some observations that considerably
simplify sorting-based parametric-search (Sections 3 and 4), and by providing a framework that takes care
of much of the difficulties of parametric search, whether sorting-based or not (Section 5).

3

3 Quicksort-based parametric search

Until now, sorting-based parametric search has always relied on parallel sorting algorithms for the batching
of comparisons. Megiddo [16] suggests the parallel sorting algorithms of Valiant [21] or Preparata [18].
Other authors propose using the AKS-network [2] to derive running times that are asymptotically faster.
Cole [9] originally applies his optimization technique to the AKS-network. In a later paper [10] he gave
two parallel sorting algorithms that have the same asymptotic time bounds as the AKS-network, but with
much smaller constant factors hidden in theO-notation.

In this paper we show that Quicksort can be used as the generic algorithm for sorting-based parametric
search. There is no need to use a parallel version of Quicksort; a serial version suffices to be able to
batch comparisons. For a complete description and analysis of Quicksort, see any introductory textbook
on algorithms, for instance the one by Cormen, Leiserson, and Rivest [12].

In short, Quicksort sorts an input arrayA with elements numbered 1: : :n as follows:

1. If A has less than two elements, return;

2. Otherwise, choose A[1] as thepivot element;

3. Partition A into two sub-arraysA< (containing the elements ofA that are smaller than the pivot
element) andA� (containing the elements ofA that are greater than or equal to the pivot element);

4. Recursively sortA< andA�.

Quicksort has a worst-case running time ofΩ(n2); in fact, if the input is (almost) sorted, the running
time is indeed quadratic in the input size. To attain anO(nlogn) expected running time, randomization
is employed, either by randomly permuting the input, or by choosing a random element of the array as
the pivot element in step 2. Quicksort is very simple, well-known, and in practice it usually outperforms
sorting algorithms with a deterministicO(nlogn) running time.

The third step of the algorithm is usually performed by maintaining two pointers. One of these initially
points to the first element of the array, and moves toward the higher elements, until an elementei is found
that is greater than or equal to the pivot element. The other pointer initially points to the last element of the
array, and moves toward the lower elements, until an elementej is found that is less than the pivot element.
If ei comes beforeej in the array, they are swapped, and the process continues until the pointers pass each
other.

Observe that in step three of the algorithm, all comparisons between elements of the array are inde-
pendent: we compare all elements with the pivot element. This implies that we can use Quicksort in the
parametric-search setting: we collect all the comparisons in step three, and resolve them in a binary-search
fashion as Megiddo suggested [16]. After all comparisons in the third step have been resolved, we do the
actual partitioning as described in the previous paragraph.

To make Quicksort-based parametric search efficient, we would like to collect the comparisons for all
recursive calls at the same recursion levell in a single batch, rather than resolving them inO(2l) separate
batches. This is trivial if we replace the recursion by iteration. We maintain a list of (pointers to) sub-arrays;
initially, this list contains only one array, namely, the input arrayA. In each iterative step we first collect
theO(n) comparisons of all sub-arrays (i.e., for each sub-array we compare all elements of the sub-array
with the pivot element of the sub-array), and resolve them in a binary-search fashion. Next, we partition
each sub-array as described before; this doubles the size of the list of sub-arrays. From this list, we remove
the sub-arrays of size 1, and we proceed with the next iteration.

If we employ randomization by either randomly permuting the input as a first step of the algorithm, or
by choosing a random element of each sub-array as the pivot element, the expected number of iterations
is O(logn). In each iteration we doO(n) work in total, and the number of calls to the algorithmAs that
solvesP is O(logn) in each iteration. It follows that when we use Quicksort as the generic algorithm in
sorting-based parametric search, the running time will beO(nlogn+Tslog2n). It seems not possible to
apply Cole’s optimization [9]—we cannot partition a sub-array before all comparisons for that sub-array
have been resolved—and therefore we cannot reduce the running time toO(nlogn+Tslogn). However, in
the next section we will show that under certain conditions that seem reasonable in practice, the running
time will be closer toO(nlogn+Tslogn) than toO(nlogn+Tslog2n). Evidently, using Quicksort as the

4

generic algorithm for sorting-based parametric search considerably simplifies the implementation. Also,
since Quicksort has proved to be very efficient in practice, it can be expected to lead to faster algorithms
than when complicated parallel algorithms with larger constant factors in the running time are used.

Note that batching of comparisons is not a prerequisite of parametric search. Without batching, Quick-
sort and other serial sorting algorithms can also be used as the generic algorithm of sorting-based para-
metric search, at the cost of a (much) higher running time. In fact, Toledo[20] gives an implementation
of a non-batched Quicksort-based parametric-search algorithm, apart from a version that uses Valiant’s
parallel merge sort[21]. However, our observation that Quicksort can be used to batch comparisons makes
implementing optimized versions of parametric search considerably easier.

4 Cole’s optimization revisited

Cole [9] shows that in some cases the running time of parametric search can be reduced fromO(PTp+
TpTs logP) to O(PTp+TpTs+TslogP). His optimization technique works as follows: instead of resolving
a batch ofO(P) roots byO(logP) calls toAs in a binary-search fashion (which requires that the roots are
sorted first), we find the median rootr (which can be done in linear time) and callAs(r). This determines
the outcome of the decision problem for half of the roots. Assume for the moment that the comparisons
made by the generic algorithm each depend on only one root. Then after this single call toAs, the outcome
of half of the comparisons that depend on the roots in this batch is known. The (parallel) processes that
depend on these comparisons can then be resumed, which will lead to new comparisons and associated
roots. These roots are then joined with the first batch (of which only half the number of roots have been
resolved so far), and the process repeats with finding the median root, and so on. Cole shows that if the
roots are weighted according to some clever scheme and a weighted median finding algorithm is used, the
number of calls toAs will be reduced by a log-factor. The technique still works if the comparisons depend
on a constant number of roots, rather than on a single root. The drawbacks of the technique are that it
cannot generally be applied, as it imposes some conditions on the parallel algorithm, and it also makes the
generic algorithm more complicated.

In our experiments (see Section 7) we did not apply Cole’s optimization, but we resolved each batch
of roots inO(logP) steps, as in Megiddo’s original paper [16]. We noticed that the number of calls to the
decision process was indeed growing with the input size, yet much less than we expected. We attributed this
to the maintenance of the progressively smaller interval in whichλ� is known to lie. Recall that resolving a
batch of roots either gives us the value ofλ� (namely, ifλ� is one of the roots), or we end up with an interval
(rk; rl), whererk andrl are roots from one of the batches processed so far, and none of the other roots from
these batches lie in-betweenrk andrl . When we resolve the next batch of roots, we can disregard the roots
that do not lie in this interval, as the outcome of the decision process for these roots is already known:
P (r) = true if r � rk, andP (r) = false if r � rl . Hence, we only have to do the binary search for roots
r 2 (rk; rl). Intuitively, since this interval gets smaller in each roots-resolving step, we will have to consider
fewer and fewer roots as the algorithm progresses.

Let us assume for the moment that the roots are uniformly distributed over the batches. Number the
batches that are processed during the algorithm from 0 tom. In Megiddo’s setting,m= O(Tp), whereTp

is the number of parallel steps of the generic algorithm. In step 0, the interval that gives the bounds onλ�

is (�∞;∞), and we callAs O(logP) times to resolve the decision process for all roots in a binary-search
fashion. At the beginning of stepi, for 1� i � m, the outcome ofP (r) for all rootsr from the batches
solved in steps 0 toi�1 is known; the total number of these roots isi �P. Furthermore, the interval that
we maintain is bound by two consecutive rootsrk andrl from this set ofi �P roots. Since the number of
roots for which we have to callAs in stepi is P, the expected number of roots in stepi that lie inside(rk; rl)
is 1=i (under our assumption that the roots are uniformly distributed over thek+1 batches). Even if we
call As for all the roots that lie in(rk; rl) instead of doing a binary search, the expected total number of
calls toAs, summed over steps 1 tom, is ∑m

i=11=i, which isO(logm). It follows that the expected running
time of parametric search isO(PTp+Ts log(P+Tp)). SinceTp (the number of parallel steps of the generic
algorithm) is usually smaller thanP (the number of processors), this isO(PTp+TslogP). With Quicksort,
we get an expected running time ofO(nlogn+Tslogn).

Of course, we cannot generally assume that the roots are uniformly distributed over the batches; it

5

may be the case that in each stepi, for 1� i � m, all the roots in that step lie inside the interval that
results from the previous steps, which means that we have to do the binary search over all these roots.
However, it seems to us that in many practical situations this extreme situation is unlikely to occur, and
we expect that in practice the distribution of the roots over the batches is “sufficiently uniform” to benefit
from maintaining the bounds onλ�; If we use Quicksort as the generic algorithm, randomly permuting the
input as a preprocessing step may even help in this respect, although this still doesn’t give any guarantees.
However, our experiments with the Quicksort-based parametric-search solution to the Fr´echet-distance
problem show that the bulk of the invocations of the decision algorithm is indeed done in the first 10%–
30% of the iterations (see Section 7).

5 The parametric-search framework

Batching of comparisons isn’t always possible or necessary in applications of parametric search, but when
it is applicable it usually reduces the number of calls to the decision process by about an order of magnitude.
At the same time, it also makes implementing algorithms based on parametric search difficult, because it
disrupts the normal flow of control. Suppose for example that we have a functionf() (in pseudo-C++ code)
as in Figure 1.

1. void f(){
2. int i, j, k;
3.
4. g1(i); g2(j); g3(k); // call by ref.
5. i += j+k;
6. h1(i); h2(i); h3(i);
7. }

Figure 1: Original code.

Assume that we want to execute this code in the parametric-search setting, and that the comparisons
made by the functionsg1() , g2() , andg3() are mutually independent. Naturally, we would like to batch
them. Similarly, assume that the comparisons made byh1() , h2() , andh3() are independent and we also
want to batch those. However, the latter three functions depend on the variablei , which in turn depends
on the results of the three functions in line 4, so we cannot collect and resolve the comparisons of the six
functions in lines 4 and 6 in a single batch. What we have to do instead is starting the execution ofg1() ,
collect its comparison and suspend its execution, do the same forg2() andg3() , resolve the comparisons
collected so far, and resume the execution of the three functions. Next, we can execute the statement in
line 5, and we get another round of starting functions, collecting comparisons and suspending execution,
resolving comparisons, and resuming execution, this time of the functions in line 6. It gets even more
cluttered when we want to simulate parallelism, i.e., when the order of execution of the functions in line 4
can be arbitrary, as well as the order of execution of the functions in line 6.

Our parametric-search framework takes care of starting, suspending and resuming of functions, and of
collecting and resolving comparisons. The framework consists of a small hierarchy of C++ classes. A user
needs to interact with only four of these classes, and the number of functions in the public interface of these
classes is very small. These four classes are namedScheduler , Process_base , Comparison_base , and
Root , respectively. The idea is that functions that need to be started, suspended, and resumed are turned into
objects of a (user-defined) class derived fromProcess_base . We will call such objectsprocesses. (Note,
however, that they are unrelated to processes in operating systems; instead, the are regular C++ objects.)
Similarly, comparisons are to be implemented by the user by deriving fromComparison_base . Let us give
an example by transforming the code above into such a collection of classes; see Figure 2. The code is
incomplete and simplified, but shows the important principles.

The transformation is straightforward; functions that perform independent comparisons (such as the
three functions in line 4 in Figure 1) correspond to dynamically created objects; the creation of independent
objects is done by a single member function (lines 3–7 in Figure 2). Similarly, the code in lines 5 and 6 in

6

1. class proc_f : public Process_base {
2. public:
3. void memfun_1(){
4. spawn(new proc_g1(i));
5. spawn(new proc_g2(j));
6. spawn(new proc_g3(k));
7. }
8.
9. void memfun_2(){

10. i += j+k;
11. spawn(new proc_h1(i));
12. spawn(new proc_h2(i));
13. spawn(new proc_h3(i));
14. }
15.
16. private: // member variables
17. int i, j, k;
18. };

Figure 2: Transformed code.

Figure 1 is translated into lines 9–14 in Figure 2. Finally, local variables in the original code correspond to
member variables in the transformed code. The two member functionsmemfun_1() andmemfun_2() are
registered with the framework in the constructor ofproc_f (not shown here). Processes themselves, such
asproc_f and the processes it creates, are also registered with the framework; this is done automatically.
Thespawn function takes care of linking ‘child processes’ to their ‘parent process’.

When processes are created, they are not executed immediately; theScheduler decides when a process
should be started. When it is time forproc_f in Figure 2, theScheduler tells it to execute its first
registered member function,memfun_1() . As a result, three new processes are created (but not executed
immediately). Aftermemfun_1() has finished,proc_f is suspended. TheScheduler then selects other
processes to run, including the child processes ofproc_f . When all child processes spawned byproc_f
have finished, it is commanded by theScheduler to resume its execution, starting with the next registered
member function,memfun_2() , and so on. When there are no more member functions,proc_f is deleted
by theScheduler .

Processes can spawn other processes and comparisons (objects of a user-defined class derived from
Comparison_base). Comparisons in turn can spawn objects of classRoot . TheScheduler takes care of
resolving the roots in a binary-search fashion, of signaling the comparisons that all their associated roots
have been resolved so that the outcome of the comparison can be determined, and of starting, suspending,
resuming, and terminating processes and comparisons. Details can be found in the reference manual and
tutorial that come with the software (see the CGAL extension package section onhttp://www.cgal.org);
what we hope to show here by means of the simple code examples and the brief explanation is the simplicity
of the framework.

The user needs no knowledge of the inner workings of the framework, but only has to do a simple trans-
formation similar to the one from the code shown in Figure 1 into the code shown in Figure 2. Naturally,
more complicated constructs can also be translated. For instance, iteration can be expressed by having
member functions register themselves again with the framework after they have finished their task, and
recursion is expressed by having a process spawn another process of its own class.

The generic algorithm that is run onλ� (the unknown solution to the optimization problem) can in
certain cases be replaced by sorting. To simplify the implementation of parametric search even further
in these cases, we provide implementations of two sorting algorithms. The first one is Bitonic sort, the
parallel sorting network by Batcher [4], which usesO(n) processors to sortn input items inO(log2n)
parallel steps. Our implementation of Bitonic sort uses the parametric-search framework to simulate the

7

parallelism and to resolve comparisons in batches. The second sorting algorithm is Quicksort; here, we
also use the framework to collect and resolve the comparisons in the partitioning step, prior to doing the
actual partitioning (see Section 3).

Using the framework to do sorting-based parametric search requires the user to implement the following
classes or functions:

1. A class or function that computes the items that are to be sorted from the input. The input may
consist of these items themselves;

2. A class derived fromComparison_base that computes the roots associated with the comparison of
two items, and that can determine the outcome of the comparison once the solution of the decision
problemP is known for all these roots;

3. A class or function that solves the decision problem.

Furthermore, the user should specify whether to use Bitonic Sort or Quicksort, and decide on the
number type to be used for the calculations.

The parametric-search framework and the two sorting algorithms have the same design philosophy as
CGAL [5], the library of algorithms for computational geometry. Our framework doesn’t depend on CGAL,
but the two cooperate very well. We consider this important, since it is our goal to use the framework
for implementing algorithms that solve geometric optimization problems. In fact, we plan to make our
framework available as a CGAL extension package.

6 Applications

Using our framework and the two sorting algorithms, we implemented two algorithms that apply sorting-
based parametric-search. The first one solves the ‘median-of-lines’ problem that Megiddo gave as a simple
illustration of parametric search [16]. Our motivation for implementing this algorithm is that it gives a
simple means of testing our framework, and at the same time it enables us to easily explain the framework
in a tutorial. The second algorithm that we implemented is the one by Alt and Godau [3] for computing
the Fréchet distance between two polygonal curves. We will discuss it here briefly to illustrate how the
framework is used.

The usual informal illustration of the Fr´echet metric is the following: suppose a man is walking his
dog, keeping it on a leash. The man is walking on a polygonal curveP, and the dog on a polygonal curve
Q. Both are allowed to control their speed, which may have any non-negative value (i.e., they are allowed
to stop, but they cannot go back). Then the Fr´echet distance betweenP andQ is the minimal length of the
leash that is necessary.

The two following definitions from Alt and Godau [3] characterize the Fr´echet metric more formally;
in these definitions,V denotes an arbitrary Euclidean vector space.

Definition 1 A curveis a continuous mapping f: [a;b]!V with a;b2 IR and a< b. A polygonal curve
of length n is a curve P: [0;n]!V with n2 N, such that for all i2 f0;1; : : : ;n�1g each Pj[i;i+1]j is affine,
i.e., P(i +λ) = (1�λ)P(i)+λP(i +1) for all λ 2 [0;1].

Definition 2 Let f : [a;a0]!V and g: [b;b0]!V be curves. ThenδF(f ;g) denotes theirFréchet distance,
defined as

δF(f ;g) := inf
α:[0;1]![a;a0]
β:[0;1]![b;b0]

max
t2[0;1]

jj f (α(t))�g(β(t))jj

whereα;β range over the continuous and increasing functions withα(0) = a, α(1) = a0, β(0) = b, and
β(1) = b0.

Let P andQ be polygonal curves, withm andn edges, respectively. Alt and Godau first show how to
solve the casem= n= 1. Here,P andQ are simple line segments.

DefineFλ := f(s; t) 2 [0;1]2 j d(P(s);Q(t)) � λg. Fλ is called the “free space”; it is shown in Figure 3,
cited from Alt and Godau [3], together withP, Q, andλ. It is proven that if the distance measure between

8

two points on either polygonal curve is Euclidean, then the intersection ofFλ with the unit square is an
ellipse.

Fλ

P

Q

P

Q

λ

Figure 3:P, Q, λ, andFλ.

The definition ofFλ is extended to arbitrary polygonal curvesP andQ with mandn edges, respectively:
Fλ := f(s; t) 2 [0;m]� [0;n] j d(P(s);Q(t)) � λg. Figure 4, also cited from Alt and Godau, shows an
example for two polygonal curves with 6 and 4 segments.

P

P

Q

Q

λ

Figure 4: Diagram for polygonal chainsP, Q and the givenλ.

The algorithm for the decision problem is based on the observation than given two polygonal curves
P andQ, δF(P;Q) � λ exactly if there is a curve within the correspondingFλ from (0;0) to (m;n) that is
monotone in both directions.

The critical values in the decision process are the coordinates of the intersections of the ellipses with
the boundaries of the squares in the diagram (see Figure 4). Since the number of intersections is a constant
for each square, there areO(mn) critical values. They depend onλ, the input parameter of the decision
problem; in fact, they are polynomialspi in λ, where the indexi ranges over theO(mn) possibilities. Alt
and Godau show that forλ = λ�, either two critical values in a row or two critical values in a column of
the diagram have the same value (there are some other cases that need to be considered, but we ignore
them here for simplicity). This means that sorting-based parametric search can be used to find the Fr´echet
distance, because ifpi(λ�) = pj(λ�), then pi and pj will end up as adjacent polynomials after sorting.
Therefore, the sorting algorithm has to comparepi and pj (otherwise the order ofpi and pj cannot be
known), and this comparison involves the computation of the roots ofpi � pj ; one of these roots isλ�.

The first C++ class that we implement solves the decision problem. This takes some effort, but it isn’t
overly complicated. For a givenλ we compute the intersections of the ellipses with the boundaries of the
squares in the diagram. In a subsequent step, we determine if there is a path from(0;0) to (m;n) within Fλ
that is monotone in both directions. See the paper by Alt and Godau [3] for details.

9

The items that are to be sorted are the intersections of ellipses with the boundaries of the squares in the
diagram forP andQ; these are polynomials in the input parameterλ of the decision process. The second
class that we implement computes theseO(mn) polynomials fromP andQ, and we tell the framework that
it should use this class to retrieve the input for the sorting algorithm.

Finally, the third class that we implement compares two polynomials; it is derived fromComparison_base .
Two polynomialspi andpj are compared by computing the roots ofpi � pj . These roots are collected by
the framework and resolved in a binary-search fashion. Once the outcome of the decision process for all
roots ofpi � pj is known, the framework tells the comparison class to determine the outcome of the com-
parison ofpi and pj . This is done by evaluatingpi and pj for an arbitrary value in the interval in which
λ� is known to lie; this interval is guaranteed not to contain any of the roots ofpi � pj at the time the
framework tells the comparison class to determine the outcome of the comparison.

These three classes are all we need to implement to solve the optimization problem (i.e., to compute
the Fréchet distance betweenP andQ). The test results of this implementation are presented in the next
section.

The decision problem considersO(mn) critical values and can be solved inO(mn) time. If we use
Quicksort as the generic sorting algorithm, then the expected number of calls to the decision process (with-
out any assumptions on the distribution of the roots) isO(log2(mn)). The expected overhead of the sorting
itself isO(mnlog(mn)), so the total expected running time isO(mnlog2(mn)). However, if the distribution
of the roots over the subsequent steps of the algorithm is sufficiently random, we may expect running times
that are closer toO(mnlog(mn)), as we showed in Section 4.

7 Experimental results

We tested the algorithm for computing the Fr´echet distance between two polygonal curves ofn vertices
each, forn2 f16;32;64;128g. The polygonal curves were created by generating 2n random points in the
unit square. We computed the Fr´echet distance by running the sorting-based parametric search algorithm
described in the previous section; both Bitonic sort and Quicksort were used as the generic sorting algo-
rithm. The first number type that we used waslong double ; this means that we didn’t get an exact answer,
but only an approximation.

We also computed an approximation by doing a binary search on the values representable by along double ;
this is often suggested as an alternative for parametric search. Since along double has 96 bits on our sys-
tem, we expected that the number of calls to the decision process would also be 96. In reality, we found a
much higher number of iterations. This is explained by the fact that the distance between two consecutive
numbers representable by along double is much smaller around 0 than it is around large positive and
negative values. In fact, it is possible to do a binary search on the bits of along double , but rather than
implementing such an efficient binary search, we simply computed the running time for 96 iterations from
the actual running time and number of iterations. Such a computation is possible, since the overhead in
both methods of binary search is negligible; almost all time is spent in the decision process.

All three algorithms were run on the same (randomly generated) input, and for each input size of
n 2 f16;32;64;128g we did 100 repetitions. The results are presented in Table 1; the running times for
binary search are normalized for 96 iterations as described above. The experiments were done on a PC
with a 667 MHz Pentium III processor and with 128 Mb memory, running Linux.

In nearly all cases, Quicksort was faster than the two other methods. In one of the repetitions for
input size 32 however, the running time was very high: 0.511 seconds, compared to 0.088 seconds for the
second-highest running time. This may be due to the fact that Quicksort has an expected-case performance
of O(nlogn), but a worst-case performance ofO(n2).

Both for Bitonic sort and Quicksort, the framework aborts the sorting whenλ� is found as the root. The
number of times this actually happens is listed in the table. In the binary search method we also stop when
we encounterλ�; however, difference between the smallest and the highest number of iterations was less
than 2 percent.

We also tested the Fr´echet-distance algorithms usingleda_real [6]. This number type provides exact
relational operators(=; 6=;<;�;>;�) and is closed under addition, subtraction, multiplication, division,
and computation ofk-th roots. Exact comparisons withleda_real are generally efficient, but at times they

10

can be very expensive, especially when two complicated expressions are compared that are actually equal.
In our first trials with polygonal curves of less than 10 vertices each, the running times were measured
in hours. Simplifying the arithmetic expressions in the decision process reduced the running times to a
few minutes for polygonal curves of 16 vertices each. We still consider this too slow, but we see a lot of
possibilities for optimizations. Specifically, by maintaining some extra information in the data structure for
the decision algorithm, we can avoid the comparison of expressions that we know to be equal a priori—and
these are the comparisons that are most expensive.

To verify the assumption that the maintenance of the progressively smaller interval of bounds onλ�

results in fewer and fewer invocations of the decision algorithm as the generic algorithm progresses (Sec-
tion 4), we recorded the number of calls in each iteration of the Quicksort-based Fr´echet-distance algorithm
on randomly generated input of sizen= 100. It turned out that for the cases without early abort, all invoca-
tions of the decision algorithm were done in the first 10%–30% of the iterations (recall that we implemented
an iterative rather than a recursive version of Quicksort; see Section 3).

Input size Method min T avgT maxT # times aborted

16+16 Bitonic sort 0.005 0.019 0.023 26
Quicksort 0.004 0.010 0.012 24
Binary search 0.013 0.014 0.016 —

32+32 Bitonic sort 0.030 0.172 0.247 29
Quicksort 0.027 0.073 0.511 29
Binary search 0.061 0.072 0.084 —

64+64 Bitonic sort 0.133 1.239 1.492 25
Quicksort 0.122 0.409 0.518 26
Binary search 0.671 0.685 0.693 —

128+128 Bitonic sort 0.663 6.042 7.469 29
Quicksort 0.729 1.864 2.407 29
Binary search 2.704 2.769 2.810 —

Table 1: Test results for the Fr´echet-distance algorithms. (Times are in seconds.)

8 Concluding remarks

In this paper, we observed that Quicksort may be used to efficiently implement algorithms that use sorting-
based parametric search. We also argued that Cole’s optimization [9] may not be needed under certain
conditions that seem reasonable in practice. We presented a framework that allows users to implement
various applications of parametric search in a simple and efficient way. The two sorting algorithms that
we provide with the framework can be used as the generic algorithm in sorting-based parametric search.
Especially Quicksort performs very well; our Quicksort-based implementation of the algorithm by Alt and
Godau [3] gives better result than the simple binary-search approach.

References

[1] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization.ACM Comput. Surv.,
30:412–458, 1998.

[2] M. Ajtai, J. Komlós, and E. Szemer´edi. Sorting inclogn parallel steps.Combinatorica, 3:1–19, 1983.

[3] H. Alt and M. Godau. Computing the Fr´echet distance between two polygonal curves.Internat. J.
Comput. Geom. Appl., 5:75–91, 1995.

[4] K. E. Batcher. Sorting networks and their applications. InProc. 1968 Spring Joint Computer Conf.,
pages 307–314, Reston, VA, 1968. AFIPS Press.

11

[5] H. Brönnimann, L. Kettner, S. Schirra, and R. C. Veltkamp. Applications of the generic programming
paradigm in the design of CGAL. InGeneric Programming — International Seminar on Generic
Programming, volume 1766 ofLecture Notes Comput. Sci., pages 206–217. Springer-Verlag, 2000.

[6] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-
1-001, Max-Planck Institut Inform., Saarbr¨ucken, Germany, January 1996.

[7] T. M. Chan. Geometric applications of a randomized optimization technique.Discrete Comput.
Geom., 22(4):547–567, 1999.

[8] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets. Geo-
metric pattern matching under Euclidean motion.Comput. Geom. Theory Appl., 7:113–124, 1997.

[9] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms.J. ACM, 34(1):200–208,
1987.

[10] R. Cole. Parallel merge sort.SIAM J. Comput., 17(4):770–785, 1988.

[11] R. Cole, J. Salowe, W. Steiger, and E. Szemer´edi. An optimal-time algorithm for slope selection.
SIAM J. Comput., 18(4):792–810, 1989.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[13] A. Efrat and A. Itai. Improvements on bottleneck matching and related problems using geometry. In
Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 301–310, 1996.

[14] P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and proximity problems involving
moving geometric objects.Comput. Geom. Theory Appl., 6:371–391, 1996.

[15] N. Megiddo. Combinatorial optimization with rational objective functions.Math. Oper. Res., 4:414–
424, 1979.

[16] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.J. ACM,
30(4):852–865, 1983.

[17] S. Nakano, T. Nishizeki, T. Tokuyama, and S. Watanabe. Labeling points with rectangles of various
shapes. InGraph Drawing, 8th International Symposium (GD 2000), volume 1984 ofLecture Notes
Comput. Sci., pages 91–102. Springer-Verlag, 2001.

[18] F.P. Preparata. New parallel-sorting schemes.IEEE Trans. Comput., C-27:669–673, 1978.

[19] J. Schwerdt, M. Smid, and S. Schirra. Computing the minimum diameter for moving points: an exact
implementation using parametric search. InProc. 13th Annu. ACM Sympos. Comput. Geom., pages
466–468, 1997.

[20] S. Toledo. Extremal polygon containment problems and other issues in parametric searching. M.s.
thesis, Dept. Comput. Sci., Tel Aviv Univ., Tel Aviv, 1991.

[21] L. Valiant. Parallelism in comparison problems.SIAM J. Comput., 4(3):348–355, 1975.

12

