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Abstract

In this paper, we present the results of performing experiments with three different multi–
objective evolutionary algorithms (MOEAs) on eight different optimization problems. As
such, this paper is only an extension of an earlier publication in which one of the three
MOEAs is introduced [1]. Although the experiments and the obtained results have already
been reported in the earlier publication, not all information could be reported due to space
limitations. In this paper, we present even more information about the experiments that were
performed.

1 Outline

The reader of this paper is assumed to be familiar with the most important concepts related
multi–objective optimization such as Pareto dominance. If this is not the case, the reader is
advised to first read the main publication regarding this benchmark, which contains such additional
information [1], since it is not repeated here.

The three MOEAs that were used for testing are the Strength Pareto Evolutionary Algorithm
(SPEA) [11] by Zitzler and Thiele, the Non–Dominated Sorting Genetic Algorithm (NSGA–II) [4]
by Deb et al. and the recentmost version of the Multi–objective Mixture–based Iterated Density
Estimation Evolutionary Algorithm (MIDEA) [1] by Bosman and Thierens. We shall refrain from
presenting the details of these algorithms in this paper but refer the interested reader to the
indicated literature.

This paper is organized as follows. In section 2 we present the optimization problems that
we have tested the MOEAs on. In section 3 we discuss the indicators that were used to measure
the performance of the MOEAs. In section 4 we describe the setup of the experiments and in
Section 5 we tabulate the results. A discussion of these results may be found elsewhere [1].

2 Multi–Objective optimization problems

Our test suite consists of problems with real–valued variables as well as problems with binary
variables. In both cases we have used four different optimization problems and have used two
different dimensionalities for these problems to obtain a total test suite size of 16 problems. In
the following we give a brief description of the problems in our test suite.
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Name Definition Range

BT 1

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = 1 − f0(y) +

107 − 100

(10−5+
∑ l−1

i=1|∑ i
j=1 yi|)

• y0 ∈ [0, 1]

• yi ∈ [−3, 3]

(1 ≤ i < l)

ZDT 4

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ
(
1 −

√
f0(y)

γ

)
• γ = 1 + 10(l−1) +

∑l−1
i=1

(
y2

i − 10cos(4πyi)
)

• y0 ∈ [0, 1]

• yi ∈ [−5, 5]

(1 ≤ i < l)

ZDT 6

Minimize (f0(y), f1(y))

Where • f0(y) = 1 − e−4y0sin6(6πy0)

• f1(y) = γ

(
1 −

(
f0(y)

γ

)2
)

• γ = 1 + 9
(∑l−1

i=1
yi
9

)0.25

• yi ∈ [0, 1]

(0 ≤ i < l)

CTP7

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ
(
1 − f0(y)

γ

)
• γ = 1 + 10(l−1) +

∑l−1
i=1

(
y2

i − 10cos(4πyi)
)

Such That • cos(− 5π
100

)f1(y) − sin(− 5π
100

)f0(y) ≥
40| sin(5π

[
sin(− 5π

100
)f1(y)+

cos(− 5π
100

)f0(y)
]
)|6

• y0 ∈ [0, 1]

• yi ∈ [−5, 5]

(1 ≤ i < l)

Figure 1: Real–valued multi–objective optimization test problems.

2.1 Real–valued multi–objective optimization problems

A variety of test problems for real–valued variables has been proposed that may cause different
types of problems for multi–objective optimization algorithms [3, 5, 10]. From this set of problems,
we have selected three problems that are commonly used to benchmark multi–objective optimiza-
tion algorithms. The fourth real–valued test problem is a new test problem proposed by ourselves.
These problems represent a spectrum of multi–objective problem difficulty as they make it dif-
ficult for a multi–objective optimization algorithm to progress towards the global optimal front
and to maintain a diverse spread of solutions due to properties such as discontinuous fronts and
multi–modality. The problems with real–valued variables that we use in our experiments are all
defined for two objectives. An overview of our test problems is given in Figure 1.

2.1.1 ZDT4

Function ZDT 4 was introduced by Zitzler et al. [10]. It is very hard to obtain the optimal front
f1(y) = 1−√

y0 in ZDT 4 since there are many local fronts. Moreover, the number of local fronts
increases as we get closer to the Pareto optimal front. The main problem that a MOEA should
be able to overcome to optimize this problem is thus strong multi–modality.
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2.1.2 ZDT6

Function ZDT 4 was also introduced by Zitzler et al. [10]. The density of solutions in ZDT 6

increases as we move away from the Pareto optimal front. Furthermore, this function has a non–
uniform density of solutions along the Pareto optimal front as there are more solutions as f0(y)
goes up to 1. Therefore, a good diverse spread of solutions along the Pareto front is hard to obtain.
The Pareto front for ZDT 6 is given by f1(y) = 1 − f0(y)2 with f0(y) ∈ [1 − e−1/3; 1].

2.1.3 CTP7

Function CTP7 was introduced by Deb et al. [5]. Its Pareto optimal front differs slightly from
that of ZDT 4, but otherwise shares the multi–modal front problem. In addition, this problem has
constraints in the objective space, which makes finding a diverse representation of the Pareto front
more difficult since the Pareto front is discontinuous and it is hard to obtain an approximation of
a front that has a few solutions in each feasible part of that front.

2.1.4 BT1

Function BT 1 has not been used before in the field multi–objective optimization. It differs from the
other three functions in that it has multivariate (linear) interactions between the problem variables.
Therefore, more complex factorizations are required to exploit these interactions, whereas all of
the other problems are well–suited to be optimized using the univariate factorization. The Pareto
optimal front is given by f1(y) = 1 − y0.

2.2 Binary multi–objective optimization problems

In Figure 2, four binary multi–objective optimization problems are specified. These problems
are multi–objective variants of well–known combinatorial optimization problems. The number of
objectives for these problems is not restricted to two and is denoted by m.

It is important to note that we have used random instances for the combinatorial optimiza-
tion problems. In the case of only a single objective, random instances may on average be easy
for some combinatorial problems. However, in the case of multiple objectives, finding the Pareto
front is usually much more difficult, even if efficient algorithms are available for the single–objective
case [6]. Therefore, the instances used in our test suite are not expected to be over–easy. Fur-
thermore, the problems also serve to indicate differences between the different multi–objective
algorithmic approaches other than the fact that dependencies between problem variables can be
exploited. This relative performance of the algorithms may be well observed using our proposed
test–suite. On the other hand, the degree of interaction between the problem variables in randomly
generated problem instances may not be too large, which may cause optimization algorithms that
regard the problem variables independently of each other to be the most efficient.

2.2.1 Maximum satisfiability

In the maximum satisfiability problem, we are given a propositional formula in conjunctive normal
form. The goal is to satisfy as many clauses as possible. The solution string is a truth assignment
to the involved literals. These formulas can be represented by a matrix in which row i specifies
what literals appear either positive (1) or negative (−1) in clause i. In the multi–objective variant
of this problem, we have m of such matrices and only a single solution to satisfy as many clauses
as possible in each objective at the same time.

2.2.2 Knapsack

The multi–objective knapsack problem was first used to test MOEAs on by Zitzler and Thiele [11].
We are given m knapsacks with a specified capacity and n items. Each item can have a different
weight and profit in every knapsack. Selecting item i in a solution implies placing it in every
knapsack. A solution may not cause exceeding the capacity of any knapsack.
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Name Definition

MS

(
Maximum

Satisfiability

)

Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑ci−1

j=0 sgn
([∑l−1

k=0(Ci)jk ⊗ xk

])

• sgn(x) =




1 if x > 0

0 if x = 0

−1 if x < 0
• ⊗ 0 1

−1 1 0

⊗ 0 1

0 0 0

⊗ 0 1

1 0 1

KN
(Knapsack)

Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1

j=0 Pijxj

Such That • ∀i∈M :
∑l−1

j=0 Wijxj ≤ ci

SC
(Set Covering)

Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1

j=0 Cijxj

Such That • ∀i∈M : ∀0≤j<r :
∑l−1

k=0(Ai)jkxk ≥ 1

MST

(
Minimal

Spanning

Tree

)
Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1

j=0 Wijxj

Such That • ∀S⊆V :
∑

xj∈(S×(V −S)) xj ≥ 1

• ∀S⊆V :
∑

xj∈(S×S) xj ≤ |S| − 1

Figure 2: Binary multi–objective combinatorial optimization test problems.

2.2.3 Set covering

In the set covering problem, we are given l locations at which we can place some service at a
specified cost. Furthermore, associated with each location is a set of regions ⊆ {0, 1, . . . r−1} that
can be serviced from that location. The goal is to select locations such that all regions are serviced
against minimal costs. In the multi–objective variant of set covering, m services are placed at a
location. Each service however covers its own set of regions when placed at a certain location and
has its own cost associated with a certain location. A binary solution indicates at which locations
the services are placed.

2.2.4 Minimal spanning tree

In the minimal spanning tree problem we are given an undirected graph (V,E) such that each
edge has a certain weight associated with it. We are interested in selecting edges ET ⊆ E such
that (V,ET ) is a spanning tree. The objective is to find a spanning tree such that the weight of all
its edges is minimal. In the multi–objective variant of this problem, each edge can have a different
weight in each objective.

3 Performance indicators

To compare the MOEAs, we look at their average performance with respect to three different
performance indicators. The most important one is the average front distance AFD. This metric
is the average minimal Euclidean distance over all points in a given default front (FD) front to
another front F . In the case of the real–valued problems, we know the optimal front. The default
front in this case consists of a uniformly sampled set of 5000 solutions along the Pareto optimal
front. Since we do not know the Pareto optimal front for the binary optimization problems, we
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use the Pareto front over all results obtained by all algorithms as the default front. Because the
distance is computed over all points in the default front instead of over all points in the front
found in a certain run, this measure gives us a sense of how well each part of the optimal or best
known front is covered on average. It also gives us a sense of distance to the optimal front.

AFD(FD,F) =
1

|FD|
∑

x∈FD

min

{
m−1∑
i=0

(xi − yi)2
∣∣∣∣∣ y ∈ F

}
(1)

If two algorithms obtain a somewhat comparable AFD score, it is interesting to look at other
properties of the obtained results. A second metric we use is the front spread FS. This metric
gives a notion of the size of the objective space covered by the Pareto front. It is the maximum
Euclidean distance inside the m–dimensional hypercube that is obtained by taking the maximum
distance among the points in the front in each dimension:

FS(F) =

√√√√m−1∑
i=0

max{(xi − yi)2 | (x,y) ∈ F × F} (2)

The third and final metric is the front occupation FO, which is simply the number of points
on the front:

FO(F) = |F| (3)

4 Experiment setup

In this section we outline the settings that we have used to test the three MOEAs.

4.1 Optimization problem dimensionalities

4.1.1 Real–valued multi–objective optimization problems

For the real–valued problems, we tested all algorithms with both l = 10 and l = 100 problem
variables.

4.1.2 Binary multi–objective optimization problems

For the binary problems, we used test instances with l = 100 and l = 1000. For the maximum
satisfiability problem, we generated the test instances by generating 2500 clauses for l = 100 and
12500 clauses for l = 1000 with a random number of literals between 1 and 5. For the knapsack
problem, we generated instances by generating random weights in [1; 10] and random profits in
[1; 10]. The capacity of a knapsack was set at half of the total weight of all the items, weighted
according to that knapsack objective. For set covering, the costs were generated at random in
[1; 10]. We used 250 regions and 2500 regions to be serviced for l = 100 and l = 1000 respectively.
We varied the problem difficulty through the region–location adjacency relation. This relation was
generated by making each location adjacent to 70 and 50 randomly selected regions for l = 100
and l = 1000 respectively. Finally, for the minimum spanning tree problem, we used full graphs
with 105 edges (15 vertices) and 1035 edges (46 vertices). The dimensionality of these problems is
therefore not precisely 100 and 1000. The weights of the edges were generated randomly in [1, 10].

4.2 Optimization problem constraints

Problems CTP7, set covering, knapsack and minimal spanning tree have constraints. To deal
with them, we can use a repair mechanism to transform infeasible solutions into feasible solutions.
Another approach is based on the notion of constraint–domination introduced by Deb et al. [5].
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This notion allows to deal with constrained multi–objective problems according to a very general
scheme. A solution z0 is said to constraint–dominate solution z1 if any of the following is true:

1. Solution z0 is feasible and solution z1 is infeasible

2. Solutions z0 and z1 are both infeasible, but z0 has a smaller overall constraint violation

3. Solutions z0 and z1 are both feasible and z0 Â z1

In the above definition, the overall constraint violation is the amount by which a constraint
is violated, summed over all constraints. We have used this principle for problems CTP7 and
set covering. For the knapsack problem, an elegant repair mechanism was proposed in earlier
MOEA research [11]. For the minimal spanning tree problem, the number of constraints grows
exponentially with the problem size l. We therefore propose to use repair mechanisms for these
latter two problems.

4.2.1 Knapsack repair mechanism

If a solution violates a constraint, the repair mechanism iteratively removes items until all con-
strains are satisfied. The order in which the items are investigated, is determined by the maximum
profit/weight ratio. The items with the lowest profit/weight ratio are removed first.

4.2.2 Minimal spanning tree repair mechanism

First the edges are removed from the currently constructed graph and they are sorted according to
their weight. Next, they are added to the graph such that no cycles are introduced. This is done
by only allowing edges to be introduced between the connected components in the graph. If after
this phase, the number of connected components has not been reduced to 1, all edges between the
connected components are regarded in increasing weight and again the connected components are
merged until a single component is left.

4.2.3 General algorithmic setup

We ran every algorithm 50 times on each problem and in any single run we chose to allow a
maximum of 20 · 103 evaluations for the real–valued problems of dimensionality l = 10 and the
binary problems of dimensionality l = 100 and a maximum of 100 · 103 evaluations for the real–
valued problems of dimensionality l = 100 and the binary problems of dimensionality l = 1000.
As a result of imposing the restriction of a maximum of evaluations, a value for the population
size n exists for each MOEA such that the MOEA will perform best. For too large population
sizes, the search will move towards a random search and for too small population sizes, there is not
enough information to perform adequate model selection and induction. We therefore increased
the population size in steps of 25 to find the best results. To actually select the best population
size, we selected the result with the lowest value for the DPF →S indicator.

4.2.4 Algorithms

We tested a few variants of three MOEAs. In the following we will describe the details that are
required in addition to the details given in earlier sections for constructing the actual MOEAs
that we will use for testing.

SPEA
For SPEA, we used uniform crossover and one–point crossover with a probability of 0.8. Bit
flipping mutation was used in combination with either of these recombination operators with a
probability of 0.01. These settings were used previously by the SPEA authors [10]. We allowed
the size of the external storage in SPEA to become as large as the population size. For the real
problems, we encoded every variable with 30 bits.
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NSGA–II
For NSGA–II, we used the same crossover and mutation operators and the same encoding for the
real variables.

MIDEA
For MIDEA, we used the leader clustering algorithm in the objective space such that four clusters
were constructed on average. If the number of clusters becomes too large, the requirements for
the population size increases in order to facilitate proper factorization selection in each cluster.
We do not suggest that the number of clusters we use is optimal, but it will serve to indicate the
effectiveness of parallel exploration along the Pareto front as well as diversity preservation. In each
cluster, we either used the univariate factorization or we estimated a Bayesian factorization in the
case of real variables. However, in the case of 100–dimensional real–valued problems, we allowed
only at most a single parent for any variable. In the case of binary variables, we used the optimal
dependency tree algorithm by Chow and Liu [2] to estimate a tree factorization in each cluster.
To further investigate the influence of the different components in the MIDEA algorithm, we also
performed tests in which only a single cluster is used. Furthermore, we also replaced the use of
estimating probability distributions by the use of one–point crossover and uniform crossover with
mutation as used in the SPEA and NSGA–II algorithms. In the case of clustering in combination
with the use of crossover operators, restricted mating was employed in order to ensure clustered
exploration along the front. In restricted mating crossover, an offspring is produced using two
parent solutions that are picked from the same cluster. For the truncation percentile, we used the
rule of thumb by Mühlenbein and Mahnig [9] and set τ to 0.3. Furthermore, we set the diversity
preservation parameter to δ = 1.5.

5 Results

For each of the metrics, we computed their average and standard deviation over the 50 runs to
get an assessment of their performance. The averages are tabulated in Figures 3, 4, 7, 8, 11
and 12. The best results are written in boldface. For each algorithm, the type of recombination
is indicated as a superscript. The MIDEA algorithms are indicated by a single M symbol. For all
tested MIDEA algorithms, the subscript indicates whether only a single cluster was used. Without
a subscript, the leader algorithm was used in the objective space. The population sizes that led
to the best performance, are tabulated in Figures 15 and 16. Although the average behavior is
the most interesting, the standard deviations are vital to determine whether the differences in the
average behavior of the different algorithms are significant The standard deviations are tabulated in
Figures 5, 6, 9, 10, 13 and 14. In addition, we have performed Aspin–Welch–Satterthwaite (AWS)
statistical hypothesis T–tests at a significance level of α = 0.05. The AWS T–test is a statistical
hypothesis test for the equality of means in which the equality of variances is not assumed. For each
problem, we statistically verified for each pair of algorithms whether the average obtained metric
values differ significantly. We assigned a value of 1 if an algorithm scored significantly better and
a value of −1 if an algorithm scored significantly worse. We summed the so obtained matrices over
all problems to get the statistically significant improvement matrices that are shown in figures 17
through 19. We also computed the sum for each algorithm of its significant improvement values
over all other algorithms to indicate the summed relative statistically significant performance of
the algorithms.
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Average Front Distance AFD
EA BT 10

1 ZDT 10
4 ZDT 10

6 CTP10
7 BT 100

1 ZDT 100
4 ZDT 100

6 CTP100
7

SPEAUX 100·105 4.62 0.193 7.97 100·105 470 7.64 499
SPEA1X 100·105 3.90 0.172 7.31 100·105 447 7.06 476
NSGA-IIUX 100·105 4.39 0.303 7.25 100·105 360 5.99 348
NSGA-II1X 100·105 1.40 0.328 3.32 100·105 297 6.59 303
MUX

1 Cluster 100·105 4.43 0.358 6.63 100·105 374 6.72 378
M1X

1 Cluster 100·105 1.89 0.291 4.13 100·105 336 6.81 345
MUX 100·105 3.98 0.354 7.27 100·105 311 5.96 326
M1X 100·105 2.03 0.311 3.95 100·105 328 6.74 335
MUnivariate

1 Cluster 100·105 14.0 1.08 16.5 100·105 774 3.06 875
MLearning

1 Cluster 100·105 11.2 0.00239 15.3 100·105 597 0.434 600
MUnivariate 100·105 5.00 0.306 8.64 100·105 157 4.60 161
MLearning 998·104 11.5 0.287 12.6 100·105 144 1.30 165

Figure 3: Average of the AFD metric on all real–valued problems.

Average Front Distance AFD
EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 6.10 5.14 2.93 1.31 147 67.3 442 3.39
SPEA1X 7.15 5.14 2.99 1.39 237 83.1 376 3.09
NSGA-IIUX 4.52 4.22 1.79 1.09 147 56.1 185 3.55
NSGA-II1X 8.03 5.40 2.64 1.36 250 90.5 254 3.18
MUX

1 Cluster 8.18 5.62 2.13 1.54 194 76.5 241 4.37
M1X

1 Cluster 10.5 6.65 2.49 1.52 326 136 364 3.96
MUX 9.01 5.01 2.12 0.906 213 59.3 254 4.63
M1X 12.7 6.17 2.69 1.07 359 146 410 4.32
MUnivariate

1 Cluster 8.35 9.95 1.92 1.95 124 105 85.9 5.58
MLearning

1 Cluster 16.5 6.52 2.39 1.82 147 73.1 136 2.90
MUnivariate 9.07 5.34 2.01 1.15 26.5 22.3 129 2.41
MLearning 16.5 7.23 5.38 1.39 113 64.0 472 2.13

Figure 4: Average of the AFD metric on all combinatorial problems.
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Average Front Distance AFD
EA BT 10

1 ZDT 10
4 ZDT 10

6 CTP10
7 BT 100

1 ZDT 100
4 ZDT 100

6 CTP100
7

SPEAUX 161 2.15 0.0208 2.64 0.0510 36.4 1.08 45.7
SPEA1X 458 1.64 0.0226 3.12 0.0790 30.0 0.101 42.4
NSGA-IIUX 831 1.99 0.0383 1.59 0.484 32.8 0.0791 10.8
NSGA-II1X 138·101 0.789 0.0411 1.43 0.484 21.3 0.0788 11.0
MUX

1 Cluster 455·101 1.54 0.0641 2.05 0.125 32.3 0.149 25.3
M1X

1 Cluster 229·101 0.876 0.0414 1.97 0.125 18.4 0.145 21.2
MUX 187·101 1.77 0.101 3.14 0.125 23.5 0.132 29.9
M1X 167·101 1.00 0.0768 1.32 0.125 21.5 0.134 25.7
MUnivariate

1 Cluster 324 7.76 0.379 7.78 0.217 139 1.40 134
MLearning

1 Cluster 119·101 5.71 0.00114 6.47 0.280 93.8 0.184 62.1
MUnivariate 478·101 4.16 0.212 6.62 0.177 74.6 0.272 45.0
MLearning 320·102 6.29 0.218 5.69 0.250 23.2 1.68 43.3

Figure 5: Standard deviations of the AFD metric on all real–valued problems.

Average Front Distance AFD
EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 3.61 1.24 1.30 0.360 13.4 6.77 46.8 0.435
SPEA1X 3.14 0.714 1.00 0.294 20.9 5.95 27.7 0.511
NSGA-IIUX 2.22 0.801 0.384 0.276 12.3 6.70 16.4 0.443
NSGA-II1X 2.79 0.605 0.392 0.280 15.5 3.91 22.7 0.380
MUX

1 Cluster 3.73 0.798 0.496 0.233 7.20 6.19 35.4 0.382
M1X

1 Cluster 3.11 1.17 0.459 0.228 17.9 9.77 21.7 0.522
MUX 3.82 0.863 0.481 0.133 12.8 5.62 28.9 0.454
M1X 3.97 1.20 0.571 0.209 16.4 7.19 30.7 0.293
MUnivariate

1 Cluster 1.89 0.936 0.373 0.190 6.09 5.28 6.58 0.454
MLearning

1 Cluster 2.33 1.12 0.547 0.190 5.94 7.36 15.8 0.486
MUnivariate 2.94 0.962 0.702 0.215 6.98 3.52 57.5 0.299
MLearning 4.66 1.30 2.26 0.286 37.7 21.6 322 0.134

Figure 6: Standard deviations of the AFD metric on all combinatorial problems.
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Front Spread FS
EA BT 10

1 ZDT 10
4 ZDT 10

6 CTP10
7 BT 100

1 ZDT 100
4 ZDT 100

6 CTP100
7

SPEAUX 225 51.4 5.22 44.9 2.06 692 1.85 733
SPEA1X 369 55.8 5.26 46.3 2.31 736 3.02 773
NSGA-IIUX 179 3.60 1.09 1.76 0.413 35.2 0.756 29.3
NSGA-II1X 23.4 8.93 1.03 1.31 1.02 33.4 0.665 13.9
MUX

1 Cluster 655 8.55 2.90 39.1 2.18 395 3.43 365
M1X

1 Cluster 78.6 2.46 1.92 1.41 2.27 94.0 1.40 88.6
MUX 685 40.8 4.11 41.8 2.15 740 4.75 737
M1X 262 3.38 3.94 58.9 2.29 359 2.30 371
MUnivariate

1 Cluster 293 70.8 1.15 84.7 1.82 393 0.180 347
MLearning

1 Cluster 129 · 101 84.9 3.00 87.4 2.12 635 2.20 342
MUnivariate 209·101 90.4 5.29 114 2.45 636 8.10 619
MLearning 164·102 197 3.68 188 3.28 175·101 3.97 183·101

Figure 7: Average of the FS metric on all real–valued problems.

Front Spread FS
EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 109 69.5 64.6 30.6 288 254 631 52.1
SPEA1X 123 82.6 51.0 32.5 399 308 636 50.8
NSGA-IIUX 110 71.8 16.1 26.3 370 288 144 33.7
NSGA-II1X 129 76.6 12.8 23.9 364 291 107 36.6
MUX

1 Cluster 114 82.0 19.6 19.8 389 347 164 37.1
M1X

1 Cluster 122 81.4 17.3 21.5 421 301 154 44.3
MUX 173 114 21.3 37.3 706 585 319 77.3
M1X 169 98.9 20.5 32.2 681 521 249 76.4
MUnivariate

1 Cluster 68.3 39.4 16.2 17.4 111 106 11.9 22.7
MLearning

1 Cluster 123 83.8 18.4 17.8 153 199 142 36.9
MUnivariate 167 108 23.8 26.3 559 485 168 55.1
MLearning 162 104 20.6 24.1 579 544 143 46.2

Figure 8: Average of the FS metric on all combinatorial problems.
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Front Spread FS
EA BT 10

1 ZDT 10
4 ZDT 10

6 CTP10
7 BT 100

1 ZDT 100
4 ZDT 100

6 CTP100
7

SPEAUX 162 15.5 0.343 11.0 0.107 168 1.62 155
SPEA1X 459 12.0 0.471 16.4 0.128 179 0.703 191
NSGA-IIUX 291 3.60 0.0567 0.839 0.631 13.9 0.0446 17.4
NSGA-II1X 97.7 30.4 0.0865 0.793 1.43 10.0 0.147 3.82
MUX

1 Cluster 183·101 9.07 1.28 24.3 0.108 110 0.698 99.2
M1X

1 Cluster 337 0.74 1.11 0.457 0.274 45.1 0.577 94.4
MUX 179·101 24.6 1.14 23.4 0.154 138 0.576 105
M1X 991 1.39 1.27 54.7 0.251 105 0.596 47.4
MUnivariate

1 Cluster 281 49.5 1.24 49.6 0.381 259 0.307 242
MLearning

1 Cluster 121·101 54.5 1.93 49.4 0.603 374 2.50 359
MUnivariate 443·101 57.3 1.42 43.9 0.375 205 0.782 261
MLearning 321·102 42.2 1.93 43.8 0.706 233 3.57 224

Figure 9: Standard deviations of the FS metric on all real–valued problems.

Front Spread FS
EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 16.6 8.88 33.2 4.80 38.4 28.6 255 6.12
SPEA1X 17.8 8.77 16.3 4.19 50.2 37.7 294 4.81
NSGA-IIUX 14.3 10.1 4.73 4.05 34.3 29.1 34.0 5.39
NSGA-II1X 9.86 14.5 1.57 3.64 50.6 24.5 31.3 6.84
MUX

1 Cluster 15.7 8.98 5.07 2.34 52.3 22.8 39.5 6.85
M1X

1 Cluster 13.8 9.46 5.19 3.44 86.6 53.2 30.3 4.84
MUX 16.0 7.61 6.05 7.05 46.8 26.7 73.0 11.3
M1X 13.6 10.3 5.69 6.13 28.1 45.2 57.2 8.32
MUnivariate

1 Cluster 11.9 8.20 4.00 1.54 16.1 16.9 7.25 4.09
MLearning

1 Cluster 14.0 9.31 4.70 1.96 11.6 29.8 45.8 3.21
MUnivariate 13.7 8.59 5.65 4.16 37.1 34.7 108 3.61
MLearning 19.2 11.7 7.88 3.69 76.4 79.1 95.6 6.87

Figure 10: Standard deviations of the FS metric on all combinatorial problems.

12



Front Occupation FO
EA BT 10

1 ZDT 10
4 ZDT 10

6 CTP10
7 BT 100

1 ZDT 100
4 ZDT 100

6 CTP100
7

SPEAUX 60.9 99.0 50.0 43.5 49.8 27.6 18.7 26.7
SPEA1X 38.7 187 49.6 43.2 48.8 27.4 29.3 26.8
NSGA-IIUX 5.42 59.7 47.5 59.3 100 5.80 6.00 4.00
NSGA-II1X 29.5 32.7 31.2 9.98 75.0 5.00 6.60 3.00
MUX

1 Cluster 9.92 41.7 8.06 9.00 14.4 12.8 14.4 12.6
M1X

1 Cluster 13.4 30.3 6.52 11.9 16.5 7.10 6.64 5.94
MUX 13.9 10.0 8.48 8.62 19.1 20.0 19.6 21.7
M1X 9.94 31.4 7.32 15.6 17.4 12.2 9.76 12.2
MUnivariate

1 Cluster 5.74 6.88 4.90 4.14 36.7 6.9 2.55 3.20
MLearning

1 Cluster 6.06 8.36 258 4.96 13.1 5.25 369 3.75
MUnivariate 12.5 68.7 56.3 34.0 64.5 106 27.7 78.9
MLearning 30.1 26.4 197 32.1 111 50.8 163 43.0

Figure 11: Average of the FO metric on all real–valued problems.

Front Occupation FO
EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 96.4 49.8 27.2 49.6 49.4 49.5 26.2 50.0
SPEA1X 96.4 87.6 27.7 124 49.9 49.7 26.5 98.6
NSGA-IIUX 200 175 150 200 35.9 33.1 7.50 250
NSGA-II1X 99.9 175 212 200 42.9 37.0 7.20 249
MUX

1 Cluster 32.2 18.4 7.80 63.8 17.6 16.6 4.40 14.4
M1X

1 Cluster 41.9 28.7 10.3 62.2 18.9 15.3 5.70 21.8
MUX 73.3 30.2 11.8 61.1 28.5 27.6 6.7 24.8
M1X 71.3 62.9 17.2 352 34.4 18.5 5.90 27.2
MUnivariate

1 Cluster 111 14.3 10.2 105 39.3 16.4 28.4 15.7
MLearning

1 Cluster 227 34.7 13.5 42.8 19.9 40.7 6.43 286
MUnivariate 132 38.1 19.3 299 108 57.2 255 41.6
MLearning 390 164 34.9 93.5 548 67.0 30.3 105 · 101

Figure 12: Average of the FO metric on all combinatorial problems.
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Front Occupation FO
EA BT 10

1 ZDT 10
4 ZDT 10

6 CTP10
7 BT 100

1 ZDT 100
4 ZDT 100

6 CTP100
7

SPEAUX 60.9 4.72 0.140 4.19 0.433 1.46 15.3 0.943
SPEA1X 38.7 24.3 0.592 5.63 1.85 1.26 1.49 0.789
NSGA-IIUX 5.42 43.9 8.15 31.7 0.00 2.71 1.41 1.79
NSGA-II1X 29.5 14.8 5.59 4.73 0.00 1.48 1.36 1.26
MUX

1 Cluster 9.92 10.3 1.69 2.26 2.59 2.87 3.44 3.06
M1X

1 Cluster 13.3 10.6 1.40 5.02 2.62 2.30 1.69 2.73
MUX 13.9 2.00 1.59 1.85 2.91 3.77 3.77 3.52
M1X 9.94 14.3 1.42 5.11 2.55 3.21 2.46 2.25
MUnivariate

1 Cluster 5.74 8.99 2.42 1.36 23.9 1.48 2.65 1.21
MLearning

1 Cluster 6.06 7.20 120 1.45 2.45 2.39 256 1.51
MUnivariate 12.5 36.2 32.7 26.4 23.8 34.3 4.57 53.3
MLearning 30.1 23.0 55.3 17.4 7.85 7.41 141 5.87

Figure 13: Standard deviations of the FO metric on all real–valued problems.

Front Occupation FO
EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 3.73 0.663 2.16 1.30 1.43 0.780 1.30 0.196
SPEA1X 4.62 6.13 2.57 3.21 0.310 0.693 1.99 2.69
NSGA-IIUX 0.00 0.00 0.00 0.00 6.20 5.05 2.38 1.96
NSGA-II1X 0.300 0.00 76.4 0.00 8.26 6.90 2.71 3.48
MUX

1 Cluster 4.32 2.42 1.84 9.05 1.93 1.43 0.800 2.42
M1X

1 Cluster 4.67 4.31 2.85 13.3 3.26 1.90 1.61 3.28
MUX 9.42 5.00 8.36 22.7 3.08 2.29 1.68 3.76
M1X 5.07 18.1 15.4 124 3.16 0.806 1.58 3.34
MUnivariate

1 Cluster 56.4 2.24 2.95 13.7 8.14 1.92 46.8 2.19
MLearning

1 Cluster 73.6 5.45 4.29 14.4 3.87 1.48 1.68 364
MUnivariate 17.5 12.7 36.0 212 13.6 3.94 171 12.2
MLearning 38.2 122 118 27.1 39.0 8.22 59.4 49.8

Figure 14: Standard deviations of the FO metric on all combinatorial problems.
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Population Size n

EA BT 10
1 ZDT 10

4 ZDT 10
6 CTP10

7 BT 100
1 ZDT 100

4 ZDT 100
6 CTP100

7

SPEAUX 50 50 25 25 25 25 25 25
SPEA1X 25 100 25 25 25 25 25 25
NSGA-IIUX 200 200 100 100 100 200 200 150
NSGA-II1X 200 375 75 300 75 200 150 300
MUX

1 Cluster 75 100 25 25 100 125 200 125
M1X

1 Cluster 100 450 25 300 125 325 100 175
MUX 225 25 25 25 125 200 200 300
M1X 150 475 25 725 125 200 100 150
MUnivariate

1 Cluster 150 50 75 50 100 75 375 50
MLearning

1 Cluster 150 75 425 75 175 100 700 100
MUnivariate 275 125 200 125 250 200 800 200
MLearning 450 200 250 150 225 300 400 250

Figure 15: Population sizes used for the real–valued problems.

Population Size n

EA MS100 KN 100 SC 100 MST 105 MS 1000 KN 1000 SC 1000 MST 1035

SPEAUX 50 25 25 25 25 25 25 25
SPEA1X 50 50 25 100 25 25 25 50
NSGA-IIUX 200 175 150 200 200 250 200 250
NSGA-II1X 100 175 250 200 150 200 150 250
MUX

1 Cluster 100 150 225 1250 175 200 100 350
M1X

1 Cluster 100 175 125 1200 150 150 150 375
MUX 175 175 100 950 175 250 125 450
M1X 150 175 150 675 200 125 100 425
MUnivariate

1 Cluster 325 250 350 2700 650 500 150 475
MLearning

1 Cluster 425 400 500 1800 1000 700 500 1500
MUnivariate 250 200 400 900 475 600 475 775
MLearning 500 450 850 1950 750 1250 1900 1250

Figure 16: Population sizes used for the combinatorial problems.
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Average Front Distance AFD
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SPEAUX 0 -6 -8 -2 1 -1 -4 -2 4 1 -9 -1 -27
SPEA1X 6 0 -8 -3 -3 1 -4 2 6 -1 -9 -1 -14
NSGA-IIUX 8 8 0 3 11 5 4 3 7 3 -7 1 46
NSGA-II1X 2 3 -3 0 3 10 -2 9 4 -2 -9 -2 13
MUX

1 Cluster -1 3 -11 -3 0 0 -5 -1 5 1 -8 -4 -24
M1X

1 Cluster 1 -1 -5 -10 0 0 -5 0 2 -2 -11 -3 -34
MUX 4 4 -4 2 5 5 0 4 4 3 -8 0 19
M1X 2 -2 -3 -9 1 0 -4 0 2 -5 -10 -2 -30
MUnivariate

1 Cluster -4 -6 -7 -4 -5 -2 -4 -2 0 -7 -10 -9 -60
MLearning

1 Cluster -1 1 -3 2 -1 2 -3 5 7 0 -9 -3 -3
MUnivariate 9 9 7 9 8 11 8 10 10 9 0 5 95
MLearning 1 1 -1 2 4 3 0 2 9 3 -5 0 19

Figure 17: Number of times an improvement was found to be statistically significant in the AFD
metric, summed over all tested problems. The numbers in a single row indicate the summed
number of significantly better or worse results compared to the algorithms in the different columns.
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SPEAUX 0 -7 9 8 3 5 -4 0 11 3 -6 -6 16
SPEA1X 7 0 16 14 8 11 -2 2 11 7 -5 -5 64
NSGA-IIUX -9 -16 0 5 -12 -6 -15 -14 3 -9 -14 -13 -100
NSGA-II1X -8 -14 -5 0 -10 -7 -16 -14 1 -7 -16 -15 -111
MUX

1 Cluster -3 -8 12 10 0 4 -12 -8 9 0 -15 -13 -24
M1X

1 Cluster -5 -11 6 7 -4 0 -14 -14 5 -3 -15 -14 -62
MUX 4 2 15 16 12 14 0 7 11 9 1 1 92
M1X 0 -2 14 14 8 14 -7 0 9 5 -5 -4 46
MUnivariate

1 Cluster -11 -11 -3 -1 -9 -5 -11 -9 0 -12 -15 -16 -103
MLearning

1 Cluster -3 -7 9 7 0 3 -9 -5 12 0 -12 -13 -18
MUnivariate 6 5 14 16 15 15 -1 5 15 12 0 -2 100
MLearning 6 5 13 15 13 14 -1 4 16 13 2 0 100

Figure 18: Number of times an improvement was found to be statistically significant in the FS
metric, summed over all tested problems. The numbers in a single row indicate the summed
number of significantly better or worse results compared to the algorithms in the different columns.
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Front Occupation FO
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SPEAUX 0 -3 2 4 13 14 13 12 12 8 -4 -8 63
SPEA1X 3 0 1 3 16 16 16 14 14 8 -2 -6 83
NSGA-IIUX -2 -1 0 1 8 8 7 5 10 3 -2 -7 30
NSGA-II1X -4 -3 -1 0 7 9 7 5 11 2 -6 -9 18
MUX

1 Cluster -13 -16 -8 -7 0 -3 -11 -7 1 -2 -16 -13 -95
M1X

1 Cluster -14 -16 -8 -9 3 0 -8 -11 3 -2 -14 -14 -90
MUX -13 -16 -7 -7 11 8 0 1 5 1 -14 -15 -46
M1X -12 -14 -5 -5 7 11 -1 0 8 4 -12 -12 -31
MUnivariate

1 Cluster -12 -14 -10 -11 -1 -3 -5 -8 0 -6 -15 -12 -97
MLearning

1 Cluster -8 -8 -3 -2 2 2 -1 -4 6 0 -6 -11 -33
MUnivariate 4 2 2 6 16 14 14 12 15 6 0 -4 87
MLearning 8 6 7 9 13 14 15 12 12 11 4 0 111

Figure 19: Number of times an improvement was found to be statistically significant in the FO
metric, summed over all tested problems. The numbers in a single row indicate the summed
number of significantly better or worse results compared to the algorithms in the different columns.
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