A Thorough Documentation of Obtained Results on Real-Valued Continuous and Combinatorial Multi-Objective Optimization Problems Using Diversity Preserving Mixture-Based Iterated Density Estimation Evolutionary Algorithms

Peter A.N. Bosman
peterb@cs.uu.nl
Dirk Thierens
Dirk.Thierens@cs.uu.nl
Institute of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

December 2002

Abstract

In this paper, we present the results of performing experiments with three different multiobjective evolutionary algorithms (MOEAs) on eight different optimization problems. As such, this paper is only an extension of an earlier publication in which one of the three MOEAs is introduced [1]. Although the experiments and the obtained results have already been reported in the earlier publication, not all information could be reported due to space limitations. In this paper, we present even more information about the experiments that were performed.

1 Outline

The reader of this paper is assumed to be familiar with the most important concepts related multi-objective optimization such as Pareto dominance. If this is not the case, the reader is advised to first read the main publication regarding this benchmark, which contains such additional information [1], since it is not repeated here.

The three MOEAs that were used for testing are the Strength Pareto Evolutionary Algorithm (SPEA) [11] by Zitzler and Thiele, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) [4] by Deb et al. and the recentmost version of the Multi-objective Mixture-based Iterated Density Estimation Evolutionary Algorithm (MIDEA) [1] by Bosman and Thierens. We shall refrain from presenting the details of these algorithms in this paper but refer the interested reader to the indicated literature.

This paper is organized as follows. In section 2 we present the optimization problems that we have tested the MOEAs on. In section 3 we discuss the indicators that were used to measure the performance of the MOEAs. In section 4 we describe the setup of the experiments and in Section 5 we tabulate the results. A discussion of these results may be found elsewhere [1].

2 Multi-Objective optimization problems

Our test suite consists of problems with real-valued variables as well as problems with binary variables. In both cases we have used four different optimization problems and have used two different dimensionalities for these problems to obtain a total test suite size of 16 problems. In the following we give a brief description of the problems in our test suite.

Name	Definition	Range
$B T_{1}$	Minimize $\left(f_{0}(\boldsymbol{y}), f_{1}(\boldsymbol{y})\right)$ Where - $f_{0}(\boldsymbol{y})=y_{0}$ - $f_{1}(\boldsymbol{y})=1-f_{0}(\boldsymbol{y})+$ $10^{7}-\frac{100}{\left(10^{-5}+\sum_{i=1}^{l-1}\left\|\sum_{j=1}^{i} y_{i}\right\|\right)}$	$\begin{aligned} \text { - } y_{0} & \in[0,1] \\ \text { - } y_{i} & \in[-3,3] \\ & (1 \leq i<l) \end{aligned}$
$Z D T_{4}$	$\begin{array}{ll}\text { Minimize } & \left(f_{0}(\boldsymbol{y}), f_{1}(\boldsymbol{y})\right) \\ \text { Where } & \text { - } f_{0}(\boldsymbol{y})=y_{0} \\ & \text { - } f_{1}(\boldsymbol{y})=\gamma\left(1-\sqrt{\frac{f_{0}(\boldsymbol{y})}{\gamma}}\right) \\ & \text { - } \gamma=1+10(l-1)+\sum_{i=1}^{l-1}\left(y_{i}^{2}-10 \cos \left(4 \pi y_{i}\right)\right)\end{array}$	- $y_{0} \in[0,1]$ - $y_{i} \in[-5,5]$ $(1 \leq i<l)$
$Z D T_{6}$	$\begin{array}{\|ll} \hline \text { Minimize } & \left(f_{0}(\boldsymbol{y}), f_{1}(\boldsymbol{y})\right) \\ \text { Where } & \text { - } f_{0}(\boldsymbol{y})=1-e^{-4 y_{0}} \sin ^{6}\left(6 \pi y_{0}\right) \\ & \text { - } f_{1}(\boldsymbol{y})=\gamma\left(1-\left(\frac{f_{0}(\boldsymbol{y})}{\gamma}\right)^{2}\right) \\ & \text { - } \gamma=1+9\left(\sum_{i=1}^{l-1} \frac{y_{i}}{9}\right)^{0.25} \end{array}$	$\begin{aligned} -y_{i} & \in[0,1] \\ (0 & \leq i<l) \end{aligned}$
CTP_{7}	```Minimize \(\left(f_{0}(\boldsymbol{y}), f_{1}(\boldsymbol{y})\right)\) Where - \(f_{0}(\boldsymbol{y})=y_{0}\) - \(f_{1}(\boldsymbol{y})=\gamma\left(1-\frac{f_{0}(\boldsymbol{y})}{\gamma}\right)\) - \(\gamma=1+10(l-1)+\sum_{i=1}^{l-1}\left(y_{i}^{2}-10 \cos \left(4 \pi y_{i}\right)\right)\) Such That • \(\cos \left(-\frac{5 \pi}{100}\right) f_{1}(\boldsymbol{y})-\sin \left(-\frac{5 \pi}{100}\right) f_{0}(\boldsymbol{y}) \geq\) \(40 \left\lvert\, \sin \left(5 \pi\left[\sin \left(-\frac{5 \pi}{100}\right) f_{1}(\boldsymbol{y})+\right.\right.\right.\) \(\left.\left.\cos \left(-\frac{5 \pi}{100}\right) f_{0}(\boldsymbol{y})\right]\right)\left.\right\|^{6}\)```	- $y_{0} \in[0,1]$ - $y_{i} \in[-5,5]$ $(1 \leq i<l)$

Figure 1: Real-valued multi-objective optimization test problems.

2.1 Real-valued multi-objective optimization problems

A variety of test problems for real-valued variables has been proposed that may cause different types of problems for multi-objective optimization algorithms [3, 5, 10]. From this set of problems, we have selected three problems that are commonly used to benchmark multi-objective optimization algorithms. The fourth real-valued test problem is a new test problem proposed by ourselves. These problems represent a spectrum of multi-objective problem difficulty as they make it difficult for a multi-objective optimization algorithm to progress towards the global optimal front and to maintain a diverse spread of solutions due to properties such as discontinuous fronts and multi-modality. The problems with real-valued variables that we use in our experiments are all defined for two objectives. An overview of our test problems is given in Figure 1.

2.1.1 $Z D T_{4}$

Function $Z D T_{4}$ was introduced by Zitzler et al. [10]. It is very hard to obtain the optimal front $f_{1}(\boldsymbol{y})=1-\sqrt{y_{0}}$ in $Z D T_{4}$ since there are many local fronts. Moreover, the number of local fronts increases as we get closer to the Pareto optimal front. The main problem that a MOEA should be able to overcome to optimize this problem is thus strong multi-modality.

2.1.2 $Z D T_{6}$

Function $Z D T_{4}$ was also introduced by Zitzler et al. [10]. The density of solutions in $Z D T_{6}$ increases as we move away from the Pareto optimal front. Furthermore, this function has a nonuniform density of solutions along the Pareto optimal front as there are more solutions as $f_{0}(\boldsymbol{y})$ goes up to 1. Therefore, a good diverse spread of solutions along the Pareto front is hard to obtain. The Pareto front for $Z D T_{6}$ is given by $f_{1}(\boldsymbol{y})=1-f_{0}(\boldsymbol{y})^{2}$ with $f_{0}(\boldsymbol{y}) \in\left[1-e^{-1 / 3} ; 1\right]$.

2.1.3 $\quad C T P_{7}$

Function $C T P_{7}$ was introduced by Deb et al. [5]. Its Pareto optimal front differs slightly from that of $Z D T_{4}$, but otherwise shares the multi-modal front problem. In addition, this problem has constraints in the objective space, which makes finding a diverse representation of the Pareto front more difficult since the Pareto front is discontinuous and it is hard to obtain an approximation of a front that has a few solutions in each feasible part of that front.

2.1.4 $B T_{1}$

Function $B T_{1}$ has not been used before in the field multi-objective optimization. It differs from the other three functions in that it has multivariate (linear) interactions between the problem variables. Therefore, more complex factorizations are required to exploit these interactions, whereas all of the other problems are well-suited to be optimized using the univariate factorization. The Pareto optimal front is given by $f_{1}(\boldsymbol{y})=1-y_{0}$.

2.2 Binary multi-objective optimization problems

In Figure 2, four binary multi-objective optimization problems are specified. These problems are multi-objective variants of well-known combinatorial optimization problems. The number of objectives for these problems is not restricted to two and is denoted by m.

It is important to note that we have used random instances for the combinatorial optimization problems. In the case of only a single objective, random instances may on average be easy for some combinatorial problems. However, in the case of multiple objectives, finding the Pareto front is usually much more difficult, even if efficient algorithms are available for the single-objective case [6]. Therefore, the instances used in our test suite are not expected to be over-easy. Furthermore, the problems also serve to indicate differences between the different multi-objective algorithmic approaches other than the fact that dependencies between problem variables can be exploited. This relative performance of the algorithms may be well observed using our proposed test-suite. On the other hand, the degree of interaction between the problem variables in randomly generated problem instances may not be too large, which may cause optimization algorithms that regard the problem variables independently of each other to be the most efficient.

2.2.1 Maximum satisfiability

In the maximum satisfiability problem, we are given a propositional formula in conjunctive normal form. The goal is to satisfy as many clauses as possible. The solution string is a truth assignment to the involved literals. These formulas can be represented by a matrix in which row i specifies what literals appear either positive (1) or negative (-1) in clause i. In the multi-objective variant of this problem, we have m of such matrices and only a single solution to satisfy as many clauses as possible in each objective at the same time.

2.2.2 Knapsack

The multi-objective knapsack problem was first used to test MOEAs on by Zitzler and Thiele [11]. We are given m knapsacks with a specified capacity and n items. Each item can have a different weight and profit in every knapsack. Selecting item i in a solution implies placing it in every knapsack. A solution may not cause exceeding the capacity of any knapsack.

Figure 2: Binary multi-objective combinatorial optimization test problems.

2.2.3 Set covering

In the set covering problem, we are given l locations at which we can place some service at a specified cost. Furthermore, associated with each location is a set of regions $\subseteq\{0,1, \ldots r-1\}$ that can be serviced from that location. The goal is to select locations such that all regions are serviced against minimal costs. In the multi-objective variant of set covering, m services are placed at a location. Each service however covers its own set of regions when placed at a certain location and has its own cost associated with a certain location. A binary solution indicates at which locations the services are placed.

2.2.4 Minimal spanning tree

In the minimal spanning tree problem we are given an undirected graph (V, E) such that each edge has a certain weight associated with it. We are interested in selecting edges $E_{T} \subseteq E$ such that $\left(V, E_{T}\right)$ is a spanning tree. The objective is to find a spanning tree such that the weight of all its edges is minimal. In the multi-objective variant of this problem, each edge can have a different weight in each objective.

3 Performance indicators

To compare the MOEAs, we look at their average performance with respect to three different performance indicators. The most important one is the average front distance AFD. This metric is the average minimal Euclidean distance over all points in a given default front $\left(\mathcal{F}_{D}\right)$ front to another front \mathcal{F}. In the case of the real-valued problems, we know the optimal front. The default front in this case consists of a uniformly sampled set of 5000 solutions along the Pareto optimal front. Since we do not know the Pareto optimal front for the binary optimization problems, we
use the Pareto front over all results obtained by all algorithms as the default front. Because the distance is computed over all points in the default front instead of over all points in the front found in a certain run, this measure gives us a sense of how well each part of the optimal or best known front is covered on average. It also gives us a sense of distance to the optimal front.

$$
\begin{equation*}
\operatorname{AFD}\left(\mathcal{F}_{D}, \mathcal{F}\right)=\frac{1}{\left|\mathcal{F}_{D}\right|} \sum_{\boldsymbol{x} \in \mathcal{F}_{D}} \min \left\{\sum_{i=0}^{m-1}\left(\boldsymbol{x}_{i}-\boldsymbol{y}_{i}\right)^{2} \mid \boldsymbol{y} \in \mathcal{F}\right\} \tag{1}
\end{equation*}
$$

If two algorithms obtain a somewhat comparable AFD score, it is interesting to look at other properties of the obtained results. A second metric we use is the front spread FS. This metric gives a notion of the size of the objective space covered by the Pareto front. It is the maximum Euclidean distance inside the m-dimensional hypercube that is obtained by taking the maximum distance among the points in the front in each dimension:

$$
\begin{equation*}
\mathbf{F S}(\mathcal{F})=\sqrt{\sum_{i=0}^{m-1} \max \left\{\left(\boldsymbol{x}_{i}-\boldsymbol{y}_{i}\right)^{2} \mid(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{F} \times \mathcal{F}\right\}} \tag{2}
\end{equation*}
$$

The third and final metric is the front occupation FO, which is simply the number of points on the front:

$$
\begin{equation*}
\mathbf{F O}(\mathcal{F})=|\mathcal{F}| \tag{3}
\end{equation*}
$$

4 Experiment setup

In this section we outline the settings that we have used to test the three MOEAs.

4.1 Optimization problem dimensionalities

4.1.1 Real-valued multi-objective optimization problems

For the real-valued problems, we tested all algorithms with both $l=10$ and $l=100$ problem variables.

4.1.2 Binary multi-objective optimization problems

For the binary problems, we used test instances with $l=100$ and $l=1000$. For the maximum satisfiability problem, we generated the test instances by generating 2500 clauses for $l=100$ and 12500 clauses for $l=1000$ with a random number of literals between 1 and 5 . For the knapsack problem, we generated instances by generating random weights in $[1 ; 10]$ and random profits in $[1 ; 10]$. The capacity of a knapsack was set at half of the total weight of all the items, weighted according to that knapsack objective. For set covering, the costs were generated at random in $[1 ; 10]$. We used 250 regions and 2500 regions to be serviced for $l=100$ and $l=1000$ respectively. We varied the problem difficulty through the region-location adjacency relation. This relation was generated by making each location adjacent to 70 and 50 randomly selected regions for $l=100$ and $l=1000$ respectively. Finally, for the minimum spanning tree problem, we used full graphs with 105 edges (15 vertices) and 1035 edges (46 vertices). The dimensionality of these problems is therefore not precisely 100 and 1000 . The weights of the edges were generated randomly in $[1,10]$.

4.2 Optimization problem constraints

Problems $C T P_{7}$, set covering, knapsack and minimal spanning tree have constraints. To deal with them, we can use a repair mechanism to transform infeasible solutions into feasible solutions. Another approach is based on the notion of constraint-domination introduced by Deb et al. [5].

This notion allows to deal with constrained multi-objective problems according to a very general scheme. A solution \boldsymbol{z}^{0} is said to constraint-dominate solution \boldsymbol{z}^{1} if any of the following is true:

1. Solution \boldsymbol{z}^{0} is feasible and solution \boldsymbol{z}^{1} is infeasible
2. Solutions \boldsymbol{z}^{0} and \boldsymbol{z}^{1} are both infeasible, but \boldsymbol{z}^{0} has a smaller overall constraint violation
3. Solutions \boldsymbol{z}^{0} and \boldsymbol{z}^{1} are both feasible and $\boldsymbol{z}^{0} \succ \boldsymbol{z}^{1}$

In the above definition, the overall constraint violation is the amount by which a constraint is violated, summed over all constraints. We have used this principle for problems $C T P_{7}$ and set covering. For the knapsack problem, an elegant repair mechanism was proposed in earlier MOEA research [11]. For the minimal spanning tree problem, the number of constraints grows exponentially with the problem size l. We therefore propose to use repair mechanisms for these latter two problems.

4.2.1 Knapsack repair mechanism

If a solution violates a constraint, the repair mechanism iteratively removes items until all constrains are satisfied. The order in which the items are investigated, is determined by the maximum profit/weight ratio. The items with the lowest profit/weight ratio are removed first.

4.2.2 Minimal spanning tree repair mechanism

First the edges are removed from the currently constructed graph and they are sorted according to their weight. Next, they are added to the graph such that no cycles are introduced. This is done by only allowing edges to be introduced between the connected components in the graph. If after this phase, the number of connected components has not been reduced to 1 , all edges between the connected components are regarded in increasing weight and again the connected components are merged until a single component is left.

4.2.3 General algorithmic setup

We ran every algorithm 50 times on each problem and in any single run we chose to allow a maximum of $20 \cdot 10^{3}$ evaluations for the real-valued problems of dimensionality $l=10$ and the binary problems of dimensionality $l=100$ and a maximum of $100 \cdot 10^{3}$ evaluations for the realvalued problems of dimensionality $l=100$ and the binary problems of dimensionality $l=1000$. As a result of imposing the restriction of a maximum of evaluations, a value for the population size n exists for each MOEA such that the MOEA will perform best. For too large population sizes, the search will move towards a random search and for too small population sizes, there is not enough information to perform adequate model selection and induction. We therefore increased the population size in steps of 25 to find the best results. To actually select the best population size, we selected the result with the lowest value for the $\boldsymbol{D}_{\mathcal{P}_{\boldsymbol{F}} \rightarrow \mathcal{S}}$ indicator.

4.2.4 Algorithms

We tested a few variants of three MOEAs. In the following we will describe the details that are required in addition to the details given in earlier sections for constructing the actual MOEAs that we will use for testing.

SPEA

For SPEA, we used uniform crossover and one-point crossover with a probability of 0.8 . Bit flipping mutation was used in combination with either of these recombination operators with a probability of 0.01 . These settings were used previously by the SPEA authors [10]. We allowed the size of the external storage in SPEA to become as large as the population size. For the real problems, we encoded every variable with 30 bits.

NSGA-II

For NSGA-II, we used the same crossover and mutation operators and the same encoding for the real variables.

MIDEA

For MIDEA, we used the leader clustering algorithm in the objective space such that four clusters were constructed on average. If the number of clusters becomes too large, the requirements for the population size increases in order to facilitate proper factorization selection in each cluster. We do not suggest that the number of clusters we use is optimal, but it will serve to indicate the effectiveness of parallel exploration along the Pareto front as well as diversity preservation. In each cluster, we either used the univariate factorization or we estimated a Bayesian factorization in the case of real variables. However, in the case of 100-dimensional real-valued problems, we allowed only at most a single parent for any variable. In the case of binary variables, we used the optimal dependency tree algorithm by Chow and Liu [2] to estimate a tree factorization in each cluster. To further investigate the influence of the different components in the MIDEA algorithm, we also performed tests in which only a single cluster is used. Furthermore, we also replaced the use of estimating probability distributions by the use of one-point crossover and uniform crossover with mutation as used in the SPEA and NSGA-II algorithms. In the case of clustering in combination with the use of crossover operators, restricted mating was employed in order to ensure clustered exploration along the front. In restricted mating crossover, an offspring is produced using two parent solutions that are picked from the same cluster. For the truncation percentile, we used the rule of thumb by Mühlenbein and Mahnig [9] and set τ to 0.3 . Furthermore, we set the diversity preservation parameter to $\delta=1.5$.

5 Results

For each of the metrics, we computed their average and standard deviation over the 50 runs to get an assessment of their performance. The averages are tabulated in Figures 3, 4, 7, 8, 11 and 12. The best results are written in boldface. For each algorithm, the type of recombination is indicated as a superscript. The $\mathbb{M I D E A}$ algorithms are indicated by a single \mathbb{M} symbol. For all tested $M I D E A$ algorithms, the subscript indicates whether only a single cluster was used. Without a subscript, the leader algorithm was used in the objective space. The population sizes that led to the best performance, are tabulated in Figures 15 and 16. Although the average behavior is the most interesting, the standard deviations are vital to determine whether the differences in the average behavior of the different algorithms are significant The standard deviations are tabulated in Figures 5, 6, 9, 10, 13 and 14. In addition, we have performed Aspin-Welch-Satterthwaite (AWS) statistical hypothesis T-tests at a significance level of $\alpha=0.05$. The AWS T-test is a statistical hypothesis test for the equality of means in which the equality of variances is not assumed. For each problem, we statistically verified for each pair of algorithms whether the average obtained metric values differ significantly. We assigned a value of 1 if an algorithm scored significantly better and a value of -1 if an algorithm scored significantly worse. We summed the so obtained matrices over all problems to get the statistically significant improvement matrices that are shown in figures 17 through 19. We also computed the sum for each algorithm of its significant improvement values over all other algorithms to indicate the summed relative statistically significant performance of the algorithms.

References

[1] P. A. N. Bosman and D. Thierens. Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms. International Journal of Approximate Reasoning, 31:259-289, 2002.
[2] C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14:462-467, 1968.
[3] K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 7(3):205-230, 1999.
[4] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN VI, pages 849-858. Springer Verlag, 2000.
[5] K. Deb, A. Pratap, and T. Meyarivan. Constrained test problems for multi-objective evolutionary optimization. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 284-298. Springer Verlag, 2001.
[6] M. Ehrgott and X. Gandibleux. An annotated bibliography of multi-objective combinatorial optimization. Technical Report 62/2000, Fachbereich Mathematik, Universität Kaiserslautern, Kaiserslautern, 2000.
[7] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1):1-16, 1995.
[8] J. N. Morse. Reducing the size of the nondominated set: Pruning by clustering. Computers and Operations Research, 7(1-2):55-66, 1980.
[9] H. Mühlenbein and T. Mahnig. FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7(4):353-376, 1999.
[10] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173-195, 2000.
[11] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, $3(4): 257-271,1999$.

Average Front Distance AFD								
EA	$B T_{1}^{10}$	$Z D T_{4}^{10}$	$Z D T_{6}^{10}$	$C T P_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	CTP ${ }_{7}^{100}$
SPEA $^{\text {UX }}$	$100 \cdot 10^{5}$	4.62	0.193	7.97	$100 \cdot 10^{5}$	470	7.64	499
SPEA ${ }^{1 X}$	$100 \cdot 10^{5}$	3.90	0.172	7.31	$100 \cdot 10^{5}$	447	7.06	476
NSGA-II ${ }^{\text {UX }}$	$100 \cdot 10^{5}$	4.39	0.303	7.25	$100 \cdot 10^{5}$	360	5.99	348
NSGA-II ${ }^{1 \mathrm{X}}$	$100 \cdot 10^{5}$	1.40	0.328	3.32	$100 \cdot 10^{5}$	297	6.59	303
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	$100 \cdot 10^{5}$	4.43	0.358	6.63	$100 \cdot 10^{5}$	374	6.72	378
$\mathbb{M}_{1}^{1 \mathrm{C}}$ Cluster	$100 \cdot 10^{5}$	1.89	0.291	4.13	$100 \cdot 10^{5}$	336	6.81	345
$M^{\text {UX }}$	$100 \cdot 10^{5}$	3.98	0.354	7.27	$100 \cdot 10^{5}$	311	5.96	326
$M^{1 X}$	$100 \cdot 10^{5}$	2.03	0.311	3.95	$100 \cdot 10^{5}$	328	6.74	335
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	$100 \cdot 10^{5}$	14.0	1.08	16.5	$100 \cdot 10^{5}$	774	3.06	875
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	$100 \cdot 10^{5}$	11.2	0.00239	15.3	$100 \cdot 10^{5}$	597	0.434	600
$\mathbb{M}^{\text {Univariate }}$	$100 \cdot 10^{5}$	5.00	0.306	8.64	$100 \cdot 10^{5}$	157	4.60	161
$\mathbb{M}^{\text {Learning }}$	$\mathbf{9 9 8} \cdot 10^{4}$	11.5	0.287	12.6	$100 \cdot 10^{5}$	144	1.30	165

Figure 3: Average of the AFD metric on all real-valued problems.

Average Front Distance AFD								
EA	$M S^{100}$	KN 100	$S C^{100}$	$M S T^{105}$	$M S^{1000}$	KN 1000	$S C^{1000}$	$M S T^{1035}$
SPEA $^{\text {UX }}$	6.10	5.14	2.93	1.31	147	67.3	442	3.39
SPEA $^{1 \mathrm{X}}$	7.15	5.14	2.99	1.39	237	83.1	376	3.09
NSGA-II $^{\text {UX }}$	$\mathbf{4 . 5 2}$	$\mathbf{4 . 2 2}$	$\mathbf{1 . 7 9}$	1.09	147	56.1	185	3.55
NSGA-II $^{\mathbf{X X}}$	8.03	5.40	2.64	1.36	250	90.5	254	3.18
$\mathbb{M}_{1}^{\text {UX }}$ Cluster	8.18	5.62	2.13	1.54	194	76.5	241	4.37
$\mathbb{M}_{1}^{1 X}$ Cluster	10.5	6.65	2.49	1.52	326	136	364	3.96
$\mathbb{M}^{\text {UX }}$	9.01	5.01	2.12	$\mathbf{0 . 9 0 6}$	213	59.3	254	4.63
$\mathbb{M}^{1 X}$	12.7	6.17	2.69	1.07	359	146	410	4.32
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	8.35	9.95	1.92	1.95	124	105	$\mathbf{8 5 . 9}$	5.58
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	16.5	6.52	2.39	1.82	147	73.1	136	2.90
$\mathbb{M}^{\text {Univariate }}$	9.07	5.34	2.01	1.15	$\mathbf{2 6 . 5}$	$\mathbf{2 2 . 3}$	129	2.41
$\mathbb{M}^{\text {Learning }}$	16.5	7.23	5.38	1.39	113	64.0	472	$\mathbf{2 . 1 3}$

Figure 4: Average of the AFD metric on all combinatorial problems.

Average Front Distance AFD								
EA	$B T_{1}^{10}$	$2 D T_{4}^{10}$	$Z D T_{6}^{10}$	$C T T P_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	CTP_{7}^{100}
SPEA $^{\text {UX }}$	161	2.15	0.0208	2.64	0.0510	36.4	1.08	45.7
SPEA ${ }^{1 \mathrm{X}}$	458	1.64	0.0226	3.12	0.0790	30.0	0.101	42.4
NSGA-II ${ }^{\text {UX }}$	831	1.99	0.0383	1.59	0.484	32.8	0.0791	10.8
NSGA-II ${ }^{1 \mathrm{X}}$	$138 \cdot 10^{1}$	0.789	0.0411	1.43	0.484	21.3	0.0788	11.0
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	$455 \cdot 10^{1}$	1.54	0.0641	2.05	0.125	32.3	0.149	25.3
$\mathbb{M}_{1}^{1 X}$ Cluster	$229 \cdot 10^{1}$	0.876	0.0414	1.97	0.125	18.4	0.145	21.2
$M^{\text {UX }}$	$187 \cdot 10^{1}$	1.77	0.101	3.14	0.125	23.5	0.132	29.9
$M^{1 X}$	$167 \cdot 10^{1}$	1.00	0.0768	1.32	0.125	21.5	0.134	25.7
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	324	7.76	0.379	7.78	0.217	139	1.40	134
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	$119 \cdot 10^{1}$	5.71	0.00114	6.47	0.280	93.8	0.184	62.1
$\mathbb{M}^{\text {Univariate }}$	$478 \cdot 10^{1}$	4.16	0.212	6.62	0.177	74.6	0.272	45.0
$M^{\text {Learning }}$	$320 \cdot 10^{2}$	6.29	0.218	5.69	0.250	23.2	1.68	43.3

Figure 5: Standard deviations of the AFD metric on all real-valued problems.

Average Front Distance AFD								
EA	$M S^{100}$	KN 100	$S C^{100}$	$M S T^{105}$	$M S^{1000}$	N 1000	$S C^{1000}$	$M S T^{1035}$
SPEA $^{\text {UX }}$	3.61	1.24	1.30	0.360	13.4	6.77	46.8	0.435
SPEA $^{1 X}$	3.14	0.714	1.00	0.294	20.9	5.95	27.7	0.511
NSGA-II $^{\text {UX }}$	2.22	0.801	0.384	0.276	12.3	6.70	16.4	0.443
NSGA-II $^{1 \mathrm{X}}$	2.79	0.605	0.392	0.280	15.5	3.91	22.7	0.380
$\mathbb{M}_{1}^{\text {UX Cluster }}$	3.73	0.798	0.496	0.233	7.20	6.19	35.4	0.382
$\mathbb{M}_{1}^{1 \text { Cluster }}$	3.11	1.17	0.459	0.228	17.9	9.77	21.7	0.522
$\mathbb{M}^{\text {UX }}$	3.82	0.863	0.481	0.133	12.8	5.62	28.9	0.454
$\mathbb{M}^{1 X}$	3.97	1.20	0.571	0.209	16.4	7.19	30.7	0.293
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	1.89	0.936	0.373	0.190	6.09	5.28	6.58	0.454
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	2.33	1.12	0.547	0.190	5.94	7.36	15.8	0.486
$\mathbb{M}^{\text {Univariate }}$	2.94	0.962	0.702	0.215	6.98	3.52	57.5	0.299
$\mathbb{M}^{\text {Learning }}$	4.66	1.30	2.26	0.286	37.7	21.6	322	0.134

Figure 6: Standard deviations of the AFD metric on all combinatorial problems.

Front Spread FS								
EA	$B T_{1}^{10}$	$2 D T_{4}^{10}$	$Z D T_{6}^{10}$	CTP $_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	CTP $_{7}^{100}$
SPEA $^{\text {UX }}$	225	51.4	5.22	44.9	2.06	692	1.85	733
SPEA $^{1 \mathrm{X}}$	369	55.8	5.26	46.3	2.31	736	3.02	773
NSGA-II ${ }^{\text {UX }}$	179	3.60	1.09	1.76	0.413	35.2	0.756	29.3
NSGA-II ${ }^{1 \mathrm{X}}$	23.4	8.93	1.03	1.31	1.02	33.4	0.665	13.9
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	655	8.55	2.90	39.1	2.18	395	3.43	365
$\mathbb{M}_{1}^{1 \mathrm{X}}$ Cluster	78.6	2.46	1.92	1.41	2.27	94.0	1.40	88.6
$\mathbb{M}^{\text {UX }}$	685	40.8	4.11	41.8	2.15	740	4.75	737
$M^{1 X}$	262	3.38	3.94	58.9	2.29	359	2.30	371
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	293	70.8	1.15	84.7	1.82	393	0.180	347
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	$129 \cdot 10^{1}$	84.9	3.00	87.4	2.12	635	2.20	342
$\mathbb{M}^{\text {Univariate }}$	$209 \cdot 10^{1}$	90.4	5.29	114	2.45	636	8.10	619
$\mathbb{M}^{\text {Learning }}$	$164 \cdot 10^{2}$	197	3.68	188	3.28	$175 \cdot 10^{1}$	3.97	$183 \cdot 10^{1}$

Figure 7: Average of the FS metric on all real-valued problems.

Front Spread $\mathbf{F S}$								
EA	$M S^{100}$	N 100	$S C^{100}$	$M S T^{105}$	$M S^{1000}$	KN 1000	$S C^{1000}$	$M S T^{1035}$
SPEA $^{\text {UX }}$	109	69.5	$\mathbf{6 4 . 6}$	30.6	288	254	631	52.1
SPEA $^{1 \mathrm{X}}$	123	82.6	51.0	32.5	399	308	$\mathbf{6 3 6}$	50.8
NSGA-II $^{\text {UX }}$	110	71.8	16.1	26.3	370	288	144	33.7
NSGA-II $^{1 X}$	129	76.6	12.8	23.9	364	291	107	36.6
$\mathbb{M}_{1}^{\text {UX }}$ Cluster	114	82.0	19.6	19.8	389	347	164	37.1
$\mathbb{M}_{1}^{1 \mathrm{C}}$ Cluster	122	81.4	17.3	21.5	421	301	154	44.3
$\mathbb{M}^{\text {UX }}$	173	114	21.3	$\mathbf{3 7 . 3}$	$\mathbf{7 0 6}$	$\mathbf{5 8 5}$	319	$\mathbf{7 7 . 3}$
$\mathbb{M}^{1 X}$	$\mathbf{1 6 9}$	98.9	20.5	32.2	681	521	249	76.4
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	68.3	39.4	16.2	17.4	111	106	11.9	22.7
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	123	83.8	18.4	17.8	153	199	142	36.9
$\mathbb{M}^{\text {Univariate }}$	167	$\mathbf{1 0 8}$	23.8	26.3	559	485	168	55.1
$\mathbb{M}^{\text {Learning }}$	162	104	20.6	24.1	579	544	143	46.2

Figure 8: Average of the FS metric on all combinatorial problems.

Front Spread $\mathbf{F S}$									
EA	$B T_{1}^{10}$	$Z D T_{4}^{10}$	$Z D T_{6}^{10}$	ETP $_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	$C T P_{7}^{100}$	
SPEA $^{\text {UX }}$	162	15.5	0.343	11.0	0.107	168	1.62	155	
SPEA $^{1 X}$	459	12.0	0.471	16.4	0.128	179	0.703	191	
NSGA-II $^{\text {UX }}$	291	3.60	0.0567	0.839	0.631	13.9	0.0446	17.4	
NSGA-II $^{1 \mathrm{X}}$	97.7	30.4	0.0865	0.793	1.43	10.0	0.147	3.82	
$\mathbb{M}_{1}^{\text {UX Cluster }}$	$183 \cdot 10^{1}$	9.07	1.28	24.3	0.108	110	0.698	99.2	
$\mathbb{M}_{1}^{1 \mathrm{C}}$ Cluster	337	0.74	1.11	0.457	0.274	45.1	0.577	94.4	
$\mathbb{M}^{\text {UX }}$	$179 \cdot 10^{1}$	24.6	1.14	23.4	0.154	138	0.576	105	
$\mathbb{M}^{1 X}$	991	1.39	1.27	54.7	0.251	105	0.596	47.4	
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	281	49.5	1.24	49.6	0.381	259	0.307	242	
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	$121 \cdot 10^{1}$	54.5	1.93	49.4	0.603	374	2.50	359	
$\mathbb{M}^{\text {Univariate }}$	$443 \cdot 10^{1}$	57.3	1.42	43.9	0.375	205	0.782	261	
$\mathbb{M}^{\text {Learning }}$	$321 \cdot 10^{2}$	42.2	1.93	43.8	0.706	233	3.57	224	

Figure 9: Standard deviations of the FS metric on all real-valued problems.

Front Spread $\mathbf{F S}$									
EA	$M S^{100}$	$K N^{100}$	$S C^{100}$	$M S T^{105}$	$M S^{1000}$	$K N^{1000}$	$S C^{1000}$	$M S T^{1035}$	
SPEA $^{\text {UX }}$	16.6	8.88	33.2	4.80	38.4	28.6	255	6.12	
SPEA $^{1 X}$	17.8	8.77	16.3	4.19	50.2	37.7	294	4.81	
NSGA-II $^{\text {UX }}$	14.3	10.1	4.73	4.05	34.3	29.1	34.0	5.39	
NSGA-II $^{1 \mathrm{X}}$	9.86	14.5	1.57	3.64	50.6	24.5	31.3	6.84	
$\mathbb{M}_{1}^{\text {UX Cluster }}$	15.7	8.98	5.07	2.34	52.3	22.8	39.5	6.85	
$\mathbb{M}_{1}^{1 \mathrm{C}}$ Cluster	13.8	9.46	5.19	3.44	86.6	53.2	30.3	4.84	
$\mathbb{M}^{\text {UX }}$	16.0	7.61	6.05	7.05	46.8	26.7	73.0	11.3	
$\mathbb{M}^{1 X}$	13.6	10.3	5.69	6.13	28.1	45.2	57.2	8.32	
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	11.9	8.20	4.00	1.54	16.1	16.9	7.25	4.09	
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	14.0	9.31	4.70	1.96	11.6	29.8	45.8	3.21	
$\mathbb{M}^{\text {Univariate }}$	13.7	8.59	5.65	4.16	37.1	34.7	108	3.61	
$\mathbb{M}^{\text {Learning }}$	19.2	11.7	7.88	3.69	76.4	79.1	95.6	6.87	

Figure 10: Standard deviations of the FS metric on all combinatorial problems.

Front Occupation FO								
EA	$B T_{1}^{10}$	$Z D T_{4}^{10}$	$Z D T_{6}^{10}$	$C^{\text {CP }}{ }_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	CTP_{7}^{100}
SPEA $^{\text {UX }}$	60.9	99.0	50.0	43.5	49.8	27.6	18.7	26.7
SPEA ${ }^{1 X}$	38.7	187	49.6	43.2	48.8	27.4	29.3	26.8
NSGA-II ${ }^{\text {UX }}$	5.42	59.7	47.5	59.3	100	5.80	6.00	4.00
NSGA-II ${ }^{1 \mathrm{X}}$	29.5	32.7	31.2	9.98	75.0	5.00	6.60	3.00
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	9.92	41.7	8.06	9.00	14.4	12.8	14.4	12.6
$\mathbb{M}_{1}^{1 \mathrm{X}}$ Cluster	13.4	30.3	6.52	11.9	16.5	7.10	6.64	5.94
$M^{\text {UX }}$	13.9	10.0	8.48	8.62	19.1	20.0	19.6	21.7
$\mathrm{M}^{1 \mathrm{X}}$	9.94	31.4	7.32	15.6	17.4	12.2	9.76	12.2
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	5.74	6.88	4.90	4.14	36.7	6.9	2.55	3.20
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	6.06	8.36	258	4.96	13.1	5.25	369	3.75
$M^{\text {U }}$ Clivster ${ }^{\text {Univate }}$	12.5	68.7	56.3	34.0	64.5	106	27.7	78.9
$\mathbb{M}^{\text {Learning }}$	30.1	26.4	197	32.1	111	50.8	163	43.0

Figure 11: Average of the FO metric on all real-valued problems.

Front Occupation FO								
EA	$M S^{100}$	$K N^{100}$	$S C^{100}$	$M S T{ }^{105}$	$M S^{1000}$	$K N^{1000}$	$S C^{1000}$	$M S T^{1035}$
SPEA $^{\text {UX }}$	96.4	49.8	27.2	49.6	49.4	49.5	26.2	50.0
SPEA $^{1 \mathrm{X}}$	96.4	87.6	27.7	124	49.9	49.7	26.5	98.6
NSGA-II ${ }^{\text {UX }}$	200	175	150	200	35.9	33.1	7.50	250
NSGA-II ${ }^{1 \mathrm{X}}$	99.9	175	212	200	42.9	37.0	7.20	249
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	32.2	18.4	7.80	63.8	17.6	16.6	4.40	14.4
$\mathbb{M}_{1}^{1 X}$ Cluster	41.9	28.7	10.3	62.2	18.9	15.3	5.70	21.8
$\mathbb{M}^{\text {UX }}$	73.3	30.2	11.8	61.1	28.5	27.6	6.7	24.8
$M^{1 \times}$	71.3	62.9	17.2	352	34.4	18.5	5.90	27.2
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	111	14.3	10.2	105	39.3	16.4	28.4	15.7
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	227	34.7	13.5	42.8	19.9	40.7	6.43	286
$\mathbb{M}^{\text {Univariate }}$	132	38.1	19.3	299	108	57.2	255	41.6
$\mathbb{M}^{\text {Learning }}$	390	164	34.9	93.5	548	67.0	30.3	$105 \cdot 10^{1}$

Figure 12: Average of the FO metric on all combinatorial problems.

Front Occupation FO								
EA	$B T_{1}^{10}$	$Z D T_{4}^{10}$	$Z D T_{6}^{10}$	CTP ${ }_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	$C T P_{7}^{100}$
SPEA $^{\text {UX }}$	60.9	4.72	0.140	4.19	0.433	1.46	15.3	0.943
SPEA $^{1 \mathrm{X}}$	38.7	24.3	0.592	5.63	1.85	1.26	1.49	0.789
NSGA-II ${ }^{\text {UX }}$	5.42	43.9	8.15	31.7	0.00	2.71	1.41	1.79
NSGA-II ${ }^{\text {IX }}$	29.5	14.8	5.59	4.73	0.00	1.48	1.36	1.26
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	9.92	10.3	1.69	2.26	2.59	2.87	3.44	3.06
$\mathbb{M}_{1}^{1 \mathrm{X}}$ Cluster	13.3	10.6	1.40	5.02	2.62	2.30	1.69	2.73
$M^{\text {UX }}$	13.9	2.00	1.59	1.85	2.91	3.77	3.77	3.52
$\mathbb{M}^{1 \mathrm{X}}$	9.94	14.3	1.42	5.11	2.55	3.21	2.46	2.25
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	5.74	8.99	2.42	1.36	23.9	1.48	2.65	1.21
M $\mathbb{M}_{1}^{\text {Learning }}$ Cluster	6.06	7.20	120	1.45	2.45	2.39	256	1.51
$\mathbb{M}^{\text {Univariate }}$	12.5	36.2	32.7	26.4	23.8	34.3	4.57	53.3
$\mathbb{M}^{\text {Learning }}$	30.1	23.0	55.3	17.4	7.85	7.41	141	5.87

Figure 13: Standard deviations of the FO metric on all real-valued problems.

Front Occupation FO									
EA	$M S^{100}$	NN 100	$S C^{100}$	$M S T^{105}$	$M S^{1000}$	K^{1000}	$S C^{1000}$	$M S T^{1035}$	
SPEA $^{\text {UX }}$	3.73	0.663	2.16	1.30	1.43	0.780	1.30	0.196	
SPEA $^{1 \mathrm{X}}$	4.62	6.13	2.57	3.21	0.310	0.693	1.99	2.69	
NSGA-II $^{\text {UX }}$	0.00	0.00	0.00	0.00	6.20	5.05	2.38	1.96	
NSGA-II $^{1 \mathrm{X}}$	0.300	0.00	76.4	0.00	8.26	6.90	2.71	3.48	
$\mathbb{M}_{1}^{\text {UX }}$ Cluster	4.32	2.42	1.84	9.05	1.93	1.43	0.800	2.42	
$\mathbb{M}_{1}^{1 \mathrm{C}}$ Cluster	4.67	4.31	2.85	13.3	3.26	1.90	1.61	3.28	
$\mathbb{M}^{\text {UX }}$	9.42	5.00	8.36	22.7	3.08	2.29	1.68	3.76	
$\mathbb{M}^{1 X}$	5.07	18.1	15.4	124	3.16	0.806	1.58	3.34	
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	56.4	2.24	2.95	13.7	8.14	1.92	46.8	2.19	
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	73.6	5.45	4.29	14.4	3.87	1.48	1.68	364	
$\mathbb{M}^{\text {Univariate }}$	17.5	12.7	36.0	212	13.6	3.94	171	12.2	
$\mathbb{M}^{\text {Learning }}$	38.2	122	118	27.1	39.0	8.22	59.4	49.8	

Figure 14: Standard deviations of the $\mathbf{F O}$ metric on all combinatorial problems.

Population Size n								
EA	$B T_{1}^{10}$	$Z D T_{4}^{10}$	$Z D T_{6}^{10}$	$C^{\text {CP }}{ }_{7}^{10}$	$B T_{1}^{100}$	$Z D T_{4}^{100}$	$Z D T_{6}^{100}$	CTP ${ }_{7}^{100}$
SPEA $^{\text {UX }}$	50	50	25	25	25	25	25	25
SPEA $^{1 \mathrm{X}}$	25	100	25	25	25	25	25	25
NSGA-II ${ }^{\text {UX }}$	200	200	100	100	100	200	200	150
NSGA-II ${ }^{1 \mathrm{X}}$	200	375	75	300	75	200	150	300
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	75	100	25	25	100	125	200	125
$\mathbb{M}_{1}^{1 \mathrm{C}}$ Cluster	100	450	25	300	125	325	100	175
$M^{\text {UX }}$	225	25	25	25	125	200	200	300
$M^{1 \times}$	150	475	25	725	125	200	100	150
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	150	50	75	50	100	75	375	50
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	150	75	425	75	175	100	700	100
$\mathbb{M}^{\text {Univariate }}$	275	125	200	125	250	200	800	200
$\mathbb{M}^{\text {Learning }}$	450	200	250	150	225	300	400	250

Figure 15: Population sizes used for the real-valued problems.

Population Size n								
EA	$M S^{100}$	$K N^{100}$	$S C^{100}$	$M S T{ }^{105}$	$M S^{1000}$	$K N^{1000}$	$S C^{1000}$	$M S T^{1035}$
SPEA ${ }^{\text {U }}$	50	25	25	25	25	25	25	25
SPEA ${ }^{1 \mathrm{X}}$	50	50	25	100	25	25	25	50
NSGA-II ${ }^{\text {UX }}$	200	175	150	200	200	250	200	250
NSGA-II ${ }^{1 \times}$	100	175	250	200	150	200	150	250
$M_{1}^{\text {UX }}$ Cluster	100	150	225	1250	175	200	100	350
$M_{1}^{1 \mathrm{X}}$ Cluster	100	175	125	1200	150	150	150	375
$M^{\text {UX }}$	175	175	100	950	175	250	125	450
$M^{1 \times}$	150	175	150	675	200	125	100	425
$M_{1}^{\text {Univariate }}$ Cluster	325	250	350	2700	650	500	150	475
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	425	400	500	1800	1000	700	500	1500
$M^{\text {Univariate }}$	250	200	400	900	475	600	475	775
$M^{\text {Learning }}$	500	450	850	1950	750	1250	1900	1250

Figure 16: Population sizes used for the combinatorial problems.

Average Front Distance AFD													
Statistically Significant Improvement Matrix			$\begin{aligned} & Z \\ & 0 \\ & \Omega \\ & R \\ & i \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$					$\underset{\underset{x}{\underset{\sim}{3}} \underset{\sim}{3}}{ }$			$\begin{array}{ll} \\ \\ \text { 3 } \\ 0 \end{array}$		\tilde{S}_{2}^{2}
SPEA ${ }^{\text {UX }}$	0	-6	-8	-2	1	-1	-4	-2	4	1	-9	-1	-27
SPEA $^{1 X}$	6	0	-8	-3	-3	1	-4	2	6	-1	-9	-1	-14
NSGA-II ${ }^{\text {UX }}$	8	8	0	3	11	5	4	3	7	3	-7	1	46
NSGA-II ${ }^{1 \times}$	2	3	-3	0	3	10	-2	9	4	-2	-9	-2	13
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	-1	3	-11	-3	0	0	-5	-1	5	1	-8	-4	-24
$\mathbb{M}_{1}^{1 \mathrm{X}}$ Cluster	1	-1	-5	-10	0	0	-5	0	2	-2	-11	-3	-34
$M^{\text {UX }}$	4	4	-4	2	5	5	0	4	4	3	-8	0	19
$M^{1 \times}$	2	-2	-3	-9	1	0	-4	0	2	-5	-10	-2	-30
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	-4	-6	-7	-4	-5	-2	-4	-2	0	-7	-10	-9	-60
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	-1	1	-3	2	-1	2	-3	5	7	0	-9	-3	-3
$\mathbb{M}^{\text {Univariate }}$	9	9	7	9	8	11	8	10	10	9	0	5	95
$\mathbb{M}^{\text {Learning }}$	1	1	-1	2	4	3	0	2	9	3	-5	0	19

Figure 17: Number of times an improvement was found to be statistically significant in the AFD metric, summed over all tested problems. The numbers in a single row indicate the summed number of significantly better or worse results compared to the algorithms in the different columns.

Front Spread FS													
Statistically Significant Improvement Matrix			$\begin{aligned} & Z \\ & \boxed{n} \\ & \Omega \\ & B \\ & \stackrel{\rightharpoonup}{=} \\ & \underset{x}{4} \end{aligned}$				$\underset{\substack{\underset{x}{3} \\ \hline}}{ }$	$\underset{\text { r }}{\underset{y}{z}}$					$\begin{aligned} & \overline{U N} \\ & E \\ & E \end{aligned}$
SPEA ${ }^{\text {UX }}$	0	-7	9	8	3	5	-4	0	11	3	-6	-6	16
SPEA $^{1 X}$	7	0	16	14	8	11	-2	2	11	7	-5	-5	64
NSGA-II ${ }^{\text {U }}$	-9	-16	0	5	-12	-6	-15	-14	3	-9	-14	-13	-100
NSGA-II ${ }^{1 X}$	-8	-14	-5	0	-10	-7	-16	-14	1	-7	-16	-15	-111
$\mathrm{M}_{1}^{\mathrm{UX}}$ Cluster	-3	-8	12	10	0	4	-12	-8	9	0	-15	-13	-24
$M_{1}^{1 X}$ Cluster	-5	-11	6	7	-4	0	-14	-14	5	-3	-15	-14	-62
$M^{\text {UX }}$	4	2	15	16	12	14	0	7	11	9	1	1	92
$\mathbb{M}^{1 X}$	0	-2	14	14	8	14	-7	0	9	5	-5	-4	46
$\mathbb{M}_{1}^{\text {U C Clusariate }}$	-11	-11	-3	-1	-9	-5	-11	-9	0	-12	-15	-16	-103
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	-3	-7	9	7	0	3	-9	-5	12	0	-12	-13	-18
$\mathbb{M}^{\text {Univariate }}$	6	5	14	16	15	15	-1	5	15	12	0	-2	100
$\mathbb{M}^{\text {Learning }}$	6	5	13	15	13	14	-1	4	16	13	2	0	100

Figure 18: Number of times an improvement was found to be statistically significant in the FS metric, summed over all tested problems. The numbers in a single row indicate the summed number of significantly better or worse results compared to the algorithms in the different columns.

Front Occupation FO													
Statistically Significant Improvement Matrix				$\begin{aligned} & z \\ & n \\ & \Omega \\ & R \\ & i \\ & \vec{x} \end{aligned}$				$\underset{\underset{x}{3}}{\underset{\sim}{3}}$? ? 20 20 0 0 0 0			$\begin{aligned} & \text { Un } \\ & E \\ & \hline \end{aligned}$
SPEA ${ }^{\text {UX }}$	0	-3	2	4	13	14	13	12	12	8	-4	-8	63
SPEA ${ }^{1 \mathrm{X}}$	3	0	1	3	16	16	16	14	14	8	-2	-6	83
NSGA-II ${ }^{\text {U }}$	-2	-1	0	1	8	8	7	5	10	3	-2	-7	30
NSGA-II ${ }^{1 \times}$	-4	-3	-1	0	7	9	7	5	11	2	-6	-9	18
$\mathbb{M}_{1}^{\mathrm{UX}}$ Cluster	-13	-16	-8	-7	0	-3	-11	-7	1	-2	-16	-13	-95
$\mathbb{M}_{1}^{1 \mathrm{X}}$ Cluster	-14	-16	-8	-9	3	0	-8	-11	3	-2	-14	-14	-90
$M^{\text {UX }}$	-13	-16	-7	-7	11	8	0	1	5	1	-14	-15	-46
$M^{1 \mathrm{X}}$	-12	-14	-5	-5	7	11	-1	0	8	4	-12	-12	-31
$\mathbb{M}_{1}^{\text {Univariate }}$ Cluster	-12	-14	-10	-11	-1	-3	-5	-8	0	-6	-15	-12	-97
$\mathbb{M}_{1}^{\text {Learning }}$ Cluster	-8	-8	-3	-2	2	2	-1	-4	6	0	-6	-11	-33
$\mathbb{M}^{\text {Univariate }}$	4	2	2	6	16	14	14	12	15	6	0	-4	87
$\mathbb{M}^{\text {Learning }}$	8	6	7	9	13	14	15	12	12	11	4	0	111

Figure 19: Number of times an improvement was found to be statistically significant in the FO metric, summed over all tested problems. The numbers in a single row indicate the summed number of significantly better or worse results compared to the algorithms in the different columns.

