
Predictive measures for problem

representation and genetic operator design

Dirk Thierens

institute of information and computing sciences, utrecht university

technical report UU-CS-2002-055

www.cs.uu.nl



Predictive measures for problem representation and genetic

operator design

Dirk Thierens

Institute of Information and Computing Sciences
Utrecht University, The Netherlands

Abstract. The design of a problem representation and of the genetic operators acting on
this representation are a very important task when applying genetic algorithms. To assist
the user in this design task a number of predictive measures have been proposed in the
literature. Here we discuss some issues in the use of these predictive measures. We identify
the properties which a predictive measure should possess, and introduce an alternative
procedure. The results represent a small step towards a predictive tool assisting the GA
designer. The paper's main goal is to stimulate the discussion about the necessary ingredients
of such a tool at the GECCO Workshop on Representations. To keep the discussion concrete
we compute some predictive measures of di�erent GA problem solving approaches for the
Bin Packing problem.

1 INTRODUCTION

The eÆcient use of genetic algorithms (GAs) generally requires a well chosen problem encoding -
or genotype representation - and accompanying genetic operators. It is important for the search
eÆciency that the operators generate genuinely new solutions from the current set in order to
explore new parts of the search space. These new solutions should also - with high probability
- have a higher �tness value than randomly generated solutions. These goals can only be ac-
complished when the generation of new solutions also preserves - with high probability - some
of the information present in the parent solution which contributes to its �tness value. This re-
quirement is rather easy to achieve with exploration operators that make only a small change
to an individual solution. For algorithms such as local greedy search, simulated annealing, tabu
search, and mutation-only evolutionary search, the representation and operator design problem
is therefore not a major challenge, although its importance should never be underestimated. For
recombinative genetic algorithms however, the design is a more substantial challenge. Due to the
large exploratory steps performed by recombining two solutions, it is more diÆcult to ensure that
useful �tness information contained in the parent solutions is transmitted to the children with
high probability. This more challenging design task is the price we have to pay for the potentially
more eÆcient search by the use of recombination operators.

The obvious question any (novice) GA designer asks himself is "how should one proceed to
design such a representation and/or genetic operator". Unfortunately, there is no simple answer to
this question, but there is enough known about the search characteristics of GAs, that some guide-
lines for the design of competent genetic algorithms can be given [15]. In spite of this knowledge
though, it often remains necessary to explore and compare di�erent alternatives for the represen-
tation and the operators. The straightforward - and most accurate - approach to achieve this, is to
actually run the di�erent GA alternatives. An important drawback is the computational cost, and
several researchers have looked into cheaper mechanisms to evaluate alternative representations
and operators. In the next section we will �rst discuss the properties such a mechanism should
possess and look at some predictive measures found in the literature. Section 3 introduces an
alternative mechanism for predicting the performance of di�erent representations and/or genetic
operators. In section 4 we illustrate these measures on the bin packing problem. Finally section 5
ends with a discussion.



2 PREDICTIVE MEASURES

The goal of computing predictive measures is to be able to tell how well certain design choices,
such as solution representation and genetic operators, perform as compared to alternative choices
without actual running the di�erent GAs. Naturally, the computational e�ort spend in computing
the predictive measures should be smaller than running the GAs. It might well be possible that
certain measures that do require more computational e�ort than the actual GA runs, provide
useful insights to help designing better problem encodings and genetic operators, but they should
be looked upon as analysis tools not predictive tools.

In addition to the low computational cost requirement, there are a number of properties that
should be ful�lled. First of all, the measure should be generally applicable. Predictive measures
that can only be used for binary representations are less suitable since especially for non-binary
representations there is a need for predictive measures. Examples of such representations are
ordering problems, problem speci�c encodings for combinatorial problems, genetic programming,
neural networks, directed acyclic graphs, ... . The list can easily be extended, in fact any rich
representation where it is not immediately clear how individual solutions can be recombined, or
even mutated, is a candidate.

A second requirement is that one should not need to know the global optimum of the search
space. For theoretical analysis on arti�cial problems this knowledge can prove to be very useful [10].
However, for all practical purposes, predictive measures that require such knowledge - or even an
estimate - have limited value in practice. For instance predictive measures as the �tness distance
correlation [8] [3], or the progress rate [4], all require to know the distance to the optimal value.

A number of predictive measures have been proposed in the literature. Manderick et al. pro-
posed to measure the �tness correlation coeÆcient between the �tness of the parent(s) and the
�tness of the child(ren) [16]. This idea elaborated on the work of Weinberger on correlated and
uncorrelated �tness landscapes [9]. The key assumption is that a high �tness correlation is indica-
tive of the fact that genetic operator preserves useful �tness characteristics between parents and
o�spring, which in turn should lead to an eÆcient search. Formally, let Fp be the mean �tness of
the parents, and Fc the mean �tness of the children. The operator �tness correlation coeÆcient

�op is de�ned as

�op =
cov(Fp; Fc)

�(Fp)�(Fc)
;

where �(Fp) is the standard deviation of the �tness of the parents, �(Fc) the standard deviation of
the �tness of the children, and cov(Fp; Fc) the covariance between the parent �tness and o�spring
�tness. An estimate of this value can easily be computed by generating a large set of parent-
o�spring groups, and calculating the �tness values.

A second predictive measure is the evolvability or expected improvement which measures the
ability of the evolutionary algorithm to produce new o�spring with �tness better than existing
individuals ([1],[2],[4],[6],[7],[11]). For a �tness function F (assuming maximisation) and a variation
operator � , we have:

Eimp = E[F (� (x)) � F (x)]:

A related measure is the probability of improvement:

Pimp = Prob[F (� (x)) > F (x)]:

3 TREE COMPETITION

Manderick et al. computed the crossover �tness correlation coeÆcient �op from a sample of ran-
domly created parents. It should be noted though that it is reasonable to expect the statistical
values to be dependent on the �tness of the parents. After all, it might be much more diÆcult to
transmit the �tness determining pieces of the parent encoding to the o�spring when the parents
have high �tness, as opposed to simply randomly created parents. Unfortunately this creates a



dilemma: generating highly �t parents would require running the GA to �nd them, but this is ex-
actly what we want to avoid by using the predictive measures. Here we generate highly �t parents
by holding a tournament selection of size s. The parents chosen for computing the statistics are
the best solutions within a randomly generated set of s solutions. This requires a large number
of samples though. In addition, it does not take into consideration that the characteristics of for
instance the best out of 8 individuals might be very di�erent from the characteristics of the best
individuals winning three consecutive tournament and o�spring generation cycles.

Here we propose a scheme which should at least partially resolve some of the issues. We
would like to emphasise though that this only represents some preliminary thoughts about how
a predictive set of tools could be constructed. The predictive measures discussed so far all try to
capture the relevant information in a single number. Recall that the goal of computing predictive
measures is to allow making choices between alternative representations and genetic operators
without actually running all the GAs. It is an open question whether such informative measures
can be constructed. One way to get closer to our goal might be to abandon the idea of a single
measure but instead focus at some simple graphs that could help the GA designer in making his
choices.

As a �rst attempt we look at the following procedure:

1. Randomly generate a population of individuals of size 2k with k typically between 9 and 12.
2. Create pairs and recombine them to create their o�spring
3. Evaluate the �tness values and determine the best individual of each family of four.
4. Collect statistics for each family and its winning individual
5. The winning individuals go to the next level, thus forming a population of size 2k�1.
6. Repeat the cycle until only one individual remains

At each cycle the number of individuals is thus reduced by a factor 2. This exponential reduction
ensures that the computational cost remains low, while we still get an idea of the recombinative
behaviour at later generations.

4 BIN PACKING

To illustrate the use of the use of predictive measures we have run some experiments with the
Bin Packing problem. The Bin Packing problem is well suited for this purpose since it is a hard
problem where a number of di�erent representations and crossover operators have been proposed
in the literature. In addition all eÆcient GA approaches are hybrid - this is, they use a domain
speci�c heuristic to help Hybrid GAs are quite common in real world combinatorial optimisation
problems.

In the Bin Packing problem we have a set of items I = fI0; I1; : : : ; In�1g each having a
particular size S(Ii). The task is to partition the set of items in a set of exhaustive and mutually
exclusive set of subsets (also called the bins) such that the sum of the sizes of the items in each
subset does not exceed a �xed capacity C. The optimal solution is the partitioning or grouping
that needs the smallest number of subsets. Counting the number of subsets is however a very
uninformative measure since most solutions will rapidly consist of the optimal number of bins plus
one. A more smoother �tness function is obtained by adding for each bin the squared of the ratio
of the bin �lling and its total capacity:

F (BP (I)) =
1

b
:

bX
i=1

 Pg

j=1 S(Ij)

C

!2

The Bin Packing problem has been studied by a number of GA researchers [5], [12], [13]. Falkenauer
made a very extensive study, and he argued that Bin Packing should be looked upon as a speci�c
type of problem - namely, a grouping problem - that should bene�t from using a problem encoding
and genetic operators designed in accordance with the grouping characteristics [5]. He distinguished



three di�erent types of genotype representations with their corresponding crossover operator:
standard representation, order representation, and group representation. His experiments showed
that the group encoding had the best performance, closely followed by the ordering representation,
while the standard encoding was the worst. The interesting question to consider here is whether
this information could also be learned by the use of predictive measures as opposed to actual
running all the experiments.

We have calculated predictive measures for the triplet Bin Packing problem. This particular
Bin Packing problem has been created to form a diÆcult benchmark problem. The idea is to draw
item sizes in the range of [250 : : :500] which have to be packed in bins with capacity 1000. A
well-�lled bin should contain one large item and two small items. The diÆculty is due to the fact
that two large items or three small items can be put together in one bin, but this will lead to
a suboptimal solution. Instances of known optima can be generated as follows: �rst, an item is
created with a size s1 drawn uniformly at random within the interval [380 : : :490]. The second
item is generated with a size s2 drawn uniformly at random within the interval [250 : : :1000� s1

2
].

The third item size s3 is put equal to 1000�s1�s2, therefore completing the bin to full capacity. It
is easy to see that there is one large item, s1 2 [380 : : :490], and two small items, s2 2 [250 : : :310]
and s3 2 [200 : : :370]. To calculate the predictive measures we generated 50 triplets resulting in
Bin Packing problem sets of 150 items.

4.1 MULTI-START FIRST FIT HEURISTIC

The GAs applied to Bin Packing all make use of a bin �lling heuristic to help constructing a
solution. It is therefore natural to consider how well one should do if only the heuristic was used.
Fair comparisons can easily be made by simply generating the same number of children as with the
GA, but instead of constructing the children from the parents one simply generates two solutions
without considering the parents. Of course this will only be meaningful if the heuristic used has a
randomised component, there is little value in generating the same solution over and over again.
Here we use the First Fit heuristic that - given an ordering of the items - will simply place the
items in the �rst bin where there still enough room for the item to be added. Given a random
permutation of the items the First Fit heuristic will generate a di�erent solution.

The following table shows the 'crossover correlation coeÆcient' for randomly generated parents
(s = 1), and for parents that are the best out of a group of 10 (s = 10). Naturally, �op = 0 since
we not are not inheriting anything of the parents. The second table shows the percentage of
improvements and the average �tness improvement. Note that for s = 1 the percentage is not 50%
since this measure looks at the number of children (1 or 2) that are better than the best (out of
2) parents.

s FP FC �P �C CovPC �op
1 0.80 0.80 0.013 0.013 0.000002 -0.01
10 0.83 0.80 0.008 0.013 0.0000005 0.00

Best of s % improv. expected improv.
1 34 % 0.0001
10 4 % -0.025

Finally, �gure 1 shows the best, median, and worst �tness for the tree-based procedure. This
�gure serves as a baseline for the following experiments, and give an indication how much is
actually gained by the recombining the parents.

4.2 STANDARD REPRESENTATION

In the standard encoding the grouping is represented by a character string of �xed length n. Each
character represents a particular group and the position in the string refers to the corresponding
item: the group item Ii belongs to is speci�ed at the ith position in the string. For instance, the
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Fig. 1. Best, median, and worst �tness value for the First Fit heuristic (no recombination) for increasing
number of elitist tournaments.

genotype string "BBACCAABCA" represents the subsets fI2; I5; I6; I9g corresponding to char-
acter A, fI0; I1; I7g corresponding to character B, and fI3; I4; I8g corresponding to character C.
Recombination can be done with a standard crossover operator such as two-point crossover.

The standard encoding as used above is a very redundant coding. For instance the string
"BBACCAABCA" represents the same solution as "AABCCBBACB" or as \DDCAACCDAC".
Recombining them however does most likely lead to di�erent o�spring. In previous work on the
encoding of multi-layer perceptron neural networks we have encountered a similar problem [14].
It was shown there how the elimination of these types of redundancy improve the inheritance
of useful information. The redundancy seen here can easily be eliminated by transforming all
character encoding to one canonical form. This can be done for instance by demanding that the
characters are used in alphabetical order and no letter should be passed over. In the above example
the canonical encoding is thus "AABCCBBACB".

The standard encoding and two-point crossover does not prevent the o�spring from violating
the bin capacities. In principle one could use a penalty function to steer the GA towards valid
solutions, but it should be clear that in practice this is a very ineÆcient method. An alternative is
to remove the bins that are above capacity and �ll in the missing items with the �rst �t heuristic.
As one could expect two-point crossover keeps generating too many bins violating the capacity
constraint, and the whole approach highly resembles the multi-start use of the �rst �t heuristic.
To save space we do not show the table and �gure here.

4.3 ORDER REPRESENTATION

A second type of problem encoding for the Bin Packing problem is to use a �xed length list
of numbers from 0 to n � 1 where di�erent solutions are represented by a permutation of the
numbers. The actual partitioning is computed by applying a grouping heuristic - such as the First
Fit heuristic - to the list of numbers. For instance, the genotype (0 7 1 2 9 5 6 8 4 3) might lead
to the subsets fI0; I1; I7g, fI2; I5; I6; I9g, and fI3; I4; I8g, depending on the heuristic used and on
the item sizes and capacity of the bins. Recombination can be done by any permutation based
crossover operator. Here we have used the C1-ordering crossover: a random crosspoint is chosen
and all items before the crosspoint are copied to the two o�spring [13], [12]. The remaining items
are �lled in the order they occur at the other parent.

The crossover correlation coeÆcient clearly indicates that information about the �tness func-
tion is actually transmitted from the parents to the children. Surprisingly, the percentage of o�-
spring that has higher �tness than the best parent is actually lower for randomly generated parents,
but when the parents have higher �tness (winning a tournament of size s = 10), the percentage
of improvement becomes more favourable than without recombination.



s FP FC �P �C CovPC �op
1 0.80 0.80 0.013 0.013 0.00009 0.54
10 0.83 0.82 0.008 0.012 0.00003 0.34

Best of s % improv. expected improv.
1 27 % -0.001
10 16 % -0.007

Figure 2 shows the best, median, and worst �tness for the tree-based procedure, while �gures 4
and 5 compare the di�erent schemes.
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Fig. 2. Best, median, and worst �tness value for the Ordering representation, C1 crossover operator, and
First Fit heuristic for increasing number of elitist tournaments.

4.4 GROUP REPRESENTATION

Finally, the grouping representation tries to stay as close to the characteristics of the underlying
problem as possible. The genotype is a variable length list of lists representing directly the grouping.
For instance, a possible representation of the subsets fI0; I1; I7g, fI2; I5; I6; I9g, and fI3; I4; I8g is
simply ((I0 I1 I7) (I2 I5 I6 I9) (I3 I4 I8)). The crossover operator however is now more complicated.
Two crossing sites are chosen at random in both parents. The items between the crosspoints are
inserted at the �rst crossing point of the other parent. Some of the items now appear twice,
therefore the non-inserted groups that contain an item which is also present in the inserted groups
are removed from the o�spring. The missing items are then reinserted by the First Fit heuristic.

Computing the crossover correlation coeÆcient shows that the grouping representation trans-
mits slightly more �tness related information from the parents to the children. The improvement
measures give a more or less similar picture.

s FP FC �P �C CovPC �op
1 0.80 0.80 0.013 0.014 0.00012 0.62
10 0.83 0.82 0.008 0.013 0.00004 0.40

Best of s % improv. expected improv.
1 27 % -0.003
10 18 % -0.007

Figure 3 shows the best, median, and worst �tness for the tree-based procedure. As before
�gures 4 and 5 compare the di�erent schemes.
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Fig. 3. Best, median, and worst �tness value for the Grouping representation, group crossover operator,
and First Fit heuristic for increasing number of elitist tournaments.
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Fig. 4. Median �tness values for the three representations and operators.
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Fig. 5. Best �tness values for the three representations and their operators.



5 DISCUSSION & CONCLUSION

From the predictive measures considered so far it seems that the median �tness plot of the tree-
based procedure and the crossover correlation coeÆcient give the most predictive information. In
�gure 6 we have plotted the percentage of recombinations where one of the o�spring was better
than the best parent for each 'generation' in the tree-based procedure. Figure 7 shows the average
�tness improvement when an actual improvement did take place. Both �gures show the bene�t of
crossover above the multi-start heuristic searcher. The grouping representation seems to have the
edge above the ordering representation which is in agreement with Falkenauer's experiment.

One should be careful with interpreting the experimental results though. One thing that is
certainly missing right now is the statistical signi�cance of all these results. Whereas the median
value is rather robust, signi�cance tests should be applied, especially for the higher 'generations' in
the tree-based procedure, since at these levels only a few individuals are still under consideration.
Current work is underway to incorporate this.
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It should be clear that this work is in a preliminary phase and represents only a small step
towards a fully functional tool to guide the GA designer in the representation and operator choices
she has to make. We do believe however that such a tool will consist of a number of information
rich graphs as opposed to a single number measuring one speci�c aspect. More studies are needed
though to better understand their strengths and weaknesses, and to come up with a clear picture of
what can and what cannot be concluded from speci�c estimates of particular predictive measures.
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