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Abstract. The adaptation of mutation rate parameter values is important to allow the
search process to optimize its performance during run time. In addition it frees the user of
the need to make non-trivial decisions beforehand. Contrary to real vector coded genotypes,
for discrete genotypes most users still prefer to use a �xed mutation rate. Here we propose
two simple adaptive mutation rate control schemes, and show their feasibility in comparison
with a �xed mutation rate, a self-adaptive mutation rate and a deterministically scheduled
dynamic mutation rate.

1 Introduction

Novice users of Genetic Algorithms are often puzzled by the choices they have to make for a
number of parameters before being able to run their GA. In this study we will focus on the
probability of mutation. Previous studies have shown that varying the mutation probability is
preferable to a �xed constant mutation rate ([2],[3],[5],[8],[12],[15],[18],[20]). Unfortunately most
novice users prefer to use a �xed mutation rate due to its simplicity as compared to for instance the
somewhat complicated self-adaptive mutation rate control scheme. In this paper we propose two
simple adaptive mutation rate control schemes. Evolutionary algorithms with non-�xed parameter
settings can be divided into three subclasses ([4],[14]):

1. Dynamic parameter control: The dynamic schemes typically prescribe a deterministically
decreasing schedule over the number of generations. Fogarty ([8]) experimentally studied a
dynamical mutation rate control for genetic algorithms and he proposed to use a schedule that
decreases exponentially over the number of generations:
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The results obtained showed an increased performance, but the experimental setup is rather
speci�c. Hesser and M�anner ([12], [13]) derived a more general expression for decreasing mu-
tation rate parameter control schedule:
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with l the stringlength and n the population size. Unfortunately the constants ci can only be
roughly estimated for simple problems. B�ack and Sch�utz ([5]) also tested a deterministically
decreasing scheme:
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with T the number of generations the GA is run. Excellent experimental results where obtained
for hard combinatorial optimization problems, and we will use their algorithm for comparison
latter in this work.



2. Adaptive parameter control: During the optimization process we can extract feedback
information on how well the search is going and use this information to adapt the parameter
control values. Rechenberg's \1=5 success rule" is an early example of this scheme ([21]). The
rule tries to keep the ratio of successful mutations to all mutations close to 1=5 by increasing
the step size when the ratio is larger than 1=5, and decreasing the step size when the ratio is
less than 1=5. Although the use of feedback from the ongoing search process seems a useful
approach, it has not been studied much in the Evolutionary Computation literature.

3. Self-adaptive parameter control: The most evolutionary solution to the parameter con-
trol problem is the principle of self-adaptation where the parameter values are modi�ed by
evolving them. Each individual has control parameters encoded into its genotype. It is im-
portant to notice that there is only an indirect link between good parameter control values
and highly �t individuals. Self-adaptation provides no direct feedback mechanism to good or
bad parameter control values. The idea is that good parameter values will provide an evolu-
tionary advantage to the individual it belongs to and therefore it will itself proliferate in the
population. Self-adaptation has been successfully applied in case of continuous optimization
problems with Evolutionary Strategies and Evolutionary Programming ([10],[22]). B�ack and
Sch�utz ([5]) designed a self-adaptive scheme for binary strings following the principles from
the continuous domain. They proposed a logistic transformation:
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such that the mutation probability pm(t + 1) is distributed according to a logistic normal
distribution with probability density function
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The learning rate 
 controls the size of the adaptation steps and in [5] a value of 
 = 0:22
is chosen. The self-adaptive scheme performs rather well and we will also include it in the
comparison further on.

Compared to the �xed mutation rate schemes most non-static parameter setting strategies have
a better performance. Unfortunately there are some drawbacks. The dynamic parameter control
scheme requires the user to devise a schedule specifying the rate at which the parameter is typically
decreased. The self-adaptive scheme does not need such a speci�c schedule and is conceptually
quite appealing to evolutionary algorithmists. Unfortunately it is rather complicated to explain to
novice users, and as a result they usually prefer the simple �xed mutation rate scheme. Contrary
to Evolutionary Strategies the use of a �xed mutation rate with genetic algorithms - like the often
advised pm = 1=stringlength - does seem to give satisfactory results, which adds to the novice
user's reluctance to apply the more elaborate schemes.

In the next section we propose two simple adaptive mutation rate control schemes: the constant

gain and the declining adaptive mutation scheme. Section 3 tests their feasibility in a limited
experimental comparison. The goal of this paper is not to extensively analyse and test these
adaptive mutation schemes, but merely to �nd out whether it is worthwhile to investigate simple
adaptive parameter control schemes at all.

2 Adaptive Mutation Rate Parameter Control

2.1 Constant gain adaptive mutation rate control

The �rst scheme is inspired by the stochastic Manhattan learning algorithm from the �eld of
stochastic approximation ([17]). Stochastic learning algorithms provide recursively re�ned esti-
mates of optimal model parameters. Their general form is w(t + 1) = w(t) + �(t)H(w(t); x(t)),



where w(t) is the parameter estimate at the recursive time step t, �(t) is the learning rate, x(t) is
the input data at time step t, and H(w; x) represents the learning rule. The learning rate �(t) is
either a constant factor or a decreasing function, resulting in resp. constant gain or adaptive gain
algorithms. The stochastic Manhattan learning algorithm adapts the parameter in proportion to
the sign of the gradient of some error function E(w; x), resulting in

w(t+ 1) = w(t) + �(t)� sign

�
ÆE(w(t); x(t))

Æw

�
:

Stochastic Manhattan learning algorithms are very robust recursive learning algorithms using �xed
parameter changes. In evolutionary algorithms we do not have a gradient of an error function to
guide the search, but a somewhat equivalent procedure to Manhattan learning can be devised as
follows. Suppose our current mutation parameter value is pm(t), and we generate two new indi-
viduals by mutating the current one respectively with a mutation rate p0m(t) = !pm(t), and with
p0m(t) = pm(t)=!, where ! is a constant called the exploration factor. Evaluating the mutated
individuals and comparing their �tness value gives us a rough - and very noisy - indication of
whether we should increase or decrease the current mutation rate. Similar to constant gain Man-
hattan learning we could add or subtract a �xed factor to the current mutation probability. We
prefer however to have a modi�cation in proportion of the current value and therefore use a mul-
tiplicative constant learning factor �. If the process converges to the optimal mutation probability
we should make use of this value so in addition to the two mutated individuals with a larger and
smaller mutation probability we also generate a new individual with the current value.

Formally let us notate the mutation of the binary string x of length ` with mutation probability
pm generating o�spring x0 with new mutation probability p0m as M (x; pm )! (x0; p0m). We bound
the range of possible mutation values between [1=`:::0:5]. Values generated outside this interval are
given the boundary value. The constant gain adaptive mutation rate parameter control scheme
then becomes:

Constant gain adaptive mutation scheme

1. Mutate the current individual (x; pm):

M (x; pm=!)! (x1; pm=�)

M (x; pm )! (x2; pm)

M (x; !pm )! (x3; �pm)

2. Select the �ttest individual of f(x; pm); (x1; pm=�); (x2; pm); (x3; �pm)g

Note that the learning-factor � and the exploration-factor ! typically have di�erent values
(�; ! > 1). To reduce the noise in the evaluation of the direction of modi�cation a rather large
value is needed, while the learning-factor should remain smaller to avoid wild oscillations of the
learning process. Typical appropriate values are � = 1:1 and ! = 1:5.

2.2 Declining adaptive mutation rate control

The second adaptive mutation rate control scheme we propose here is a variant of the constant
gain method. As will be discussed in the next section it seems that the constant gain scheme
should bene�t from a more aggressive step size. Increasing the learning factor however results in
a too widely 
uctuating parameter value. The declining adaptive rule aims for a more aggressive
step size while retaining a rather smooth dynamics. Each time an individual creates an o�spring
by mutation its mutation probability is decreased by a small factor, the declination factor 
. In
addition the exploration towards lower mutation probability values is replaced by an exploration
towards higher values. The step size adaptation is also made more aggressively than in the constant
gain method. Formally the algorithm is de�ned as:



Declining adaptive mutation scheme

1. Mutate the current individual (x; pm):

M (x; !pm )! (x1; �pm)

M (x; pm )! (x2; pm)

M (x; !pm )! (x3; �pm)

2. Decrease the mutation probability of the parent:

(x; pm)! (x; 
pm)

3. Select the �ttest individual of f(x; 
pm); (x1; �pm); (x2; pm); (x3; �pm)g

Note that !; � > 1, while 
 < 1. Typical appropriate values are 0:9 � 
 < 1, and ! = � = 2:0.

3 Experimental Results

In this section we perform some limited experiments to check the feasibility of the proposed simple
adaptive mutation rate control schemes. First we measure the dynamic behaviour on the 'fruit-
y'
of genetic algorithm research - the Counting Ones problem. For this function the optimal mutation
probability for each individual is known ([3],[6],[18]).

3.1 Counting Ones problem

The Counting Ones problem is de�ned as

F (x)! Z : F (x) =

lX
i=1

xi

where x is a binary string of length l, x = x1x2 : : : xl (xi 2 f0; 1g).
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Fig. 1. Generations to optimal solution for Counting Ones problem (` = 100) with �xed and constant
gain adaptive mutation rate (note the x-logscale).

Figure 1 shows a �rst advantage of using an adaptive mutation rate versus a �xed mutation rate
(results are averaged over 25 runs, vertical bars represent 1 standard deviation above and below the



average value; similar deviations are obtained for the �xed mutation rate scheme but are not plotted
for clarity). The number of generations needed to converge to the optimal solution is much more
sensitive to the choice of the (initial) mutation probability for a �xed mutation rate scheme than
for instance for the constant gain adaptive mutation scheme. For a �xed mutation rate the range of
mutation probabilities where convergence goes well is not very wide, and once outside the interval
[0:005 : : :0:02] the number of generations needed to reach the optimal solution increases rapidly.
For the constant gain adaptive mutation rate control the range of initial mutation probabilities can
be quite large: between [0:0025 : : :0:04] performance is satisfactory and once outside the interval
the required number of generations increases far less dramatically than with the �xed mutation
rate scheme (note that the initial mutation probabilities are plotted on a logscale).

In table 2 the average number of function evaluations and generations are shown for 6 di�erent
mutation strategies. The self-adaptive, constant gain adaptive, and declining adaptive are run with
a (1+3) selection strategy. The �xed, deterministic, and optimal scheme are run with a (1+1)
selection strategy, since they do not need the extra o�spring for the Counting Ones problem.
Unfortunately this makes the comparison somewhat harder to make. It is important to realize
though that for more diÆcult functions all algorithms will need a large o�spring population,
eliminating the di�erent population sizes seen here. The next section will illustrate this.

The constant gain adaptive mutation rate scheme is run with learning-factor � = 1:1 and
exploration-factor ! = 1:5. The declining adaptive mutation rate scheme is run with declination
factor 
 = 0:9 and alternatively with 
 = 0:5, while in both cases � = ! = 2:0.

mutation schemes average number std. dev. number
fct. evals. (gens.) fct. evals. (gens.)

(1) Self-adaptive 2082 (694) 2223 (741)
(2) Constant Gain 2499 (833) 1458 (486)
(3) Declining (0:9) 918 (306) 231 (77)
(4) Declining (0:5) 714 (238) 198 (66)

(5) Fixed 575 181
(6) Deterministic 1272 211
(7) Optimal 583 157

Fig. 2. Number of function evaluations (resp. generations) for di�erent mutation rate control schemes on
the Counting Ones problem

For the Counting Ones problem the optimal mutation probability can be approximated very
closely by:

pOPTm (x) � 1

2 + (F (x+ 1)� `

Figures 3, 4, 5, 6, and 7 show the mutation probability applied for each �tness value when
optimizing a 100-bit long string in comparison with the optimal and �xed (1=stringlength) value.
Results are averaged over 100 runs, with the error bars indicating plus or minus one standard
deviation. It is important to note that most of the time all algorithms are trying to improve
strings with high �tness values, so most of the time is spend at the right part of the �gures.
The most striking observation is the slow adaptive behaviour of the self-adaptive and constant
gain mutation rate schemes. This lack of responsiveness even necessitated to start from an initial
mutation probability pm(0) = 0:1 instead of the optimal pm(0) = 0:5. Of course it would be possible
to increase the responsiveness by increasing the parameters controlling the step size. Experiments
show however that this has severe negative side e�ects by causing erratic 
uctuations in the
mutation probability value.

The dynamic and declining adaptive schemes better match the optimal rate, even when started
from the high initial value pm(0) = 0:5. Their dynamic behaviour is also quite smooth. It should
be noted that even a declination factor 
 = 0:5 does not match the extremely rapid decline of
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Fig. 3. Distribution of the mutation probabilities applied with self-adaptive mutation rate control com-
pared with optimal values.
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Fig. 4. Distribution of the mutation probabilities applied with constant gain adaptive mutation compared
with optimal values.
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Fig. 5. Distribution of the mutation probabilities applied with deterministic dynamic mutation compared
with optimal values.



the optimal scheme. Naturally this is only an optimal strategy for the unimodal Counting Ones
problem.
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Fig. 6. Distribution of the mutation probabilities applied with declining adaptive mutation (
 = 0:9)
compared with optimal values.

3.2 Zero/one multiple knapsack problem

A second experiment was done for a hard combinatorial problem: the zero/one multiple knapsack
problem ([16]). The problem is a generalization of the simple knapsack problem. We are given m
knapsacks with capacities c1; c2; : : : ; cm and n objects each with a pro�t pi. Every object i has
a weight wij when it is included in the knapsack j. Note that contrary to the simple knapsack
problem the weights of the objects are not constant but instead they depend on the knapsack they
have been allocated to. Objects are either allocated to all knapsacks or they are not allocated at
all. The goal is to �nd an allocation of the objects to the knapsacks such that the total pro�t
is maximised. Calling x = x1x2 : : : xn (where xi 2 f0; 1g) the allocation string, the goal can be
formalised as maximising

Pn
i=1 xipi constrained by the knapsack capacities, or

Pn
i=1 wijxi � cj .

Whenever at least one knapsack is over�lled the string represents an infeasible solution. As in [16]
we include a penalty term in the �tness function that becomes larger the farther the solution is
from feasibility. The �tness function to be maximised is then:

F (x) =
nX
i=1

pixi � s:max(pi)

where s is the number of over�lled knapsacks: s = jfj j Pn

i=1 wijxi > cjgj:
In our experiments we take the multiple knapsack problem called \weing7-1055" which has

105 objects to be allocated to 2 knapsacks (speci�c weights and capacities can be found at [19]).
This particular knapsack problem was also studied in [5] with a �xed mutation rate (pm =
1=stringlength), a self-adaptive mutation schedule, and a deterministic dynamic schedule - as
explained in the Introduction.

We have implemented these mutation schemes and compared them with our simple adaptive
mutation rate algorithms using a (16+96) selection strategy, without applying recombination.
At each generation every individual generates 6 children by mutation. As opposed to the (1+3)
selection strategy the children no longer compete directly with their single parent. Instead they
compete in the entire pool of parents and o�spring. All algorithms are run for 2000 generations (a
value advised in [5] for the deterministic schedule). The constant gain adaptive mutation scheme
is run with the learning factor � = 1:1 and the exploration factor ! = 1:5. The declining mutation
rate control has a declination factor 
 = 0:98, and � = ! = 2:0. The initial mutation probability
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Fig. 7. Distribution of the mutation probabilities applied with declining adaptive mutation (
 = 0:5)
compared with optimal values.

for each individual is randomly taken from the interval [1=stringlength : : :0:1]. Every algorithm
is run 30 times.

Figure 8 shows the number of runs that achieved a �tness value of at least 1095000, while
table 9 shows the average and standard deviation over all 30 runs. The �xed mutation rate scheme
performs worst, both in terms of average �tness and in the number of solutions found with �tness
above 1095000. The self-adaptive and constant gain adaptive mutation rate control scheme perform
very similar. Best performance however is obtained with the declining adaptive mutation rate
scheme and the deterministically scheduled dynamic mutation rate scheme.

�tness (1) (2) (3) (4) (5)

1095445 - - - - -

1095382 2 5 5 4 3

1095357 - - 1 2 -

1095295 - - - 1 -

1095266 - - - 1 -

1095264 - 1 - 2 1

1095232 - - - - 2

1095207 - - - 2 2

1095206 - - 2 - 2

1095141 - - - 1 3

1095137 - 1 - - 2

1095132 - - - 1 -

1095114 - - - - -

1095112 - - - - 1

1095081 - 1 - 1 -

1095065 - - - - -

1095035 1 - - - -

runs / 30 3/30 8/30 8/30 15/30 16/30

Fig. 8. Knapsack problem: best results out of 30 runs (1) Fixed mutation rate (2) Self-adaptive mutation
rate (3) Constant gain adaptive mutation rate (4) Declining adaptive mutation rate (5) Deterministically
scheduled dynamic mutation rate



mutation schemes average �tness standard deviation

(1) Fixed 1092168 2292
(2) Self-adaptive 1092865 2007
(3) Constant gain 1093025 2073
(4) Declining 1094577 1048
(5) Deterministic 1094730 953

Fig. 9. Average �tness values over 30 runs for the 5 mutation rate control schemes on the knapsack
problem.

4 Further work

{ Both the deterministic dynamic schedule and the declining adaptive mutation rate scheme
need a parameter value set to specify how fast the mutation rate will drop (resp. the number
of generations run and the declination factor 
). This is somewhat analogous to the cool-
ing schedule of simulated annealing, and further research needs to determine how sensitive
performance is to this parameter.

{ In this paper we have not considered the use of crossover. Recombination would typically make
large adjustments during the initial generations, which is exactly where the dynamic and de-
clining adaptive schemes di�er the most from the self-adaptive, the constant gain adaptive,
and the �xed mutation schemes. It is therefore reasonable to expect that the use of crossover
would level out the di�erences between all mutation rate control schemes. In [20] some ex-
periments have been reported that seem to con�rm this. A thorough analysis is however still
lacking and is no doubt an interesting topic to investigate.

5 Conclusion

We have proposed two simple adaptive parameter control schemes for adapting the mutation
probability with binary genotypes: the constant gain and the declining adaptive mutation scheme.
The constant gain adaptive mutation method obtains feedback of the search process by testing the
results of an increased and decreased mutation probability, and adapts the mutation parameter
with a constant multiplicative gain. Limited experimental results indicate that the performance
is comparable to self-adaptive mutation schemes. The declining adaptive mutation rate control
matches more the dynamical behaviour of the deterministically scheduled dynamic mutation rate
control scheme. Performance-wise, they are also comparable. This paper showed the feasibility
of these simple adaptive approaches, suggesting further experimental and theoretical analysis is
worthwhile to pursue.
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