
 1

Dynamic neural networks,
comparing spiking circuits and LSTM

Arne Koopman, Matthijs van Leeuwen & Jilles Vreeken
 Adaptive Intelligence Laboratory, Intelligent Systems Group,

Institute for Information and Computing Sciences, Utrecht University
Correspondence e-mail address: jvreeken@cs.uu.nl

We have investigated two specific network types in the class of dynamic neural networks: LSTM and
spiking neural networks. Dynamic neural networks in general are computationally powerful and very
promising for tasks in which temporal information has to be processed. We’d like to remark that this is
the case for virtually any task or application interacting with the real world. We have tested the
networks on a broad set of dynamic tasks and most problems were solved by both; there are some
fields though where either LSTM or the spiking neural networks performed better. These differences can
be largely brought back to the differences between second and third generation networks.

We have investigated classes of neural networks that are
capable of having an internal memory state, i.e. the network
just receives input from ‘now’ and has to store that somehow
in order to influence later outputs. This is a feature required
to solve dynamic tasks, tasks in which there is an input-flow
that has to be processed without having the help of receiving
older inputs again from the outside. Nearly any task in the
real world requires such a mechanism, as inputs are typically
only received just once.

The neural structure known as once brain will have to
temporarily store information in order for you to have a
short term memory: a form of memory for which connections
between neurons don’t need to be physically altered,
information is retained by recurrent activity between
neurons. We call these dynamic neural networks, of which
we’ll discuss two quite different types in particular: long-
short term memory and spiking neural networks.

Artificial neural networks have become a standard tool
within computer science; the first ideas and models are over
fifty years old. The first generation of artificial neural
networks consisted of McCulloch-Pitts threshold neurons [5],
a conceptually very simple model: a neuron sends a binary
‘high’ signal if the sum of its weighted incoming signals rises
above a threshold value. Second generation neurons do not
use such a threshold but a continuous activation function to
compute their output signals, making them suitable for
analogue in- and output. Examples of commonly used activa-
tion functions are the sigmoid and hyperbolic tangent. Typi-
cal examples of neural networks consisting of neurons of
these types are feed-forward and recurrent neural networks.

Real neurons have a base firing-rate (an intermediate fre-
quency of pulsing) and continuous activation functions can
model these intermediate output frequencies. Hence, neu-
rons of the second generation are more biologically realistic
and powerful than neurons of the first generation [26]. Also,
real neurons use individual pulses as signals, short voltage
spikes that excite connected neurons. Neuron models of the

first two generations do not employ these; for sake of
simplicity their output signals are typically single analogue
values between 0 and 1. These signals can be seen as
normalised firing rates (frequencies) of the neuron. This is a
so-called rate coding, where a higher average rate of firing
correlates with a higher output signal. Due to such an
averaging window mechanism the output value of a neuron
can be calculated in iteration. After doing such a cycle for
each neuron the response of the network to the input values
is known.

In nearly all real-world-related tasks you need to take
previously experienced inputs into account in order to
determine the appropriate action or conclusion. In other
words: the network needs to have some form of memory.
Standard feed-forward networks do not have this capability,
and without tricks they cannot be used to infer temporal
relations. A widely used trick is to present the network not
only the current input, but also a window of previous inputs
[8,9,17]. This solution is clearly not biologically plausible and
has some major disadvantages: only temporal relations
within the input-window can be detected and huge input
windows are required for long term influences, overtaxing
both the system and learning capabilities [14].

Recurrent sigmoid neural networks
Second generation neurons are computationally less complex
than their biologically more plausible spiking counterparts
and were therefore more appealing in early research, where
they were used in various recurrent network topologies
[7,11,15]. For example, Elman [7] proposed nets in which an
extra recurrent hidden layer, called context units, is trained
to trigger the network for specific events. These nets are able
to learn tasks like the temporal XOR problem and several
grammatical problems, but since they have memories of only
a few time steps at most, they aren’t capable of dealing with
time sequences with long time lags. Extending this memory
gave rise to fundamental problems during the training phase

 2

of sigmoid recurrent networks. Popular training algorithms
for recurrent neural networks include Back-Propagation
Through Time (BPTT) and Real-Time Recurrent Learning
(RTRL) [9,10,12]. During the learning phase, BPTT gradually
enfolds each layer of the network into a multi-layer network,
in which each layer represents a snapshot of the
corresponding time step. The resulting network allows the
error to flow in time and is used for learning temporal
correlations. The temporal error is provided in a way similar
to that of the well known back-propagation algorithm [29]. A
major drawback of BPTT is its need to record the whole
network state, inputs, target vectors and weights during the
training phase, as weight adjustment is done only after the
epoch has ended. In contrast, RTRL allows for real-time
weight adjustments, at the cost of losing the ability to follow
the true gradient, which gives no practical limitations though
[9].

To operate correctly with sigmoid networks, these
algorithms require that time lags between inputs and target
outputs are kept small; training becomes impossible
otherwise. In second generation networks, large time lags
tend to either blow the error flow up or let it vanish to zero;
leading, respectively, to oscillating weights or a situation
where learning does not take place at all. Several solutions to
this problem of decaying error flow have been proposed
[15,16], from which we have selected Long Short-Term
Memory as the second generation alternative for our
experiments.

Long Short-Term Memory
An efficient method of dealing with decaying error flow is
Hochreiter’s Long Short Term Memory (LSTM), of which
Constant Error Carrousels (CECs) are an essential element.
Their basic function is to ensure a constant error flow by
producing the sum of its previous and current inputs (see fig.
1). The model is explained in more detail in Hochreiter’s
work [16].

Because the error flow does not suffer from decay,
interactions with the outside world have to be selected with
care: useful error signals have to sustain in the network and
irrelevant memory content may not disrupt the current
output. Especially with long time lags, time sequences
potentially contain a lot of junk input, which harness the
useful memory content and therefore does not benefit the
learning process.

Restraining this unwanted flow is done by additional
regulating gate units that scale the flow from and to the CEC.
Gate units receive their input from the input, output and
current network state and are trained like normal sigmoid
cells to produce the scale factor. In this fashion, gate units can
be trained to be selective for certain temporal events and
allow the CEC to accumulate the flow of different events. The
combination of input gate unit, CEC and output gate unit
forms a memory (see fig. 1) cell and is able to satisfy above
needs.

When the temporal sequences contain more complex
spatial relations at certain time steps, it can be convenient to
combine several memory cells together and give them the
same temporal selectivity, which makes them focus at the
same moment. This is done by grouping several memory
cells together that share input and output units to form a
memory block.

These memory blocks are integrated into a standard LSTM
network topology, in which the input and output layer
consists of sigmoid units. The memory blocks reside in the
fully connected hidden layer and are optionally aided by
sigmoid hidden units.

Training LSTM
The training of LSTM networks is done by an altered version
of Real-Time Recurrent Learning, which we shall explain
more formally here. Assume that we have a LSTM network,
as described above, with n units and m external input lines.
Let y(t) denote the n-tuple of outputs of all units at time t,
and x(t) the concatenation of m external input signals from
the input units I and the output signals from the output units
U:

() if
()

() if
k

k
k

x t k I
x t

y t k U
∈

= ∈

(1.1)

The net input of each unit at time step t+1 is very
straightforward, and is given by,

(1) () ()k lk l
l U I

s t w t x t
∈ ∪

+ = ∑
(1.2)

This function is used to determine the output of a unit at time
step t+1. The unit’s activation function fk squashes the net
output in a limited range.

(1) ((1))k k ky t f s t+ = + (1.3)

Since we are dealing with temporal patterns, the target
values of output neurons can vary in time. At every time
step, all target output units, the set T(t), must meet their
target values d. The discrepancy between target value and
actual output leads to the current error,

() () if ()
()

0 otherwise
k k

k

d t y t k T t
e t

− ∈
=

(1.4)

This derived error can be used to update the weights, that are
adjusted according to their contribution of the current error p
and is generally scaled by the overall learning rate, α.

() ()k
ji k ij

k U
w e t p tα

∈

∆ = ∑
(1.5)

The influence of the weight wij on output unit k at time step t
is intuitively given by the following gradient,

()()k k
ij

ji

y tp t
w

∂
=

∂

(1.6)

and is derived by tracing down the grown network
recursively. This contribution is determined by the current
output and the previous outputs of the preceding units: for
each output unit k, at time step t+1, all ancestor units l, are
followed to time step t. Using the Kronecker delta, δik, the
input is added to this contribution. For each passed unit the
output is calculated, which determines the contribution to
the current error.

(1) ((1)) () ()k l
ij k k lk ij ik j

l U

p t f s t w p t x tδ
∈

 ′+ = + +
∑

(1.7)

We omitted a large part of the complete algorithm, we refer
to the work of Williams et al. [9,10] for more details. The
LSTM networks in our experiments are trained by a
truncated variant of RTRL, which compensates for the

Figure 1. The core of the LSTM network: the Memory Cell with in its
centre the Constant Error Carousel (CEC), which ensures the constant
error flow needed for learning long time dependencies [16].

 3

multiplicative dynamics caused by the input and output
gates. Upon entering the memory cell, the error signal is
scaled by the output unit and can flow through the CEC
indefinitely. When it leaves the CEC, it is first scaled by the
input unit, used to adjust the incoming weights and is finally
truncated. In short, error signals which arrive at a memory
cell do not get propagated back further in time.

Spiking neural networks
In the third generation of neural networks, the level of
biological realism and computational power is raised by
using individual spikes. Spiking neurons are inherently
dynamic as they have an ever-changing internal state: their
membrane voltage. This provides the network with an
internally continuous memory, allowing it to incorporate
spatial-temporal information in communication and
computation, like real neurons do [6,25]. So instead of using
rate coding, these neurons use pulse coding: mechanisms
where neurons receive and transmit individual pulses,
allowing multiplexing of information as frequency and
amplitude of sound [2].

Recent discoveries in the field of neurology have shown
that neurons in the cortex perform analogue computations at
incredible speeds. Thorpe et al [6] demonstrated that humans
analyse and classify visual input (i.e. facial recognition) in
under 100ms. It takes at least 10 synaptic steps from the
retina to the temporal lobe; this leaves about 10ms of
processing-time per neuron. Such a time-window is much
too small to allow an averaging mechanism like rate coding
[6,4]. This does not mean that rate coding is never used,
though when speed is an issue pulse coding schemes are
favoured [5].

There are many different schemes for the use of spike
timing information in neural computation. We’ve chosen to
use the spike response model, a model in the threshold-fire
class of spiking neuron. It’s a conceptually simple, easy to
implement model that captures key elements of the
biologically very realistic Hodgkin-Huxley model [2,3]. We’ll
cover the details of this model here, further on in this paper
we will describe the adaptations we’ve made in our
implementation.

All action potentials are look-alikes. We can therefore
forget about their form and characterise them by their firing

times ti(f). The lower index i indicates the neuron, the upper
index f the number of the spike. We can then describe the
spike-train of a neuron as

},...,{)()1(n
i ttF = (2.1)

The variable ui is commonly used to refer to the internal
state, or membrane potential, of a neuron i. If a neuron’s
membrane potential crosses threshold value ϑ from below, it
generates a spike. We add the time of this event to Fi,
defining this set as

} 0| { >′∧== (t)u(t)utF iii ϑ (2.2)

When a neuron generates an action potential, the mem-
brane potential suddenly increases, soon followed by a long
lasting negative after-potential (see fig. 2b). This sharp rise
above the threshold value makes it is absolutely impossible
for the neuron to generate another spike and is named
absolute refractoriness. In the period of relative
refractoriness, which we call the negative spike after-
potential (SAP), it is less likely that the neuron fires again.
We can model this absolute and negative refractoriness with
kernel η:

s)KH(s)H(δ

)δ)H(s
t
δs(n(s)

abs

abs
abs

−−

−
−

−−= exp0η
(2.3)

≤
>

=
0 if 0
0 if 1

s
s

Η(s) (2.4)

The duration of the absolute refractoriness is set by δabs,
during which large constant K ensures that the membrane
potential is vastly above the threshold value. Constant n0
scales the duration of the negative after-potential. Having a
description of what happens to a neuron when it fires, we
need one for the effect of incoming postsynaptic potentials.

)H(sss(s) ij

s

ij

m

ij

ij ∆−

 ∆−
−−

 ∆−
−=

ττ
ε expexp (2.5)

In equation 2.5, ∆ij defines the transmission delay (axons
and dendrites are fast, synapses relatively slow) and 0<τs<τm
are time constants defining the duration of the effect of the
postsynaptic potential. We use variable wij to model the
synaptic efficacy or weight; with which we also can model
inhibitory connections by using values lower than zero.

Neurons of the second generation work in the iterative,
clock-based manner of digital computers, but can deal with
analogue input values; we can quite easily feed input
neurons with digitised values from a dataset or a robot-
sensor. We cannot just insert such values into a spiking
neuron and we will have to affect the membrane-voltage
directly according to these values. This is done by hext(t) that
describes all external influences to the neuron’s membrane
potential.

∑ ∑
Γ∈ ∈

−+=
i j

(f)
jj Ft

(f)
jijij

ext)t(tw(t)hh(t) ε
(2.6)

The neuron might get excited due to outside influences and
fire, effectively transforming an analogue input value into
the signal the network can process: a spike. The current
excitation of a neuron is described by

h(t))t(t(t)u
i

(f)
i Ft

(f)
iii +−= ∑

∈

η
(2.7)

where the refractory state, effects of incoming postsynaptic
potentials and external events are combined. Together with

Figure 2. (a) Schematic drawing of a neuron. (b) Incoming post-
synaptic potentials alter the membrane voltage so that it crosses
threshold value ϑ; the neuron spikes and goes into a refractory state.
(c) Typical forms of excitatory and inhibitory postsynaptic potentials
over time. [2]

 4

equation 2.3 this forms the spike-response model, a powerful
though easy to implement model for working with spiking
neural networks.

Synaptic plasticity
Electrochemical action potentials cannot just jump across the
synaptic gap (see fig. 2a) between two neurons; a post-
synaptic potential (see fig. 2c) has to be induced by chemicals
(neuro-transmitters) that travel across the gap. This involves
many variables, like the amount of readily deployable
vesicles of neuro-transmitters and the capability to replenish
those. All these variables affect the resulting post-synaptic
potential. The synapse is therefore no simple signal
transferring device, but a highly complex signal-pre-
processor. Due to these effects, synapses play an important
role in development, memory and learning of neural
structures. Synaptic plasticity is a form of altering the pre-
processing, which is a preferred word for ‘learning’ as it
better describes what is at hand: long- or short-term change
in synaptic efficacy [1,4,6].

Hebbian plasticity is a local form of long-term potentiation
(LTP) and depression (LTD) of synapses and is based on the
correlation of firing activity between pre- and postsynaptic
neurons. This is usually, and easily, implemented with rate
coding: similar neuron activity means a strong correlation.
As we use a pulse-coding scheme now, we have to think
about how to define correlations in neural activity using
single spikes. Pure Hebbian plasticity acts locally at each
individual synapse, making it both very powerful and diffi-
cult to control; it is a positive-feedback process that can
destabilize postsynaptic firing rates by endlessly strengthen-
ing effective and weakening ineffective synapses. If possible,
one has to avoid such behaviour, most desirably by a biologi-
cally plausible local rule.

Spike-timing dependent synaptic plasticity (STDP) is a
form of competitive Hebbian learning that uses the exact
spike timing information [1]. Experiments in neuroscience
have shown that long-term synaptic strengthening occurs
when presynaptic action potentials arrive within 50ms before
a postsynaptic spike and weakening when it arrives late. Due
to this mechanism STDP can lead to stable distributions of
LTP and LDP, making postsynaptic neurons sensitive to the
timing of incoming action potentials. This sensitivity leads to
competition among the presynaptic neurons, resulting in
shorter latencies, spike synchronization and faster informa-
tion propagation through the network [1].

Hebbian plasticity is a form of unsupervised learning,
which is useful for clustering tasks but less appropriate when
a desired outcome for the network is known in advance.
Back-propagation [29] is a widely known and often used
supervised learning algorithm. Due to the very complex
spatial-temporal dynamics and continuous operation it can-
not be directly applied to spiking neural networks, adapta-
tions [18] exist in which individual spikes and their timing
are taken into account.

However, spiking backprop suffers from some
disadvantages. The main objection is that networks need to
be overly complex: instead of optimising the single delay of a
synapse, the algorithm needs a range of varying delayed
connections between neurons. A second argument against
this particular algorithm is that it can only work with single-
spike correlations, learning to detect temporal patterns or
other temporal tasks are not feasible. Still, spiking backprop
is currently the only supervised learning algorithm available
for networks of spiking neurons.

Artificial evolution
Genetic algorithms [22] are widely used for optimisation and
search problems, in particular when the parameter-space to

explore is extremely large. When applied to general search
problems, a large set of possible solutions is evaluated and
recombined to form a new generation of possible solutions.
At the start of an experiment we use a randomly initialised
population, consisting of a certain number of individuals.
Each individual encodes a controller, which should be read
here as ‘anything that accepts input values and gives output
values after processing’. The performance (‘fitness’) of each
individual can be measured by testing the controller on the
given task.

An individual consists of a genotype and a phenotype. The
genotype is the genome, in the simplest case a binary string
of fixed length. Genomes can be far more advanced though:
multiple chromosomes, a larger DNA alphabet, variable
string lengths, etcetera. When an individual's performance is
tested, the first thing to do is to build the phenotype
corresponding to the genotype, which can then be used for
the specified task.

When artificial evolution is applied on robots, it is called
evolutionary robotics [24,27,28]. In this case, each individual
of a population is tested on a real robot: the objective is to
evolve controllers that are capable of controlling a real robot
in the real world. In our experiments, the controllers were
spiking neural networks and used for more static tasks: fixed
time series were given (consisting of both input and target
output) for which the objective was to evolve controllers that
could approach the target output as much as possible.

After determining fitness values for all individuals in a
population, reproduction can be done. There are several
ways for doing this, we’ve used truncation selection: keep
only the best individuals for reproduction, dispose of the
rest. Very important characteristics of evolution are the
genetic ‘operators’: crossover and mutation. We used basic
single-point crossover, cutting the parent DNA strings at the
same point and switching the ends. The mutation operator
toggles every single bit of the genome with a certain chance.
For improved evolutionary stability, elitism was used in
reproduction: by always retaining the best individual
(without modifying the genome) we ensured that our search
wouldn’t loose the current best solution.

The tasks
Our goal was to compare a second generation with a third
generation neural network type on dynamic tasks. We
therefore composed tasks that require the networks to do
more than statically map single input values to single output
values. In other words, an internal state or history of
previous inputs is required to be able to produce the correct
output.

To the best of our knowledge, evolving spiking neural
networks for such time series tasks has hardly been done
before. Because of this we weren’t sure what performance to
expect and thus started with a few simple tasks. We will now
describe all tasks that we created data sets for, which we
used both to evolve spiking neural networks and to train the
LSTM networks with.

Frequency detection. The goal is to classify four different
‘frequencies’ (fire rates) that are fed into the network. There
is one output per frequency to classify and this should be 1
when the corresponding frequency is detected, 0 otherwise.
To make sure the detection isn’t based on integration, the
integrals of the different frequency parts are equal. An extra
input is provided to indicate the start of a new frequency
block and request output of the previous block (output at
other moments doesn’t influence fitness).

Gradient. In this task the network was asked to classify the
direction of a gradient: the network had to determine
whether the gradient was positive (increasing input values)

 5

or negative (decreasing input values). In other words, the
network had to detect the sign of the first derative.

 Inverse binary. A rather simple task: series of 0’s and 1’s
are given as input, the network should output the opposite.
Thus, 0 gives 1 and 1 gives 0.

Inverse continuous. A more advanced version of the
previous task, this continuous inverse also requires the
networks to output the inverse of the input, but the input is
now a continuous value between 0 and 1. A simple formula
that describes this behaviour is out(t) = 1 – in(t) (where t is
the current time step).

Memory. In this very difficult task, the network has to
repeat a previously seen input on command. First, either 0 or
1 is given as input for some time, after which a period of no
input follows. Once the second input line signals by
switching to 1, the originally seen input should be given as
output. Before this, the output is unimportant and doesn’t
influence the fitness value.

Sines. A difficult classification task. Networks are asked to
classify two types of sines, where the frequency is equal, but
the amplitude is scaled with either 0.5 or 1.0.

Switch. A task where an internal state is an absolute
necessity. We tried two versions, in which the input-line has
a base value of 0 or 1. The initial desired output value is
always 0, and has to be kept so until the input line indicates a
switch. This is done by a short (1 time step) peak (i.e. from 0
to 1, or vice-versa). The output has to be kept at 1 until the
next switch signal, etcetera. Summarising, each cycle the
input is the inverse of the base value; the output value
should be inversed (switched).

Temporal XOR. One single input value is randomly chosen
every time step and is either 0 or 1. The corresponding
output should be equal to in(t) xor in(t-1). In other words, the
XOR of the last two inputs should be given as output.

We will give more details on the specific data sets we used
in our experiments in the section on the results.

Evaluating Long Short-Term Memory
For our experiments we have used the original software
written by Hochreiter [13,16] and slightly adjusted this in
order to suite our purposes. Training and evaluation is done
on different data sets, which were made compatible with the
spiking circuits data sets by keeping data in the range of the
interval [0,1]. In order to easily generate datasets
incorporating random perturbations for LSTM datasets, a
data generation program, which generated data for both
LSTM and spiking circuits, was used.

 We have briefly discussed the learning algorithm used
with LSTM and proceed with the evaluation of the network.
Evaluating the network is done by applying an input from
the test set and measuring the error between output and
target, this resulting total error is the summed squared error
of all output cells for the duration of all sequences.

2sequence error (() ())k k
t k U

d t y t
∈

= −∑∑
(3.1)

Training is finished when either the maximum amount of
training period is reached or the error has reached the
minimum specified value. After training the network is
tested on the test dataset and its output is dumped to a file.
This procedure is repeated for a given number of trials.

Evolving spiking circuits
In order to use the spike response model for artificial
evolution, we applied some simplifications to this standard
model in order to avoid overly large genomes and limiting
the amount of computation needed. Our derivation of the
model is based mainly on the model as described by
Floreano and Mattiussi [23]. The software we used is based

on i [28], an application written for evolutionary robotics
with spiking circuits. We started with this application and
developed it further to suit our needs.

A first important note is that time has been made discrete:
continuous time is assumed in the spiking response model,
but discrete time steps were introduced to make
implementation easier. Neurons are updated each time step,
but input and output are respectively set and read only at
specified intervals (read further for details).

A spike is assumed to last one time step, after which one
time step of absolute refractoriness holds. After this, the
refractory kernel is computed for each neuron using the
simplified formula:

)s((s)
mτ

η −−= exp (3.2)

Here, s is the number of time steps since the last spike time
of this particular neuron, as we take into account only the
refractory kernel of the last spike for each neuron. The
formula for postsynaptic contributions of incoming spikes
(2.5) remains the same, although only incoming spikes of the
last 20 time steps are taken into account.

We now have to describe the architecture of the networks
and the handling of in- and output, as both of these are
unconstrained in the general model. We distinguish receptor
neurons and interneurons: receptor neurons are used for
feeding input into the network and only have outgoing
synaptic connections; interneurons may have incoming and
outgoing synaptic connections and may be fully
interconnected and recurrent. The number of receptor
neurons is given by the task; the number of interneurons is at
least the number of required output values, as one
interneuron is used for each output. For some tasks, we
noticed that it was necessary to add one additional receptor
neuron with a constant input of 1 to facilitate basic network
activity.

In our experiments, all neurons (receptor and
interneurons) in the network were updated each time step,
but a certain number of these updates together form a cycle.
The number of updates per cycle is fixed within an
experiment, but we changed this resolution between
experiments. At the first update of a cycle, new input values
(in the range [0,1]) are fed into the receptor neurons. At each
update, each receptor neuron stochastically determines its
hext(t), based on the current input:

)(inputflip(t)hext = (3.3)

flip() returns 1 with a chance equal to its argument, 0
otherwise. As a membrane potential of one crosses the
threshold, this would normally gives a spike (but please note
that receptor neurons also have a refractory period, the
maximum fire rate for all neurons is 0.5).

It is clear that fire rate coding is used to encode the input;
the same is used to determine the output of the network. For
each interneuron that is used for output, all spikes during the
last so-many updates of a cycle are counted and divided by
the maximum number of spikes that could have occurred,
giving a value properly scaled between 0 and 1. The number
of updates at the end of each cycle that contribute to the
output value is varied between the experiments, just like the
number of updates per cycle. It is obvious that a higher
resolution output also requires a larger number of updates
per cycle.

Although we used evolution to search for network
parameters as much as possible, we chose some parameters
fixed to avoid ending up with huge genomes and being
unable to evolve anything useful. Let us first discuss the
fixed parameters before proceeding with the genotype-

 6

phenotype mapping. The threshold ϑ was set to 0.5, which
means that only a few recent incoming spikes are necessary
to evoke a spike. The synapse and neuron time constants, τs
and τm, are set to 10 and 4, respectively.

We now arrive at the genotype-phenotype encoding. The
genome, a binary string, consists of a certain number of
blocks, each block encoding one spiking interneuron. The
first bit of each block encodes whether the interneuron is
excitatory or inhibitory: a spike coming from an excitatory
neuron adds to the membrane potential, vice versa for
inhibitory neurons. The remaining bits of each block encode
properties of incoming synapses; enough bits are present to
encode for synapses coming from all receptors and
interneurons. One could also imagine dividing these bits into
blocks: one block per synapse, the first bit encoding for
synaptic presence (i.e., whether there is a synaptic connection
or not), the next four bits encoding synaptic strength (scaled
between 0 and 2) and another four bits encoding the synaptic
delay (between 0 and 15).

Using this encoding, each population of n individuals
encodes n spiking circuits, which can all be built and tested
on a given task. As we described, each task consists of a
number of input and target output values that belong
together in a fixed order. When a certain input value is fed
into the circuit, the output should be as near to the target
output as possible. As we are dealing with time series here,
it’s often not enough for a circuit to base the output on the
current input only: an internal state has to be used in order to
perform well.

The number of cycles that each network was tested for a
task depended on the task, but the fitness function was
always the same, based on the difference between actual and
target outputs,

∑ −−=
x

xx ttartouttfitness)()(1)(
(3.4)

where fitness(t) is the fitness value at cycle t, outx(t) and
tarx(t) are the actual and target output values, respectively, of
neuron x at cycle t. The fitness values of all cycles are
summed and divided by the total number of cycles to
normalize between 0 and 1. An output value was not
required for every input; for a few tasks, target output was
only given for some pre-defined intervals. Output values
outside these intervals didn’t influence the fitness.

The evolution parameters used for the experiments varied:
for particular tasks the population size was changed between
60 and 500, while the default size was 120. For truncation
selection, the best 25% of the population was always selected
for reproduction. The crossover and mutations rates were 0.1
and 0.05, respectively. The maximum number of generations
was 300, but less generations were enough in most cases.

Results
We have tested both types of networks, using the techniques
described above, on the temporal tasks that were explained
earlier. Thus, we trained LSTM networks for these tasks and
evolved spiking circuits for exactly the same tasks, to enable
us to make a comparison.

Our LSTM network topology consists of one input unit,
one output unit and no additional conventional hidden units.
The hidden layer consisted of two memory blocks, each with
2 memory cells, which was enough for most of the
experiments we conducted, and the learning rate was set to
0.1 by default.

Most of the parameters for artificial evolution and spiking
circuits have already been described, but there are a few
parameters that haven’t been settled yet. Almost all used
data sets consist of 200 cycles, making evolution quite fast:

each individual only needs to be tested for 200 cycles (1
epoch), as results turned out to be constant when more
epochs were used. Only the frequency detection data set was
significantly larger: 800 cycles.

All tasks were evolved with 5 interneurons in total, we
experimented with both more and less interneurons, but
more didn’t give much better results and less wasn’t always
enough. For other (task-dependent) settings, we refer to
Table 1. We first tried all tasks with the default settings (40
neuron updates per cycle and 20 neuron updates to
determine output values), but had to change this in a few
cases (essentially to increase resolution). We will now
describe the results we obtained for each task separately.

Frequency detection. Evolution is very good at finding
simple strategies that get a relatively high fitness, but these
strategies are not always in accordance with the objective.
This is also the case for the frequency detection task: two
frequencies seem to be recognised and that gives already
fairly good fitness, but the other frequencies are ignored and
that wasn’t the purpose of the task. LSTM also seems to have
problems with this task; it only discriminates between the
signals containing pulses and the low threshold input, surely
not the preferred behaviour.

Gradient. We had to use two different data sets for LSTM:
in the original data set, the slopes ended at different values
(i.e. no simple ascending from 0 to 1) and this produced
unpredictable results. Instead of providing a classification,
the output was the inverse of the input (a very surprising
result). In the second dataset, all sequences end at the same
value (i.e. ascending or descending to 0.5) and LSTM
networks are able to classify correctly. We had no such
oddities with evolution of spiking networks, but no good
individuals were evolved whatsoever. A commonly found
strategy was to give high output when the input is high and
keep it that way for some time, this turned out to work well.
(Similar strategies were found when we tried other data sets.)

Figure 3. Evolvability, fitness of best individuals over 100
generations. Top: Typical increasing fitness value, the task is
evolvable. Bottom: The maximum stays at the same low value and
higher values are just lucky individuals, as the fitness drops back
again: not evolvable.

 7

Inverse binary. LSTM could only produce viable results
when the duty cycle was raised to 0.5. In that case, the
trained network was on par with our evolved circuits that
were perfect solutions. The LSTM networks were just slightly
less perfect, as the network always needed a cycle to adjust
it’s output to the changing input. Spiking circuits didn’t need
this, they gave the correct inverse even when the input was
randomly chosen between 0 and 1 each cycle.

Inverse continuous. Performance of the LSTM network was
equal to that of the previous task: again the duty cycle had to
be raised. The evolved spiking circuits did fairly well again
also, but the resolution of input and output is a bottleneck
here. As we are working with a (discrete) number of spikes
each cycle and not with continuous numbers (as LSTM), it is
very important that input and output resolution are in
accordance with the number of neuron updates each cycle.

Memory. This task shows us the profound advantages of
learning over evolutionary search: LSTM can learn this task
without too much effort, while our evolutionary approach
with spiking networks is unable to reproduce the previously
seen input when requested.

Sines. This task proved to be too difficult to be solved by
evolution as we used it. Even though fitness reached 0.75 at
various attempts, the behaviour of the network is far from
right and it cannot classify the input sine waves. As for
LSTM, classifying the sines fails completely.

Switch. The results that we obtained with this task gave us
an interesting difference between the two network types. The
spiking neural networks found by evolution shows nearly
perfect behaviour, only suffering from the fact that it cannot
switch its state immediately: it needs two cycles to complete
its output change. The same lagging behaviour was seen in
the LSTM network, but certainly not with the proposed data
set: a 1-cycle input signal was insufficient to switch the
output for all topologies tested, the networks simply kept
their output at 0. It was not until we lengthened this signal to
half (!) of the sequence’s length, that the network showed
behaviour more like that of the evolved spiking circuit.

Temporal XOR. This (unavoidable) XOR-task posed serious
problems for both of our approaches. We did not succeed in
successfully evolving a spiking neural network capable of
solving the described task. All our evolutionary runs
(partially with different spiking circuit parameters) came up
with an efficient solution of fitness 0.75: the output is always
high, except after two subsequent zeroes. None of the many
tested LSTM topologies could find a solution for the
temporal XOR task as described. Output and error remained
around the 0.5 during runs after learning. An efficient
solution, but not quite what we were after, was found by
imposing a delay (only giving 0 as input) after each offered
input pair to be XORed.

Comparison
The different tasks give widely varying results for the types
of networks experimented with: some tasks can be solved by
both without too much effort, but this isn’t the case for all
tasks and some turned out to be infeasible with the
parameters and techniques we used.

No serious problems were encountered with the two
inverse problems, for which no internal state was required
and feed-forward (non-recurrent) neural networks could also
be used. As already mentioned, the resolution of input and
output is an important issue here and that’s something that
counts for many real tasks: using rate coding in spiking
circuits make that only a certain amount of detail can be dealt
with, LSTM doesn’t have this problem because it deals with
analogue values internally. If very little differences in input
(or output) make large differences in a task, it may be more
straightforward to use a second generation network like
LSTM. Another possibility is to try pulse coding schemes
with the spiking circuits (e.g. spike time coding) to make
encoding input and output values more precisely.

Too difficult for both network types were the sine
classification, temporal XOR and frequency detection tasks,
but these should be investigated further: we think that
especially spiking circuits could perform better if we
improved them by adding synaptic plasticity. Evolution is
good at finding simple strategies to increase fitness, but these
tasks were too difficult to evolve. Individuals that obtained a
higher fitness were just lucky, not better at the task at hand.
Evolvable tasks show an increasing maximum fitness during
an evolutionary run, runs with too difficult tasks show a
more or less constant fitness (see fig. 3).

LSTM performed better than spiking networks at two
tasks: the gradient sign detection and memory tasks.
Evolution was unable to find suitable spiking networks for
these, which is not surprising for the memory task: a long
time relation between input and output has to be found,
basically by coincidence. That the gradient sign detection
also gave problems may possibly be attributed to the
stochastic rate coding: it may be difficult to accomplish this
when the gradient is low and the stochastic receptors inflict
even more noise in the spike trains.

The one task that spiking circuits were better at than LSTM
was the switching task. LSTM networks are unable to
completely revise their internal state based on one single
input, whereas this is no problem for spiking networks: the
neurons are updated 40 times each cycle and a one-cycle
change of the input can have a large impact on the internal
state of the whole network. This change wasn’t always
finished within one cycle, but the best networks completed
the switch even after the input was back to normal in the
next cycle.

Task Spiking circuits LSTM
Name #in #out Target? State? Bias? #updates #updOut SSE SSE
Frequency detection 2 2 Some Yes No 40 20 0.250 0.2684
Gradient 1 1 All Yes Yes 40 20 0.182 0.0262
Inverse binary 1 1 All No No 40 20 0.000 0.0742
Inverse continuous 1 1 All No No 100 80 0.003 0.0101
Memory 2 1 Some Yes Yes 40 20 0.500 0.1111
Sines 2 1 Some Yes Yes 80 20 0.455 0.2954
Switch 1 1 All Yes Yes 40 20 0.118 0.8914
Temporal XOR 1 1 All Yes Yes 40 20 0.250 0.4989

Table 1. Overview of all results. Properties of each task are given, also some spiking circuit settings and the sum squared error of both types of
network. Task properties: #in = number of input values, #out = number of output values, Target? = target output defined for?, State? = internal
state required to accomplish task. Spiking circuit settings: Bias? = bias receptor added?, #updates = number of neuron updates per cycle,
#updOut = number of updates used to determine output value.

 8

Discussion
Neural structures as found in nature are very well suited for
the processing of temporal information: these networks have
an internal dynamic memory state that may be influenced for
a shorter or longer time by its inputs – long and short term
memory. This quality is not found in most classes of artificial
neural networks: only recurrent and spiking neural networks
perform well in spatio-temporal domains.

Second generation neurons use analogue values and a
continuous activation function to compute their output.
Many neural networks have been proposed in this
generation, these can largely be divided in feed-forward and
recurrent neural networks. As feed-forward networks have
no internal state and cannot be easily used for dynamic tasks,
we focused on recurrent neural networks. We covered some
basics of sigmoidal recurrent networks and mentioned some
learning algorithms, BPTT and RTRL that can be used to
learn temporal correlations. Furthermore, we explained Long
Short-Term Memory, a particular strong type of recurrent
neural network, as it doesn’t suffer from error flow problems
as most others.

Spiking neural networks, incorporating third generation
neurons, use the element of time in communicating by
sending out individual pulses. Spiking neurons can therefore
multiplex information into a single stream of signals, like the
frequency and amplitude of sound in the auditory system [6].
We have covered the very general and realistic spike-re-
sponse model, a powerful and realistic model for using pulse
coding in neurons. Standard neural network training
algorithms use rate coding and cannot be directly used
satisfactory for spiking neural networks, therefore we have
used evolution to find suitable network topologies and
parameters.

We have chosen two specific network types, one from each
network generation, and have tested them on a number of
dynamic tasks. Some tasks proved too difficult, some were
no problem for both networks. There are some fields though
where either LSTM or spiking circuits performed better. The
difference can be largely brought back to the differences
between second and third generation networks. LSTM is an
architecture combined with a learning method that is aimed
at finding temporal correlations and working with analogue
values. Using so-called forgetting gates [30] with LSTM
might improve the performance on the more difficult tasks.
Spiking circuits work with individual pulses and evolving
network properties is a very different way of finding
solutions and is not always good enough, which we have
shown. But although it is difficult to improve much on
LSTM, there is much work to be done on spiking neural
networks. Spike-timing dependent synaptic plasticity uses
exact spike timing to optimise information-flow through the
network, as well as it imposes competition between neurons
in the process of unsupervised Hebbian learning. We think
such a form of learning would be very beneficial for spiking
circuits and could make it possible to find solutions for the
more difficult tasks.

Dynamic neural networks in general are computationally
powerful [2,3,4,5,6] and very promising for tasks in which
temporal information plays an important role. We’d like to
conclude remarking that this is the case for virtually any task
or application that has interaction with the real world.

References
1. Abbot, L. F. & Nelson, S. B. Synaptic Plasticity: taming the beast, Nature

Neuroscience Review, vol. 3 p.1178-1183 (2000).
2. Gerstner, W. Spiking Neurons in Maass, W. & Bishop, C. M. (eds.) Pulsed

Neural Networks, MIT-press (1999).

3. Gerstner, W., Kistler, W. Spiking Neuron Models, Cambridge University Press
(2002).

4. Maass, W., Schnitger, G. & Sontag, E. On the computational power of sigmoid
versus boolean threshold circuits, Proc. of the 32nd Annual IEEE Symposium on
Foundations of Computer Science, p. 767-776 (1991).

5. Maass, W. Synapses as Dynamic Memory Buffers, Technische Universität Graz
(2000).

6. Thorpe, S., Delorme, A., Van Rullen, R. Spike based strategies for rapid
processing, Neural Networks, vol. 14(6-7), p.715-726 (2001).

7. Elman, J.L. ‘Finding Structure in Time’. In: Cognitive Science, vol. 14, p.179-
211 (1990).

8. Kool, A. Literature Survey, Center for Dutch Language and Speech,
University of Antwerp (1999).

9. Williams, R.J. & Zipser, D. ‘A Learning Algorithm for Continually Running
Recurrent Neural Networks’. In: Neural Computation, 1, pp.270-280 (1989).

10. Williams, R.J. & Peng, J. ‘An Efficient Gradient-Based Algorithm for online
Training of Recurrent Neural Network Trajectories’. In: Neural Computation,
2, pp.490-501 (1990).

11. Horne, B.G. & Giles, C.L. ‘An experimental Comparison of Recurrent
Neural Networks’, In: Tesauro, G., Touretzky, D. And Leen, T. (eds), Neural
Information Processing Systems 7, MIT Press, p.697 (1995).

12. Pearlmutter, B.A. ‘Gradient Calculations for Dynamic Recurrent Neural
Networks: A Survey’. Draft of July 20, 1995 for: IEEE Transactions on Neural
Networks (1995).

13. Hochreiter, S., Bengio, Y., Frasconi, P. and Schmidhuber, J., ‘Gradient Flow
in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies’. In:
Kremer, S. C. and Kolen, J. F. (eds), A Field Guide to Dynamical Recurrent
Neural Networks. IEEE press (2001).

14. Schmidhuber, J. & Hochreiter, S. Guessing can Outperform many Long Time
Lag Algorithms, Technical note IDSIA-19-96 (1996).

15. Lin, T., Horne, B. G., Tino, P. and Giles, C. L. ‘Learning long-term depencies
in NARX recurrent neural networks’. In: IEEE Transactions on Neural
Networks, vol. 7(6), p.1329 (1996).

16. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory, Neural
Computation vol. 9(8), p.1735-1780 (1997).

17. Giles, L., Lawrence, S. and Tsoi, A. C. Noisy Time Series Prediction using a
Recurrent Neural network and Grammatical Inference, Machine Learning, vol.
44(1-2), p.161-183 (2001).

18. Bohte, S.M, Kok, J.N. & La Poutré, H. Error-Backpropagation in Temporally
Encoded Networks of Spiking Neurons, Neurocomputing preprint (2000).

19. Gomez, F.J. & Miikkulainen, R. ‘Solving non-Markovian Control Taks with
Neuroevolution’. In: Dean, T. (ed), Proceedings of the International Joint
Conference on Artificial Inteligence (IJCAI99), Denver: Morgan Kaufmann
(1999).

20. Pujol, J.C.F. & Poli, R. ‘Efficient Evolution of Asymmetric Recurrent Neural
Networks Using a PDGP-inspired Two-dimensional Representation’. In:
Banzhaf, W., Poli, R., Schoenauer, M. & Fogarty, T. (eds), Proceedings of the
First European Workshop on Genetic Programming (EUROGP), Lecture Notes
in Computer Science, vol. 1391, Springer-Verlag, p.130-141 (1998).

21. Esparcia-Alcazar, A.I. & Sharman, K. ‘Evolving Recurrent Neural Network
Architectures by Genetic Programming’. In: Koza, J. R., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L. (eds). Genetic Programming
1997: Proceedings of the Second Annual Conference. San Francisco, CA: Morgan
Kaufmann, pp. 89-94 (1997).

22. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine
Learning, Reading, MA: Addison-Wesley (1989).

23. Floreano, D. & Mattiussi, C.. `Evolution of Spiking Neural Controllers for
Autonomous Vision-Based Robots'. In Gomi, T., ed., Evolutionary Robotics.
From Intelligent Robotics to Artificial Life. Tokyo: Springer Verlag (2001).

24. Nolfi, S. & Floreano, D. Evolutionary Robotics: Biology, Intelligence, and
Technology of Self-Organizing Machines. Cambridge, MA: MIT Press. 2nd
print (2001).

25. Vreeken, J. Spiking neural networks, an introduction. Institute for Information
and Computing Sciences, Utrecht University (2002).

26. DasGupta, B. & Schnitger, G. The power of approximating: a comparison of
activation functions, Advances in Neural Information Processing Systems,
vol. 5 p.363-374 (1992).

27. Zufferey, J.C., Floreano, D., Van Leeuwen, M. & Merenda, T. ‘Evolving
Vision-based Flying Robots’. In: Bülthoff, Lee, Poggio, Wallraven (eds),
Proceedings of the 2nd International Workshop on Biologically Motivated Computer
Vision, LNCS, Berlin, Springer-Verlag (2002).

28. Van Leeuwen, M., Evolutionary blimp & i. Internship report, Institute for
Information and Computing Sciences, Utrecht University (2002).

29. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. Learning representations by
back-propagating errors, Nature Vol. 323 (1986).

30. Gers, F.A., Schmidhuber, J. & Cummins, F. ‘Learning to forget: Continual
prediction with LSTM’. In: Neural Computation, vol. 12(10) p.2451-2471
(2000).

