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We have investigated two specific network types in the class of dynamic neural networks: LSTM and 
spiking neural networks. Dynamic neural networks in general are computationally powerful and very 
promising for tasks in which temporal information has to be processed. We’d like to remark that this is 
the case for virtually any task or application interacting with the real world. We have tested the 
networks on a broad set of dynamic tasks and most problems were solved by both; there are some 
fields though where either LSTM or the spiking neural networks performed better. These differences can 
be largely brought back to the differences between second and third generation networks.  
 
 
We have investigated classes of neural networks that are 
capable of having an internal memory state, i.e. the network 
just receives input from ‘now’ and has to store that somehow 
in order to influence later outputs. This is a feature required 
to solve dynamic tasks, tasks in which there is an input-flow 
that has to be processed without having the help of receiving 
older inputs again from the outside. Nearly any task in the 
real world requires such a mechanism, as inputs are typically 
only received just once. 

The neural structure known as once brain will have to 
temporarily store information in order for you to have a 
short term memory: a form of memory for which connections 
between neurons don’t need to be physically altered, 
information is retained by recurrent activity between 
neurons. We call these dynamic neural networks, of which 
we’ll discuss two quite different types in particular: long-
short term memory and spiking neural networks. 

Artificial neural networks have become a standard tool 
within computer science; the first ideas and models are over 
fifty years old. The first generation of artificial neural 
networks consisted of McCulloch-Pitts threshold neurons [5], 
a conceptually very simple model: a neuron sends a binary 
‘high’ signal if the sum of its weighted incoming signals rises 
above a threshold value. Second generation neurons do not 
use such a threshold but a continuous activation function to 
compute their output signals, making them suitable for 
analogue in- and output. Examples of commonly used activa-
tion functions are the sigmoid and hyperbolic tangent. Typi-
cal examples of neural networks consisting of neurons of 
these types are feed-forward and recurrent neural networks.  

Real neurons have a base firing-rate (an intermediate fre-
quency of pulsing) and continuous activation functions can 
model these intermediate output frequencies. Hence, neu-
rons of the second generation are more biologically realistic 
and powerful than neurons of the first generation [26]. Also, 
real neurons use individual pulses as signals, short voltage 
spikes that excite connected neurons. Neuron models of the 

first two generations do not employ these; for sake of 
simplicity their output signals are typically single analogue 
values between 0 and 1. These signals can be seen as 
normalised firing rates (frequencies) of the neuron. This is a 
so-called rate coding, where a higher average rate of firing 
correlates with a higher output signal. Due to such an 
averaging window mechanism the output value of a neuron 
can be calculated in iteration. After doing such a cycle for 
each neuron the response of the network to the input values 
is known.  

In nearly all real-world-related tasks you need to take 
previously experienced inputs into account in order to 
determine the appropriate action or conclusion. In other 
words: the network needs to have some form of memory. 
Standard feed-forward networks do not have this capability, 
and without tricks they cannot be used to infer temporal 
relations. A widely used trick is to present the network not 
only the current input, but also a window of previous inputs 
[8,9,17]. This solution is clearly not biologically plausible and 
has some major disadvantages: only temporal relations 
within the input-window can be detected and huge input 
windows are required for long term influences, overtaxing 
both the system and learning capabilities [14].  
 
Recurrent sigmoid neural networks 
Second generation neurons are computationally less complex 
than their biologically more plausible spiking counterparts 
and were therefore more appealing in early research, where 
they were used in various recurrent network topologies 
[7,11,15]. For example, Elman [7] proposed nets in which an 
extra recurrent hidden layer, called context units, is trained 
to trigger the network for specific events. These nets are able 
to learn tasks like the temporal XOR problem and several 
grammatical problems, but since they have memories of only 
a few time steps at most, they aren’t capable of dealing with 
time sequences with long time lags. Extending this memory 
gave rise to fundamental problems during the training phase 
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of sigmoid recurrent networks. Popular training algorithms 
for recurrent neural networks include Back-Propagation 
Through Time (BPTT) and Real-Time Recurrent Learning 
(RTRL) [9,10,12]. During the learning phase, BPTT gradually 
enfolds each layer of the network into a multi-layer network, 
in which each layer represents a snapshot of the 
corresponding time step. The resulting network allows the 
error to flow in time and is used for learning temporal 
correlations. The temporal error is provided in a way similar 
to that of the well known back-propagation algorithm [29]. A 
major drawback of BPTT is its need to record the whole 
network state, inputs, target vectors and weights during the 
training phase, as weight adjustment is done only after the 
epoch has ended. In contrast, RTRL allows for real-time 
weight adjustments, at the cost of losing the ability to follow 
the true gradient, which gives no practical limitations though 
[9].  

To operate correctly with sigmoid networks, these 
algorithms require that time lags between inputs and target 
outputs are kept small; training becomes impossible 
otherwise. In second generation networks, large time lags 
tend to either blow the error flow up or let it vanish to zero; 
leading, respectively, to oscillating weights or a situation 
where learning does not take place at all. Several solutions to 
this problem of decaying error flow have been proposed 
[15,16], from which we have selected Long Short-Term 
Memory as the second generation alternative for our 
experiments. 
 
Long Short-Term Memory 
An efficient method of dealing with decaying error flow is 
Hochreiter’s Long Short Term Memory (LSTM), of which 
Constant Error Carrousels (CECs) are an essential element. 
Their basic function is to ensure a constant error flow by 
producing the sum of its previous and current inputs (see fig. 
1). The model is explained in more detail in Hochreiter’s 
work [16]. 

Because the error flow does not suffer from decay, 
interactions with the outside world have to be selected with 
care: useful error signals have to sustain in the network and 
irrelevant memory content may not disrupt the current 
output. Especially with long time lags, time sequences 
potentially contain a lot of junk input, which harness the 
useful memory content and therefore does not benefit the 
learning process.  

Restraining this unwanted flow is done by additional 
regulating gate units that scale the flow from and to the CEC. 
Gate units receive their input from the input, output and 
current network state and are trained like normal sigmoid 
cells to produce the scale factor. In this fashion, gate units can 
be trained to be selective for certain temporal events and 
allow the CEC to accumulate the flow of different events. The 
combination of input gate unit, CEC and output gate unit 
forms a memory (see fig. 1) cell and is able to satisfy above 
needs. 

When the temporal sequences contain more complex 
spatial relations at certain time steps, it can be convenient to 
combine several memory cells together and give them the 
same temporal selectivity, which makes them focus at the 
same moment. This is done by grouping several memory 
cells together that share input and output units to form a 
memory block.  

These memory blocks are integrated into a standard LSTM 
network topology, in which the input and output layer 
consists of sigmoid units. The memory blocks reside in the 
fully connected hidden layer and are optionally aided by 
sigmoid hidden units.  

 
 

Training LSTM 
The training of LSTM networks is done by an altered version 
of Real-Time Recurrent Learning, which we shall explain 
more formally here. Assume that we have a LSTM network, 
as described above, with n units and m external input lines. 
Let y(t) denote the n-tuple of outputs of all units at time t, 
and x(t) the concatenation of m external input signals from 
the input units I and the output signals from the output units 
U: 
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The net input of each unit at time step t+1 is very 
straightforward, and is given by, 
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This function is used to determine the output of a unit at time 
step t+1. The unit’s activation function fk squashes the net 
output in a limited range. 
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Since we are dealing with temporal patterns, the target 
values of output neurons can vary in time. At every time 
step, all target output units, the set T(t), must meet their 
target values d. The discrepancy between target value and 
actual output leads to the current error, 
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This derived error can be used to update the weights, that are 
adjusted according to their contribution of the current error p 
and is generally scaled by the overall learning rate, α.  
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The influence of the weight wij on output unit k at time step t 
is intuitively given by the following gradient, 
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and is derived by tracing down the grown network 
recursively. This contribution is determined by the current 
output and the previous outputs of the preceding units: for 
each output unit k, at time step t+1, all ancestor units l, are 
followed to time step t. Using the Kronecker delta, δik, the 
input is added to this contribution. For each passed unit the 
output is calculated, which determines the contribution to 
the current error.  
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We omitted a large part of the complete algorithm, we refer 
to the work of Williams et al. [9,10] for more details. The 
LSTM networks in our experiments are trained by a 
truncated variant of RTRL, which compensates for the 

 
 

Figure 1. The core of the LSTM network: the Memory Cell with in its
centre the Constant Error Carousel (CEC), which ensures the constant
error flow needed for learning long time dependencies [16]. 
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multiplicative dynamics caused by the input and output 
gates. Upon entering the memory cell, the error signal is 
scaled by the output unit and can flow through the CEC 
indefinitely. When it leaves the CEC, it is first scaled by the 
input unit, used to adjust the incoming weights and is finally 
truncated. In short, error signals which arrive at a memory 
cell do not get propagated back further in time. 
 
Spiking neural networks 
In the third generation of neural networks, the level of 
biological realism and computational power is raised by 
using individual spikes. Spiking neurons are inherently 
dynamic as they have an ever-changing internal state: their 
membrane voltage. This provides the network with an 
internally continuous memory, allowing it to incorporate 
spatial-temporal information in communication and 
computation, like real neurons do [6,25]. So instead of using 
rate coding, these neurons use pulse coding: mechanisms 
where neurons receive and transmit individual pulses, 
allowing multiplexing of information as frequency and 
amplitude of sound [2].  

Recent discoveries in the field of neurology have shown 
that neurons in the cortex perform analogue computations at 
incredible speeds. Thorpe et al [6] demonstrated that humans 
analyse and classify visual input (i.e. facial recognition) in 
under 100ms. It takes at least 10 synaptic steps from the 
retina to the temporal lobe; this leaves about 10ms of 
processing-time per neuron. Such a time-window is much 
too small to allow an averaging mechanism like rate coding 
[6,4]. This does not mean that rate coding is never used, 
though when speed is an issue pulse coding schemes are 
favoured [5].  

There are many different schemes for the use of spike 
timing information in neural computation. We’ve chosen to 
use the spike response model, a model in the threshold-fire 
class of spiking neuron. It’s a conceptually simple, easy to 
implement model that captures key elements of the 
biologically very realistic Hodgkin-Huxley model [2,3]. We’ll 
cover the details of this model here, further on in this paper 
we will describe the adaptations we’ve made in our 
implementation.  

All action potentials are look-alikes. We can therefore 
forget about their form and characterise them by their firing 

times ti(f). The lower index i indicates the neuron, the upper 
index f the number of the spike. We can then describe the 
spike-train of a neuron as 

},...,{ )()1( n
i ttF =  (2.1) 

The variable ui is commonly used to refer to the internal 
state, or membrane potential, of a neuron i. If a neuron’s 
membrane potential crosses threshold value ϑ from below, it 
generates a spike. We add the time of this event to Fi, 
defining this set as 
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When a neuron generates an action potential, the mem-
brane potential suddenly increases, soon followed by a long 
lasting negative after-potential (see fig. 2b). This sharp rise 
above the threshold value makes it is absolutely impossible 
for the neuron to generate another spike and is named 
absolute refractoriness. In the period of relative 
refractoriness, which we call the negative spike after-
potential (SAP), it is less likely that the neuron fires again. 
We can model this absolute and negative refractoriness with 
kernel η: 
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The duration of the absolute refractoriness is set by δabs, 
during which large constant K ensures that the membrane 
potential is vastly above the threshold value. Constant n0 
scales the duration of the negative after-potential. Having a 
description of what happens to a neuron when it fires, we 
need one for the effect of incoming postsynaptic potentials. 
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In equation 2.5, ∆ij defines the transmission delay (axons 
and dendrites are fast, synapses relatively slow) and 0<τs<τm 
are time constants defining the duration of the effect of the 
postsynaptic potential. We use variable wij to model the 
synaptic efficacy or weight; with which we also can model 
inhibitory connections by using values lower than zero.  

Neurons of the second generation work in the iterative, 
clock-based manner of digital computers, but can deal with 
analogue input values; we can quite easily feed input 
neurons with digitised values from a dataset or a robot-
sensor. We cannot just insert such values into a spiking 
neuron and we will have to affect the membrane-voltage 
directly according to these values. This is done by hext(t) that 
describes all external influences to the neuron’s membrane 
potential.   
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The neuron might get excited due to outside influences and 
fire, effectively transforming an analogue input value into 
the signal the network can process: a spike. The current 
excitation of a neuron is described by 

h(t))t(t(t)u
i
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where the refractory state, effects of incoming postsynaptic 
potentials and external events are combined. Together with 

 
 

Figure 2. (a) Schematic drawing of a neuron. (b) Incoming post-
synaptic potentials alter the membrane voltage so that it crosses 
threshold value ϑ; the neuron spikes and goes into a refractory state. 
(c) Typical forms of excitatory and inhibitory postsynaptic potentials 
over time. [2] 
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equation 2.3 this forms the spike-response model, a powerful 
though easy to implement model for working with spiking 
neural networks. 
 
Synaptic plasticity 
Electrochemical action potentials cannot just jump across the 
synaptic gap (see fig. 2a) between two neurons; a post-
synaptic potential (see fig. 2c) has to be induced by chemicals 
(neuro-transmitters) that travel across the gap. This involves 
many variables, like the amount of readily deployable 
vesicles of neuro-transmitters and the capability to replenish 
those. All these variables affect the resulting post-synaptic 
potential. The synapse is therefore no simple signal 
transferring device, but a highly complex signal-pre-
processor. Due to these effects, synapses play an important 
role in development, memory and learning of neural 
structures. Synaptic plasticity is a form of altering the pre-
processing, which is a preferred word for ‘learning’ as it 
better describes what is at hand: long- or short-term change 
in synaptic efficacy [1,4,6].  

Hebbian plasticity is a local form of long-term potentiation 
(LTP) and depression (LTD) of synapses and is based on the 
correlation of firing activity between pre- and postsynaptic 
neurons. This is usually, and easily, implemented with rate 
coding: similar neuron activity means a strong correlation. 
As we use a pulse-coding scheme now, we have to think 
about how to define correlations in neural activity using 
single spikes. Pure Hebbian plasticity acts locally at each 
individual synapse, making it both very powerful and diffi-
cult to control; it is a positive-feedback process that can 
destabilize postsynaptic firing rates by endlessly strengthen-
ing effective and weakening ineffective synapses. If possible, 
one has to avoid such behaviour, most desirably by a biologi-
cally plausible local rule.  

Spike-timing dependent synaptic plasticity (STDP) is a 
form of competitive Hebbian learning that uses the exact 
spike timing information [1]. Experiments in neuroscience 
have shown that long-term synaptic strengthening occurs 
when presynaptic action potentials arrive within 50ms before 
a postsynaptic spike and weakening when it arrives late. Due 
to this mechanism STDP can lead to stable distributions of 
LTP and LDP, making postsynaptic neurons sensitive to the 
timing of incoming action potentials. This sensitivity leads to 
competition among the presynaptic neurons, resulting in 
shorter latencies, spike synchronization and faster informa-
tion propagation through the network [1]. 

Hebbian plasticity is a form of unsupervised learning, 
which is useful for clustering tasks but less appropriate when 
a desired outcome for the network is known in advance. 
Back-propagation [29] is a widely known and often used 
supervised learning algorithm. Due to the very complex 
spatial-temporal dynamics and continuous operation it can-
not be directly applied to spiking neural networks, adapta-
tions [18] exist in which individual spikes and their timing 
are taken into account. 

However, spiking backprop suffers from some 
disadvantages. The main objection is that networks need to 
be overly complex: instead of optimising the single delay of a 
synapse, the algorithm needs a range of varying delayed 
connections between neurons. A second argument against 
this particular algorithm is that it can only work with single-
spike correlations, learning to detect temporal patterns or 
other temporal tasks are not feasible. Still, spiking backprop 
is currently the only supervised learning algorithm available 
for networks of spiking neurons.  
 
Artificial evolution 
Genetic algorithms [22] are widely used for optimisation and 
search problems, in particular when the parameter-space to 

explore is extremely large. When applied to general search 
problems, a large set of possible solutions is evaluated and 
recombined to form a new generation of possible solutions. 
At the start of an experiment we use a randomly initialised 
population, consisting of a certain number of individuals. 
Each individual encodes a controller, which should be read 
here as ‘anything that accepts input values and gives output 
values after processing’. The performance (‘fitness’) of each 
individual can be measured by testing the controller on the 
given task. 

An individual consists of a genotype and a phenotype. The 
genotype is the genome, in the simplest case a binary string 
of fixed length. Genomes can be far more advanced though: 
multiple chromosomes, a larger DNA alphabet, variable 
string lengths, etcetera. When an individual's performance is 
tested, the first thing to do is to build the phenotype 
corresponding to the genotype, which can then be used for 
the specified task. 

When artificial evolution is applied on robots, it is called 
evolutionary robotics [24,27,28]. In this case, each individual 
of a population is tested on a real robot: the objective is to 
evolve controllers that are capable of controlling a real robot 
in the real world. In our experiments, the controllers were 
spiking neural networks and used for more static tasks: fixed 
time series were given (consisting of both input and target 
output) for which the objective was to evolve controllers that 
could approach the target output as much as possible.  

After determining fitness values for all individuals in a 
population, reproduction can be done. There are several 
ways for doing this, we’ve used truncation selection: keep 
only the best individuals for reproduction, dispose of the 
rest. Very important characteristics of evolution are the 
genetic ‘operators’: crossover and mutation. We used basic 
single-point crossover, cutting the parent DNA strings at the 
same point and switching the ends. The mutation operator 
toggles every single bit of the genome with a certain chance. 
For improved evolutionary stability, elitism was used in 
reproduction: by always retaining the best individual 
(without modifying the genome) we ensured that our search 
wouldn’t loose the current best solution. 
 
The tasks 
Our goal was to compare a second generation with a third 
generation neural network type on dynamic tasks. We 
therefore composed tasks that require the networks to do 
more than statically map single input values to single output 
values. In other words, an internal state or history of 
previous inputs is required to be able to produce the correct 
output. 

To the best of our knowledge, evolving spiking neural 
networks for such time series tasks has hardly been done 
before. Because of this we weren’t sure what performance to 
expect and thus started with a few simple tasks. We will now 
describe all tasks that we created data sets for, which we 
used both to evolve spiking neural networks and to train the 
LSTM networks with. 

Frequency detection. The goal is to classify four different 
‘frequencies’ (fire rates) that are fed into the network. There 
is one output per frequency to classify and this should be 1 
when the corresponding frequency is detected, 0 otherwise. 
To make sure the detection isn’t based on integration, the 
integrals of the different frequency parts are equal. An extra 
input is provided to indicate the start of a new frequency 
block and request output of the previous block (output at 
other moments doesn’t influence fitness).  

Gradient. In this task the network was asked to classify the 
direction of a gradient: the network had to determine 
whether the gradient was positive (increasing input values) 
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or negative (decreasing input values). In other words, the 
network had to detect the sign of the first derative. 

 Inverse binary. A rather simple task: series of 0’s and 1’s 
are given as input, the network should output the opposite. 
Thus, 0 gives 1 and 1 gives 0. 

Inverse continuous. A more advanced version of the 
previous task, this continuous inverse also requires the 
networks to output the inverse of the input, but the input is 
now a continuous value between 0 and 1. A simple formula 
that describes this behaviour is out(t) = 1 – in(t) (where t is 
the current time step). 

Memory. In this very difficult task, the network has to 
repeat a previously seen input on command. First, either 0 or 
1 is given as input for some time, after which a period of no 
input follows. Once the second input line signals by 
switching to 1, the originally seen input should be given as 
output. Before this, the output is unimportant and doesn’t 
influence the fitness value. 

Sines. A difficult classification task. Networks are asked to 
classify two types of sines, where the frequency is equal, but 
the amplitude is scaled with either 0.5 or 1.0. 

Switch. A task where an internal state is an absolute 
necessity.  We tried two versions, in which the input-line has 
a base value of 0 or 1. The initial desired output value is 
always 0, and has to be kept so until the input line indicates a 
switch. This is done by a short (1 time step) peak (i.e. from 0 
to 1, or vice-versa). The output has to be kept at 1 until the 
next switch signal, etcetera. Summarising, each cycle the 
input is the inverse of the base value; the output value 
should be inversed (switched). 

Temporal XOR. One single input value is randomly chosen 
every time step and is either 0 or 1. The corresponding 
output should be equal to in(t) xor in(t-1). In other words, the 
XOR of the last two inputs should be given as output. 

We will give more details on the specific data sets we used 
in our experiments in the section on the results. 

 
Evaluating Long Short-Term Memory 
For our experiments we have used the original software 
written by Hochreiter [13,16] and slightly adjusted this in 
order to suite our purposes. Training and evaluation is done 
on different data sets, which were made compatible with the 
spiking circuits data sets by keeping data in the range of the 
interval [0,1]. In order to easily generate datasets 
incorporating random perturbations for LSTM datasets, a 
data generation program, which generated data for both 
LSTM and spiking circuits, was used. 

 We have briefly discussed the learning algorithm used 
with LSTM and proceed with the evaluation of the network. 
Evaluating the network is done by applying an input from 
the test set and measuring the error between output and 
target, this resulting total error is the summed squared error 
of all output cells for the duration of all sequences. 

2sequence error ( ( ) ( ))k k
t k U

d t y t
∈

= −∑∑  
(3.1) 

Training is finished when either the maximum amount of 
training period is reached or the error has reached the 
minimum specified value. After training the network is 
tested on the test dataset and its output is dumped to a file. 
This procedure is repeated for a given number of trials. 
 
Evolving spiking circuits 
In order to use the spike response model for artificial 
evolution, we applied some simplifications to this standard 
model in order to avoid overly large genomes and limiting 
the amount of computation needed. Our derivation of the 
model is based mainly on the model as described by 
Floreano and Mattiussi [23]. The software we used is based 

on i [28], an application written for evolutionary robotics 
with spiking circuits. We started with this application and 
developed it further to suit our needs. 

A first important note is that time has been made discrete: 
continuous time is assumed in the spiking response model, 
but discrete time steps were introduced to make 
implementation easier. Neurons are updated each time step, 
but input and output are respectively set and read only at 
specified intervals (read further for details). 

A spike is assumed to last one time step, after which one 
time step of absolute refractoriness holds. After this, the 
refractory kernel is computed for each neuron using the 
simplified formula: 

)s((s)
mτ

η −−= exp  (3.2) 

Here, s is the number of time steps since the last spike time 
of this particular neuron, as we take into account only the 
refractory kernel of the last spike for each neuron. The 
formula for postsynaptic contributions of incoming spikes 
(2.5) remains the same, although only incoming spikes of the 
last 20 time steps are taken into account. 

We now have to describe the architecture of the networks 
and the handling of in- and output, as both of these are 
unconstrained in the general model. We distinguish receptor 
neurons and interneurons: receptor neurons are used for 
feeding input into the network and only have outgoing 
synaptic connections; interneurons may have incoming and 
outgoing synaptic connections and may be fully 
interconnected and recurrent. The number of receptor 
neurons is given by the task; the number of interneurons is at 
least the number of required output values, as one 
interneuron is used for each output. For some tasks, we 
noticed that it was necessary to add one additional receptor 
neuron with a constant input of 1 to facilitate basic network 
activity. 

In our experiments, all neurons (receptor and 
interneurons) in the network were updated each time step, 
but a certain number of these updates together form a cycle. 
The number of updates per cycle is fixed within an 
experiment, but we changed this resolution between 
experiments. At the first update of a cycle, new input values 
(in the range [0,1]) are fed into the receptor neurons. At each 
update, each receptor neuron stochastically determines its 
hext(t), based on the current input:  

)(inputflip(t)hext =  (3.3) 

flip() returns 1 with a chance equal to its argument, 0 
otherwise. As a membrane potential of one crosses the 
threshold, this would normally gives a spike (but please note 
that receptor neurons also have a refractory period, the 
maximum fire rate for all neurons is 0.5). 

It is clear that fire rate coding is used to encode the input; 
the same is used to determine the output of the network. For 
each interneuron that is used for output, all spikes during the 
last so-many updates of a cycle are counted and divided by 
the maximum number of spikes that could have occurred, 
giving a value properly scaled between 0 and 1. The number 
of updates at the end of each cycle that contribute to the 
output value is varied between the experiments, just like the 
number of updates per cycle. It is obvious that a higher 
resolution output also requires a larger number of updates 
per cycle. 

Although we used evolution to search for network 
parameters as much as possible, we chose some parameters 
fixed to avoid ending up with huge genomes and being 
unable to evolve anything useful. Let us first discuss the 
fixed parameters before proceeding with the genotype-
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phenotype mapping. The threshold ϑ was set to 0.5, which 
means that only a few recent incoming spikes are necessary 
to evoke a spike. The synapse and neuron time constants, τs 
and τm, are set to 10 and 4, respectively. 

We now arrive at the genotype-phenotype encoding. The 
genome, a binary string, consists of a certain number of 
blocks, each block encoding one spiking interneuron. The 
first bit of each block encodes whether the interneuron is 
excitatory or inhibitory: a spike coming from an excitatory 
neuron adds to the membrane potential, vice versa for 
inhibitory neurons. The remaining bits of each block encode 
properties of incoming synapses; enough bits are present to 
encode for synapses coming from all receptors and 
interneurons. One could also imagine dividing these bits into 
blocks: one block per synapse, the first bit encoding for 
synaptic presence (i.e., whether there is a synaptic connection 
or not), the next four bits encoding synaptic strength (scaled 
between 0 and 2) and another four bits encoding the synaptic 
delay (between 0 and 15). 

Using this encoding, each population of n individuals 
encodes n spiking circuits, which can all be built and tested 
on a given task. As we described, each task consists of a 
number of input and target output values that belong 
together in a fixed order. When a certain input value is fed 
into the circuit, the output should be as near to the target 
output as possible. As we are dealing with time series here, 
it’s often not enough for a circuit to base the output on the 
current input only: an internal state has to be used in order to 
perform well. 

The number of cycles that each network was tested for a 
task depended on the task, but the fitness function was 
always the same, based on the difference between actual and 
target outputs, 

∑ −−=
x

xx ttartouttfitness )()(1)(  
(3.4) 

where fitness(t) is the fitness value at cycle t, outx(t) and 
tarx(t) are the actual and target output values, respectively, of 
neuron x at cycle t. The fitness values of all cycles are 
summed and divided by the total number of cycles to 
normalize between 0 and 1. An output value was not 
required for every input; for a few tasks, target output was 
only given for some pre-defined intervals. Output values 
outside these intervals didn’t influence the fitness.  

The evolution parameters used for the experiments varied: 
for particular tasks the population size was changed between 
60 and 500, while the default size was 120.  For truncation 
selection, the best 25% of the population was always selected 
for reproduction. The crossover and mutations rates were 0.1 
and 0.05, respectively. The maximum number of generations 
was 300, but less generations were enough in most cases. 

 
Results 
We have tested both types of networks, using the techniques 
described above, on the temporal tasks that were explained 
earlier. Thus, we trained LSTM networks for these tasks and 
evolved spiking circuits for exactly the same tasks, to enable 
us to make a comparison. 

Our LSTM network topology consists of one input unit, 
one output unit and no additional conventional hidden units. 
The hidden layer consisted of two memory blocks, each with 
2 memory cells, which was enough for most of the 
experiments we conducted, and the learning rate was set to 
0.1 by default.  

Most of the parameters for artificial evolution and spiking 
circuits have already been described, but there are a few 
parameters that haven’t been settled yet. Almost all used 
data sets consist of 200 cycles, making evolution quite fast: 

each individual only needs to be tested for 200 cycles (1 
epoch), as results turned out to be constant when more 
epochs were used. Only the frequency detection data set was 
significantly larger: 800 cycles. 

All tasks were evolved with 5 interneurons in total, we 
experimented with both more and less interneurons, but 
more didn’t give much better results and less wasn’t always 
enough. For other (task-dependent) settings, we refer to 
Table 1. We first tried all tasks with the default settings (40 
neuron updates per cycle and 20 neuron updates to 
determine output values), but had to change this in a few 
cases (essentially to increase resolution). We will now 
describe the results we obtained for each task separately. 

Frequency detection. Evolution is very good at finding 
simple strategies that get a relatively high fitness, but these 
strategies are not always in accordance with the objective. 
This is also the case for the frequency detection task: two 
frequencies seem to be recognised and that gives already 
fairly good fitness, but the other frequencies are ignored and 
that wasn’t the purpose of the task. LSTM also seems to have 
problems with this task; it only discriminates between the 
signals containing pulses and the low threshold input, surely 
not the preferred behaviour. 

Gradient. We had to use two different data sets for LSTM: 
in the original data set, the slopes ended at different values 
(i.e. no simple ascending from 0 to 1) and this produced 
unpredictable results. Instead of providing a classification, 
the output was the inverse of the input (a very surprising 
result). In the second dataset, all sequences end at the same 
value (i.e. ascending or descending to 0.5) and LSTM 
networks are able to classify correctly. We had no such 
oddities with evolution of spiking networks, but no good 
individuals were evolved whatsoever. A commonly found 
strategy was to give high output when the input is high and 
keep it that way for some time, this turned out to work well. 
(Similar strategies were found when we tried other data sets.)  

Figure 3. Evolvability, fitness of best individuals over 100
generations. Top: Typical increasing fitness value, the task is
evolvable. Bottom: The maximum stays at the same low value and
higher values are just lucky individuals, as the fitness drops back
again: not evolvable. 
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Inverse binary. LSTM could only produce viable results 
when the duty cycle was raised to 0.5. In that case, the 
trained network was on par with our evolved circuits that 
were perfect solutions. The LSTM networks were just slightly 
less perfect, as the network always needed a cycle to adjust 
it’s output to the changing input. Spiking circuits didn’t need 
this, they gave the correct inverse even when the input was 
randomly chosen between 0 and 1 each cycle. 

Inverse continuous. Performance of the LSTM network was 
equal to that of the previous task: again the duty cycle had to 
be raised. The evolved spiking circuits did fairly well again 
also, but the resolution of input and output is a bottleneck 
here. As we are working with a (discrete) number of spikes 
each cycle and not with continuous numbers (as LSTM), it is 
very important that input and output resolution are in 
accordance with the number of neuron updates each cycle. 

Memory. This task shows us the profound advantages of 
learning over evolutionary search: LSTM can learn this task 
without too much effort, while our evolutionary approach 
with spiking networks is unable to reproduce the previously 
seen input when requested. 

Sines. This task proved to be too difficult to be solved by 
evolution as we used it. Even though fitness reached 0.75 at 
various attempts, the behaviour of the network is far from 
right and it cannot classify the input sine waves. As for 
LSTM, classifying the sines fails completely. 

Switch. The results that we obtained with this task gave us 
an interesting difference between the two network types. The 
spiking neural networks found by evolution shows nearly 
perfect behaviour, only suffering from the fact that it cannot 
switch its state immediately: it needs two cycles to complete 
its output change. The same lagging behaviour was seen in 
the LSTM network, but certainly not with the proposed data 
set: a 1-cycle input signal was insufficient to switch the 
output for all topologies tested, the networks simply kept 
their output at 0. It was not until we lengthened this signal to 
half (!) of the sequence’s length, that the network showed 
behaviour more like that of the evolved spiking circuit.  

Temporal XOR. This (unavoidable) XOR-task posed serious 
problems for both of our approaches. We did not succeed in 
successfully evolving a spiking neural network capable of 
solving the described task. All our evolutionary runs 
(partially with different spiking circuit parameters) came up 
with an efficient solution of fitness 0.75: the output is always 
high, except after two subsequent zeroes. None of the many 
tested LSTM topologies could find a solution for the 
temporal XOR task as described. Output and error remained 
around the 0.5 during runs after learning. An efficient 
solution, but not quite what we were after, was found by 
imposing a delay (only giving 0 as input) after each offered 
input pair to be XORed. 

 

Comparison 
The different tasks give widely varying results for the types 
of networks experimented with: some tasks can be solved by 
both without too much effort, but this isn’t the case for all 
tasks and some turned out to be infeasible with the 
parameters and techniques we used. 

No serious problems were encountered with the two 
inverse problems, for which no internal state was required 
and feed-forward (non-recurrent) neural networks could also 
be used. As already mentioned, the resolution of input and 
output is an important issue here and that’s something that 
counts for many real tasks: using rate coding in spiking 
circuits make that only a certain amount of detail can be dealt 
with, LSTM doesn’t have this problem because it deals with 
analogue values internally. If very little differences in input 
(or output) make large differences in a task, it may be more 
straightforward to use a second generation network like 
LSTM. Another possibility is to try pulse coding schemes 
with the spiking circuits (e.g. spike time coding) to make 
encoding input and output values more precisely. 

Too difficult for both network types were the sine 
classification, temporal XOR and frequency detection tasks, 
but these should be investigated further: we think that 
especially spiking circuits could perform better if we 
improved them by adding synaptic plasticity. Evolution is 
good at finding simple strategies to increase fitness, but these 
tasks were too difficult to evolve. Individuals that obtained a 
higher fitness were just lucky, not better at the task at hand. 
Evolvable tasks show an increasing maximum fitness during 
an evolutionary run, runs with too difficult tasks show a 
more or less constant fitness (see fig. 3). 

LSTM performed better than spiking networks at two 
tasks: the gradient sign detection and memory tasks. 
Evolution was unable to find suitable spiking networks for 
these, which is not surprising for the memory task: a long 
time relation between input and output has to be found, 
basically by coincidence. That the gradient sign detection 
also gave problems may possibly be attributed to the 
stochastic rate coding: it may be difficult to accomplish this 
when the gradient is low and the stochastic receptors inflict 
even more noise in the spike trains. 

The one task that spiking circuits were better at than LSTM 
was the switching task. LSTM networks are unable to 
completely revise their internal state based on one single 
input, whereas this is no problem for spiking networks: the 
neurons are updated 40 times each cycle and a one-cycle 
change of the input can have a large impact on the internal 
state of the whole network. This change wasn’t always 
finished within one cycle, but the best networks completed 
the switch even after the input was back to normal in the 
next cycle. 
 

Task Spiking circuits LSTM 
Name #in #out Target? State? Bias? #updates #updOut SSE SSE 
Frequency detection 2 2 Some Yes No 40 20 0.250 0.2684 
Gradient 1 1 All Yes Yes 40 20 0.182 0.0262 
Inverse binary 1 1 All No No 40 20 0.000 0.0742 
Inverse continuous 1 1 All No No 100 80 0.003 0.0101 
Memory 2 1 Some Yes Yes 40 20 0.500 0.1111 
Sines 2 1 Some Yes Yes 80 20 0.455 0.2954 
Switch  1 1 All Yes Yes 40 20 0.118 0.8914 
Temporal XOR 1 1 All Yes Yes 40 20 0.250 0.4989 

Table 1. Overview of all results. Properties of each task are given, also some spiking circuit settings and the sum squared error of both types of 
network. Task properties: #in = number of input values, #out = number of output values, Target? = target output defined for?, State? = internal 
state required to accomplish task. Spiking circuit settings: Bias? = bias receptor added?, #updates = number of neuron updates per cycle, 
#updOut = number of updates used to determine output value. 
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Discussion 
Neural structures as found in nature are very well suited for 
the processing of temporal information: these networks have 
an internal dynamic memory state that may be influenced for 
a shorter or longer time by its inputs – long and short term 
memory. This quality is not found in most classes of artificial 
neural networks: only recurrent and spiking neural networks 
perform well in spatio-temporal domains.  

Second generation neurons use analogue values and a 
continuous activation function to compute their output. 
Many neural networks have been proposed in this 
generation, these can largely be divided in feed-forward and 
recurrent neural networks. As feed-forward networks have 
no internal state and cannot be easily used for dynamic tasks, 
we focused on recurrent neural networks. We covered some 
basics of sigmoidal recurrent networks and mentioned some 
learning algorithms, BPTT and RTRL that can be used to 
learn temporal correlations. Furthermore, we explained Long 
Short-Term Memory, a particular strong type of recurrent 
neural network, as it doesn’t suffer from error flow problems 
as most others. 

Spiking neural networks, incorporating third generation 
neurons, use the element of time in communicating by 
sending out individual pulses. Spiking neurons can therefore 
multiplex information into a single stream of signals, like the 
frequency and amplitude of sound in the auditory system [6]. 
We have covered the very general and realistic spike-re-
sponse model, a powerful and realistic model for using pulse 
coding in neurons. Standard neural network training 
algorithms use rate coding and cannot be directly used 
satisfactory for spiking neural networks, therefore we have 
used evolution to find suitable network topologies and 
parameters. 

We have chosen two specific network types, one from each 
network generation, and have tested them on a number of 
dynamic tasks. Some tasks proved too difficult, some were 
no problem for both networks. There are some fields though 
where either LSTM or spiking circuits performed better. The 
difference can be largely brought back to the differences 
between second and third generation networks. LSTM is an 
architecture combined with a learning method that is aimed 
at finding temporal correlations and working with analogue 
values. Using so-called forgetting gates [30] with LSTM 
might improve the performance on the more difficult tasks.  
Spiking circuits work with individual pulses and evolving 
network properties is a very different way of finding 
solutions and is not always good enough, which we have 
shown. But although it is difficult to improve much on 
LSTM, there is much work to be done on spiking neural 
networks. Spike-timing dependent synaptic plasticity uses 
exact spike timing to optimise information-flow through the 
network, as well as it imposes competition between neurons 
in the process of unsupervised Hebbian learning. We think 
such a form of learning would be very beneficial for spiking 
circuits and could make it possible to find solutions for the 
more difficult tasks. 

Dynamic neural networks in general are computationally 
powerful [2,3,4,5,6] and very promising for tasks in which 
temporal information plays an important role. We’d like to 
conclude remarking that this is the case for virtually any task 
or application that has interaction with the real world.  
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