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Abstract

This report presents a sound and complete Hoare logic for a sequential object-oriented language
with inheritance and subtyping like Java. It describes a weakest precondition calculus for assign-
ments and object-creation, as well as Hoare rules for reasoning about (mutually recursive) method
invocations with dynamic binding. Our approach enables reasoning at an abstraction level that
coincides with the general abstraction level of object-oriented languages.



Chapter 1

Introduction

The concepts of inheritance and subtyping in object-oriented programming have many virtues. But
they also pose challenges for reasoning about programs. For example, subtyping enables variables
with different types to be aliases of the same object, and it destroys the static connection between
a method call and its implementation. Inheritance, without further restrictions, adds complexity
by permitting objects to have different instance variables with the same identifier.

This report outlines a Hoare logic for a sequential object-oriented language that contains all
standard object-oriented features, including inheritance, subtyping and dynamic binding. The
logic consists of a weakest precondition calculus for assignments and object-creation, as well as
Hoare rules for reasoning about (mutually recursive) method invocations with dynamic binding.
The resulting logic is complete in the sense that any valid correctness formula can be derived
within the logic.

Our syntax-directed approach is based on an assertion language of the same abstraction level
as the programming language. In particular, there is no explicit reference to the object store in
our assertion language, as opposed to [13]. Moreover, our weakest precondition calculus consists
of purely syntactical substitution operations.

Hoare introduced the axiom {Ple/x]} = := e {P} for reasoning about simple assignments
in his seminal paper [9]. A semantical variant would be {Plo{z := e}/o]|} = := e {P}, where
o{x := e} denotes the state that results from o by assigning o(e) to x. Here, the occurrence of
o shows the employed representation of the state, and state updates like o{z := e} reveal the
encoding of the semantics. In the original approach, assertions have the same abstraction level as
the programming language and hide all these details.

Another advantage of the syntax-directed approach can be explained by the following example.
Suppose we want to prove {y = 1} z := 0 {y = 1}. Using our approach, this amounts to proving
the implication y = 1 — y = 1. The semantical approach requires proving o(y) = 0 — of{x :=
0}(y) = 0. A theorem prover must do one additional reasoning step in this case, namely resolving
that y is a different location than x. This step is otherwise encoded in the substitution. The
minor difference in this example leads to larger differences, for example when reasoning about
aliases. Our substitution operation precisely reveals in which cases we have to check for possible
aliases. Finally, observe that the semantical approach requires an encoding of the semantics of the
programming language in the theorem prover.

This report is organized as follows. In Chapter 2 and 3 we introduce the programming lan-
guage and the assertion language. In Chapter 4 we describe the weakest precondition calculus for
assignments and object creation and we give Hoare rules for reasoning about method calls. The
completeness proof can be found in Chapter 5. Related research is discussed in the last chapter.



Chapter 2

The Object-Oriented Language

The language we consider in this paper (dubbed COORE) contains all standard object-oriented
features like inheritance and subtyping. For ease of reading, we adopted the syntax of the corre-
sponding subset of Java. The syntax of COORE can be found in Table 2.1.

The primitive types we consider are boolean and int. We assume given a set C of class names,
with typical element C. The set of types 7 is the union of the set {int,boolean} and C. In the
sequel, t will be a typical element of 7. The language is strongly-typed. Every expression has a
(declared) static type. By [e] we denote the type of expression e. The type of this is determined
by its context. We will silently assume that all expressions are well-typed.

By TVar we denote the set of local (or temporary) variables. Each class C is equipped with a
set of instance variables IVaro. We use u and x as typical elements of local variables and instance
variables, respectively. The variable y is either a local variable or an instance variable. Instance
variables belong to a specific object and store its internal state. Local variables belong to a method
and last as long as this method is active. A method’s formal parameters are also local variables.

A program in COORE is a finite set of classes and a main method which initiates the execution
of the program. A class defines a finite set of methods. A method m consists of its formal
parameters uq,...,u,, a statement .S, and an expression e without side effect which denotes the
return value. A clause class C extends C’ indicates that class C' is a direct subclass of C’. Tt
implies that class C inherits all methods and instance variables of class C’.

The expression e.x refers to the instance variable z of object e as found in class [e] or, if not
present in IVarp., the first occurrence of this variable in a superclass of [e]. Observe that a class
C can hide an inherited instance variable x by defining another instance variable . An expression
e.x, with [e] = C, will then refer to this latter variable. The cast operator (C) in (C)e changes
the type of expression e to C. Thus it can be used to access hidden variables. For example,
((C)this).z denotes the first occurrence of an instance variable x of object this as found by an

Table 2.1: The syntax of COORE
Below, the operator op is an arbitrary operator on elements of a primitive type, and m is an
arbitrary identifier.

e € Expr ::=null | this | u | e.x | (C)e | e instanceof C | op(eq,...,€x)
y € Loc i=u | ex
s € SExpr ::=new C() | u.m(e1,...,e,) | super.m(ey,...,e,)
SeStati=y=e;|y=s5;|55|if () { S} else { S} |while(e) { S}
meth € Meth :=m(u1,...,u,) { S returne; }

main € Main ::=main() { S }
exts € Exts ::= € | extends C'
class € Class ::= class C exts { meth” }
7 € Prog ::= class™ main




upward search starting in class C'. This might be a variable different from this.x. We assume
that [e] in (C)e is a reference type. An expression e instanceof C is true if e is non-null and
refers to an instance of (a subclass of) class C.

We have the usual assignments of expressions to variables. An assignment y = new C() involves
the creation of an object of class C. Note that our language does not include constructor methods.
Thus an expression like new C() will call the default constructor method, which will assign to all
instance variables their default value.

Observe that the callee of a method call can only be denoted by a local variable. We made this
assumption for technical convenience only. We assume that all methods are public. An assignment
y = u.m(ey,...,e,) denotes a call of the method m of the object denoted by the local variable
u. These calls are bound dynamically to an implementation, depending on the class of the object
denoted by u. Calls of the form y = super.m(ey,...,e,) are bound statically. The corresponding
implementation is found by searching upwards in the class hierarchy for a definition of m, starting
in the superclass of [this].

The language COORE permits only side effects in the outermost operator. This is a common
restriction in Hoare logics that clarifies the presentation of the logic. However, it is not essential.
Early work by Kowaltowski already introduces a general approach to side effects [11]. On the
other hand, one could argue that the restriction on side effects leads to more reliable programs.
Gosling et al. remark: ‘Code is usually clearer when each expression contains at most one side
effect, as its outermost operation, and when code does not depend on exactly which exception
arises as a consequence of the left-to-right evaluation of expressions.” [8, p. 305]

2.1 Semantics

In this section, we will only describe the overall functionality of the semantics of the presented
language because this suffices to understand the rest of the report. The semantics of COORE is
defined in terms of a representation of the state of an object-oriented program and a subtype
relation.

By t < t/ we denote that ¢ is a subtype of ¢. The subtype relation < is given by the class
definitions in the program. The declaration class A extends B implies that A<t B (where A< B
denotes that class A is a direct subclass of class B.) In fact, the < relation is a partial function
that defines the superclass of a class. Therefore we will assume that Fq(C) denotes the direct
superclass of a class C. It is undefined if C' has no superclass. We chose not to assume that every
class is a subclass of the class Object, as in Java, because that would correspond to a particular
instance of the more generic proof system described in this report. The partial order < is the
reflexive, transitive closure of the <1 relation. We say that t’ is a proper subtype of ¢, denoted by
t' <t if t/ <tandt' #¢t.

We represent objects as follows. Each object has its own identity and belongs to a certain class.
For each class C € C we introduce therefore the infinite set O = {C'} x N of object identities in
class C' (here N denotes the set of natural numbers). Let subs(C) be the set {C’ € C|C" < C}.
By dom(C) we denote the set (Ucregus(c) O )U{L}. Here L is the value of null. In general,
L stands for ‘undefined’. For ¢ = int,boolean, dom(¢) denotes the set of boolean and integer
values, respectively.

The internal state of an object 0 € O is a total function that maps the instance variables
of class C and its superclasses to their values. Let supers(C) be the set {C’ € C|C < C’}. The
internal state of an instance of class C' is an element of the set internal(C), which is defined by
the (nested) cartesian product

11 II dom([z]).

C’esupers(C) z€IVargs

A configuration o is a partial function that maps each existing object to its internal state. We



will assume that o is an element of the set X, where

Y= H (N — internal(C)).

ceC

In the sequel, we will write o(0) for some object o = (C, n) as shorthand for ¢(C)(n). In this
way, o(o) denotes the internal state of an object. It is not defined for objects that do not exist
in a particular configuration o. Thus o specifies the set of existing objects. We will only consider
configurations that are consistent. We say that a configuration is consistent if no instance variable
of an existing object refers to a non-existing object.

The local context 7 € T specifies the active object and the values of the local variables.

Formally, T is the set
(U dom(C)) x H dom([u]).
ceC u€TVar

The first component of any 7 is the active object and the second component is a function which
assigns to every local variable u its value. The first component will be L if there is no active
object, which is the case during execution of the main method. In the sequel, we denote the first
component o of a local context 7 = (o, f) by 7(this) and f(u) by 7(u). Although the local state
of the main method can be (L, f), we will assume in other methods that the first element is an
existing object. A local state is consistent with a global configuration if all local variables do not
refer to non-existing objects. A state is a pair (o, 7), where the local context 7 is required to be
consistent with the configuration o.

To find fields in an internal state we need a way to determine in which class a field is declared.
As explained above, the type of the quantifier [ determines to which field an expression [.z refers.
We introduce a function resolve that yields the class of the field to which the expression [.z refers
given [I] and z. It is defined as follows.

C if x € IVare

resolve(C, x) = { resolve(F4(C), z) otherwise

Expressions are evaluated relative to a subclass relation =<, a configuration ¢, and a local
context 7. The result of evaluating an expression e is denoted by €(e)(o, 7). The < relation is not
updated in the definitions below and is therefore omitted as an argument of £. We can distinguish
the following cases.

{ 1 ife =1
o(e’)(resolve([e], z))(x) otherwise

where ¢ = E(e)(o, 7)

B { 1 if £(e)(o,7) = (C",n) and C" A C

E(e)(o,7) otherwise

. 1 if £(e)(o,7) =L
&(e instanceof C)(o,7) = { < C ifEEe%Ea Tg — (C'n)
4 ife,=_1forsomei=1,...,n
E(op(er, ... en))(o,T) = { op(el,...,eh) oth:erwise

where op denotes the fixed interpretation of op, and
e, =&(e;)(o,7), fori=1,...,n.

Given a set of class definitions the semantics of statements is given by the (strict) function:

S:Stat - (X xT), — (ExT),,



such that S(S)(o,7) = (¢, 7') indicates that the execution of S in the state (o, 7) terminates in
the state (o, 7’) (note that as such S is in fact executed by 7(this) and that 7/(this) = 7(this)).
Divergence is denoted by L. A compositional characterization of S (which is fairly standard) can
be given following [4].



Chapter 3

The Assertion Language

The proof system is tailored to a specific assertion language called AsO (Assertion language for
Object structures). The syntax of AsO is defined by the following grammar.

l € LExpr :=null | this |u | z | l.a | (C)l | Iy =13 | | instanceof C
| op(l1,...,0,) | if [; thenly elsel3 fi

PQeAssu=l1 =1l | -P|PAQ|3z:t(P)

In the assertion language we assume a set of (typed) logical variables LVar with typical element
z. We include expressions of the form (C)I to be able to access hidden instance variables. The
use of [ instanceof C will become clear in Sect. 4.3. We sometimes omit the type in 3z : t(P) if
it is clear from the context.

The assertion language is strongly-typed similar to the programming language. Logical vari-
ables can also have type t*, for some t € 7. This means that its value is a finite sequence of
elements of dom(¢). To reason about sequences we assume the presence of notations to express
the length of a sequence (denoted by |I|) and the selection of an element of a sequence (denoted by
I[n], where n is an integer expression). More precisely, we assume in this report that the elements
of a sequence are indexed by 1,...,n, for some natural number n > 0 (the sequence is of zero
length, i.e., empty, if n = 0). Accessing a sequence with an index which is out of its bounds results
in the value L.

Assertion languages for object-oriented programs inevitably contain expressions like [.z and
(C)l that are normally undefined if, for example, [/ is null. However, as an assertion their value
should be defined. We solved this problem by giving such expression the same value as null.
By only allowing the non-strict equality operator as a basic formula, we nevertheless ensure that
formulas are two-valued. If we omit this operator the value is implicitly compared to true. All
other operators are strict. They simply pass the result of an (otherwise) undefined expression to
the enclosing equality operator. An alternative solution which is employed in JML [12] is to return
an arbitrary element of the underlying domain.

Logical expressions are evaluated relative to a subclass relation =<, a configuration o, a local
context 7, and a logical environment w € [], 1ya dom([2]), which assigns values to the logical
variables. The logical environment is restricted similar to a local context: no logical variable points
to an object that does not exist in the current configuration.

The result of the evaluation of an expression [ is denoted by L(I)(o, T,w). Again, we leave the
= relation implicit. We can distinguish the following cases.



LL(O))(o,7,w)

Ll = ly)(o,7,w)

L(I instanceof C)(o, 7,w)
L(op(ly, ...

o)) (o, T, w)

L(if I then Iy elsel3 fi)(o, T,w)

The evaluation of a formula P can be defined similar to the evaluation of a logical expression.
The resulting value is denoted by A(P)(o, T,w). As already explained above, a formula 3z : C'(P)
states that P holds for an ewisting instance of (a subclass of) C' or null. Thus the quantification
domain of a variable depends not only on the type of the variable but also on the configuration. Let
qdom(t, o) denote the quantification domain of a variable of type ¢ in configuration o. We define
qdom(C, o) = {o € dom(C)|o(0) is defined } U{L}. A formula 3z : C*(P) states the existence of

1 iflr=1
o(l")(resolve([l], z))(x) otherwise
here I’ = L(1) (o, T,w)

i

N { i(l)(o, 7,w)
|
|

otherwise
_ true  if L(I1)(o,7,w) = L(I2)(0, T,w)
o false otherwise
L it L()(o,T,w) =L
o C'=<C if L(I)(o,T,w) = (C',n)
_ L ifl; =1 forsomei=1,...,n
| op(ly,..., 1) otherwise,

where op denotes the fixed interpretation of op, and

I =L(;)(o,7,w), fori=1,...,n.

1 it £(I)(o,Tyw) =L
if L(11)(o, T,w) = true
if L(11)(o,T,w) = false

a sequence of existing objects. Therefore, we define

qdom(C*,0) = {a € dom(C*)|Vn € N.a[n] € qdom(C, o)}.

Finally, we have qdom(t, o) = dom(t) for ¢ € {int,boolean, int*, boolean*}. We then define the

meaning of formulas as follows.

Al = ) (0,7 w) = { folse
AeP)orw) = { e
AP AQ)(0,mw) = { E;?si
Az P o) = { e

The standard abbreviations like VzP for =3z—P are valid. The statement o, 7,w |= P means
that A(P)(o, T, w) yields true, whereas |= P denotes that o, 7,w = P for any mutually consistent

o, 7, and w.

if ‘C(ll)(aa T, w) = ‘C(ZQ)(Ua T, w)

otherwise

if A(P)(o,7,w) = false

otherwise

it A(P)(o,7,w) = true and A(Q)(o, T,w) = true
otherwise

if A(P)(o,7,w{a/z}) = true for some a € qdom(t, o)

otherwise

if L(I)(o,7,w) = (C",n) and C" A C



Chapter 4

The Proof System

In this chapter we introduce step-by-step a Hoare logic that covers all language constructs of an
object-oriented language with inheritance, subtyping and late-binding. For statements that are
not discussed in this chapter, the standard Hoare rules suffice. These rules can be found in, for
example, [2].

Given a set of class definitions, correctness formulas have the usual form {P}S{Q}, where
P and @ are assertions and S is a statement. We say that a correctness formula {P}S{Q} is
true w.r.t. a logical environment w and a configuration (o, 7), written as w, 0,7 E {P}S{Q}, if
o,7,w = P and §(5)(0,7) = (¢/,7") implies ¢/, 7/,w = Q. This corresponds with the standard
partial correctness interpretation of pre/postcondition specifications.

By = {P}S{Q}, i.e., the correctness formula {P}S{Q} is valid, we denote that w,o,7 =
{P}S{Q}, for every logical environment w, and state (o, 7) that are consistent with respect to the
existing objects of 0. By - {P}S{Q} we denote that {P}S{Q} has been derived by applying a
finite number of rules and axioms of the logic that is presented in this chapter.

4.1 Assignments and Aliasing

In this section we show how we can model assignments involving aliasing in the assertion language
by means of substitutions. The basic underlying idea as originally introduced in [9] is that the
assertion resulting from the application of a substitution has the same meaning in the state before
the assignment as the unmodified assertion in the state after the assignment. In other words, the
substitution computes the weakest precondition.

First we observe that given an assignment u = e, with u a local variable, and a postcondition
P, the assertion P[e/u] obtained from P by replacing every occurrence of u by e does not have
the same meaning as the unmodified assertion P in the state after the assignment. Subtyping
combined with dereferencing is the cause of this phenomenon. For an assignment of the form
u = e, subtyping implies that v and e need not have the same type. The only restriction is that
[e] = [u]. That is, the type of e is a subtype of [u]. This implies that the substitution [e/u] might
change the type of an assertion P.

To see where things go wrong, consider the following case. Suppose we have two classes C; and
(5 such that Cy < C4. Furthermore, assume that in each of the two classes an instance variable
x of type int is defined. Finally, suppose that we have two local variables u; and us, such that
[ui] = C1 and [us] = Cy. Now consider the specification of the following assignment.

{ug.x = 3} uy = ug; {u;.x =3}

Is this specification valid? Clearly, we have that uy.z = 3[us/u1] = ug.xz = 3. But the expressions
u1.x and uq.z point to different locations, even if u; and us refer to the same object, because the
types of u; and uo are different. A correct specification would be

{(C)ug.x = 3} uy = ug; {ug.x = 3}.



The above specification presents the key to the solution of this problem. We have to change the
result of the substitution [e/u] in such a way that the type remains unchanged. This can be done
by changing the following case (syntactic equality is denoted by =).

ule/u] = cast?([u], )
The auxiliary function cast?(¢,1) is defined as follows.

l if ¢t is a primitive type
? =
cast?(t, 1) { (t)  otherwise.

All other cases of the substitution [e/u] correspond to the standard notion of (structural)
substitution. We will assume in the rest of this report that a substitution of the form [e/u]
corresponds to this modified substitution operation. The following theorem states that Ple/u]
is the weakest precondition of P with respect to the assignment u = e. It justifies the axiom

{Ple/u]} u=-e {P}.
Theorem 1 If [e] < [u] we have
o,7,w = Ple/u] if and only if o, 7",w = P,

where 7" denotes the local state that results from 7 by assigning £(e) (o, 7) to u.

Proof Note that the clause [e] < [u] ensures that 7’ is a valid local state. Observe that it
suffices to prove, by structural induction on [, that

L(le/u])(o,7,w) = L(1)(o,7',w) and [I[e/u]] = [1].
We deal with the three most interesting cases here. First, let [ = u. If Ju] is a primitive type, it
must be the case that [e¢] = [u] and hence [ule/u]] = [cast?([u],e)] = [e] = [u]. Otherwise, we
infer Jule/u]] = [cast?([u], e)] = [([u])e] = [u]. Furthermore, we have

L(u[e/u])(o,T,w) =

Observe that the second step is valid because [e] < [u] holds. This excludes the possibility that
L(e)(o,7,w) is an object that cannot be cast to type [u]. Secondly, let | = (C)I’. We can prove
type preservation in this case by observing that [((C)!)[e/u]] = [(C)('[e/u])] = C = [(C)!']. By
the induction hypothesis we have L(I'[e/u])(o, T,w) = L(I')(0,7",w). A few calculation steps then

prove this case.
L(@))e/ul)(o,mw) = LUC)(U]e/u]))(0,T,w)
= L{(OW)(o,7 W)

Actually, the last step requires a trivial case split. Finally, let [ = I’.z. By the induction
hypothesis we have [I'[e/u]] = [I']. But then I'[e/u].x and I'.z denote the same instance variable
and we obtain [I'.z[e/u]] = [I'[e/u].x] = [I'.x]. We must also prove that

L(".z[e/u])(o,T,w) = LI .x)(0, 7", w).

This requires us to consider two cases. First we assume that L£(!'[e/u])(o,T,w) = L. By the
induction hypothesis we infer that £(I')(o,7',w) = L. We then calculate as follows.

L(I".z[e/u])(o,T,w) = L('[e/u].z)(o,T,w) = L = L' .x) (0,7 w)



In the second case we assume that £(I'[e/u])(o, 7,w) # L. By the induction hypothesis this implies
that £(I')(o,7’,w) # L. The proof then proceeds as follows.

LU .zle/u])(o,m,w) = L([U[e/u].z)(o,T,w)
= o(L{'[e/u])(o,T,w))(resolve([l']e/u]], x))(z)
= o(LI) (o, 7" ,w))(resolve([l'[e/u]], x)) ()
= ((E(l’)(a, 7/, w))(resolve([l'], z))(x)

U'z)(o, 7 w)

D9

The other cases are straightforward. O

For the same reason, the usual notion of substitution does not suffice for an assignment e.z = €’.
But such assignments are also complicated because of possible aliases of the location e.z, namely
expressions of the form l.z. It is possible that [ refers to the object denoted by e (before the
assignment), so that .z denotes the same location as e.x and should be substituted by e’. It is
also possible that [ does not refer to the object e, and in this case no substitution should take
place. If we cannot decide between these possibilities by the form of the expression and their
types, a conditional expression is constructed which decides dynamically.

We first list the simple cases of the substitution operation [¢’/e.x].

l[e’/e.x] =1, for | € {null,this,u,z}
(O)l[e!fe.a] = (O’ fe.a]
(lh = b)] = hle'/ex] = o[’ /e.x]
(I instanceof C)] (ile’/e.x]) instanceof C
op(l1,...,ln)[e/e.x
)

(op(lule’/e.x]), ... Inle’/e.x])
(if l; thenl; else I3 fi)[e//e.x] = if 1|/ /e.xz] then lg[e’/e.x] else l3le//e.x] £i

e/e.x

e/e.x

}
I =
}
J=
}
}

The first clause deals with the base cases of the keywords null and this, a temporary variable
u, and a logical variable z. In the penultimate clause we have that op[e’/e.z] = op, in case n =0
(i.e., in case of a constant). Next, we consider the cases of this substitution where we have to
account for possible aliases.

if I’ = e then cast?([l.z],¢’) else I'.x £i if [I] = [e] or [e] < [I] and
(l.x)[e'Je.x] = resolve([[l], z) = resolve([e], x)

U.x otherwise
where I’ = (I[¢/ /e.z])

(l.y)le'/e.x] = (l[e Je.x]).y

Note that if [I] 4 [e] and [e] Z [I] then the expressions [ and e cannot refer to the same object,
because the domains of [e] and [I] are disjoint. The clause resolve([l], ) = resolve([e], z) checks
if the two occurrences of x denote the same instance variable. In the second clause we assume
that the instance variables x and y are distinct. The definition is extended to assertions in the
standard way.

As a simple example, we consider the assignment this.x = 0 and the postcondition v.y.z = 1,
where = and y are instance variables and u is a local variable. Considering types, we assume in
this example that [u.y] = [this] = C and [u] = C’. Applying the corresponding substitution
[0/this.z] to the assertion u.y.z = 1 results in the assertion

(if u.y = this then 0 else u.y.x fi) = 1.

This assertion clearly is logically equivalent to —~(u.y = this) A u.y.x = 1.
The following theorem states that Ple’/e.z] is indeed the weakest precondition of the assertion
P with respect to the assignment e.x = €’

10



Theorem 2 If [¢/] < [e.z] and E(e)(o,T) # L we have
w,o,7 = Ple’/e.x] if and only if w,o’,7 = P,

where o’ (0)(resolve([e], z))(z) = E(¢') (o, T), for 0 = E(e)(o, T), and in all other cases o agrees with

o'.

Proof Observe that [¢/] < [e.x] implies that ¢’ € 3. It suffices to prove by induction on the
complexity of [ that

L(I[e' Je.x])(o,T,w) = L(I)(0',T,w) and [i[¢'/e.x]] = [I].

Only one case turns out to be interesting. Naturally, that is the case where [ = I’.z. Therefore,
we will show

L(l'.z[e' Je.x]) (o, T,w) = L(I".2)(¢’, T,w) and [I".x[e’ [e.x]] = [I'.x].

Let us first prove the latter clause. The induction hypothesis allows us to assume that
[U'[e'/e.z]] = [I']. That implies [I'[¢//e.x].z] = [I'.x]. The definition of I'.z[e’/e.x] now forces
us to make a case split. Fortunately, the second case follows immediately from our previous obser-
vation. The first case occurs when [I'] < [e] or [e] =< [I'] and resolve([I'], z) = resolve([e], z). The
latter clause implies that [I'.z] = [e.z], since both expressions denote the same instance variable.
We have to show that

[if U'[¢//e.x] = e then cast?([l'.z],¢') else l'[e' /e.x].x £i] = [I'.x]

Observe that it suffices to prove that [cast?([I’.z],e’)] = [I'[¢//e.x].x]. If [I'.«] is a primitive type,
we reason as follows.

[cast?([I'.z], €] = [€'] = [e-z] = [I'.2]
If [I'.z] is not a primitive type, we can do the following steps.

[cast?([l'.x], )] = [([I".z])e'] = [I.2]

This proves that [I'.x[e/e.z]] = [I'.x]. We now turn to the claim that

L(U'.xle' Je.x])(o,T,w) = L(I'.2) (0, T,w).

By the induction hypothesis we have L(I'[e//e.x])(o, T,w) = L(I')(0’,T,w). We first consider
the case where [I'] < [e] or [e] =< [I'] and resolve([I'],z) = resolve([[e]],a:). So we have

(I'.x)[e' Je.x] = if I'[¢'/e.x] = e then cast?([I'.z],€’) else l[¢'/e.x].x fi.
We have to distinguish two cases. First let
L(l'[e [e.x])(o,T,w) = L(e)(o,T,w).
We then calculate as follows.

L(if I'[¢’/e.x] = e then cast?([I’.x],¢’) else l'[¢'/e.x].x £i)(w, 0, T)
= L(e)(o,T,w)

= 0o'(L(e)(o, 7,w))(resolve([e], z))(z)

"(L(l'le '/6 fﬂ])(ff w))(resolve([e], z))(x)

(1)’ W))(re%'ve([[@ﬂ z))(x)

T (l)’z( b;))(resowe([[l]] z))(z)

Observe that the second step is valid because [¢'] < [e.xz] = [I".z]. Next, let

L€ [e.x])(o,T,w) # L(e)(o,T,w).

= J(L
= J(L
I(L

11



By construction of ¢’ it follows that
a(L(l'le' Je.x]) (o, T,w))(resolve([I'], x))(z) = o' (L(I'[¢' [e.x]) (o, T,w))(resolve([I'], z)) ().
Then the proof proceeds as follows (assuming that L(I'[¢’/e.x])(o, T,w) # L).

L(if I'[¢//e.x] = e then cast?([l'.x],¢’) else lI'[¢//e.x].x £i)(w, 0, T)
= L{'[e/e.x].x)(o,T,w)
= L(l.x)(o/,T,w)

This finishes the first half of the proof. The other case occurs when [I'] A [e] and [e¢] Z [I]
or resolve([l'],z) # resolve([e],z). This implies that (I.z)[e’/e.x] = l'[e’/e.x].z. For the second
time we have to prove that L(I'[¢//e.x].x)(o,T,w) = L(I'.x)(c’,T,w). However, the assumptions
are somewhat different here. Observe that from [I'] A [e] and [e] A [I'] it follows that the
values of I’ and e are different in any state, since dom([I']) N dom([e]) = @. In particular,
we have L(I')(¢',7,w) # L(e)(o,T,w). Therefore both [I'] A [e] together with [e] A [I] and
resolve([l'], z) # resolve([e], ) imply (by construction of ¢'):

a(LI) (o', T,w))(resolve([l'], z))(x) = o' (L") (o, T,w))(resolve([I'], x))(z).

At this point we can refer to previous steps in the proof to finish this branch, and indeed the entire
proof. O

4.2 Object creation

Next we consider the creation of objects. We want to define the substitution [new C/u], which
models the creation of a new instance of class C' and its assignment to the local variable u. That
is, it models logically the assignment u = new C(). Note that an assignment e.x = new C() can be
simulated by the sequence of assignments v = new C();e.xz = u, where u is a fresh local variable.
The weakest precondition of an assignment e.r = new C w.r.t. postcondition P is therefore
Plu/e.z][new C/u], where u is a fresh temporary variable which does not occur in P and e.

As with the usual notions of substitution we want the formula after substitution to have the
same meaning before the assignment as the unmodified formula after the assignment. However,
due to the creation of a new object, there are certain logical expressions for which this is not
possible, because they refer to the new object, and there is no expression that has this value in
the state before its creation, because it does not exist yet. Therefore the result of the substitution
must be left undefined in some cases.

However, we are able to carry out the substitution on any boolean logical expression and
therefore on any formula because a temporary variable u referring to the new object can only occur
in a context where we can statically predict the value of the surrounding expression. Therefore
we are able to construct an expression that has the same value in the state before the creation
without having to refer to the new object.

Let us first consider the cases of the substitution which must be left undefined. Clearly,
u[new C/u] is undefined. For this reason, the substitution is also undefined for expressions of
the form if [y then [> else I3 fi, if the substitution is undefined for Iy or I3. We will show in
the remainder of this section that we can define the substitution on all boolean expressions, so
l1[new C/u] is always defined. Possibly we are also unable to define the substitution [new C/u]
for expressions of the form (C’)l. This can be the case if [ = w or if [ is a conditional expression.
Actually, we can define (C")unew C/u] if C A C’, because the value of (C”)u is L in this case.

To simplify the definition of [new C'/u] we will first rewrite formulas into a normal form. Firstly,
we will remove all occurrences of casts of conditional expressions by observing that the following
equivalence holds.

L((C)if l; thenl; else I3 fi)(o, T,w) = L(if l; then (C)l3 else (C)l3 £i)(o, T,w)

12



Moreover, we have
[(C)if l; then Iy elsel3 fi] = [if l; then (C)ly else (C)l3 £fi] = C.
We introduce the operator || for this rewriting operation. Its only characteristic case is
((C)if l; thenly elsels fi) ||[=if [; || then (C)lz || else (C)l3 || fi.

Secondly, we want to remove all expressions of the form (C')(C”)u. Observe that such an expres-
sion is either equivalent to (C’)u or (C")null, depending on the validity of C' < C"”. The operator
[urnC] performs this operation. Its only interesting case is the following.

(Cu if llurC]
(CH[urnCl =14 (C')null if llurnC]
(C"Y(I[urnC]) otherwise

(C"u and C < C”
(C"u and C £ C”

It is easy to see that, for every logical expression I, [[[urnC]] = [!] holds and, moreover, we have
L()(o,7,w) = L({uBC])(c, T,w) for every state (o, 7) that arises by executing u = new C(). We
cannot replace all occurrences of (C)u by u or null, because such an operation does not preserve
the type of an expression.

First applying || and [taC] makes the definition of [new C'/u] much simpler, because they ensure
that (C)l[new C/u] can be defined for every I # u. The definition of [new C'/u] is straightforward
in the following cases.

I[new C/u] =, for | = null, this, v or z,

where v is a temporary variable distinct from u, and z is a logical variable. Observe that we use
the fact that u is the unique reference to the new object after its creation.

The (instance) variables of a new object have their default values after creation. These values
depend on the types of the variables. We have the following cases.

false  if Ju.z] = boolean

0 if Ju.z] = int

null otherwise

false if [(C')u.z] = boolean and C' < C’
0 if [(C"u.z] = int and C < C’
null otherwise

u.z[new C/u]

(Cu.x[new C/u]

(if I, thenl; else I3 fi).z[new C/u]
if /;[new C/u] then l.x[new C/u| else l.z[new C/u] fi

(I.z)[new C'/u] = (I[new C/u]).x
The last case is only valid if none of the other cases can be applied. For the third case to be valid
it is essential that Iy and I3 have the same type. In that case, the conditional expression also has

this type. Observe that this restriction can be easily met by the inclusion of the cast operator.
Our next case involves a cast. If [[new C'/u] is defined, we have

(C)l[new C/u] = (C")(I[new C/u]).

Another context in which u may occur is that of an equality { = I’. If both the expressions [
and !’ equal u we obviously have

(u = u)[new C'/u] = true.

If I or I’ is an expression of the form (C’)u we first replace it by u or null depending on the
condition C' = C” and then apply [new C/u] to the resulting equality. If either [ is u and I’ is
neither u nor a conditional expression (or vice versa) we have that after the substitution operation

13



[ and !’ cannot denote the same object (because one of them refers to the new object while the
other one refers to an already existing object):

(I =1")[new C/u] = false.
If neither [ nor I’ is u or a conditional expression they cannot refer to the new object and we have
(I =1)new C/u] = (I[new C/u]) = (I'[new C/ul).
For [ a conditional expression of the form if /; then l; else I3 £i we define
(I =1")[new C/u] = if | [new C/u] then (I = I')[new C/u] else (I3 = I')[new C/u] fi,

and similar if I’ is a conditional expression. Expressions of the form [ instanceof C’ also require
a case split. We distinguish the following cases.

true ifC =<’
false otherwise

true ifC<XC'and C <C"
false otherwise

(u instanceof C’)[new C/u] = {

((C"u instanceof C’')[new C'/u] = {

((if Iy then Iy else l3 fi) instanceof C')[new C/u] =
if /;[new C/u] then (l2 instanceof C')[new C/u| else (I3 instanceof C’)[new C'/u] fi

If none of the above cases can be applied we have
(I instanceof C')[new C/u] = (I[new C/u]) instanceof .

Finally, we have the following two cases.

(op(l1,...,1n))[new C/u]
if [; then s else I3 finew C/u]

= op(li[new C/ul,... 1l [new C/u))

= if lj[new C/u] then ls[new C/u] else l3[new C/u] fi
Note that any operator op is assumed to be an operator on primitive types, and secondly, that
[new C/u] is defined on any expression of a primitive type. The final case is only meant for
conditional expressions where l5 and [3 have the same primitive type. We need not define this
case if the conditional expression is of some reference type. The following lemma states in which
cases l[new C/u] is defined.

Lemma 1 The result of I'[new C/u] is defined for all logical expressions I’ =1 || [uldC] except if
I" is of the form u, (C’")u or if l; then l; else I3 £fi with [l5] = [ls] € C.

Proof First prove by induction on [ that | || [uldC] never results in anything of the form
(CY(C"u or (C)if Iy then Iy else I3 £i. Then one can prove the lemma by structural induction
on l. Observe that the lemma implies that '[new C'/u] is defined for all expressions I’ =1 || [uaC)|
of a primitive type. O

The following lemma states that the value of l{utaC][new C/u] before the creation of the new
object, if defined, equals that of [ after its creation.

Lemma 2 If '[new C/u] is defined, for some expression I' =1 || [urdC], we have
L(!'lnew C/u))(o,7,w) = L(I)(¢',7',w) and [I'[new C/u]] = [1],

where ¢’ is obtained from o by extending the domain of o with a new object o = (C,n) &
qdom(C, o) and setting its instance variables at their default values. Furthermore, the resulting
local context 7’ is obtained from 7 by assigning o to the variable wu.
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Proof This lemma is proved by a straightforward induction on the complexity of I. Let us deal
with one representative case: | = z.z (note that z is a logical variable and therefore distinct from
the temporary variable u). Then (z.z) || [udC][new C/u] = z.x. So we have to show that

L(z.x)(o,T,w) = L(z.7) (0", 7', w),

where ¢’ and 7’ are obtained as described above. Since w(z) denotes an object existing in o, we
have that w(z) # o. It follows that o/ (w(z))(resolve([z], z))(z) = o(w(z))(resolve([z], z))(x). O

Next we consider the corresponding substitution operation [new C'/u] on assertions. We define

(PAQ)new C/u] = Plnew C/u] A Qnew C/u]
(=P)new C/u] = —(Plnew C/ul).

The changing scope of a bound occurrence of a variable z ranging over objects which is induced
by the creation of a new object is captured as follows.

, . dz : C(Plnew C/u])) V (Plu/z] || [ubnClnew C/u ifc=<c
(32 C(P))[new C/u] = { (32 : C’((P[[new C’//u}]))) (Pl ! M otherwise
The idea of the application of [new C/u] to (3z P) is that the first disjunct 3z(Plnew C/u])
represents the case that P holds for an old object (i.e. which already exists before the creation of
the new object) whereas the second disjunct P[(C")u/z][new C/u] represents the case that the new
object itself satisfies P. The substitution [u/z] corresponds to the type-preserving substitution
that is defined in the previous section. It is worthwhile to observe that we can derive the following
clause for universal quantification.

(Vz : C(Plnew C/u))) A (Plu/z] [l [udClnew C/u]) if C <’

(V2 : C'(P))[new C/u] = { Vz : C'(Plnew C/ul) otherwise

As a simple example, we compute the weakest precondition of the assertion Vz : C(u =
z V this = z), which states that the set of existing objects consist only of the object denoted by
the temporary variable u and the active object.

(Vz :C(u=zVthis = z)) [new C'/u]
= Vz: C((u =z V this = z)[new C/u]) A (u= (C)uV this = u)[new C/u]
Vz : C(false V this = 2) A (true V false)

where the last assertion obviously reduces to Vz : C(this = z). This assertion states that this
is the only existing object of class C, which indeed is the weakest precondition of the assertion
Vz: C(u =z V this = z) with respect to u = new C().

Next we consider the case of an occurrence of a bound variable z which ranges over sequences
of objects. Recall that we assume that in the assertion language the operations on sequences are
limited to ||, i.e. the length of the sequence I, and {[n], i.e. the operation which yields the nth
element of [. So we do not have, for example, equality on sequences as a primitive operation in
the assertion language. Given this assumption, let 2’ be a (fresh) logical variable ranging over
sequences of boolean values. The variables z and 2’ together will code a sequence of objects possibly
including the new object: at the places where 2’ yields true the value of the coded sequence is the
new object. Where z’ yields false the value of the coded sequence is the same as the value of z.
This encoding is described by the substitution operation [z’, u/z], of which the main characteristic
cases are:

[/, u/z] is undefined

(2Dl u/2] 2]
) /

(z[ID[7,u/z2] if 2/(I') then ([2[l]])u else z(I') £i, where I = [z, u/z].
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This substitution operation [z’,u/z] is defined for the remaining expressions and extended to

assertions in the standard way (its application to a compound expression is defined only if its

application to its constituents is defined). Given the above restriction on the kind of operations on

sequences, it is easy to see that this substitution is defined for boolean expressions and assertions.
The following lemma states the correctness of this substitution operation.

Lemma 3 Fix some C' € C. Given a configuration o, let w be a logical environment with w(z
C*) € qdom(C*, o) (a sequence of existing objects of (a subclass of) class C') and w(z’) an equally
long sequence of boolean values. Let a € qdom(C*, o) be a sequence of objects in ¢ such that the
sequences w(z) and « have equal length. Furthermore, for some existing object o = (C,n) in o,
we have, for all 4, if w(2’)[i] = true then «fi] = o else afi] = w(z)[i]. We have

o,7{o/u},w = P[2',u/z] if and only if o, 7{o/u},w{a/z} E P
({o/u} results from 7 by assigning o to u).

Proof Straightforward induction on the complexity of [ and P. We treat the only (slightly)

non-trivial case of an expression of the form z[l]. Let w’ = w{a/z}, where « is a sequence of objects

such that for all ¢, if w(2’)[i] = true then afi] = o else «[i] = w(z)[i]. Moreover, let 7" = 7{o/u}.
By the induction hypothesis we have

L2 u/z2]) (0,7 w) = L) (0,7 ,w).
Let I’ =12/, u/z]. We then calculate as follows.

L= u/2) (o7, w)
t [

= L(if Z/(I') then ([z[l]])u else z(I') £i)(o, 7', w)

= if w(2)[L({')(o,7",w)] = true then o else w( )L ’)( w)}
= ifw(z)[L()(o,7',w")] = true then o else w(2)[L(l)(o, T ,w)]
= ()LD (0,7 w' }

= L) (o7 w )

Given this encoding we can now define

e _ [ 323 (|z| = || A (P2 u/2] || [udC]new C/u])) if C =<’
(32 C7(P))mew C/u] = { Jz : C"™*(Plnew C/u]) otherwise

As an example, consider the following assertion
Iz : C* (|z1\ =nAVz: C(Ti (z1]i] = 22)))

This assertion states that there exist at most n instances of class C. We will compute the weakest
precondition of this formula w.r.t. the statement v = new C'(). An application of the substitution
[21,u/z1] to the assertion |z1| = n A Vze3i (21[i] = z2) results in the assertion

|21] = n AVze3i (if 2'[i] then (C)u else z[i] fi = zg)

An application of [new C/u] to this latter assertion results in the formula

i (if 2'[i] = true then false else 21[i] = 25 £1) )

(a1l =n) A vz2( A Fi(if 2'[i] = true then true else false fi)

The last clause rules out one of the n locations as a possible location of an existing object.
Therefore, this assertion is logically equivalent to the assertion

(1] = n) A V22 (3i (=[] A 2ali) = 22) A Ti([i]) )

16



The complete weakest precondition of our example formula then is
32132’(|z1\ = || Alz1| = n A Vay (Hi (~2'[i] A z1]i] = 22) A Ji (z’[i])))
This latter assertion clearly is logically equivalent to the assertion
dz (|z1| =n—1AV23i(x[i]= z2)>

which indeed corresponds with our intuition of the weakest precondition of the assertion which
states that there exists at most n objects after the creation of a new object.

The following theorem states that P || [uidC][new C/u] indeed corresponds to the weakest
precondition of P (with respect to the assignment u = new C()).

Theorem 3 We have
o,T,w = P || [udC]new C/u] if and only if o/, 7", w |= P,

where ¢’ is obtained from o by extending the domain of o with a new object 0 = (C,n) ¢
qdom(C, o) and setting its instance variables at their default values. Furthermore, the resulting
local context 7’ is obtained from 7 by assigning o to the variable w.

Proof The proof proceeds by induction on the complexity of P. Again, we treat only the most
interesting case of an assertion 3z : C*(P), where z is a logical variable ranging over sequences of
instances of C'. We calculate as follows. By definition of the substitution operation [new C/u] we
have

0,7, w E (JzP)[new C/u] iff o, 7,w E 3232/(|2| = |2'| A P2/, u/z][new C/ul).

So, assuming that o,7,w = (JzP)[new C/u], there exists a sequence a € qdom(C*,0,) and a
sequence [ of boolean values, with o and 3 of equal length, such that for v’ = w{a/z,3/2'} we
have

o,7,w E P2, u/z][new C/ul.

By the induction hypothesis (measuring the complexity in terms of the number of quantifiers and
propositional connectives) we next derive that

o,7,w' E P2, u/z][new C/u] iff o', 7", = P[2',u/2],

where ¢’ is obtained from o by extending the domain of ¢ with a new object o = (C,n) &
qdom(C, o) and setting its instance variables at their default values. Furthermore, the resulting
local context 7/ is obtained from 7 by assigning o to the variable w.

Let o be a sequence of objects existing in ¢’ of the same length as o such that for all 7, if
Bi] = true then o/[i] = 7/(u) = o else &/[i] = afi]. Let w” = w'{a’/z}. It follows from lemma 3
that

ot Pl u/z] iff o 7 W E P
Finally, we observe that o', 7/,w” |= P implies ¢/, 7',w = 3z P (the logical variable 2’ is assumed
not to occur in P).
Conversely, let o, 7 and w be such that 7 and w only involve objects existing in o and

o, 7w 32 C*(P),
where ¢’ and 7’ are defined as above. So there exists a sequence a € qdom(C*,¢’) such that
o, 7 wla/z} E P.

Let 3 be a a sequence of boolean values, with « and 3 of equal length, and for all i, if «[i] = 7/ (u)
then f[i] = true and else 3[i] = false. It follows that

/
o, 7 W =P,
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where w” = w{a/z,(/2z'} (the logical variable 2’ is assumed not to occur in P). Now let o/ €
qdom(C*,0’) be a sequence of the same length as « such that o'[i]] = «fi], if [i] = false. Let
w' =w{d'/z}. By lemma 3 it then follows that

o, 7\WEPiff o', 7 W | P2 u/z].
By the induction hypothesis we have
o', 7' \W'E P2, u/z] iff o,7,0" | P[2,u/z][new C/u).
By construction of w’ we have that
o,7,w E (|z] = |2| A P2, u/z][new C/u)).

We conclude that
o,T,w = (3zP)[new C/u.

4.3 Method invocations

In this section we discuss the rules for method invocations. In particular, we will analyze reasoning
about dynamically bound method calls like in the statement S =y = u.m(ey,...,e,). A correct-
ness formula { P}S{Q} implies that @ holds after the call independent of which implementation is
executed. Therefore we must consider all implementations of m that are defined in (a subclass of)
[u], and the implementation that is inherited by class [u] if it does not contain an implementation
of method m itself.

The challenge in this section is to show that our assertion language is able to express the
conditions under which an implementation is bound to a particular call given the restriction
imposed by the abstraction level. That is, by using only expressions from the programming
language. Secondly, we aim to define and present the rules in such a way that their translation to
proof obligations in proof outlines for object-oriented programs is straightforward. For both these
reasons we cannot adopt the virtual methods approach as proposed in [13].

We first consider a statement of the form y = super.m(es,...,e,), because this allows us to
explain many features of our approach while postponing the complexity of late binding. Suppose
that the statement occurred somewhere in the definition of a class C'. Assume that searching
for the definition of m starting from the superclass of C ends in class C’ with the following
implementation m(u1,...,u,) { S return e }. Then the invocation super.m(eq,...,e,) is bound
to this particular implementation. The following rule for overwritten method invocations (OMI)
allows the derivation of a correctness specification for y = super.m(es,...,e,) from a correctness
specification of the body S of the implementation of m.

{P' ANI}5{Q'[e/return]} Qi[(C’)this/this] [f/2z] — Q[return/y]
{P'[(C")this,&/this, u][f/Z]} y = super.m(eq,...,e,) {Q}

The precondition P’ and postcondition @’ of S are transformed into corresponding conditions
of the call by the substitution [(C’)this/this]. This substitution reflect the context switch. The
active object is the same in both contexts, but its type differs. The substitution correct this. It
corresponds to the standard notion of structural substitution, but should take place simultaneously
with the (also simultaneous) substitutions [€¢/@]. These substitutions model the assignment of the
actual parameters € = eq,...,e, to the formal parameters &« = uq,...,u,. Note that we have
for every formal parameter u; and corresponding actual parameter e; that [e;] < [u;]. So the
simultaneous substitution we mean here is the generalization of [e/u] as defined in Sect. 4.1.
Except for the formal parameters us, ..., u,, no other local variables are allowed in P’. We do
not allow local variables in Q.

(OMI)
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The substitution [e/return] applied to the postcondition @’ of S in the first premise models
a (virtual) assignment of the result value to the logical variable return, which must not occur in
the assertion ). The related substitution [return/y] applied to the postcondition @ of the call
models the actual assignment of the return value to y. The substitution corresponds to one of the
enhanced notions of substitution as defined in Sect. 4.1.

The assertion I in the precondition of S specifies the initial values of the local variables of
m (excluding its formal parameters): In COORE we have u = false, in case of a boolean local
variable, u = 0, in case of an integer variable, and u© = null, for a reference variable.

Next we observe that a local expression f generated by the following abstract syntax

f == mnull|this|u| (C)f | fi = fn | f instanceof C | op(f1,--., fn)
| if f; then f5 else f3 fi

is not affected by the execution of S by the receiver. A sequence of such expressions f can be
substituted by a corresponding sequence of logical variables z of exactly the same type in the
specification of the body S. Thus the rule reflects the fact that such expressions are constant
during execution of the call. Without these substitutions one cannot prove anything about the
local state of the caller after the method invocation.

Next, we analyze reasoning about method invocations that are dynamically bound to an im-
plementation like in the statement S =y = u.m(eq,...,e,). For this purpose we first define some
abbreviations.

Firstly, we formalize the set of classes that provide an implementation of a particular method.
Assume that methods(C') denotes the set of method identifiers for which an implementation is
given in class C. The function impl yields the class that provides the implementation of a method
m for objects of a particular class. It is defined as follows.

. C if m € methods(C)
impl(C)(m) :{ impl(F4(C))(m) otherwis: o

We can generalize the above definition to get all implementations that are relevant to a par-
ticular domain. This results in the following definition.

impls(C)(m) = {C" € Climpl(C")(m) = C’ for some class C"" with C" < C'}.

Thus the set impls([u])(m) contains all classes that provide an implementation of method m that
might be bound to the call u.m(eq,...,ey,).

Another important issue when reasoning about methods calls is which classes inherit a partic-
ular implementation of a method. For that reason we consider the subclasses of a class C' that
overwrite the implementation given in class C. We denote this set by overwrites(C')(m). We have
C’ € overwrites(C)(m) if C’ is a proper subclasses of C' with m € methods(C”) and there does
not exists another proper subclass C” of C' such that C’ < C” and m € methods(C”). With this
definition we can formulate the condition for an implementation of m in class C to be bound to
a method call u.m(ey,...,e,). It is v instanceof C' A —u € overwrites(C)(m), where the latter

clause abbreviates the conjunction N —(u instanceof C”).
C’ coverwrites(C') (m)

We now have all building blocks for reasoning about a specification of the form {P} y =
um(ey,...,en) {Q}. Assume that impls([u])(m) = {C4,...,Cr}. Let { S; return e; } be
the body of the implementation of method m in class C;, for i = 1,...,k, and let u; be its
formal parameters. To derive a specification for y = w.m(ey,...,e,) we have to prove that for
each implementation S; a specification B; = {P; A I;}5;{Q;[e;/return;]} holds. Moreover, this
specification should satisfy certain restrictions. First of all, the assertions P; and @); must satisfy
the same conditions as the assertions P and @ in the rule OMI. The assertion I; is similar to the
assertion I in that rule. Secondly, the preconditions of the implementations must be implied by
the precondition of the call. That is, we must prove the following implications.

Sl

~
~—

P Awu instanceof C; A —u € overwrites(C;)(m) — P;[(Ci)u, €/this, u;][f/Z] (
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Similarly, we have to check wether the postconditions of the implementations imply the post-
condition of the call. This requires proving the following formulas.

Qil(Ci)u/this][f/Z] — Q[return;/y] (Qi)

The rule for dynamically-bound method invocations (DMI) then simply says that all given
implications should hold and, moreover, we have to derive the specifications of the bodies.

—

ﬁla"'vﬁk Bla---aBk le"'7Qk
{P}y=umley,...,e,) {Q}

The generalization of the rule for non-recursive method invocations to one for recursive and
even mutually recursive method invocations is a variant of the classical recursion rule. The idea
behind the classical rule is to prove correctness of the specification of the body of the call on the
assumption that the method call satisfies its specification. Our rule for mutually recursive method
invocations (MRMI) allows both dynamically bound method invocations and calls to overwritten
methods in the recursion chain. To enable this it combines the rules (OMI) and (DMI). The
outline of the rule is as follows.

(DMI)

F,...,F.+Bi,...,B, p,...,b, Q1,...,Q,
Fy

(MRMI)

The formulas Fi,..., F,. are the specifications of the calls that occur in the recursion chain.
That is, we require that each Fj is a correctness formula about a method invocation. As a naming
convention, we assume that each F} is of the form

{P;}y; =ujmy(el, ..., el ) {Q;} or {P;} y; = superm;(e], ... el ) {Q;}.

The formulas Bj, for j = 1,...,r, denote sequences of correctness formulas about all possible
implementations of the call in F;. However, Bj contains only one element if F; concerns a call to
an overwritten method. The sequences Pj and Qj are the corresponding compatibility checks for
the pre- and postconditions. Each element in P; and Q; corresponds to the element at the same
position in Fj.

Let us first consider the case where F} is of the form

{P;}y; =ujmy(el,....e), ) {Q;}

Assume that impls([u;])(m;) = {C1,...,Ck; }. Let { S; return e; } be the body of the implemen-

tation of method m; in class C;, for i = 1,...,k;, and let 4; be its formal parameters. Then B; is
the sequence containing, for i = 1,...,k;, the correctness formulas {P; A I;}S:{Q}[e;/return,|}.
The formula P; is the sequence containing, for ¢ = 1, ..., k;, the implications

Pj Au; instanceof C; A —u; € overwrites(C;)(m;) — PJ[(C;)uj, e;/this, 4;][f/Z].

K2

And finally, Qj is the sequence containing, for ¢ = 1,..., k;, the implications

Qil(Ci)u;/ehis][f/z] — Q;[return, /y;].

On the other hand, if F} is of the form {P;} y; = super.m;(e], ..., e7,,) {Q;} we can statically
determines to which implementation this call is bound. Suppose that it is bound to the implemen-
tation m;(u1,...,u,){ S return e} in class C. Then the sequence B; contains only the formula
{P] N1} S {Q][e/return;]}. The compatibility check P; is P; — Pj[(C)this, €;/this, 4;][f;/Z;]

and Qj is Q;[(C’)this/this] [fj/éj] — Qj[return;/y,]. Here, &; = e{, ... ,eflj and u; = U, ..., Up.
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Chapter 5

Completeness

In this chapter, we will prove (relative) completeness [3]. That is, given a finite set of class
definitions, we prove that = {P}S{Q} implies - {P}S{Q}. Our completeness proof is based on
the following standard semantic definition of the strongest postcondition SP(S, P) as the set of
triples (o, 7,w) such that for some initial configuration (o’,7") we have S(S)(o’,7") = (0,7) and
o', 7' wE P.

It can be shown in a straightforward although rather tedious manner that SP(S, P) is express-
ible in the assertion language (see [5, 14]). The main idea followed in [5] is based on a standard
arithmetical encoding of computations and a logical encoding of global configurations as described
in the next section.

5.1 Freezing the Initial Configuration

One of the first problems is to freeze the initial configuration which consists of the values of the
instance variables of a set of existing objects and the values of the local variables of the active
object. Note that the set of existing objects is not statically given. Therefore we store the existing
objects of dom(C) ‘dynamically’ in a logical variable seq. of type C*. For storing the values
of instance variables, we introduce for each instance variable x defined in a certain class C a
corresponding logical variable ©(C,z) of type [x]". We assign values to this sequence in such
a way that the value of the instance variable z of an existing object that has this variable is
stored in the sequence denoted by ©(C,z) at the position of the object in seq.. Observe that
only inhabitants of qdom(C, o) have this instance variable. Storing the initial values of the local
variables in logical variables is straightforward. We simply introduce a logical variable ©(u) of
type [t], for each local variable w.

The above encoding of a configuration can be captured logically by a finite (we assume given
a finite set of class definitions) conjunction of the following assertions:

o Vz: C(Fi(z = seqoli]))
which states that the sequence seq stores all existing instances of class C' and its subclasses.
 Vi(seqelil-x = O(x, O)]il)
which states that for each position in seq. the value of the instance variable = of the object
at that position is stored in the sequence ©(C, z) at the same position.

o u=0(u)
which simply states that the value of u is stored in ©(u).

We denote the resulting conjunction by init.
Given the above encoding of a configuration we next extend the mapping © to assertions such
that it replaces all references to program variables by their logical counterparts. Since in general
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we cannot statically determine the position of an object of class C' in the sequence seq. we simply
introduce for every class C' a function pos.(l) which is defined by the assertion

Vz : C(z = seqelpos(z)]).

Note that indeed in practice assertion languages should allow the introduction of user-defined
functions and predicates. We have the following main case of the transformation © on logical
expressions [ (where C = resolve([l], z)):

(1.2)0 = O(C, x)[posc(10)]

Quantification requires additional care when extending © to assertions because the scope of
the quantifiers can be affected by object creation. Therefore we introduce the following bounded
form of quantification:

(Fz:C(P))® = 3Fz:C(Fi(z = seqpli]) A (PO))
(Fz:C*(P)O = 3Fz:C*(Vidj(z[i] = seqalj]) A (PO))

Note that the assertion Ji(z = seq[i]) states that the object denoted by z appears in the sequence
denoted by seq. The assertion Vidj(z[i] = seqq[j]) states that all objects stored in the sequence
denoted by z are stored in the sequence denoted by seq~. We thus restrict quantification to the
sequence denoted by seg.. For quantification over primitive types or sequences of a primitive type
we simply have (32P)© = 3z(PO).

The transformation © is truth-preserving in the following manner.

Theorem 4 For every assertion P, and any logical environment w and state (o, 7) that are con-
sistent, we have that o, 7,w = init implies o, 7,w = P iff w,0,7 | PO.

Proof By structural induction on P. O

Next we proof that P© is invariant over any statement. In general, correctness proofs of a
statement S involve the set M(S) of its method calls. Let ¢ be some statement of the form
y =u.m(ey,...,e,) or y = super.m(ey,...,e,). Then M(S) is defined as the smallest set which
satisfies:

e ¢ € M(S) if the call ¢ occurs in S

e if y = super.m(ey,...,e,) € M(S) and S’ is the body of the implementation of method m
in class C' = impl(F4(this))(m) then ¢ € M(S), for every call ¢ that occurs in S’.

o if y =wu.m(er,...,e,) € M(S) and S’ is the body of an implementation of method m in a
certain class C € impls([u])(m) then ¢ € M(S), for every call ¢ that occurs in 5.

Now we can prove the following theorem.

Theorem 5 For any statement S and assertion P we have - {PO} S {PO}.

Proof We prove by structural induction on S that for every assertion P we have
F{PO[z/this]} S {PO[z/this]}.

The case of a method call S =y = u.m(ey,...,e,) is handled as follows. Let C(S, P) denote the
set of correctness specifications

{PO]z/this]}S;{PO[z/this]},
with j=1,...,r and M(S) = {S1,...,S}. It is easy to see that we can prove
C(S, P) - {POlz/this|} S} { PO[z/this]},
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where Sg denotes an arbitrary body of some implementation of a call S; € M (S). By an application
of the rule MRMI (observe that the substitutions which model the context switch, parameter
passing, and assigning the return value, do not affect PO[z/this]) we then obtain

F{PO[z/this]} S {PO[z/this]}.

Finally, an application of a substitution rule which allows to replace z by this in the precondition
and the postcondition finishes the proof. O

5.2 The Most General Correctness Formula

Our definition of the most general correctness formulas {init}S{SP(S, init)} leads to the following
main theorem.

Theorem 6 For every valid correctness formula {P}S{Q} we have
F,...,F. F{P}S{Q},
where F; = {init}S;{SP(S;,init)}, for j =1,...,r, and M(S) C {S1,...,S-}.

The proof proceeds by structural induction on S. The following lemma describes the most inter-
esting case of a method call.

Lemma 4 For every call S =y = u.m(ey,...,e,) we have
= {P}S{Q} implies {init}S{SP(S, init)} - {P}S{Q}

Proof For technical convenience only we assume that P and ) do not contain free occurrences
of the logical variables ©(u) and ©(z) (otherwise we first have to rename them). By Theorem 5
we have F {PO}S{P©O}. An application of the conjunction rule gives us the correctness formula

- {PO A init}S{PO A SP(S, init)}.

Our next step is to prove
= PO A SP(S, init) — Q.

Let o, 7,w = PO A SP(S,init). By the definition of SP there exist an initial state (og,79) such
that og, 70, w = init and S(S) (0o, 70) = (0, 7). Since = {PO}S{PO} (this follows from Theorem
5 and the soundness of the proof system) we derive that ¢, 79,w = PO. By Theorem 4 we arrive
at o9, T0,w = P. Since = {P}S{Q} we conclude that o, 7,w = Q.

So we can proceed by an application of the consequence rule and obtain

- {PO A init}S{Q}.

Next we can apply the standard rules which allow one to replace in the precondition every logical
variable O (u) by the local variable u and existentially quantifying all the logical variables ©(C, x)
(z an arbitrary instance variable defined in class C). It is not difficult to prove that the assertion
P logically implies the resulting precondition. Therefore an application of the consequence rule
finishes the proof. U
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5.3 The Context Switch

In this section, we prove the derivability of {init}S{SP(S,init)}, for an arbitrary method call
S =y =um(er,...,e,). The derivability of the same specification for an arbitrary method call
of the form y = super.m(ey,...,e,) is an obvious instantiation of the following proof. To obtain
F {init}S{SP(S, init)} we will instantiate the rule for reasoning about mutually recursive method
calls (MRMI), as defined in Section 4.3. The correctness formulas F1, ..., F, in this rule will state
that the set M(S) = {S1,...,S5,} satisfies the MGF. Note that M (S), in general, contains both
calls to overwritten methods in superclasses and ‘normal’ method calls. For the sake of simplicity,
we will first assume that each S;, for j = 1,...,r, is of the form y; = uj.m;(eq, ..., e%j). At the
end, we will sketch how steps in the proof should be adapted if some S; is a call to an overwritten
method.

We use the following notational conventions in this section. Let M(S) = {Si,...,S,}, with
S; = y; = ujmj(ed,.. .,e%j), for j = 1,...,r. Furthermore, let F; denote the correctness for-
mula {init}S;{SP(S;,init)}. We assume that Bs; is defined as stated in the explanation of
rule (MRMI). That is, BS; contains a correctness formula for every implementation of the call
in F;. Which pre- and postcondition should be chosen is discussed later in this section. If
impls([u;])(m;) = {C, ..., C’ij} then Bs; contains k; correctness formulas. Let { S} return e/ }
be the implementation of the call S; in class C;, for i = 1,...,k;. Finally, we assume that u§ is
the sequence of formal parameters of the implementation in class C;

So our goal is to prove F {init}S{SP(S, init)}. By Theorem 6 and the rule (MRMI) it suffices
to find, for j =1,...,7 and i =1,...k;, valid correctness formulas

{Pj NI} S; {Qjle;/return]]}, (5.1)
such that
= init A u; instanceof Cj A —u; € overwrites(C})(m;) — Pj[(Ch)u;, &, /this, @}][f;/2}] (5.2)

and
= Q5[(C))u;/this][f;/Z] — SP(S;, init)[return; /y;] (5.3)
for some substitutions | f_j / Z;] involving local expressions f_] and corresponding logical variables

satisfying the conditions of rule (MRMI). The assertion I J’ specifies the initial values of the local
variables, excluding the formal parameters, as explained in the description of this rule.

To obtain the assertions P} and Q;-, forj =1,...,7and i = 1,...k;, we introduce renaming
functions ®; which transforms this and any local variable u into (new) logical variables ®;(this)
and ®;(u) of exactly the same type. We introduce for every j = 1,...,r, such a transformation ®;

because the object denoted by this may belong to different classes in the context of a method call
and therefore we need different logical variables to represent this. Applying ®; to any assertion
(using @; as a substitution) will neutralize the substitutions which model the context switch and
the passing of the actual parameters. That is,

P®;[(C)u,eq,...,ep/this, ui,. .., uy| equals PP;,

for every assertion P, local variables u,uq, ..., u, and expressions eq,...,e,. So we can define PJ?
simply by init®; and Q; simply by SP(S;, imt)[returné/yj]q)j. Using the inverse (®;)~! of ®;
for [f;/Z;], we trivially obtain (5.2) and (5.3).

However, to prove the validity of the correctness formulas in (5.1) we have to strengthen P;
with additional information about the callee and the actual parameters specified by the call S;.
This information is given by the conjunction of the clauses this = ®,(u;), this instanceof C’;,
—this € overwrites(m;)(C}) and uj = (e5®;), i = 1,...,n;. Observe that (5.2) still holds because

(this = ®;(uy))[u;, éé-/this, ﬂ;]@;l gives rise to u; = u;
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a,nd . . . . . .
(u; = (e;-@j))[uj7é;/this,ﬂ;]q);l yields e} = e’.

The other clauses yield (C})u; instanceof C} and —(C})u; € overwrites(m;)(C}), respectively.

These clauses also trivially follow from the precondition of the call.

To prove the validity of the correctness formula
{P; A IJZ} S {Q; [e;/return;]},

assume that o,7,w = P/ A I} and S(S¥)(0,7) = (0/,7). We can extend this computation of
the callee to one of the caller as follows. We define the initial local context 7 of the caller by
setting the active object to w(®;(this)) and assigning w(®;(u)) to every local variable u. Since

o,T,w = Pf it follows that o, 7y, w |= init. Furthermore we have that 79(u;) = 7(this), i.e., the
callee is indeed called by the caller, and the value of the actual parameter e/, with i = 1,...,n;,
in the state (o, 79) of the caller equals the value of the corresponding formal parameter u] in the
configuration (o, 7) of the callee. On the other hand, we define the final configuration of the caller
by (¢”,74), where either 7, = 19 and ¢” is obtained from o’ by assigning the value of the return
expression e; in the state (¢/,7') to the instance variable y; of the caller 75(this) or ¢’ equals o’
and 7, is obtained from 7y by assigning the value of the return expression e; to the local variable
Yj- ‘

Observe that S} is indeed the body of the implementation that is bound to the call S; in the
state (o, 7p), since

0,70, w = u; instanceof C; A—uj € overwrites(CJZ:)(mj)7

holds by construction of 7o and the definition of Pj. Therefore it follows that S(S;)(o,70) =
(0", 713). Since 0, Ty, w = init we thus have o”, 7),w |= SP(S}, init). Next let w’ be obtained from
w by assigning the result value, i.e., the value of y; in the state (¢, 7)) of the caller, to the logical
variable return’. It follows that ¢/, 7(,w" |= SP(S};, init)[return’ /y;]. Next we observe that the
truth of the assertion SP(S;, init)[return’/y;]®; does not depend any more on the local context
or the variable y;. So we have o', 7,0’ = SP(S}, init)[return}/y;]®;. Finally, because of the
definition of w’ we conclude

o, 7wk SP(S;, init)[returné/yj]il)j [eé/returné].

Finally, let us consider the question what has to be changed to the above reasoning pattern
if S; is a call to an overwritten method in a superclass. That is, if S; is of the form y; =

super.m;(el, ..., e{lj ). We again assume that Fj is the correctness formula {init}S;{ SP(S;, init)}.
Furthermore, let S} denote the body of the corresponding implementation of super.m; (e{l7 ceey e{lj)
in some class C' and let e; be its return expression. By €; we again denote the sequence e7, . .. ,eZLJ_,
and we assume that @; are the formal parameters u7, ... ,u%j of the implementation. Recall that

Bs; is a singleton set in this case.
Proceeding with the proof as above we must find assertions P; and @; such that we obtain a
valid correctness formula

{P; NI} S5 {Qjlej/return;]}, (5.4)
such that -
E init — P;[(C)this, &;/this, @;][f;/Z;] (5.5)
and
E Q,;[(C)this/this] [fj/éﬂ — SP(S;, init)[return; /y;] (5.6)

for some substitution [f;/z;] similar to the ones above.

One can easily check in a way similar to the proof above that these conditions are met if
we choose for P; our previous definition of P; without the clauses this instanceof C’; and
—this € overwrites(m;)(C}). The substitution [f;/Z;] is again the inverse of ®;.
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Chapter 6

Conclusions

The main result of this paper is a syntax-directed Hoare logic for a language that contains all
standard object-oriented features. The logic extends our work as presented in [6] by covering
inheritance, subtyping and dynamic binding. We also proved that the logic is (relatively) complete.

In recent years, several Hoare logics for (sequential) fragments of object-oriented languages,
notably Java, were proposed. However, the formal justification of existing Hoare logics for object-
oriented languages is still under investigation. Notably the problem of completeness until now
defied clear solutions.

In [15], a Hoare logic for a large sequential subset of Java is proved complete. However, this
Hoare logic formalizes correctness proofs directly in terms of a semantics of the subset of Java
in Isabelle/HOL. As observed by the author this results in a serious discrepancy between the
abstraction level of the Hoare logic and the programming language, which makes the logic hard
to use in practice and only suited for meta-theory.

We are currently putting the finishing touch to a tool that enables the application of our logic
to larger test-cases. It supports the annotation of programs, fully automatically computes the
resulting verification conditions, and feeds them to a theorem prover. We aim to make this tool
publicly available this year.

Checking the verification conditions is in general not decidable. However, we plan to investigate
the isolation of a decidable subset of the present assertion language which would still allow, for
example, aliasing analysis. Future work also includes the integration of related work on reasoning
about abrupt termination [10] and concurrency in an object-oriented setting [1].

Finally, we would like to give a compositional formulation of the logic presented in this paper
which will be based on invariants that specify the externally observable behavior of the objects in
terms of the send and received messages. We envisage the use of temporal logics as described in
[7] for the formulation of such invariants.
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