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Abstract

Markov Chain Monte Carlo methods (MCMC) can sample from a target
distribution and approximate this distribution. MCMC methods employ the a-
priori known unnormalized target distribution to decide on the acceptance of
new states, but not to approximate the final distribution. This paper investi-
gates how the unnormalized target distribution can be used for approximation
purposes. It is shown that this function can be used to obtain an unbiased es-
timate of the target distribution. Under certain circumstances, this approach
can greatly reduce the variance of the resulting estimate.

A useful side-effect of our estimation method is that the sampling method
no longer has to follow the target distribution. Based on this observation, a
sampling method with a variable degree of exploration is described that still
converges to the target function. Thus, exploration can be performed, thereby
improving mixing, without discarding sample points. Both methods are demon-
strated in experiments.

1 Introduction

Markov Chain Monte Carlo (MCMC) is a large and important class of sampling
methods used in areas including statistics, econometrics, physics, and computer sci-
ence [1, 3, 5]. MCMC provides a general theoretical framework for sampling from a
target distribution when this cannot be done with other simpler methods (e.g. ex-
haustive enumeration), and for estimating the expectation of a function under this
distribution. Methods from MCMC assume that the target distribution is known
up to a normalization constant. In existing work on MCMC, the a-priori known
unnormalized target distribution is used to decide on the acceptance of new states,
but it is not used to compute the final distribution. This paper investigates how
the unnormalized target distribution can be used for the purpose of estimation, and
what effects this has on the efficiency of sampling.

The approach results in the opportunity to perform exploration by using a sam-
pling distribution that is different from the target distribution without discarding
samples. Standard methods for MCMC can take a long time to converge. T'wo pop-
ular methods to speed up convergence of MCMC are parallel tempering [2, 3] and
simulated tempering [6]. These methods improve the exploration of the state space
by a normal MCMC chain through the use of additional MCMC chains that perform
more explorative sampling. However, samples from these additional chains must cur-
rently be discarded. In the second part of the paper, we generalize our algorithm



2 PROPORTIONATE SAMPLING ALGORITHM 2

to faster explore the state space of the target distribution. Unlike the tempering al-
gorithms, our method for post-processing ensures that the MCMC chain converges
to the target distribution even when exploration is used during sampling. Thus, our
method is able to use the computational effort spent in sampling more efficiently
than the tempering methods.

MCMC methods follow the following scheme, see [1] for an introduction. Given
a current sample point, MCMC employs a proposal distribution to generate a can-
didate for the next sample point. The target distribution is then used to determine
whether the generated point is accepted, or whether the current point will be main-
tained. This procedure results in a Markov chain. In the limit of an infinite number
of samples, the distribution of the states in this chain approximates the target dis-
tribution.

2 Proportionate Sampling Algorithm

We will consider continuous distributions, where the target function is a probability
density function. The most general and simple method to monitor the behavior of
a MCMC chain in a continuous space is through the use of simple models such as
frequency histograms [7]. Specifically, the goal here will be to estimate the target
distribution by integrating over regions of the state space called bins. This yields an
estimate in the form of a histogram, where the height of a bin multiplied with its
width yields the probability that a state drawn from the distribution lies within the
bin; this probability will be called the probability of the bin, P(bin). For a finite
amount of samples, an estimate based on counting the number of points in a bin
leads to variance in the height of the bins.

There is an apparent potential to reduce the variance of the estimates by basing
this estimate on the target-function. An average of the target function for the sample
points would lead to incorrect results however, as this average would be biased by
the non-uniform sample. We describe a simple weighting method that addresses this
problem. The result is a post-processing step that accepts a sample obtained using
a MCMC method, and uses the target function values of the sampled points to
produce an unbiased estimate of the distribution.

Our aim is to integrate the target function f(x) over a bin to obtain the relative
height for a bin, which after normalization yields the true height of the bin. We show
that this relative height can be estimated based on the target-function values of the
sample by using a weighting scheme that compensates for the sampling distribution.

The distribution over the sampled points is proportional to the target-function:

1

p(z?) o f(zD). To compensate for the sampling distribution, a weight of e

can be used for each sample point (). This weighted average results in the following
estimate for the relative height of a non-empty bin:
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where 29 is the i*" sample point in the bin, and np;, is the number of sample points
in the bin. Bins for which no samples are obtained receive a zero estimate. This leads



2 PROPORTIONATE SAMPLING ALGORITHM 3

to the following estimate for the relative height hy;, of a bin:

% for Nbin > 0
=(9) ebin f(x(l))

0 for npp=0

hbin =

The main assumption we make is that within any bin containing mass, the function
is bounded away from zero. Then in the limit of an infinite number of samples, the
expectation of this estimate multiplied by the width w of the bin converges to the
desired value of [. f(x)dz, the relative amount of mass represented by the bin:

w E(hyin) = | f(x)dx (1)
bin

This result follows from the proof given in appendix A, by considering the special
case of ¢ = 1 used by e.g. the Metropolis algorithm. If f was a normalized valid den-
sity function, eq. (1) equals the probability that a state drawn from the distribution
will lie within the bin. If not, the resulting values can be normalized. In the limit of
an infinite sample size, all bins will have been visited with probability one. Given
furthermore that the estimate of each bin converges to the relative amount of mass
represented by the bin, the normalized estimate converges in the limit to the true
density function.

The proposed procedure is as follows, see Figure 1. First, we obtain a chain = by
sampling with a MCMC algorithm, such as Metropolis-Hastings. Next, we randomly
sample a set y of m points from x. Since the sample produced by MCMC methods
converges to the target distribution, points in y are independently identically dis-
tributed (i.i.d.). This step is necessary for the proof, but may be omitted by choosing
y = z. Finally, for each bin, we find the points ypi, in y that fall within the bin. The
height of the bin is determined by taking a weighted average of the function values
of these points.

The estimate obtained with the above procedure may yield improvement for two
types of inaccuracies that occur for standard MCMC methods:

e Local scale effects: since estimates are based on bin counts, substantial variance
in the height of individual bins may occur.

e Macro scale effects: in multi-modal distributions, difference in the time spent
in each mode can lead to variance in the fraction of samples obtained for each
mode. This phenomenon is known as ’bad mixing’ .

2.1 Empirical Results

To demonstrate the potential benefit of the post-processing step described above,
MCMC is compared to MCMC with post-processing on two example problems.
The first problem consists of a single Gaussian. The sampling method used is the
Metropolis algorithm, which employs a symmetric random walk proposal distribu-
tion, i.e. g(z*|z®) = ¢(z¥|z*). The standard method has substantial variance for
the given number of sample points (5000), exemplifying a local scale effect, see figure
2. The post-processing step strongly reduces this variance.
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Distribution-proportionate Algorithm

/*Metropolis-Hastings sampling algorithm*/
initialize zo s.t. f(zo) # 0
fori=0:n—1,

Sample u ~ U(0,1)

Sample z* ~ q(x*|z(™)

. . f@")a(z @ |z”) *
1fu<m1n(1,m) A f(z*) #0

Tit1 =T*
else

Tiy1 = ¥
end;

/*Post-processing step*/
fori=1:m, ,
Sample y* from z with p(y( = xj)

end
V bin € bins
Yoin = {y' € Y|y’ € bin}
if |ybin| =0
hpin =0
else
hiin = |ybin‘#
v/ €vupin F(u))
end

Figure 1: Distribution-proportionate Sampling Algorithm: sample according to f(z),
weight according to ﬁ
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Figure 2: MCMC and MCMC + post-processing on a simple uni-modal distribution.

The second problem consists of two Gaussians. In multi-modal distributions such
as these, the amount of sample points spent in each mode may not be proportional
to the mass represented by the modes, due to limited sample sizes. This problem
is known as bad mixing, and can result in macro-scale inaccuracies. If all modes
are visited, standard MCMC plus the post-processing step may reduce this form of
variance, as shown in figure 3.

3 Exponentiated Sampling Algorithm

The second problem of the previous section exemplifies the possible effects of bad
mixing. When the proposed post-processing step is used to estimate a distribution
however, it is no longer necessary to sample according to the target distribution.
Thus, we may choose to perform exploration by sampling according to f?(x), where
q is a constant governing the degree to which higher probability states are pre-
ferred. The weights required to compensate for the sampling distribution are given
by f~4(z). For ¢ = 0 for example, this results in random sampling over the states
containing mass. This leads to the algorithm shown in Figure 4.
The resulting estimate converges to the optimal values:

2500) €bin @) fa(z@®)
hpin = > o) epin f 1 @®)

for npp >0

0 for npp=0

w E(hpin) = f(x)dx
bin
A proof of this is given in Appendix A. To demonstrate the potential benefit of
exploration, the third test problem consists of two distant Gaussians, connected by
a 'tunnel’ of low probability density. For sparse, multi-modal problems such as this
example, standard MCMC is likely to visit only part of the modes of the distribution.
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Figure 3: MCMC and MCMC + post-processing on a bi-modal distribution.

By lowering the influence of high probability while still taking the target function
into account, exploration can improve the chances of visiting the different modes. The
subsequent post-processing step ensures that the resulting estimates still represent
the target function.

Figure 5 and 6 show the results for this third test problem. While standard
MCMC has only visited one of the modes after 5000 samples, the exponentiated
method (with q = 0.1) has substantially explored the space, visiting all states with
substantial mass multiple times. Using the proposed post-processing step for esti-
mation, this results in an accurate estimate of the distribution.

4 Advantages and Limitations

The proposed method for estimating the mass represented by a bin is based on
values of the target function for sampled points within the bin. This estimate is
bounded by the minimum and maximum of value of the density function over the
bin. As demonstrated, the estimate can have substantially lower variance than an
estimate based on counts. The method can only be accurate however if sampled
target function values in a bin are representative of the bin. If the target function
is highly variable over the range of a bin, this may not be the case. To ensure
representative samples, the bin-size may be chosen small, such that the variability
of the target function within a bin is limited. On the other hand, an overly small
bin size may result in empty bins, for which no informed estimate can be given, and
thus the choice of the bin size is an important factor. Ways to overcome this problem
are detecting high-variance bins and then splitting them. It is also possible to use
self-organizing networks such as Kohonen maps [4] to partition the input-space. We
have to explore these issues further.

Since MCMC often converges slowly for practical purposes, there are techniques
to speed-up the MCMC sampler, e.g. parallel tempering and simulated tempering.
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Exponentiated Sampling Algorithm

/*Metropolis-Hastings sampling algorithm using an exponenti-
ated distribution*/
initialize zg s.t. f(xg) #0
fori=0:n—1,
Sample u ~ U(0,1)
Sample z* ~ g(x*|z(*)

. . FUx™)q(z sy |x™ * *
1fu<m1n(1,m) A f(z*)#£0 Tit1 =T
else

Ti41 = (@)
end;

/*Post-processing step*/
fori=1:m, ‘
Sample y@ from z with p(y(l) =xj) = i‘

|z

end
V bin € bins _
Ybin = {y’ € y|y' € bin}
if |ybin| =0
hbin =0
else
 Yye, FWOFTW)
hbin - y’zyb;n F=a(y")
end

Figure 4: Exponentiated Sampling Algorithm: sample according to f4(zx), weight
according to f~9(z).
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Figure 5: MCMC and Exponentiated MCMC + post-processing on a sparse multi-
modal distribution.
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Parallel tempering [2, 3] proposes running in parallel N MCMC chains with different
stationary distributions one of which is equal to the target distribution. Each such

MCMC chain ¢ converges to a target distribution f (x)ﬁpm with various values
for the temperature T'empli]. Every step, the parallel chains interact by exchanging
states between them to improve convergence of the first MCMC chain: better states
of a warmer chain (e.g. with higher temperature) could be inserted in a colder chain
(e.g. with lower temperature) that is moving slower through the search space than
the warmer one. Simulated tempering [6] only uses one long chain which changes its
temperature from time to time. Previous states generated with higher temperature
can be reinserted in the chain. In parallel tempering, states from a warmer chain are
inserted in a colder chain to improve mixing. Note that, normally, only the samples
from the (part of) chain which samples from the target distribution are used, the
rest of the samples are discarded. By choosing ¢[i] = m as the constant from
the exponentiated sampling post-processing method however, all samples from all
chains can be used to approximate the target distribution.

5 Conclusions

A post-processing method for MCMC has been proposed that provides estimates
based on the target function. The procedure can substantially reduce variance on
both local and macro scales, as demonstrated in experiments. Since the estimates
are not based on counts, it opens up a potential to sample from more explorative
distributions while retaining unbiased estimates of the target distribution. One class
of such sampling methods, based on exponentiation, was presented. It was seen that
mixing can be improved by sampling according to an exponentiated version of the
distribution, thereby obtaining substantially better estimates of the distribution.
The proposed method is expected to be of benefit in practical applications for which
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Figure 6: Exponentiated MCMC + post-processing on a sparse multi-modal distri-
bution: frequencies of the sampled points.

the bin-size can be chosen such that the variability of the target function within
bins is limited. Furthermore, this work may serve as a starting point for the de-
velopment of other exploration schemes and corresponding weightings for different
MCMC algorithms.

Appendix A

We prove that the estimate produced by the Exponentiated Sampling Algorithm
(Figure 4) converges to the optimal values, i.e. for each bin:

w E(hpin) = f(x)dx
bin
where

2(9) ebin fl@®) =2 ()
hpin = Yot 1@D)

for npp >0
0 for npp=0

and np;, is the number of sample points in the bin. For bins not containing mass, the
algorithm cannot accept any sample points, as the function necessarily equals zero
over the domain of such bins. Thus npy, = 0, and the resulting estimate correctly
equals zero. For bins containing mass, it was assumed that the function is bounded
away from zero over the domain of the bin. For these bins, the probability that one
or more sample points are received (np;, > 0) converges to one in the limit of infinite
sample size.

w E(hpin) = w sz“)emnf(fr(i))f*q(x(i)) B

> e epin £z )
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using the property that these points are i.i.d. (see text), this equals

x(9) €bin

o Dw oy B B
St S U zD) T np Efe(z®)  EBf-(z®)
fi(z) [y F(y)dy

I=q(.(0)) — 1—q —
EE @) = | T Ry [ Fldy”

nbinE

a
bin Jbin fsr():zi)dyfl_q(m)dx -
for ¢ = m, this is
e[ pa s =c | s
Furthermore,
Ef(at) =

fix)  Jx F(y)dy
bin fX fq(y)dy fbin fq(y)dy
7(1(:6) “9(z)dx

bin Join fq(y)dil/f (z)d

for ¢ as given above, this equals

[ =

c flx)f~Y(x)dx = c/ ldr = cw

bin bin
Substituting these expectations in eq. 2 yields

Eft-iaDw ¢, fle)de w
) =, e
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