Dependency-style Generic Haskell

Andres Loh
Dave Clarke

Johan Jeuring

institute of information and computing sciences, utrecht university
technical report UU-CS-2003-022

www.cs.uu.nl

Technical Report
Dependency-style Generic Haskell

Andres Loh Dave Clarke Johan Jeuring

Institute of Information and Computing Sciences
Utrecht University P.O. Box 80.089
3508 TB Utrecht, the Netherlands

Abstract

Generic Haskell is an extension of Haskell that supports the construction of generic
programs. During the development of several applications, such as an XML editor
and compressor, we encountered a number of limitations with the existing (Classic)
Generic Haskell language, as implemented by the current Generic Haskell com-
piler. Specifically, generic definitions become disproportionately more difficult to
write as their complexity increases, such as when one generic function uses another,
because recursion is implicit in generic definitions. In the current implementation,
writing such functions suffers the burden of a large administrative overhead and is
at times counter-intuitive. Furthermore, the absence of type checking in the current
implementation can make Generic Haskell hard to use.

In this paper we develop the foundations of Dependency-style Generic Haskell
which addresses the above problems, shifting the burden from the programmer to
the compiler. These foundations consist of a full type system for Dependency-style
Generic Haskell’s core language and appropriate reduction rules. The type system
enables the programmer to write generic functions in a more natural style, taking
care of dependency details which were previously the programmer’s responsibility.

1 Introduction

Generic programming simplifies a programmer’s job. No more need a programmer
write functions such as map or fold or pretty_print for her data structures. These can be
written once and for all as a generic definition and applied automatically to all of the
programmer’s datatypes, even as those datatypes evolve.

In Classic Generic Haskell, a Haskell extension based on ideas due to Hinze [13, 16,
18], generic functions can be written which are applicable to Haskell datatypes of all
kinds. Generic functions are easy to write. Cases are supplied for sums and products,

for the unit datatype, for primitives, and for constructors. The type of each case fol-
lows a particular pattern. To produce a generic instance for some type, Hinze’s theory
dictates how a compiler assembles cases together following the structure of the type to
produce well-typed code.

We have experimented quite a lot with the Classic Generic Haskell compiler and
implemented a number of advanced generic programs such as digital searching, the
zipper, and XML tools such as a compressor, an editor, and a database. For all Classic
Generic Haskell’s simplicity, however, some complexity remains to hamper us as soon
as we write generic functions for these more involved applications. Rather than write
generic definitions in the natural recursive style modern programmers are accustomed
to, as in

map(Prod a b) (a,b) = (map(a) a,map(b) b),

the theory underlying Classic Generic Haskell dictates that we supply additional pa-
rameters for the recursive invocations of generic functions, as in

map(Prod) mapa mapb (a,b) = (mapa a, mapb b).

The additional arguments mapa and mapb are used to denote the recursive instances
of map at the types for the arguments of the product. These function arguments are
supplied with the appropriate value when the compiler generates code.

When using a generic function that depends upon another generic function, the num-
ber of parameters increases and functions must be tupled together, and unpacked when
required. We must write something like

foobar(Prod) (fooa, bara) (foob, barb) (x,y) =
(definition of foo, definition of bar)

rather than the more natural

foo (Prod a b) (x,y) = definition of foo
bar(Prod a b) (x,y) = definition of bar.

The reason for the complications is that we do not have access to the type arguments,
only to the recursive calls of the function being defined. That means, for instance,
that we cannot access bar(a) while defining foo(Prod) as a stand-alone function. The
language forces the function into the structure of a catamorphism, but sometimes this
tixed recursion pattern is not a good match for the algorithm one wants to implement,
resulting in unnecessarily complex and nearly unmaintainable code.

Our present goal is to move this complexity from the user to the compiler. This shift
enables the programmer to write her code in a natural style, leaving the dependency
constraints to the type system. The result is not only a rational reconstruction of Classic
Generic Haskell, which we dub Dependency-style Generic Haskell, in doing so we gain
in expressivity, enabling examples which were previously only possible using unnatu-
ral coding practices.

From a larger perspective, we provide a firm foundation which not only goes be-
yond the foundation for Classic Generic Haskell, but opens the door to tackle problems
which had previously seemed too far off. Future possibilities include better support for
type-indexed types, higher-order and locally defined generic functions, dependency
inference, type inference of kind-« type arguments, generic functions based on kinds
other than %, and pattern matching on type arguments.

The paper is organized as follows. Section 2 presents some motivating examples.
Section 3 describes the core calculus. Section 4 presents type rules for checking well-
formed expressions along with their dependency information. Section 5 gives the re-
duction semantics of the calculus. Section 6 describes related work. Section 7 discusses
what we have achieved here, and points to future work.

In this paper we use Classic Generic Haskell to refer to earlier versions of Generic
Haskell, as implemented in the Amber and Beryl [5] versions of the compiler. This pa-
per describes the foundations of Dependency-style Generic Haskell. When no confusion
will arise, we use Generic Haskell to refer to Dependency-style Generic Haskell.

2 Examples

This section introduces Dependency-style Generic Haskell through a number of exam-
ples.

2.1 Generic equality

The equality function takes two values of a datatype and compares them. In Haskell
the equality function can be derived for a user-defined datatype, as in

data Bush = Leaf Int | Bin Bush Bush deriving Eq.

In Generic Haskell we can define the generic equality function. A datatype consists
essentially of sums, products, base types like Int, and a unit type. Sums, products and
unit can be viewed as Haskell datatypes as follows:

data Unit = Unit
data Sumab=1Inla |Inrb
data Proda b = (a,b).

We need to define equality only on these types to obtain an equality function for an
arbitrary datatype. In Classic Generic Haskell, this is coded as follows.

type Eq(x) t =t — t — Bool
type Eq{i1 — r2)) £ = VuEq{r)) u — Eq{a) (¢ u)

eq(t::x) it Eq(x) ¢

eq(Int) i j =eqlntij

eq(Unit) Unit Unit = True

eq(Sum) eqa eqgb (Inla) (Inla’) =eqaaad

eq(Sum) eqa eqb (Inr b) (Inr ') = eqb b V'

eq(Sum) eqa eqb _ _ = False

eq(Prod) eqa eqb (a,b) (a',b') =eqaaa Neqgbb V'

This definition consists of a kind-indexed type, a type signature assigning the kind-
indexed type to egq, and several cases defining eq for the basic datatypes. Using this def-
inition, the Classic Generic Haskell compiler generates a definition of eq(Bush), which
is used to compare two Bush values [18].

The function eq is a generic function which recurses over the type structure of its
argument type. The recursion is implicit in the arguments ega and eqb in the Sum and
Prod cases. We would rather write the following definition, which is how we define
equality in Dependency-style Generic Haskell.

eq(Int) i j =eqlntij

eq(Unit) Unit Unit = True

eq(Sum éa 6b) (Inla) (Inla’) = eq(da) ad’

eq(Sum 6a 6b) (Inr b) (Inr b') = eq(ob) b b

eq(Sum da ob) _ _ = False

eq(Prod 6a 6b) (a,b) (a',b') =eq(da)aa’ Aeq(ob) bl

The recursion over the type structure is explicit: the case eq(Prod da 0b) is expressed
in terms of eq(da) and eq(éb). We think this style is more readable, especially when a
generic function depends on another generic function. Functions written in the this
style can be translated to the former style, so no expressiveness is lost; the only differ-
ence is readability.

We write da for a type variable that appears in a type index and call it a dependency
variable. Thus we syntactically distinguish quantified type variables from type variables
that may appear in a type index. It is not necessary to make this distinction, but it
simplifies the terminology in later discussions. A dependency variable introduces a
dependency. For example, if we write eq(List da), then this function depends on the
function eg(da). “Depending on” means that in order to call function eq(List éa) on two
lists, we need a function eq(da) that determines equality of the values in the list, as in
the following example,

(let eg(da) = Ax — Ay — eglnt x y in
eq(List éa) [1,2,3] [1,2,3],

let eq(da) = Ac — Ad — toUpper c = toUpper d in
eq(List da) "Hello" "HELLO")

which has value (True, True).
The type of the Classic (i.e., the first) version of eg is the kind-indexed type Eg. Con-
sider the case eq(Prod). The product type has kind x — * — %, and hence eg(Prod)

takes an equality function for the left component of the product, and an equality func-
tion for the right component of the product, and only then takes two product values.
The second line of a kind-indexed type has the same structure for any implicitly re-
cursive generic function. The type of equality on a type of kind x; — «; is a function
from the type of equality for kind x; to the type of equality for kind x,. This struc-
ture is enforced by the translation method used in Generic Haskell. In the case of the
dependency-style definition, a type index always has kind *, but in turn may contain
dependency variables, so a kind-indexed type in the classic sense is not an option. If
we ignore dependency variables, we have the following type for function eg on types t
of kind *.

eq(t) ::t — t — Bool

If a type argument of a generic function contains a dependency variable, and the generic
function uses a (possibly different) generic function in its definition, then the type
records a dependency constraint for the dependency variable. For example, the generic
function eg only uses itself, so for the type List a we get the following type.

eq(List oa) :: Va.(eq(da) ::a — a — Bool) =
List a — List a — Bool

It turns out that all information about the type of a generic function can be calculated
from the base case for a single dependency variable of kind *. For eg this is

eq(da) ::Va.(eq(da) ::a — a — Bool) = a — a — Bool.

The type of eq on a type with a kind other than x, possibly containing many dependency
variables, is a generalization of this type. We make this explicit by abstracting over the
types a and da using the generalize construct, and applying the expression obtained to
the type on which we want an instance of the equality function.

eq(t) :: (generalize (da) a —
(eq(da) ::a — a — Bool) = a — a — Bool) t

In Section 4 we explain how to calculate instances of a generalized type.

2.2 Huffman coding in XComprez

XComprez is a generic compressor for XML documents [12]. XComprez separates an
XML document into its structure (the markup) and its contents (the strings). The DTD
that describes the structure of the document is translated to a Haskell datatype, and the
structure of the document is translated to a value of this datatype. Using knowledge
about the DTD (and the datatype to which it is translated), the structure of an XML
document can be compressed considerably; the contents are compressed by means of a
standard compressor.

To improve the compression of the contents, we apply the following variant of Huff-
man coding. Given an input value, we calculate the number of occurrences of each

constructor. Given the number of occurrences of each constructor, we calculate the op-
timal Huffman encoding for the particular value, and we encode the value using this
encoding.

The function conCount calculates the number of occurrences of each constructor in a
value of a datatype:

conCount(t) :: (generalize (éa) b —
(conCount(da) ::b — [(ConDescr, Int)])
= b — [(ConDescr, Int)]) t.

The function conCount is used in encode

encode(t) :: (generalize (da) b —
(conCount(da) ::b — [(ConDescr, Int)],
encode’ (éa) ::b — [(ConDescr,Int)| — [Bit])
=b— [Bit]) t
encode(da) x = let table = conCount(da) x in
encode’ (oa) table x,

where encode’ is the generic function that encodes each constructor as a list of bits [12].
This is an example of a generic abstraction [6]: a generic function defined in terms of one
or more other generic functions instead of recursively over the type structure. Function
encode is an example where the dependency constraints contain dependencies on other
generic functions, unlike function eg which only contains the constraint that is identical
to the type itself.

2.3 Pretty-printing “important” information

Suppose we want to pretty-print a value of a datatype, but only parts which satisfy
some condition. For example, we only want to print trees that have at least a certain
height, or we only want to print balanced trees. Suppose we have a generic function
important that determines whether or not to print a subtree.

important(t) :: (generalize (da) b — (important(da) :: b — Bool) = b — Bool) t

The function print depends on function important.

print(Int) = printInt
print(Unit) = printUnit
print(Sum éa 6b) (Inl a) =
if important(da) a then print(éa) a else "..."
print(Sum éa 6b) (Inr b) =
if important(6b) b then print(éb) b else "..."
print(Prod éa 6b) (a,b) =
if important(da) a
then if important(6b) b then print(da) H- print(ob) b
else print(éa)ya+H"..."
else if important(sb) b then "..." H- print(db) b
else "..."

The dependency shows in the type of function print:

print(t) :: (generalize (da) b —
(important(da) :: b — Bool, print(da) :: b — String)
= b — String) t.

This is an example of a generic function defined recursively over the type structure,
which depends on another generic function. In Classic Generic Haskell, we would have
to pair the definitions of print and important, defining two essentially separate aspects
at the same time.

2.4 Traversal functions

To illustrate the extensibility Generic Haskell provides, we present a series of modifica-
tions to a running example. Adapting from Limmel and Peyton Jones [25], we use the
following datatypes to represent the organizational structure of a company.

data Company = C [Dept|

data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary

data Person = P Name Address

data Salary = S Float

type Manager = Employee

type Name = String

type Address = String

Update Salaries We wish to update a Company value, which involves giving every
Person a 15% pay rise. To do so requires visiting the entire tree and modifying every
occurrence of Salary. The implementation requires pretty standard “boilerplate” code

which traverses the datatype, until it finds Salary, where it performs the appropriate
update—itself one line of code—before reconstructing the result.

In Generic Haskell writing this function requires but a few lines. The code is based
on the standard generic map:

map(t) :: (generalize (éa) ay ap — (map(da)::a; — ay) = ay —ap) tt
map(Unit) v =0

map(Int) v =0

map(Sum da 6b) (Inl a) = Inl (map(da) a)

map(Sum éa 6b) (Inr b) = Inr (map(5b) b)

map(Prod éa 6b) (a,b) = (map(da) a,map{ob) b).

The generalized type of map takes two arguments so that it can be used in the type
modifying way we are used to. With only one argument it would degenerate to the
generic identity function [14]. This is our first example of a generalized type that takes
more than one type argument.

The code to perform the updating is given by the following three lines, the first of
which is the necessary type signature, the second states that the function is based on
map, though it introduces an additional parameter which is automatically threaded
through the computation, and the third performs the update of the salary, using the
threaded value. The extends construct denotes that the cases of map are copied into
update. These are the default cases described in Clarke and Loh [6]. (This is, in effect, a
preprocessing step and thus extends does not appear in the calculus.)

update(t) :: (generalize (da) a —

(update(éa) :: Float — a — a) = Float — a — a) t
update(da) p extends map(éa)
update(Salary) p (Ss) =S (s- (1+p))

The introduction of the new threaded variable p is impossible in Classic Generic Haskell.
Being able to do this is a small but significant advance over our previous work.

Update “Update Salaries” Political forces require that the code be changed so that
only marketing gets a raise, of 25%, as well as giving a certain manager a 10% raise.
Being versed in generic programming enables the programmer to update the previous
code as follows:

updateNew(t) :: (generalize (da) a —
(updateNew(da) :: Float — a — a) = Float — a — a) t
updateNew(da) extends update(da)
updateNew(Dept) p (D name manager subunits) =
let newp = if name = "marketing" then 0.25 else p in
D name manager (updateNew (SubUnit) newp subunits)
updateNew(Employee) p (E person salary) =
let newp = if person = daevclarke then 0.1 else p in
E person (updateNew(Salary) newp salary).

Separating Matching from Updating Understanding the social nature of manage-
ment structures, the programmer writes her code more generally by separating the
updating of salaries from the code which determines who gets what pay rise.

A match function performs a test on a part of the organizational structure. The re-
sult of the function is one of: NoMatch indicating that no work need be done to that
part; Value n indicating that the value, presumably the amount of the pay rise, needs
to be applied to this part of the tree; and finally Inconsistent indicating that different
subparts of the same part require different inconsistent updates—which requires recur-
sion to further distinguish the parts. This is captured using the following datatype and
operation:

data Data a = NoMatch | Value a | Inconsistent

() :: (Eq a) = Dataa — Dataa — Data a

NoMatch < NoMatch = NoMatch

(Value a) v< (Value b) = if a = b then Value a
else Inconsistent

_ DI _ = Inconsistent.

Using the generic function known as crush, which is a generalization of fold,

crush(t) :: (generalize (éa) a —
(crush(éa) ::b — (b - b —b) —a—D)
=b—-(b—-b—b)—a—Db)t
crush(Unit) eop =e
crush(Int) eop =e
crush(Sum da 5b) e op (Inl a) = crush{da) e op a
crush(Sum da ob) e op (Inr b) = crush(éb) e op b
crush(Prod éa 6b) e op (a,b) = op (crush(éa) e op) (crush(ob) e op b),

the basis for all match functions is

matchBase(t) :: (generalize (da) a —
(matchBase(da) ::a — Data b) = a — Data b) t
matchBase(da) extends crush(da) NoMatch (r<).

This match function can be specialized to perform the match that we are interested in,
as follows.

match(t) :: (generalize (éa) a —

(match(da) ::a — Data Float) = a — Data Float) t
match(da) extends matchBase(da
match(Dept) (D name _ _) =

if name = "marketing" then (Value 0.25) else NoMatch
match(Employee) p (E person _) =

if person = daevclarke then (Value 0.1) else NoMatch

10

The update function can now refer to this match function, though their code can evolve
separately. This is where the dependency information of Generic Haskell comes in.

updatePre(t) :: (generalize (da) a —
(updatePre(da) :: Float — a — a,
update(éa) ::Float —a — a,
match(da) ::a — Data Float)

= Float — a —a) t

updatePre(da) extends update(da)
updatePre(Con éa) p c@(Con a) =
case match(Con éa) ¢ of
Value newp — Con $ update(da) newp a
NoMatch —c
Inconsistent — Con $ updatePre(da) p a

The Con-case is applied at the constructor positions in a value. This code can be con-
verted to an ordinary Haskell value by specializing it to our Company datatype as fol-
lows:

updateGrand :: Float — Company — Company
updateGrand = updatePre(Company).

2.5 Further Applications

Other applications which benefit from Dependency-style Generic Haskell include type-
indexed datatypes [19, 17], such as generic dictionaries and the zipper: a data structure
used to represent a tree together with a subtree that is the focus of attention, where
that focus may move left, right, up, or down the tree. These navigation functions de-
pend heavily upon each other, and create a heavy notational burden when expressed
in Classic Generic Haskell.

3 Core language

Figure 1 presents the grammar for the core language underlying Dependency-style
Generic Haskell. Grammar productions which specifically treat generic constructs are
emphasized. The core language simplifies the language in which we present examples:
all lambda abstractions are explicit, whereas pattern matching, constructors, infix oper-
ators, tuples and lists are not treated specially. Furthermore, let has been divided into
letrec and deplet.

We use horizontal bars over subexpressions to denote potential repetition of con-
structs. For instance, f denotes a vector of (possibly different) types. Both primed (t')
and indexed (tp) elements denote independent elements, rather than the components
of a vector, as we never need to refer to vector elements individually.

A Generic Haskell program consists of four components: programs, expressions,
types and kinds.

11

Kinds

K= * (kind of manifest types) .

| ® (kind of type argument) Dep endencyﬂmmts

| o) (generickind) D = x(éa 5b>]

| K1 — K (functional kind) Expressions
Dependency kinds e u=X,1,2,... (Varlgble.)
pu=(K) =« | (e1e2) (application) .

) . | Ax —e (lambda abstraction)
Kind dependencies | x(t) (type application)
Ku=dazx | letrec X =¢ in ¢) (let(rec) binding)
;pres . (variable) | deplet x(da 6b) :(21 in 22 bindine)

t=a,b,c,... variable evendency bindin

| da,ob,dc,... (dependency variable) Declarations P Y &

| (t1) (application) —_—

| H—t (functional type) D u=x{a) s =(bdc) —e ,

| generalize (0a) — Aa. s generic function
(generic type) Main program

Type schemes/dependency types M:=Dje

s u=Va. (D)=t

Figure 1: Syntax of Generic Haskell core language

3.1 Programs

A program consists of definitions of generic functions, followed by a single expression
to be evaluated. A generic function is a type-indexed value, an expression taking a
type argument, consisting of an obligatory type signature followed by a number of
cases defined over type patterns. Without loss of generality, we also assume that there
is a set of global predefined datatypes and functions, rather than include these in the
calculus.

3.2 Expressions

An expression may be a variable, a function application or abstraction, a recursive let
binding (which is now marked explicitly as letrec instead of let), or one of two new fea-
tures for generic programming. The first of these applies a generic function to a type to
obtain the instance of that generic function on that type. Such an application of a type-
indexed value might introduce a dependency constraint in the type of the expression,
which will be propagated outwards until satisfied. This means that the generic func-
tion depends on an additional value which should be provided by the environment
surrounding the expression. This is achieved using a deplet, the second generic pro-
gramming feature. The deplet construct introduces dependency bindings which are
used to satisfy dependency constraints arising from its body. The variable name asso-
ciated with a deplet must refer to a known type-indexed value defined in the top-level
program.

12

3.3 Types

Types are divided into two levels: types and type schemes, i.e. types with dependency
constraints or universal quantification.

The first level, ordinary program types, consists of type variables (which also re-
fer to globally known datatypes), type application and function types. In addition to
these familiar concepts we have the novel notion of dependency type variable. Depen-
dency type variables only appear within the special type parentheses (-). Ordinary type
variables are bound by a universal quantifier or a lambda abstraction at the type level,
whereas dependency type variables are bound inside the type parentheses within a case
of a generic function (t) — e or in a deplet construct, such as deplet v(da 5b) = e; in e;.
In the generic function case, the dependency variables scope over ¢; in the deplet, the
variable da scopes over ¢; and e, whereas the arguments b are local to e;. The type
of a generic function is a generic type, built using generalize (éa) — Aa. s. Lambda
abstractions on the type level can occur only here. The generic type is instantiated at a
particular type to obtain the type of an instance of the generic function for that type.

The second level consists of type schemes, which are types extended with univer-
sal quantification (to denote polymorphic types) and with dependency constraints (to
denote dependencies on generic functions). A dependency constraint is a set of depen-
dencies, each consisting of the name of a generic function, a dependency variable and
a type. Dependencies are introduced by calls to generic functions and can be satisfied
by deplet-bindings. We write Va. t if the set of dependency constraints is empty, and
(D) = t if there are no quantified variables.

3.4 Kinds

Although they do not appear in the program text, kinds are used heavily in the internal
machinery to control the well-formedness of types.

The kind of manifest types (i.e., types which correspond directly to values) is x. Type
constructors have functional kinds. Furthermore, we have two special kinds which
play a role in the types of generic functions. The “new moon” e is used as the kind of
the type argument in a generic function, and the “full moon” © is the kind of the fully
applied type of a generic function.

If a type contains one or more dependency variables, then this fact is reflected in its
kind, (K) = «, in the form of kind dependencies. A kind dependency, K, is a set consist-
ing of kind assignments for each dependency type variable. We use kind dependencies
to check if the dependency structure of a type is well-formed, as well as to steer the
computation of the generalized type of generic functions.

3.5 Scoping rules

Dependency variables are visible within a type signature, a case of a generic definition,
or a complete expression. Within their scope, dependency variables have to be used
with consistent kind. A deplet introduces local dependency variables, namely the ar-

13

guments to the main dependency variable, in the bound expression. Note that there is
no intended assignment of dependency variables to specific types, and as such, usage
of dependency variables does not need to be consistent in that sense. The important
case in the definition of the function fdv which returns the free dependency variables is

fdv(deplet x(da 5b) = ey in ey) = (fdv(ey) \ {6b}) U fdv(er) U {da}.

Expression variables are bound by an enclosing lambda or letrec, but not by a deplet.
The interesting cases of the function fev which returns the free expression variables are
thus:

fev(Ax — e) = fev(e) \ {x}
fev(letrecx =¢ in ¢p) = (fev(e) Ufev(ep)) \ {x}
fev(deplet x(da ob) = ey in e;) = fev(e;) Ufev(er) U {x}.

Normal type variables are bound by an enclosing type lambda or universal quanti-
fier. The interesting cases are:

ftv(Va.s) = ftv(s) \ {a}
ftv(Aa.s) = ftv(s) \ {a}

Bound variables can be renamed freely.

4 Type and kind checking

The development of the type system we present in this section, and indeed the recent
development of Generic Haskell, has been driven by how generic functions are used in
actual programs. The original work of Hinze enabled independent generic functions to
be written in a natural recursive style [15], though such functions could only be written
for fixed kinds such as *« or x — *. Hinze [16] then lifted this restriction. As a result,
generic functions in Generic Haskell are applicable to types of any kind. Unfortunately,
the style in which functions are written is cumbersome to use. In this paper, we do
things a little differently from Hinze, but gain significantly more ground. We enable
generic functions to be written in a natural style, while retaining the ability to apply
them at all kinds. The Classic Generic Haskell value map(List) becomes map(List da)
in the dependency style. That is, instead of applying map to the type constructor List,
the arguments to the constructor are supplied with dependency variables, such as da
in List éa. In addition, the Classic Generic Haskell value map(List) receives the func-
tion which it applied to the list elements as a ordinary function argument, whereas in
Dependency-style Generic Haskell, this argument is supplied via a deplet expression
which provides a binding for map(da).

Thus in the dependency style, whenever a type argument appears within the type
parentheses (-), it has kind x, modulo dependencies. Our type system assigns the kind
(6a::x) = « to the type List da, which mirrors the x — x kind of the List type con-
structor. In the dependency style, generic functions still possess kind-indexed types,

14

but they can no longer be automatically applied to types of all kinds, rather types must
be supplied with enough dependency variables to make them effectively kind x. So
ultimately nothing is lost.

The code of map (see Section 2) introduces a recursive dependency of map on itself at
type éa. In addition to this common behavior, our system enables further dependencies
on other generic functions. These are recorded in a generic type, as we also have seen in
the examples. The goal of the type system, beyond usual type correctness, is to ensure
that the correct dependency information is specified with generic functions, and that
dependencies are correctly satisfied or propagated when using generic functions.

The kind checking rules are explained in Section 4.1. Before delving into the type
system, we must first discuss in Section 4.2 the rather technical topic of kind-indexed
types, which denote the signatures of generic functions and from which the types of
instances are determined. Forming the basis for Hinze’s elegant proposal [16], these
now bear the brunt of the complexity with the addition of dependencies. The type
checking rules will then be explained in Section 4.3.

a:tk €A
T-V T-DV.
- Araz ()=« - Atda:(dax) =«
ARt <
T-SUB Pr_ALsp
AFt:po
At (K)= (ko —x1) Abh:(K) =
T-Arp
Ak (tl i’z) i (K) = K1
AFsiu(K)=x AbFs:(K)=x
T-FuN
Al (s1 = s2)(K) =«
AaczkibFsz()=Kx K€ {*x0}
T-FORALL
At Vas: ()= Kk
Aazkg s (K) =K
T-LAMBDA
A Aas::(K) =K — K
AFsi dbix = %
= AF (D) = sy (dag::xg, K) =
TDpp OEKT X (D) = sp:: (ag 2 k9, K) = *
A (x(dag 6b) ::51,D) = sp:: (dag :: ko, K) = %
AF Aa. s::(6az:x) = "
T-GENERIC

A |- generalize (Ja) — Aa.s:: () = ¢"

Figure 2: Kind checking rules

15

(K1) = 11 < (K2) = 1
K-INST-REFL. —— K-INST-DEP
ng (K1> = K1 < (5CIZZK2,K2) = K1

Figure 3: Instance relation on (dependency) kinds

4.1 Kind checking

Kind judgments are of the form A + f:: (K) = «. The environment A assigns kinds
to global datatypes and local type variables. The kind-level dependencies K bind de-
pendency variables to kinds. Dependencies are part of the syntax of the kinds. The
intention is that the dependencies are inferred rather than previously known, which is
why K does not appear on the left-hand side of the turnstile. The codomains of both A
and K are restricted to plain kinds i.e., dependencies on the kind level are not nested.
The full kind checking rules are presented in Figure 2.

The rules T-VAR, T-APP, T-FUN and T-LAMBDA are relatively standard, except that a
collection of kind-level dependencies is threaded through the rules along with the kind.

The connection between kind-level dependencies and the use of dependency vari-
ables on the type level is established in the rules T-DVAR and T-DEP. A dependency
variable introduces a dependency on itself by rule T-DVAR. Dependency variables
must be used consistently at the same kind in any given scope. Type-level dependen-
cies are also reflected at the kind level using rule T-DEP. If a type has a dependency of
the form (v(da b) :: s), then da is the only dependency variable that is visible outside;
arguments b are local to the type scheme s. Thus s may depend on these argument
variables (and only on these) and is thus of kind (da::x) = x, where ¥ are the argu-
ment variables” kinds. The kind of éa is K — *, and this dependency is recorded in the
final kind of the type.

Type signatures of generic functions are special in that they contain the generalize
construct. This construct transforms a specific instance of the type of the generic func-
tion into a generalized type. This process is mirrored on the kind level. From rule
T-GENERIC, the type to be generalized must have kind «", where

*0 =« A = o W

The arguments of this type are, after generalization, instantiated to the type argument
of the generic function. To enforce this instantiation, the type argument of the generic
function gets a special kind, the “new moon” e. Accordingly, rule T-GENERIC assigns
kind

n+1

o =0 o'l =e— 0"

to the type resulting from generalization. The fully applied generalized type then has
“full moon” kind 0. Only generalization introduces @ and o kinds, and P-GENERIC
(discussed in Section 4.3) enforces that all type signatures of generic functions are of
kind o.

16

Type signatures of generic functions must thus always consist of a fully applied gen-
eralized type, possibly involving universal quantification for type variables of kind
0O, as allowed by rule T-FORALL. The algorithm that computes the generalized kind-
indexed type for the generic function makes heavy use of this fact.

The final component of kinding is the instance relation p; < p2 between kinds. This
is defined in rules K-INST-REFL and K-INST-DEP (Figure 3), and is used as a kind-level
subsumption in T-SUB to extend the set of dependencies which appear in a kind.

4.2 Kind-indexed types

One of the key ideas of Hinze’s theory, as implemented in Classic Generic Haskell, is
that certain type-level constructs, such as recursion, abstraction and application, are
always interpreted as their value-level counterparts. This leads to the reasoning that
generic functions possess kind-indexed types [16]. The type of a generic function is
tied to the kind of its type argument, establishing identities such as:

eq(Tree Int) = eq(Tree) (eq(Int)).

Here the application at the type level (of Tree to Int) can be replaced by the value level
application of two instances of the generic function at those types.

In Dependency-style Generic Haskell, we no longer allow type arguments of higher
kinds, but we keep the general idea: instead of a higher-kinded type, we use type
arguments which contain dependency variables. This shift enables generic functions to
depend on generic functions other than just itself. In the dependency style, the identity
corresponding to the one above is:

eq(Tree Int) =
deplet eq(da) = eq(Int) in eq(Tree éa).

In Classic Generic Haskell, kind-indexed types have to be defined explicitly by the
programmer. For instance, the type of generic equality reads

Eq{(x) a=a— a— Bool
Eq(x1 — x2)) a = Vb.Eq(K1) b — Eq(K2) (a D).

The function eq(t) then has type Eq(x)) t, where « is the kind of ¢. The second case cap-
tures the fact that equality on kind x; — x; takes an equality function on the argument
type to an equality function on the resulting type.

Note that the second line of this type could be automatically derived by the compiler,
because the interpretation of type application as value-level application is intrinsic to
the theory. Because of the increased complexity due to dependencies, we opt for this
solution in dependency-style Generic Haskell, requiring a signature only for kind x,
plus dependency information. Thus a generic type signature takes the following form
(the general form of types of kind 0):

x(c) :: Va. (generalize (6a) — Ab. (y(da) ::s) = to) c...c.

17

Three sorts of type variables occur within a type signature: the type argument c; outer
quantified, non-generic variables a; and abstracted variables b. The latter kind are called
generic variables and will be instantiated with the type argument when generating in-
stances of the generic type. Note that there are as many applications to c at the end as
there are variables in b.

A generic function may depend on itself and on other functions. The dependen-
cies ¥ are the generic functions that x depends on (we also refer to the vector i as
dependencies(x)).

The pair (length(a), length(b)) is called the signature of x. We define the base type of x
as

base(x) (a | b) =

The base type contains no dependency information.

Let us look at at the type schemes s that occur in the dependency constraint: for the
generic type to be well-formed, each of these type schemes has to be an instance of the
base type of the corresponding generic function y. However, as y might be another
generic function (thus not x itself), it might be of a different signature, and we cannot
be sure to which variables the base type is instantiated. All we know is that there must
be such an instantiation. This instantiation is called the constraint substitution for y in x,
so that we can rewrite each dependency constraint in the type to

y(da) :: base(y) (cs(y; x;a | E))

Hence, cs(y; x; -) maps a vector of variables of the signature of x to a vector of variables
of the signature of y. The whole type signature of x can thus be written as

x(c) :: Va. (generalize (da) — Ab. (y(da) :: base(y) (cs(y;x;a | b)))
= base(x) (@ | b)) c

The constraint substitution cs(x; x;) for a function that depends on itself is always the
identity.

The generalize construct generalizes the type for a special case (the type of x(da),
where da is of kind (da :: x) = %) to a function tapp which produces a correct type for
all type arguments of kind (K) = *. This function is used during type checking and is
defined in terms of the kind-indexed type kapp as follows:

tapp(x;t) = Va. kapp(x;0;a | t...1).

where p is the dependency kind of t. The function kapp, which is similar to the kind-
indexed type in Classic Generic Haskell, depends on both the non-generic and the
generic variables that occur in the type signature. The full definition of kapp is:

= base(x) (a | f)

kapp(x; ; | £)
| £) = kapp(x; %;a | 1)
;alt) =

kapp(x; () = *;

kapp(x; (da::k — %, K) =

d. (y(éa 6b) :: kapp(y,(b:x) = %;cs(y;x;a | d ob)))
= kapp(x; (K) = x;a | [da — d]t).

Q\ ISR

18

For kind « types (without dependency variables), the resulting type is the type specified
in the type signature, without the dependencies. The third case expresses the intuition
that a generic function on a type that depends on a variable of kind ¥ — * introduces
dependencies for the functions that x depends on, using kapp on that kind and the
corresponding constraint substitution from the type signature. If da is not of kind *,
then local dependency variables, &b, are introduced in the dependency constraints and
used in the recursive calls of kapp to reduce ¥ — * to the form (K) = .

One important thing to observe is that with these definitions of tapp and kapp, the
type specified by the user is indeed the special case for a dependency variable éa of
kind (éa ::) = . Expanding the definition yields

tapp(x; da)

= Va. kapp(x; (da:: %) = x;a | éa)

= Va. Vb. (y(a) :: kapp(y; x;cs(y; x;a | b)) = kapp(x;x;a | b)
= Va. Vb. (y(da) :: base(y) (cs(y;x;a | b))) = base(x) (@ | b)
which, if one abstracts from the quantified variables, is exactly the part that can be
found within the generalize construct.
As a concrete example, recall the type of generic equality from Section 2:

eq(a) :: (generalize (da) — Ab.(eq(da)::b — b — Bool) = b — b — Bool) a.

Figure 4 contains some example values of the tapp function for this generalized type.
The last case, involving a dependency variable of kind x — *, is an example of a nested
dependency constraint, making use of a local dependency variable argument.

Fox tapp(eq; t) =t —t — Bool
Pk — % tapp(eq;t da) = Va.(eq{da)::a — a — Bool) = ta — ta — Bool
tix — (x — %) tapp(eq; t da 6b) = Va.Vb.(eq{da) ::a — a — Bool,eq(b) :: b — b — Bool)
=tab—tab— Bool
ti(x —x) — % tapp(eq;tda) = Va.(eq(da éb) ::Vb.(eq(db) ::b — b — Bool)
=ab — ab— Bool)
=ta — ta— Bool

Figure 4: Example instances of tapp for generic equality

4.3 Type checking

Type judgments have the form A K V - ¢::s, where the environment V assigns types
to variables and generic function names, whereas the other two environments sup-
port kind checking. The type judgments differ from a standard Hindley-Milner system
mainly due to the handling of dependency constraints. As dependency constraints rep-
resent hidden arguments, and dependency constraints can be nested and contain uni-
versal quantifiers, we also have to deal with rank-n polymorphic types to some extent.
We have drawn from Odersky and Laufer [28] to deal with this aspect.

19

xu:seV

EVAR T KV E s
- AKVEe:zs; AKEs <3 -GN AKViezs adftv(V)
AKVEe:s AKVFEe::Vas
EA AKVEe (D)= (th—t) AKVFEe:(D)=th
-App
AKVF(€1€2)I:(D):>t1
AK V,x:tjFe (D)=t
E-LAMBDA
AKV")\X—>€:Z(D>:>t1—>t2
AbFsi:o
B TApp _F 51 eV AKVItapp(x;t) = s
AKVEx(t):sp
EoLETREC V =V,xts AKVFeis AKV Ekeis
AKVFEletrecx=¢iney:: sy
K'=K,0b:x At 6adb: (K') = %
AK'VFE e1 :Va. (Dl, DZ) =t a¢ ftV(DZ) AKHF (Dg) < (Dz)
A KV ey (x(da db) ::Va. (D1) = t',D3) =t
E-DEPLET &2 (x(0a >7 a. (B1) 3)
AKYV F deplet x(da éb) = ey iney:: (Dy) =t
Figure 5: Type checking rules
T-INST-REFL m
AKFHE <
T-INST-DEP (Dl) (Dz)
AKHE (D7) =t< (D) =t

AKI—[a»—>t]51<52
AKFVas <sp
AKFEs <sy a¢ftv(s)
AKFE sy < Vasy
At6adb: (6bk,K)=x AFs:(K) =«
AKF () < (x(6a 6b) ::s)
AKFs;<s; AKF (Dy) < (D)
A K- (x{da 6b) ::51,D1) < (x(da ob) :: 55, D»)

T-INST-UNIV-1

T-INST-UNIV-2

D-INST-1

D-INST-2

Figure 6: Instance relation on types and dependency constraints

20

The type rules E-VAR, E-GEN, E-APPL, and E-LAMBDA are pretty standard. Type
schemes and thus dependency constraints are only introduced by the following con-
structs: a variable that has been bound in a letrec, or a type application of a generic
function.

The letrec construct is the usual recursive let binding corresponding to let in Haskell.
All variables bound in a letrec binding are assumed to be mutually dependent. Depen-
dency constraints are treated analagously to class constraints or implicit parameters in
that a value having dependencies may be bound to a variable in a letrec. This gives the
feel of dynamically scoped dependency variables. For example, the program

letrec x = map(List da) in
(deplet map(da) = Ax — x+1inx [1,2,3],
deplet map(da) = null x in x ["one", "two", "three"])

has type (List Int, List Bool). We made this choice for the typing rule of letrec because
it matches the idea that the dependencies are part of the type of a value. An alternative
is discussed in Section 7.

By rule E-TAPP, a generic function is declared with a type signature of kind ©. From
the generic type signature and the type at which the generic function is applied, the
result type of the expression is computed using the auxiliary function tapp, described
above.

A deplet expression is used to satisfy dependency constraints arising from the use
of a generic function in its body. The type s (without dependencies) of the expression
e; which is used to satisfy the dependency must match the type occurring in the ap-
propriate dependency constraint of the body expression e;. As deplet is somewhat
like locally defining an additional case for a generic function, we use local dependency
variables as type arguments when the dependency which arises is not of kind . Thus,
the argument variables 0b in the rule E-DEPLET are local to the expression e;. Finally,
the remaining dependencies D; and D, of the bound expression and the body must be
compatible as well.

As with kinds, we have a subtyping relation on types (Figure 6). The relation s; <
sp expresses the intention that expressions of type s; are also of type s. The relation
is exploited in the subsumption rule E-SUB. The rules in Figure 6 modify those of
Odersky and Laufer to handle dependency constraints. Rule T-INST-DEP establishes a
connection between the instance relation on type schemes and the instance relation on
constraints. Dependency constraints represent hidden parameters. Unused, but well-
kinded dependencies can be added to a type (D-INST-1). Furthermore, because they
are arguments, dependencies become more general as the types in them become more
specific (D-INST-2). This is analogous to the contravariance of the argument position
of the function arrow.

The final rules are for type checking the well-formedness of generic definitions and
programs. These are given in Figure 7. By P-GENERIC, a case of a generic function is
type correct if the type of its right-hand side matches the type declared for the generic
function. This is achieved using the function tapp to compute the type of the generic

21

Aa:eks:()=0
AFbéc:(K)=+ AKVFe:tapp(x;bdc)

AV x(a) ::s = (b c) — e well-formed

P-GENERIC

AV x(a) s = (b dc) — e well-formed
AKVEe:s

AV I x(a) ::s = (b éc) — e;e well-formed

P-PrROG

Figure 7: Program checking rules

function at the specific type of the case in question, using the type signature of the
generic function. Finally, by P-PROG, a program in the core language is type correct if
all cases of all generic functions are correct, and if the final expression is typeable. The
environments A and V contain global datatypes and global functions, respectively.

5 Reduction semantics

Figure 8 presents the reduction rules for the core language. It remains implicit in the
rules that bound variables should generally be renamed in such a way that no variables
are captured during substitution. The style in which these rules are presented keeps
letrec and deplet definitions around to act like environments for the expressions be-
ing evaluated. Reduction proceeds against a fixed environment S containing globally
known values and the bindings for each case of each generic function that is declared
in the program. The environment therefore contains entries of the form x — e which
map a variable to an expression and x(da db) — e which define a case of a generic
function or a generic function’s specialization to a specific type. The Generic Haskell
compiler computes embedding and projections of all datatypes into types constructed
from Unit, Sum, and Prod, and specializations for such types. This mechanism is or-
thogonal to the system described in this paper, and has been described elsewhere [14].
We assume that specializations are provided for all globally known type constants. (A
more detailed analysis is possible that provides only the specializations that are really
needed.) To be able to perform the reduction, we need to keep information about de-
pendencies from the type checking process. The reason is that we have to know when
it is safe to reduce a deplet or a lambda expression. Therefore, we assume that the
domain of an expression’s dependency constraint is accessible via the deps function. It
is easy to verify that we can maintain this information during the reduction process.
We also assume that the kinds of all type arguments in generic applications and the
dependencies of all generic functions are available via functions arity, which gives the
arity of a type, and dependencies, which gives the names of generic functions on which
it depends. The function length denotes the length of a vector of variables.

The reduction rules R-APP and R-LETREC are standard, except for the fact that in

22

Variables and application

(R-GLOBAL) X~ e
where x — e €S
(R-APrP) (Ax — e1) ex ~ [x — ex]er
where deps(ep) = @
letrec
(R-LETREC) letrec xg = ¢p; X = e in ¢/

~> letrec xog = ep; X = e in [xg — epe’
(R-LETREC-ELIM-1) letrecx=¢;y = ¢ in ¢y ~ letrecy = ¢ in ¢
where X Nfev(letrecy =€ iney) = @
(R-LETREC-ELIM-2) letrec € in ey ~ ¢
(R-LETREC-LAMBDA) letrec X =ein Ay — ¢y ~ Ay — letrecx =ein ¢
deplet
(R-DEPLET) deplet x(da 6b) = e in x(éa 6b) ~ e
where fdv(e) \ {0b} =@
(R-DEPLET-ELIM) deplet x(da 0b) = ey in ey~ ey
where x(da) ¢ deps(ez)
(R-DEPLET-LAMBDA) deplet x(da 6b) = e; in Ay — e,
~+ Ay — deplet x(da ob) = e1 in ey
(R-DEPLET-APP) deplet x(da 0b) = e1 in (e; e3)
~> (deplet x(da ob) in ey) (deplet x(da 6b) in e3)
(R-DEPLET-LETREC) deplet x(da 0b) = ¢g in (letrec X =¢ in ¢')
~s letrec ¥ =¢ in (deplet x(da ob) = ¢g in ¢')
(R-DEPLET-DEPLET) deplet x(da 6b) = ¢; in (deplet y(éa’ 6b') = e; in e))
~+ deplet x(éa 6b) = ¢g in
(deplet y(éa’' 6b') = (deplet x(da 6b) = ¢y in

e1) in ep)
Type application
(R-CASE) x(a 6b) ~ e
where x(a 5b) e €S
(R-TAPP) x<t0 t1 %> ~ deplet y(éal %) = y<t1 %> in x<t0 om %)

where da, ob are fresh o
arity(t1) = length(6b)
dependencies(x) =¥

Figure 8: Reduction rules

23

R-APP, all dependencies of the argument have to be resolved before the application
can be reduced. This is because lambda-bound variables are always of simple types,
not type schemes, and thus are dependency-free. A letrec is reduced by substitution in
the underlying expression. A letrec can only be eliminated if the bound variables do
not occur in its body anymore. Unlike letrec, a deplet construct is not reduced by per-
forming substitution on its complete body. Rather, it is pushed down the expression, as
shown for example in R-DEPLET-LETREC. A deplet is directly propagated to the body
of a letrec here, not affecting the expressions in the bound variables. This implements
the dynamically scoped behavior of dependency constraints. There are similar rules
that push a deplet through applications or lambda abstractions.

The three rules R-CASE, R-DEPLET and R-TAPP handle various forms of generic
function application. These depend on whether the form of the function’s type argu-
ment is, respectively, a type constructor applied to some number of dependency vari-
ables, a dependency variable applied to some number of variables, or a type of some
other form. By rule R-CASE a generic function applied to a type constructor with de-
pendency arguments is reduced to the corresponding value in the environment. Rule
R-DEPLET handles a local dependency declaration for the case where a dependency
variable is in the constructor position, reducing to the value defined in the appropriate
deplet clause. Finally, rule R-TAPP reduces the other cases, where the type appearing
in an argument position is not a dependency variable. The idea is to transform away
the rightmost of these, t1, into dependencies on a new dependency variable da; which
replaces t; in the argument type. The dependencies introduced by attempting to reduce
the generic function x are those which x depends upon. A consequence of applying this
rule is that the type arguments in the resulting expression are simpler than the origi-
nal; multiple applications of this rule eventually simplify all type arguments so that the
rules R-CASE and R-DEPLET become applicable.

Expressions are reduced to values, where values are defined by the grammar

vi=Ax —e
| letrecx=¢inv

Values are lambda expressions, because there are no constants in our language. If the
function body refers to local variables, surrounding let-bindings cannot always be elim-
inated. However, we can strengthen the condition and demand that each variable in the
X occurs free in either the body or the other bound expressions.

Theorem 1 (Progress). Ife is a well-typed expression with fev(e) € domain(S) and deps(e) =
@, then e is either a value or there is an expression €' such that e ~ ¢

Proof. By induction on the type derivation for e. We distinguish cases based on the final
judgment:

Case E-VAR: If e = x, then x is a global function (because x € V and x € S), and
R-GLOBAL applies.

Case E-SUB: Follows directly from the induction hypothesis.

24

Case E-APP: Thus e = (e e2). If e1 is not a value, then the induction hypothesis ap-
plies. If it is a value, then it contains a lambda expression, possibly within letrec
statements by the grammar for values. If the lambda expression is nested, then
R-LETREC-LAMBDA applies until the lambda is on the surface of the expression.
Then we can apply R-APP, because depvars(e) = @ implies depvars(ez) = @.

Case E-LAMBDA: This is a value.
Case E-GEN: Follows directly from the induction hypothesis.

Case E-TAPP: Because there are no dependencies, the type argument is of the form
a t. Either all the t are dependency variables—then R-CASE applies—or we can
apply R-TAPP.

Case E-LETREC: Here, ¢ = letrec X = ¢ in ¢y. If ¢y is a value, then so is e. If it is not
a value, then the interesting question is whether fev(ep) N {x} = @. If yes, then
this implies fev(eg) = fev(e), and thus the induction hypothesis applies. If not, the
R-LETREC is applicable.

Case E-DEPLET: Here, e = deplet x(da ob) = e in e;. We will show inductively on
the structure of an expression that we can always reduce this expression to a form
where no deplet-binding occurs at the outside.

If x(6a) ¢ deps(ez), then R-DEPLET-ELIM applies. Otherwise, we have to look
closely atey. If e; is a variable y, then y is free in e and thus defined in S. Therefore,
R-GLOBAL applies. If e; is an application, a lambda abstraction or a letrec binding,
we can apply the appropriate rule that pushes the deplet down. If e; is another
deplet, then the induction hypothesis applies.

Finally, eo might be a type application. The type argument must contain da, oth-
erwise x(da) would not have been in deps(e;). Thus one of R-DEPLET, R-CASE or
R-TAPP is applicable. O

For the subject reduction theorem we need the following lemma:

Lemma 1. IfAKV I (Ax — e):: (D) = t, then there is a derivation tree for this judgment
where the last rule that is applied is E-LAMBDA.

Proof. The only other rule that could be last is E-SUB. In this situation, the end of the
derivation is E-LAMBDA, followed by one or more applications of E-GEN or E-SUB.
Informally, E-SUB could be used here for one of two things: getting rid of universal
quantification, or extending the set of dependency constraints. If E-SUB is used to re-
move universal quantifiers, then they must previously have been introduced by an-
other application of E-SUB, or by E-GEN. Then these two applications can be canceled
out. If E-SUB is used to extend the context of dependency constraints, then the appli-
cation of this rule can be pushed down the derivation tree, so that it occurs before the
E-LAMBDA. This informal argument can be formalized into another inductive proof,
but we omit this proof here. O

25

Theorem 2 (Preservation/subject reduction). If A KV - e::s, and e ~ ¢’ is a reduction
rule that can be applied to e, then AKV ¢ ::s.

Proof. We need to distinguish cases based on the reduction rule in question. Often, we
assume without loss of generality that a certain rule has been applied last to derive
A KV F e:s:in many cases, these rules could have been followed by one or more
applications of E-SUB or E-GEN. If we remove these rules, we have A K V F e:: ¢/,
where the last rule applied is the rule in question, and we can change the type into s by
multiple applications of subtyping or generalization. We then can apply this theorem
to the modified typing judgment and get A K V - ¢’ :: s'. Because subtyping and gener-
alization only affect the type, not the expression, we can now apply the same subtyping
and generality rules that we previously removed and have A KV - ¢’ :: s, which proves
the general case.

Case R-GLOBAL: We assume global definitions to be type correct.

Case R-APP: Here, e = ((Ax — ¢1) e2). We know by E-APP that s = (D) = #; and that
there is a t; such that

AKVE (Ax —e): (D)=t —H
and
AKVFEe: (D)=t

Because deps(e;) = @, we know that even A KV | ¢; :: £ is derivable.

Using the lemma, we can assume that the last rule in the derivation of the first
judgment is E-LAMBDA. Thus,

AK V,x:tp - (D) = tq,
from which we immediately get that A K V I [x — ex]e; ::s.
Case R-LETREC: This is immediately implied by E-LETREC.

Case R-LETREC-ELIM-1: This is also immediately implied by E-LETREC, as the unused
variables can be eliminated from V'.

Case R-LETREC-ELIM-2: We have ¢ = letrec ¢ in ¢;. From E-LETREC we learn that
V'’ = V in this situation and therefore immediately that A K V I ¢ :: 5.

Case R-LETREC-LAMBDA: Thus e = letrec x = ¢ in Ay — ¢p. From E-LETREC we get
thatif V' =V, x :: ¢’ for a suitable vector of type schemes s/, then

AKV' Fe:s
and

AKV' F (Ay — ep) ::s.

26

If we use the lemma, we can infer from E-LAMBDA thats = (D) = t; — fp and
AK V,y:tikey:: (D) = t.

We can extend the variable environment and get
AK V,yutieus

(here we assume that i has been renamed so that it does not capture free variables
in the let-bound expressions). Now we can apply E-LETREC again to the last two
judgments, which yields

AK V,y:t; Fletrecx=einey:: (D) = to.
A final application of E-LAMBDA results in the proposition.
Case R-DEPLET: In this case, e = deplet x(da 6b) = ¢g in x(da 5b). We can derive
AKVIey::Va. (D) =t
and that
A KV F x(éa éb) :: (x(da 6b) ::Va. t',D3) = t

with A K I Va. (Dy) = #' < (D2) = t. Here we use not only rule E-DEPLET, but
also E-TAPP and knowledge about tapp.

Case R-DEPLET-ELIM: We have ¢ = deplet x(da 6b) = e; in e; and we know that
x(6a) ¢ deps(ez). Therefore A KV I ep::(D3) = s withD3 < Dpand A KV I
e:: (D2) = s. The claim follows from E-SUB.

Case R-DEPLET-LAMBDA: The situation is that e = deplet x(éa 5b) = e; in Ay — e3,
and because of E-DEPLET we know that

AKVEe:(Dy) =t
and
AKV Ay — ey (x(da ob) ::s,D3) =t

with A K+ D3 < Dy. From E-LAMBDA (using the lemma once more), we get that
t =t; — tr and that

AKV,y:ty ey (x(da db) ::s,D3) = to.
From this we can conclude by E-DEPLET that
AKV,y:t F deplet x(éa 6b) = ej in ey :: (Dy) = .

Another application of E-LAMBDA yields the proposition.

27

Cases R-DEPLET-APP, R-DEPLET-LETREC, and R-DEPLET-DEPLET: These cases are
analogous to the case R-DEPLET-LAMBDA. We need lemmas corresponding to the
lemma for lambda abstraction: if a derivation exists for an application (or a letrec,
or a deplet), then there is also a derivation tree where E-APP (or E-LETREC, or
E-DEPLET) is the last judgment that is applied.

Case R-CASE: Because the case of the generic function has been checked to be well-
formed by rule P-GENERIC, we know that if x(af&b) — e €S, then A KV F
e::tapp(x;a 6b). Rule E-TAPP yields A KV = x(a 6b) :: tapp(x;a db).

Case R-TAPP: Let us first look at the type of x(ty t; da). We know from E-TAPP
that A KV F x(to t1 da) ::tapp(x;to 1 da). On the other hand, we also know
from E-TAPP that A K V x(ty day da) ::tapp(x;tg bay da). If A = t; 1k, then
Ak ty dag da:: (dag ik, K) = k' whereas A I g t; da:: (K) = «’. Thus, we can
apply the appropriate case in the definition of kapp and see that

tapp(x; tg daq da)
= Va. kapp(x; (da; ::x,K) = «';a | to day éa)
= Va. Vd. (y(day 6b) :: kapp(y; (6b:: k) = x;cs(y; x;a | d 6b)))
= kapp(x; K = «';a | to d da)
< Va. (y(day ob) :: kapp(y; (0b:: k) = %;cs(y; x;a | t1 0b)))

= kapp(x; K = «/;a | to t; da)

Here, dependencies(x) = . In the last step we have instantiated the variables d
according to the subtype relation on type schemes. We are now going to apply
E-DEPLET multiple times for the deplet statements that are introduced by the
reduction. Each of these is of the form

deplet y(da; 5b) = y(t; 6b) in...
By E-TAPP, we know that A KV I y(t ob) :: ta pp(y; 1 ob). Here,

tapp(y; t1 0b)
= Va. kapp(y; (8b: k) = %7 | t1 0b)
< kapp(y; (8b:) = *;cs(y; ;4 | +1 0b))
We therefore indeed can apply R-DEPLET repeatedly to get
A KV I deplet y(éa; 6b) = y(t; 6b) in x(ty da; da)
kapp(x; K = «';a | to t da)

or

A KV I- deplet y(éa; 5b) = y(t; 6b) in x(ty day da) :: tapp(x;to t da)
by E-GEN. O

28

6 Related Work

The field of generic programming has grown considerably in recent years. Much of
this work stems from so-called theories of datatypes, for example [3], which are often
based on category theoretic notions such as initial algebras. These approaches focus on
generic control constructs, such as folds [31], which are derived from datatypes.

Based on initial algebra semantics, Charity [7] automatically generates folds and so
forth for datatypes on demand, but otherwise does not allow the programmer to write
her own generic functions. PolyP [21] extends Haskell with a special construct for defin-
ing generic functions, also based on initial algebras. Although PolyP permits type in-
ference and functions which make use of the pattern functor of a datatype, which we
cannot do, it supports only regular datatypes, not mutually recursive, multiparameter,
nested types, or types containing function spaces.

In Functorial ML [23] the algorithm for map, for example, is defined using combi-
nators to find the data upon which argument function will apply. While supporting
type inference, Functorial ML programming is a rather low level language and lacks
the simplicity of Hinze’s approach. Functorial ML and other work on shape theory has
resulted in the programming language FISh [22].

Weirich and others [32] (and the earlier work on intensional polymorphism [8]) em-
ploy a typecase construct which performs run-time tests on types to implement poly-
typic functions of an expressiveness similar to Hinze’s. Ruehr’s structural polymor-
phism [30] adopts similar type tests. By avoiding type interpretation at run-time, Generic
Haskell distinguishes itself from these approaches.

The work of Hinze [18, 16, 13], upon which Generic Haskell is based, is a major im-
provement over the other approaches, because it allows the instantiation of generic
functions on mutually recursive, multiparameter, nested types, or types containing
function spaces. Clarke and Loh [6] present a few extensions to Hinze’s framework
which are compatible with the framework presented here, and will be incorporated
into the compiler for Dependency-style Generic Haskell.

Closest to the work described in the present paper are both Weirich’s original higher-
order intensional type analysis [32] and her recent type-erasure approach [33]. This
approach offers the advantage of support for separate compilation, dynamic loading,
and polymorphic recursion. In addition, by carrying around a representation of type
information, she can successfully treat universal and existential quantification. The
implementation of our approach requires no type information at run-time, enables sep-
arate compilation, and can certainly handle polymorphic recursion, as our cases must
have a certain degree of polymorphism. Our calculus does however carry run-time
information around, using it for dispatch purposes. The big difference between our
system and Weirich’s is that we handle the dependency of one generic on another, and
treat generic functions by name, rather than as anonymous case statements.

Altenkirch and McBride [2] present a rather complicated encoding of much of our
style of generic programming (excluding the dependency extension) into a system of
dependent types. While this approach is highly expressive, we argue that there is a
long way to go before it is usable by mere mortals as a programming language. We

29

expect that using type theory one can do anything we do in this paper and probably
much more, but we suspect that programming the examples given in Section 2 will be
very difficult.

The programming language Haskell supports deriving clauses for a certain num-
ber of built-in classes (Eg, Show, etc) [29]. This facilitates the automatic overloading of
certain functions for datatypes which have the deriving clause specified. Hinze and
Peyton Jones explore an extension, following Hinze’s earlier ideas [15], which inte-
grated generics with Haskell’s type class system [20]. This system suffers from some
limitations due to the interaction with the type class system. G’Caml [9, 10] presents a
generic programming extension for O’Caml [26]. The proposal does not aim to cover
all datatypes, and as such can be seen as a way of achieving Haskell-style overloading
in O’Caml. The generic extension for Clean is also based on Hinze’s work [1]. This pro-
posal is more closely integrated with the type class system, but does not include any of
the extensions described here. Generic Haskell, on the other hand, takes the approach
of exploring generic programming in isolation, as an extension to the Haskell language.

Lammel and Peyton Jones present a very neat idea which enables generic programs
to be written in almost pure Haskell (Haskell with rank-2 types and a form of type
coercion operator). We believe that our approach is more general. One reason sup-
porting this is that our definitions are open, in that they can be extended or updated,
whereas once a generic function has been constructed in Limmel and Peyton Jones’s
proposal, its behavior is fixed. They also lack the ability for one generic function to
depend on another generic function, as our dependencies permit. Furthermore, they
generate generics only at kind x. Their approach is based on combinators, whereas
ours is based on functions which are defined indexed on the structure of types. In their
favor, their approach is better integrated into Haskell.

A dependency resembles a qualified type: a type with restrictions that require certain
type variables to be an instance of a particular class [24]. Inferring the context require-
ments for qualified types is, however, easier, because the dependencies for a generic
function appear at multiple kinds, and thus have types with differing forms. Depen-
dencies are similar in spirit to implicit parameters [27], and deplet is similar to the
with construct (now an ordinary let) in that the functions referred to are not explicitly
given as arguments. Implicit parameters are supplied at a fixed monomorphic type,
whereas a dependency refers (often) to an entire generic function, which includes cases
of polymorphic type.

The development of Generic Haskell is example driven. We encountered the need
for dependencies when we implemented the digital searching and zipper examples in
our work on type-indexed datatypes [19]. Most other approaches we have seen only
use simple examples such as map and zip as their motivating examples.

7 Discussion

We have made design choices at several points when developing the language. We
discuss two here. Firstly, distinguishing dependency variables from ordinary variables

30

has been useful in making the dependency concept explicit, although this distinction
is not necessary. Secondly, we could have adopted an alternative formulation of letrec
which implements a statically scoped view, as opposed to the more dynamic view taken
in our system, using the following rule.

V=V, x:t
AKV'Fez (D)=t AKV ke:(D)=t
AKVFletrecx=e¢iney:: (D) =t

Here the types for the let-bound variables are added to the environment without their
dependencies. Thus the bound variables have a dependency-free type when used in
the body. The dependencies of the bound variables as well as of the body must be
compatible and become the common dependencies of the whole expression.

As presented here, generic functions are explicitly annotated for types of kind .
Rank-n types appear, in conjunction with dependency constraints, in the types of in-
stances of generic functions on particular types. It is easy to extend the language pre-
sented here to allow rank-n types everywhere. If we are given explicit type annotations
for all rank-n types, we can infer the types of the expressions in the language, following
along the lines of Odersky and Laufer [28], also adapting ideas from Lewis et al [27] and
Chitil [4].

A prototype implementation of the system described in this paper including type in-
ference exists, although we have not yet incorporated it into the Generic Haskell com-
piler. The prototype can be obtained by contacting the authors.

In conclusion, we have introduced a core language, a type system, and a reduction
semantics for a new style of generic programming language which we have called
Dependency-style Generic Haskell. The development of this language has been strongly
motivated by practical concerns, derived from our experience programming in Generic
Haskell. The difference with Classic Generic Haskell is significant, and the number
of new concepts may seem overwhelming. However, we feel the added complexity is
justified, as the system presented in this paper provides foundations which not only
go beyond Classic Generic Haskell, but also opens the door to tackle problems which
previously seemed too far off. Possibilities include better support for type-indexed
types, higher-order and locally-defined generic functions, dependency inference, type
inference of kind-x type arguments, generic functions based on kinds other than x, and
pattern matching on type arguments. Initial experiments have shown promising results
in these areas. We feel that dependency inference, i.e. allowing the programmer to omit
dependencies in generic type signatures, is our most pressing concern.

References
[1] Artem Alimarine and Rinus Plasmeijer. A generic programming extension for

Clean. In Proceedings of the 13th International workshop on the Implementation of Func-
tional Languages, IFL’01, pages 257-278, 2001.

31

[2] Thorsten Altenkirch and Conor McBride. Generic programming within depen-
dently typed programming. In Gibbons and Jeuring [11], pages 1-20.

[3] Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional program-
ming with types and relations. Journal of Functional Programming, 6(1):1-28, 1996.

[4] Olaf Chitil. Compositional explanation of types and algorithmic debugging of
type errors. In ICFP '01, pages 193-204, September 2001.

[5] Dave Clarke, Johan Jeuring, and Andres Loh. The Generic Haskell User’s Guide —
Beryl release. Technical Report UU-CS-2002-047, Utrecht University, 2002.

[6] Dave Clarke and Andres Loh. Generic Haskell, specifically. In Gibbons and Jeur-
ing [11], pages 21-48.

[7] Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.
92/480/18, Dep. of Computer Science, Univ. of Calgary, 1992.

[8] Karl Crary, Stephanie Weirich, and]. Gregory Morrisett. Intensional polymor-
phism in type-erasure semantics. In ICFP '98, pages 301-312. ACM Press, 1998.

[9] Jun Furuse. G’Caml — O’Caml with extensional polymorphism extension. Project
home page at http://pauillac.inria.fr/~furuse/generics/, 2001.

[10] Jun Furuse. Generic polymorphism in ML. In Journées Francophones des Langages
Applicatifs, January 2001.

[11] Jeremy Gibbons and Johan Jeuring, editors. Generic Programming, volume 243 of
IFIP. Kluwer Academic Publishers, January 2003.

[12] Paul Hagg. A framework for developing generic XML Tools. Master’s thesis,
Department of Information and Computing Sciences, Utrecht University, 2002.

[13] Ralf Hinze. A generic programming extension for Haskell. In Erik Meijer, editor,
Proceedings of the Third Haskell Workshop, Technical report of Utrecht University,
UU-CS-1999-28, 1999.

[14] Ralf Hinze. Generic Programs and Proofs. 2000. Habilitationsschrift, Bonn Univer-
sity.

[15] Ralf Hinze. A new approach to generic functional programming. In POPL’00,
pages 119-132. ACM Press, 2000.

[16] Ralf Hinze. Polytypic values possess polykinded types. Science of Computer Pro-
gramming, 43(2-3):129-159, 2002.

[17] Ralf Hinze and Johan Jeuring. Generic Haskell: applications, 2003. To appear.

[18] Ralf Hinze and Johan Jeuring. Generic Haskell: practice and theory, 2003. To
appear.

32

[19] Ralf Hinze, Johan Jeuring, and Andres Loh. Type-indexed data types. In Proceed-
ings of the 6th Mathematics of Program Construction Conference, MPC'02, volume 2386
of LNCS, pages 148-174, 2002.

[20] Ralf Hinze and Simon Peyton Jones. Derivable type classes. In Graham Hut-
ton, editor, Proceedings of the 2000 ACM SIGPLAN Haskell Workshop, volume 41.1 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, August 2001.

[21] P. Jansson and J. Jeuring. PolyP — a polytypic programming language extension.
In POPL'97, pages 470-482. ACM Press, 1997.

[22] C.B.]Jay. Programming in FISh. International Journal on Software Tools for Technology
Transfer, 2:307-315, 1999.

[23] C.B.]Jay, G. Belle, and E. Moggi. Functorial ML. Journal of Functional Programming,
8(6):573-619, 1998.

[24] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University Press,
1994.

[25] Ralf Limmel and Simon Peyton Jones. Scrap your boilerplate: a practical approach
to generic programming. In Proc ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI 2003), 2003.

[26] Xavier Leroy et al. The Objective Caml system release 3.02, Documentation and user’s
manual, December 2001. Available from http://caml.inria.fr/ocaml/htmlman/.

[27] Jeffrey Lewis, Mark Shields, Erik Meijer, and John Launchbury. Implicit parame-
ters: Dynamic scoping with static types. In POPL "00, pages 108-118, Jan 2000.

[28] Martin Odersky and Konstantin Liufer. Putting type annotations to work. In
POPL '96, pages 54—67, New York, N.Y., 1996.

[29] Simon Peyton Jones, John Hughes, et al. Haskell 98 — A non-strict, purely func-
tional language. Available from http://haskell.org, February 1999.

[30] Fritz Ruehr. Amnalytical and Structural Polymorphism Expressed Using Patterns Over
Types. PhD thesis, University of Michigan, 1992.

[31] T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings of the 6th ACM
Conference on Functional Programming Languages and Computer Architecture FPCA
'93, pages 233-242. ACM Press, June 93.

[32] Stephanie Weirich. Higher-order intensional type analysis. In Daniel Le Métayer,
editor, Programming Languages and Systems: 11th European Symposium on Program-
ming, ESOP 2002, 2002.

[33] Stephanie Weirich. Higher-order intensional type analysis in type erasure seman-
tics. Available from http://www.cis.upenn.edu/ sweirich/, December 2002.

33

