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Abstract

A generic program is written once and works on values of many data types. Generic
Haskell is a recent extension of the functional programming language Haskell that supports
generic programming. This paper discusses how Generic Haskell can be used to implement
XML tools whose behaviour depends on the DTD or Schema of the input XML document.
Example tools include XML editors, databases, and compressors. Generic Haskell is ideally
suited for implementing XML tools:

e Knowledge of the DTD can be used to provide more precise functionality, such as ma-
nipulations of an XML document that preserve validity in an XML editor, or better
compression in an XML compressor.

e Generic Haskell programs are typed. Consequently, valid documents are transformed to
valid documents, possibly structured according to another DTD. Thus Generic Haskell
supports the construction of type correct XML tools.

e The generic features of Generic Haskell make XML tools easier to implement in a sur-
prisingly small amount of code.

e The Generic Haskell compiler may perform all kinds of advanced optimisations on the
code, such as partial evaluation or deforestation, which are difficult to conceive or im-
plement by an XML tool developer.

By embedding Schema and XML data into Haskell data types, we show how Generic Haskell
can be used as a generic XML processing language. We will demonstrate the approach by
implementing an XML compressor in Generic Haskell.

1 Introduction

A generic program is a program that works for values of each type for a large class of data types
(or DTDs, schemas, structures, class hierarchies). An example generic program is equality: a
function that takes two values and returns a boolean value depending on whether or not the two
argument values are equal. Equality is defined on many different kinds of data types, but it can
be defined once and for all as a generic program. The generic program for equality says that
two values are equal provided their top nodes are equal, and that the top nodes have equally
many children, which are pairwise equal. Other, classic, examples include functions like map,
fold, parse, pretty-print, and zip. Such functions can be expressed in the programming language
Generic Haskell, a recent extension of Haskell that supports generic programming, by writing cases
for primitive types such as Int and for data types which encode the structure of types, such as
sums, products, constructors, and the unit data type. This paper describes the relation between
generic programming and XML tools, and argues that generic programming is ideally suited for
implementing many XML tools.

XML [45] is the core technology of modern data exchange. An XML document is essentially a
tree-based data structure, usually, but not necessarily, structured according to a Document Type
Definition (DTD) or a Schema. Both DTDs and Schema form the basis of a type system for
ensuring document validity. Since W3C released XML, thousands of XML tools have been devel-
oped, including XML editors, XML databases, XML converters, XML parsers, XML validators,



XML search engines, XML encryptors, XML compressors, etc. Information about XML tools is
available from many sites, see for example [18, 20]. Flynn’s book [15] provides a description of
some older tools.

An XML document is valid with respect to a DTD if it is structured according to the rules
(elements) specified in the DTD. Thus a validator is a tool that critically depends on a DTD. Some
other classes of tools, such as the class of XML editors, also critically depend on the presence of
a DTD. An XML editor can only support editing of an XML document well, for example, by
suggesting possible children or listing attributes of an element, if it knows about the element
structure and attributes of elements. These classes of tools depend on a DTD, and do essentially
the same thing for different DTDs. In this sense these tools are very similar to the generic equality
function. We claim that many classes of XML tools are generic programs, or would benefit from
being viewed as generic programs. We call such tools DTD-aware XML tools [51].

The goal of this paper is to show how generic programming can be used to construct DTD-
aware XML tools. A number of alternative means by which XML tools proccess XML documents
are possible:

e XML API’s. A conventional API such as SAX or the W3C’s DOM can be used, together
with a programming language such as Java or VBScript, to access the components of a
document after it has been parsed.

e XML programming languages. A specialized programming language such as W3C’s
XSLT [46], XDuce [24], Yatl [11], XMA [35, 39], SXSLT [30], XStatic [17] etc. can be used
to transform XML documents into other XML documents.

¢ XML data bindings. XML values can be “embedded” in an existing programming lan-
guage by finding a suitable mapping between XML types and types of the programming
language: an XML data binding [36]. Examples include HaXml for Haskell [51].

Using a specialized programming language or a data binding has significant advantages over the
SAX or DOM approach:

e Parsing comes for free and can be optimized for a specific Schema.
e It is easier to implement, test and maintain software in the host language.

e Both specialized programming languages and data bindings can provide a higher level of
abstraction by including domain specific concepts more or less directly in the programming
language.

Furthermore, a data binding has the extra advantages that existing programming language
technology can be leveraged, and that a programmer need not take XML particularities into
account (though, this may be be a disadvantage, depending upon the application). Programming
languages for which XML data bindings have been developed include Java [34], in which Schemas
are translated to classes, and Python, as well as declarative programming languages such as
Prolog [12] and Haskell [51, 43], in which XML DTDs are translated to data types. Using Haskell
as the host language for an XML data binding offers the advantages of using a higher-order typed
programming language.

DTD-aware XML tools can be considered to be generic programs, and can thus be implemented
in Generic Haskell. Implementing an XML tool as a generic program has several advantages:

e Correctness. Generic Haskell programs are typed. Consequently, valid documents are
transformed to valid documents, possibly structured according to another DTD. Thus Generic
Haskell supports the construction of type correct XML tools.

e Functionality. Knowledge of the DTD can be used to provide more precise functionality,
such as manipulations of an XML document that preserve validity in an XML editor, or
better compression in an XML compressor.



e Development time. Generic programming supports the construction of type- (and hence
also DTD-) indexed programs. So all processing of DTDs and programs defined on DTDs
can be left to the compiler, and does not have to be implemented by the tool developer. The
generic features of Generic Haskell make XML tools easier to implement in a surprisingly
small amount of code. Furthermore, the existing library of frequently used basic generic
programs, for example, for comparing, encoding, etc., can be used in generic programs for
XML tools.

e Efficiency. The Generic Haskell compiler may perform all kinds of advanced optimisations
on the code, such as partial evaluation or deforestation, which are difficult to conceive or
implement by an XML tool developer.

The contributions of this paper are twofold. Firstly, we demonstrate examples of generic XML
processing in Generic Haskell. The existing Haskell data binding translates DTDs to Haskell
data types, but does not translate the considerably more complicated XML Schema. Our second
contribution is to fill this gap by providing a translation of XML Schema types into Haskell, in
the style of Wallace and Runciman’s HaXml and Thiemann’s WASH, including a demonstration
of its soundness. We treat only the core of XS, in particular the fragment treated in Wadler, et
al.’s formal semantics [4].

This paper is organised as follows. Section 2 introduces Generic Haskell. Section 3 describes
how to implement XComprez, a generic compressor for XML documents. Section 4 describes a
tool for translating an XML Schema to a set of Haskell data types. Section 5 constructs a parser
for parsing an XML document into a Haskell value. Finally, Section 6 shows the correctness of
the translation by proving a type soundness result.

2 Anintroduction to generic programming in Generic Haskell

A generic program is written once and is then applicable to values from a large class of data types.
Generic programs are often defined over the structure of types. We give a brief introduction here,
reviewing the fundamental structure of types and outlining how knowledge of this can be used to
write generic programs which apply to all Haskell data types. Our introduction is brief; we refer
the reader to more extensive background material available in the literature [22, 2].

Some data type fundamentals. The functional programming language Haskell 98 provides
an elegant and compact notation for declaring data types [38]. In general, a data type is defined
by means of a number of constructors, where each constructor takes a number of arguments. Here
are two example data types:

data CharList = Nil | Cons Char CharList
data Tree Leaf Int | Bin Tree Char Tree.

A character list, a value of type CharList, is either empty, denoted by constructor Nil, or it is a
character ¢ followed by the remainder of the character list cs, denoted by Cons ¢ cs, where Cons
is the constructor. A tree, a value of type Tree, is either a leaf containing an integer, or a binary
node containing two subtrees and a character.

These example types are of kind x, meaning that they do not take any type arguments. The
following type takes an argument; it is obtained by abstracting Char out of the CharList data type
above:

data List a = Nil | Cons a (List a).

Here List is a type constructor, which, when given a type t, constructs the type List t. The
type constructor List has kind x — . There is no corresponding concept in DTDs or Schema,
though higher-kinded types will play a role later in this paper (and do so more generally in generic
programming [22]).



To apply functions generically to all data types, we must first view data types as a labelled
sum of possibly labelled products — all Haskell data types can be viewed this way. This encoding
is based on the following data types:

data Con a = Con a
data Label a = Label a
dataa:+: b = Inla|Inrb
typea :*: b = (a,b)

data Unit = Unit.

The constructors of a data type are encoded as sum labels, represented by the type Con, record
names are encoded as product labels, represented as the type Label. The choice between Nil and
Cons, for example, is encoded as a sum using type :+:. Arguments such as the a and List a of the
Cons are encoded as products using type :*:. In the case of Nil, an empty product, denoted by
Unit, is used. Finally, primitive types such as Char are represented as themselves.

Now we can encode the above List type as

type List® a = Con Unit :+: Con (a :*: (List a)).

This representation is called a structure type; more details of the correspondence between these
and Haskell types can be found elsewhere [22].

Generic functions can now be defined by writing functions (satisfying certain typing con-
straints) for each of the types which make up structure types. The functions are assembled
together following the structure of the type to produce an instance of the generic function appro-
priate for the given type. To develop such a generic function, it is best to first consider a number
of its instances for specific data types.

The equality function. We define the equality function on two of the example data types given
above. Firstly, two character lists are equal if both are empty, or if both are non-empty, the first
elements are equal, and the tails of the lists are equal.

eqCharList : CharList — CharList — Bool
eqCharList Nil Nil = True

eqCharList (Cons z xs) (Cons y ys) = eqChar x y A eqCharList s ys
eqCharList _ _ = False

where eqChar is the equality function on characters.
Secondly, two trees are equal if both are a leaf containing the same integer, or if both are nodes
containing the same subtrees, in the same order, and the same characters.

eqTree : Tree — Tree — Bool

eqTree (Leaf i) (Leaf 7) = eqInt i j

eqTree (Bin l ¢ r) (Bin v d w) = eqTree | v A\ eqChar ¢ d A eqTree r w
eqTree _ _ = False

Generic equality The equality functions on CharList and Tree follow the same pattern: compare
the top level constructors, and, if they equal, pairwise compare their arguments. We capture this
common pattern in a single generic definition by defining the equality function by induction on
the structure of data types. This means that we define equality on sums (:+:), on products (:*:),
and on base types such as Unit, Int and Char, as well as on the sum labels (Con) and the product



labels (Label). In Generic Haskell [9, 10], the generic equality function is rendered as follows:

t — t — Bool

type Eq{l+]} t

eq{t :: K[} i Eq{x[} t
eq{{Unit[} — _ = True
eq{Intf} ¢ j = eqInt i j
eq{|Charl} ¢ d = eqChar ¢ d
eq{la :+: b[} (Inl z) (Inl y) = eq{all z y
eq{la :+: b[} (Inl z) (Inr y) = False

eq{la +: b[} (Inr z) (Inl y) = False

eq{la :+: b[} (Inr x) (Inr y) = eq{bl} z y

eq{la :*: b} (z,y) (v, w) eq{all z v A eq{bl} y w
eq{|Con _af} (Con z) (Con y) = eq{all z y
eq{|Label _al} (Label z) (Label y) eq{lal} = y.

We do not expect the reader to understand this definition in detail; we merely wish to demonstrate
the form and conciseness of generic programs. The style in which we present generics functions
is called Dependency-style Generic Haskell [33]. Function eq is called a type-indexed value, since
it is a function which when given a type returns a function on that type. The type indices are
given in {funny brackets[} on the left-hand side of a definition. Instances of generic functions are
given using the name of the generic function with the type at which it is applied, again within
funny brackets. For example, the instances of the generic function eq for types CharlList and Tree
are denoted in Generic Haskell by eq{CharList[} and eq{ Tree[}, respectively, and are semantically
equal to the functions eqCharList and eqTree defined above.

In addition to defining generic functions over the standard structure constructors, it is possible
to override the default behaviour for specific types or even specific constructors [10]. Overriding
the behaviour for specific types is used extensively later in this paper.

3 XComprez, a generic compressor for XML documents

As markup is added to the content, XML documents may become (very) large. Fortunately, due
to the repetitive structure of many XML documents, these documents can be compressed by quite
a large factor. This can be achieved if we use information from the DTD (or Schema) of the
input document in the XML compressor. For example, consider the following small XML file (we
consider only XML files which are valid with respect to a DTD):

<book lang="English">
<title> Dead famous </title>

<author> Ben Elton </author>
<date> 2001 </date>
<chapter> Nomination </chapter>
<chapter> Eviction </chapter>
<chapter> One Winner </chapter>
</book>

In this file, 130 bytes are used for markup, and 90 bytes are used for content, not counting line
breaks. This file may be compressed by separating the structure (markup) from the contents, and
compressing the two parts separately. For compressing the structure we can make good use of
the DTD. If we know how many different elements and attributes, say n, appear in the DTD,
we can replace each occurrence of the markup of an element in a valid XML file by logs n bits.
The DTD for the above document contains at least 6 elements and attributes, so we need at least
3 bits per element or attribute. Since there are seven occurrences of elements and attributes in
the above document, we would need less than 3 bytes for the markup. Separating structure from
contents, and replacing elements and attributes by smaller entities is one of the main ideas behind



XMill [32]. The (small) price that has to be paid is that the strings that appear in the data have
to be separated by a special separator symbol. We improve on XMill by only recording markup
if there is a choice between different tags to be made. In the above document, there is a choice
for the language of the book, and the number of chapters it has. All the other elements are not
encoded, since they are compulsory and can be inferred from the DTD. Using this idea, we need
only 5 bits to represent the markup in the above document.

This section describes a tool based on this idea, which was first described by Jansson and
Jeuring in the context of data conversion [27, 28]. We use HaXml [51] to translate a DTD to a
data type, and write generic functions for separating the contents (the strings) and the structure
(the constructors) of a value of a data type, and for encoding the structure of a value of a data
type using information about the (number of) constructors of the data type.

In this section we implement an XML compressor as a generic program. The example shows
how generic programming can be used to implement DTD-aware XML tools such as XML com-
pressors, databases, and editors, that depend on the DTD of an input XML document.

3.1 Implementing an XML compressor as a generic program

We have implemented an XML compressor, called XCOMPREZ, as a generic program. XCOMPREZ
separates structure from contents, compresses the structure using knowledge about the DTD, and
compresses the contents using a compressor for strings. It works by replacing each element, or
rather, the pair of open and close tags of the element, by the minimal number of bits required for
the element given the DTD. Our tool consists of the following components:

e a component that translates a DTD to a data type,

e a component that separates a value of any data type into its structure and its contents,
e a component that encodes the structure replacing constructors by bits,

e a component for compressing the contents, and

e inverses for all of the above components.

The inverses of the components for encoding an XML document combine together to form a
decompressor. As these are very similar to the components of the compressor, they have been
omitted. See the website for XCOMPREZ [29] for the Generic Haskell source code and for the latest
developments on XCOMPREZ.

Translating a DTD to a data type. A DTD can be translated to one or more Haskell data
types. Later in the paper we will describe a tool for translating a Schema to a (set of) Haskell
data type(s) and show how generic programming can be used in such a tool. But in this section
we focus on DTDs. We use the Haskell library HaXml [51], in particular the functionality in the
module DtdToHaskell, to obtain a (set of) data type(s) from a DTD, together with functions for
reading (parsing) and writing (pretty printing) valid XML documents to and from a value of the
generated data type. For example, the following DTD:

<1ELEMENT book (title,author,date, (chapter)*)>
<IELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA) >
<!ELEMENT chapter (#PCDATA)>
<!ATTLIST book lang (English | Dutch) #REQUIRED>



is translated to the following data types:

data Book = Book Book_Attrs Title Author Date [Chapter]
data Book_Attrs = Book_Attrs{ bookLang :: Lang}

data Lang = FEnglish | Dutch

newtype Title = Title String

newtype Author = Author String

newtype Date = Date String

newtype Chapter = Chapter String.

The following value of the above DTD:

<book lang="English">
<title> Dead famous </title>

<author> Ben Elton </author>
<date> 2001 </date>
<chapter> Nomination </chapter>
<chapter> Eviction </chapter>
<chapter> One Winner </chapter>
</book>

is translated to the following value of the data type Book:

Book Book_Attrs{ bookLang = English }
(Title ", Dead famous ")
(Author ", Ben Elton ")
(Date"uuuuQOOluuuuuuuuu")

[ Chapter " Nominationj "
, Chapter " _Eviction "
, Chapter " _One_Winner "

!

HaXml translates an element to a value of a data type using just constructors and no labelled
fields. An attribute is translated to a value that contains a labelled field for the attribute. Thus
we can use the Generic Haskell constructs Con and Label to distinguish between elements and
attributes in generic programs.

Separating structure and contents. The contents of an XML document is obtained by ex-
tracting all PCData and all CData from the document. In Generic Haskell, the contents of a value
of a data type is obtained by extracting all strings from the value. For the above example value,
we obtain the following result:

["uuDead famous "
, "uuBenp Eltony "

> " Loou2001 L ooy
,"UNomination "
,"UEvictiong "

, "One Winner "

.



The generic function extract, which extracts all strings from a value of a data type, is defined as
follows:

type Extract{*]} t =t — [String]

extract{t :: K[} $ Extract{|x[]} t

extract{Unit} Unit = ]

extract{String[} s [s]

extract{a :+: b[} (Inl ) extract{al} =

extract{a :+: b[} (Inr y) extract{bl} y

extract{a *: b} (z, y) extract{al} = + extract{bl} y
extract{Con c al} (Con a) extract{al} a.

Note that it is possible to give a special instance of a generic function on a particular type, as with
extract{String[} in the above definition. Furthermore, because DtdToHaskell translates any DTD
to a data type of kind %, we could have defined extract just on data types of kind x. However,
higher-order kinds pose no problems, and the data binding for Schema given in the next section
uses higher-order kinds. Finally, the operator H in the product case is a source of inefficiency. It
can be removed using a standard transformation that lifts function extract to return a value of
type [String] — [String].

The structure from an XML document is obtained by removing all PCData and CData from
the document. In Generic Haskell, the structure, or shape, of a value of a data type is obtained
by replacing all strings by the empty string. For example, the structure of the example value is

shapeBook = Book (Book_Attrs{ bookLang = English })
(Title ")
(Author "")
(Date "")

[ Chapter ""

, Chapter ""

, Chapter ""

-

The generic function shape returns the shape of a value of any data type.

type Shape{x}t = t—t

shape{t :: K[} $ Shape{x]} t

shape{Unit[} Unit = Unit

shape{String|[} s = o

shape{a +: b} (Inl a) = Inl (shape{a} a)
shape{la +: b[} (Inr b) = Inr (shape{bl[} b)
shape{la :*: b} (a,b) = (shape{al} a, shape{b]} b)

shape{Con ¢ al} (Con a)

Con (shape{alt a)

Given the shape and the contents (obtained by means of function ezxtract) of a value we obtain
the original value by means of function insert:

insert{t :: %[} :: t — [String] — t.

The generic definition of function insert is omitted.

Storing strings in containers. Function extract returns the strings that appear in an XML
document in inorder. Strings that have the same markup are often related. For example, strings
that are marked up with <date> are likely to represent a date. We now describe a generic function
that stores strings that appear in different elements in different so-called containers. Since strings



that appear in a container are likely to be similar, standard compression methods can compress a
container with a larger factor than the single file obtained by storing all strings that appear in the
XML document, as returned by function eztract [32]. The generic function containers takes any
value, and returns all containers for that value. A container is a pair consisting of a constructor
name, and a list of strings that directly appear under that constructor.

type Container = (String, [String])

Function containers takes a value, a string denoting the current enclosing constructor, and the
list of current containers, and if it encounters a string, it inserts it in the current containers.

type Containers{{x[ft =  t — String — [Container] — [Container|
containers{|t :: K[} . Containers{[x]} t
containers{Unit[} Unit =  Adcs—cs

containers{String[} s = Ad cs — insertc d s cs
containers{la +: b} (Inl a) = Ad cs — containers{alt a d cs
containers{la :+: b[} (Inr b) = \d c¢s — containers{bl} b d cs

containers{la :*: b} (a, b) =

Ad cs — containers{alt a d (containers{bl} b d cs)
containers{Con c alt (Con a) =

Ad c¢s — containers{lal} a (conName c) cs

insertc :: String — String — Container — Container
insertc ¢ s [] = [(¢[s])]
insertc ¢ s ((¢/, ss) : xs) | c=c =(c,s5:88):us
| otherwise = (', ss) : insertc ¢ s xs

Encoding constructors. The constructor of a value is encoded as follows. First calculate the
number n of constructors of the data type. Then calculate the position of the constructor in the
list of constructors of the data type. Finally, replace the constructor by the bit representation
of its position, using log, n bits. For example, in a data type with 6 constructors, the third
constructor is encoded by 010. We start counting with 0. Observe that a value of a data type
with a single constructor is represented using 0 bits. Consequently, the values of all types except
for List, String and Lang in the running example are represented using 0 bits.

To implement this function, we assume there is a function constructorPosition which given a
constructor returns a pair of integers: its position in the list of constructors of the data type, and
the number of constructors of the data type.

constructorPosition :: ConDescr — (Int, Int)

Function constructorPosition can be defined by means of function constructors, which returns the
constructor descriptions of a data type. This function is defined in the module Collect, which can
be found in the library of Generic Haskell. (We omit the definitions of both function constructors
and function constructorPosition.)

constructors{|t :: [} :: [ConDescr]

The function encode takes a value, and encodes it as a value of type Bin, a list of bits, defined by

type Bin = [Bit]
data Bit = O|I
type Encode{x}t = t— Bin.



The interesting case in the definition of function encode is the constructor case. We first give the
simple cases:

encode{t :: K[} $ Encode{x]} t

encode{Unit]} _ = ]

encode{String[} = ]

encoded|a :*: b} (a, b) = encodefal} a + encode{bl[} b
encode{a +:b[} (Inl a) = encode{al} a

encode{a +: b[} (Inr b) = encode{bl[} b.

For Unit and String there is nothing to encode. The product case encodes the components of the
product, and concatenates the results. The sum case strips of the Inl or Inr constructor, and
encodes the argument.

The encoding happens in the constructor case of function encode. We use an auxiliary function
intinrange2bits to calculate the bits for the position of the argument constructor in the constructor
list, given the number of constructors of the data type currently in scope. The definition of
intinrange2bits is omitted.

encode{Con cal} (Con a) =  encodeCon ¢+ encode{lal} a
encodeCon i’ ConDescr — Bin

encodeCon c = intinrange2bits (constructorPosition c)
intinrange2bits i (Int,Int) — Bin

Huffman coding. A relatively simple way to (in many cases) improve XCOMPREZ is to analyze
some source files that are valid with respect to the DTD, count the number of occurrences of
the different elements (constructors), and apply Huffman coding. Function countCon counts
constructors.

type CountCon{[x]} t t — [(ConDescr, Int)]

countCon{t :: K[} = CountCon{k]} t

countCon{Unit]} Unit = ]

countCon{a :+: b} (Inl a) = countCon{lal} a

countCon{a :+: b} (Inr b) = countCon{bl} b

countCon{a :*: b} (a, b) = merge (countCon{lal} a) (countCon{bl[} b)
countCon{Con c al} (Con a) = add (¢,1) (countCon{al} a)

merge [(ConDescr, Int)] — [(ConDescr, Int)] — [(ConDescr, Int)]

add $ (ConDescr, Int) — [(ConDescr, Int)] — [(ConDescr, Int)]

Using Huffman coding on the list returned by function countCon we obtain a table [(ConDescr, Bin)],
which we use in function encodeCon to replace constructors.

Arithmetic coding. Using Huffman coding we always get a discrete number of bits per con-
structor. But if we are encoding lists of average length 10,000, we would like to use less than one
bit per Cons constructor. Arithmetic encoding can be used to encode constructors with fractions
of bits. We have used (Adaptive) Arithmetic Coding [3] to compress the constructors in a value
of a data type. To use arithmetic coding, we have to add a model argument to function encode,
which is used and updated whenever we encounter a constructor.

Compressing the contents. The last step of XCOMPREZ is to compress the contents of the
XML document. At the moment we use the Unix compress utility [52] to compress the strings
obtained from the document. In the future, we envisage more sophisticated compression methods
for the contents.
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3.2 Results

While XCOMPREZ is mainly a proof of concept, rather than an attempt at serious XML compres-
sion, it nonetheless performs quite well. We now describe some existing XML compressors and
compare ours with one in particular, namely, XMill.

Related work. It is well known that structure-specific compression methods give much better
compression results [5, 16, 14, 41] than conventional compression methods such as the Unix com-
press utility [52]. In the context of XML, a number of compressors exist. We briefly compare some
of these with our approach:

e XMLZip [13] cuts its argument XML file (viewed as a tree) at a certain depth, and compresses
the upper part separately from the lower part, both using a variant of zip or LZW [52]. This
allows fast access to documents, but results in worse compression ratios compared with the
following compressors.

e XMill [32] is a compressor that separates the structure of an XML document from the con-
tents, and compresses structure and contents separately. Furthermore, it groups related data
items (such as dates), and it applies semantic compressors to data items with a particular
structure.

e ICT’s XML-Xpress [26] is a commercial compression system for XML files that uses ‘Schema
model files’ to provide support for files conforming to a specific XML schema. The basic
idea of this system is the same as the idea underlying XCOMPREZ.

e Millau [19] is a system for efficient encoding and streaming of XML structures. It also
separates structure and content, and uses the associated schema (if present) for compressing
the structure.

e XMLPPM [7] uses a SAX encoding of an XML document, and and an online, adaptive,
XML-conscious encoding based on Prediction by Partial Match (PPM) to compress XML
documents.

e XGrind [44] is an XML compressor that preserves the original structure of an XML document
in order to support queries on the compressed document.

e Cannataro et al. [6] describe lossy compression for XML documents: only parts of the
document that are considered interesting to the user are preserved.

Analysis. The following analysis is very limited, because we have not been able to obtain the
executables or the source code of most of the existing compressors, and did not have the time to
compare against some others. We will only compare XCOMPREZ with XMill. Since the goals of
XMLZip (fast access to compressed documents), XGrind (fast querying of compressed documents),
and the lossy XML compression tool are different from our goal, we will not compare XCOMPREZ
with these XML compressors.

We have performed some initial tests comparing XCOMPREZ and XMill. The tests are not
representative, and it is impossible to draw hard conclusions from the results. However, on some
small test examples XCOMPREZ is between 0% and 50% better than XMill. This is not very
surprising, since we use a very similar approach to compression as XMill, but use less space to
represent markup. On the downside, XCOMPREZ runs slower than XMill.

From the description of Millau we expect that Millau achieves compression ratios that are a
bit worse than the compression ratios achieved by XCOMPREZ, as Millau uses a fixed number of
bits for some elements or attributes, independent of the DTD or Schema.

XML-Xpress has been tested extensively against XMill, and achieves compression results that
are about 80% better than XMill. As a schema contains more information about an XML document
than a DTD, it is not surprising that our compressor does not achieve the same compression ratios
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as XML-Xpress. When we replace HaXml by a tool that generates a data type for a schema, such
as the one we describe in the following sections, we expect that we can achieve better compression
ratios than at the moment.

With respect to code size, the difference between XMill and XCOMPREZ is dramatic: XMill is
written in almost 20k lines of C++. The main functionality of XCOMPREZ is less than 500 lines
of Generic Haskell code. Of course, for a fair comparison we have to add some of the HaXml code
(which is a library distributed together with almost every compiler and interpreter for Haskell),
the code for handling bits, and the code for implementing the as yet unimplemented features of
XMill. We expect to be able implement all of XMill’s features in about 20% of the code size of
XMill.

3.3 Conclusions

We have shown how to implement an XML compressor as a generic program. XCOMPREZ com-
presses better than for example XMill because it uses the information about an XML document
present in a DTD. More importantly, XCOMPREZ is written in 500 lines of Generic Haskell code,
whereas XMill is written in 20k lines of C++.

4 From Schema to Haskell

Though XML has achieved widespread popularity, the DTD formalism itself has been deemed to
be too restrictive in practice, and this has motivated the development of alternative type systems
for XML documents. The two most popular systems are the RELAX NG standard promulgated
by OASIS [37], and the W3C’s own XML Schema Recommendation [48, 49, 50]. Both systems
include a set of primitive datatypes such as numbers and dates, a mechanism for combining and
naming them, and ways of specifying context-sensitive constraints on documents.

We focus on XML Schema (or simply “Schema” for short—we use lowercase “schema” to refer
to the actual type definitions themselves). We would like to write generic programs over documents
conforming to schemas, and for this purpose require a translation of schemas to Haskell analagous
to the HaXml translation of DTDs to Haskell described in Section 3.

We begin this section with a very brief overview of Schema syntax which highlights some of
the differences between Schema and DTDs. Next, we give a more formal description of the syntax
with an informal sketch of its semantics. With this in hand, we describe a translation of schemas
to Haskell data types, and of schema-conforming documents to Haskell values.

Our translation and the variant syntax used here is based closely on the Schema formal seman-
tics of Brown et al., called the Model Schema Language (MSL) [4]; that treatment also forms the
basis of the W3C’s own, more ambitious but as yet unfinished, formal semantics [47]. We do not
treat all features of Schema, but only the subset covered by MSL (except wildcards). This subset,
however, arguably forms a representative subset and suffices for many Schema applications.

4.1 An overview of XML Schema

A schema describes a set of type declarations which may constrain the form of, and may affect
the processing of, XML documents (values). Typically, an XML document is supplied along with
a Schema file to a Schema processor, which parses and type-checks the document according to the
declarations. This process is called validation and the result is a Schema value.

Syntax. Schemas are written in XML. As an example, consider the following declarations which
define an element and a compound type for storing bibliographical information:

<element name="doc" type="document"/>
<complexType name="document">
<sequence>
<element ref="author" minOccurs="0"
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max0Occurs="unbounded" />
<element ref="title"/>
<element ref="year" minOccurs="0"/>
</sequence>
</complexType>

This declares an element doc whose content is of type document, and a type document which
consists of a sequence of zero or more author elements, followed by a mandatory title element
and then an optional year element. (We omit the declarations for author, etc.) An example
document which validates against doc is:

<doc>
<author>Dorothy Sayers</author>
<title>Murder Must Advertise</title>
<year>1933</year>

</doc>

While they may have their advantages in large-scale applications, for our purposes XML and
Schema syntax are rather too long-winded and irregular. We use an alternative syntax close to
that of MSL [4], which is more orthogonal and suited to formal manipulation. In our syntax, the
declarations above are written:

def doc[ document ] ;
def document = author™, title, year?;

and the example document above is written:

doc[author[ "Dorothy, Sayers"],
title[ "Murder Must Advertise"],
year["1933" ]

Differences with DTDs. Schemas are more expressive than DTDs in several ways. The main
differences we treat here are summarized below.

1. Schema defines a larger number of primitive types, organized into a subtype hierarchy.

2. Schema allows the declaration of user-defined types, which may be used multiple times in
the contents of elements.

3. Schema’s notion of mixed content is more general than that available in DTDs.

4. Schema includes a notion of “interleaving” like SGML’s & operator. This allows specifying
that a set of elements (or attributes) must appear, but may appear in any order.

5. Schema has a more general notation for repetitions.
6. Schema includes two notions of subtype derivation.

We will treat these points more fully below, but first let us give a very brief overview of the Schema
type system.
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Overview. A document is typed by a (model) group; we also often refer to a model group as a
type. An overview of the syntactic structure of groups is given by the grammar g.

€T =
7 € empt, Seglrl‘grlllcz | Qa attribute name
| 9,9 o Seguence | e element name
| 0 empty choice I fm Tvne type name
| glg choice | anyEieI;n
| g&g interleaving | anySim e Tvoe
| g{m,n} repetition | ySimpleTyp —
| mix(g) mixed content p p
| z component name )
noou= maximum
m = (natural) minimum m bounded
| oo unbounded

This grammar is only a rough approximation to the actual syntax of Schema types. For example,
in an actual schema, all attribute names appearing in an element’s content must precede the
subelements.

The sequence and choice operators should be familiar from DTDs and regular expressions. The
forms @a, e and t are variables which reference, respectively, attribute, element and type bindings
in the schema. We now consider the remaining features in turn.

Primitives. Schema defines some familiar primitives types like string, boolean and integer, but
also more exotic ones (which we do not treat here) like date, language and duration. In most
programming languages, the syntax of primitive constants such as string and integer literals is
distinct, but in Schema they are rather distinguished by their types. For example, the data "35"
may be validated against either string or integer, producing respectively distinct Schema values
"35" € string and 35 € integer. Thus, validation against a schema produces an “internal” value
which depends on the schema involved.

The primitive types are organized into a hierarchy, via restriction subtyping (see below), rooted
at anySimpleType.

User-defined types. An example of a user-defined type (or “group”), document, was given
above. DTDs allow the definition of new elements and attributes, but the only mechanism for
defining a new type (something which can be referenced in the content of several elements and/or
attributes) is the so-called parameter entities, which behave more like macros than a semantic
feature.

Mixed content. Mixed content allows mixing structured and unstructured text, as in a para-
graph with emphasized phrases. The opposite of mixed content is called element-only content. In
the DTD formalism, mixed content is specified by a declaration such as:

< 'ELEMENT text ( #PCDATA | em )x >

This allows em elements to be interspersed with character data when appearing as the children
of text (but not as descendants of children). In our syntax, the content type of text would be
expressed as mix(em*).

To see how Schema’s notion of mixed content differs from DTDs’, observe that a reasonable
translation of the DTD content type above is

[String :+: [em] ¢ ]

where [em] is the translation of em. This might lead one to think that we can translate a schema
type such as mix(g) more simply as [String :+: [¢]¢]. However, this would not respect the
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semantics of MSL, which implies that d matches mix(g) if unmiz(d) matches g, where unmiz(d) is
obtained from d by deleting all character text at the top level. There are at least two problems with
this translation. First, it is too generous, because while the schema type allows simple documents
such as:

"hello", e[|, "world" € mix(e)
it does not allow repeated occurrences, such as:
"hello", €[], "world", e[|, ”!” ¢ mix(e)

Thus, the user could construct a value which could not be written to an XML file conforming to the
schema. Second, such a translation cannot account for more complex types such as mix(e;, e2).
A document matching such a type consists of two elements e; and ey, possibly interspersed with
text, but the elements must occur in the given order. This might be useful, for example, if one
wants to intersperse a program grammar given as a type

def module = header, imports, fixityDecl*, valueDecl™ ;

with comments: mix(module). An analogous model group is not expressible in the DTD formalism
since groups involving #PCDATA can only appear in two forms, either alone:

#PCDATA
or in a repeated disjunction involving only element names:

( #PCDATA | e; | ex | --- e, )*

Interleaving. Interleaving is rendered in our syntax by the operator &, which behaves like the
operator , but allows values of its argument types to appear in either order, i.e., & is commutative.
An example use is a schema which describes email messages.

def email = subject & from & to & body ;

Although interleaving does not really increase the expressiveness of Schema over DTDs, they are
a much-welcomed convenience. Interleavings can be expanded to a choice of sequences, but these
very rapidly become unwieldy. For example,

[a&b]=a,blb,a
but
[a&b&c] = a,(b,cle,d) | b,(a,cle,a) | ¢, (a,blbd,a)

(Note that [a & b & ] # [a & [b & ]]!)

Repetition. In DTDs, one can express repetition of elements using the standard operators for
regular patterns: *; * and ?. Schema has a more general notation: if g is a type, then g{m,n}
validates against a sequence of between m and n occurrences of documents validating against g,
where m is a natural and n is a natural or co. Again, this does not really make Schema more
expressive than DTDs, since we can expand repetitions in terms of sequence and choice, but the
expansions are generally much larger than their unexpanded forms.
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Derivation. XML Schema also supports two kinds of derivation (which we sometimes also call
refinement) by which new types can be obtained from old. The first kind, called extension, is
quite similar to the notion of inheritance in object-oriented languages. The second kind, called
restriction, is an ‘additive’ sort of subtyping, roughly dual to extension.

As an example of extension, we declare a type publication obtained from document by adding
fields at the end:

def publication extends document = journal | publisher;

A value of type publication is a document followed by either a journal or publisher field.
Extension is slightly complicated by the fact that attributes are extended ‘out of order’. For
example, if types t; and f are defined:

def tl = @al, €1,
def 1, extends t; = Qas, ey ;

then the content of 5 is:
(@al & @ag), €1, €2

As an example of restriction, we declare a type article obtained from publication by fixing
some of the variability. For example, if an article is always published in a journal, we can write:

def article restricts publication = author™, title, year, journal;

So a value of type article always ends with a journal, never a publisher, and the year is now
mandatory. Note that, when we derive by extension we only mention the new fields, but when we
derive by restriction we must mention all the old fields which are to be retained.

In both cases, when a type ¢’ is derived from a type ¢, values of type ¢’ may be used anywhere
a value of type t is called for. For example, the document:

author[ "Patrik Jansson" |,
author[ "Johan,,Jeuring" |,

title[ "Polytypic Unification"],
year["1998" ],

journal["JFP" |

validates not only against article but also against both publication and document.

Every type that is not explicitly declared as an extension of another is treated implicitly as
restricting a distinguished type called anyType, which can be regarded as the union of all types.
Additionally, there is a distinguished type anyElem which restricts anyType, and from which
all elements are derived.

4.2 An overview of the translation

The object of the translation is to write Haskell programs on data corresponding to schema-
conforming documents. At minimum, then, we expect the translation to satisfy a type-soundness
result which ensures that, if a document validates against a particular schema type, then the
translated value is typeable in Haskell by the translated type.

Let us outline the motivations and difficulties posed by the above-mentioned features. As a
starting point, consider how we might translate regular patterns into Haskell datatypes.

[ele = () [0]c = Void
[91, 92]c = ([91]c: [92]c) [91 | g2]c = [o1llc +: [92]c
lo*lc = [lo]c] =[9"]e = (l9le, [97]e)

[97]c = [glc ++: ()
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This is the sort of translation employed by HaXml [51], and indeed we follow the same tack.
In contrast, WASH [43] takes a decidedly different approach, encoding the state automaton corre-
sponding to a regular pattern at the type level, and makes extensive use of type classes to express
the transition relation.

Primitives. The primitives are basically translated to the corresponding Haskell types, wrapped
by an isomorphism. For example,

data T _string mixity = T _string String.

The purpose of the mixity argument is explained below.

User-defined types. Types are translated along the lines described above, using products to
model sequences and sums to model choices. Here are the exact types we use:

data Empty mixity = Empty

data Seq gl g2 mixity = Seq (gl mixity) (g2 mixity)

data None mixity {- no constructors -}

data Or gl g2 mixity = Or1 (gl mixity) | Or2 (g2 mixity).

The translation takes each group to a Haskell type of kind * — * (we explain why when addressing
mixed content in a moment):

[e]lc = Empty l91, g2l = Seq [g1]c [92]a
[0]c = None [91 1 g2lc = Or [g1]c [92]c

As an example, the document type is translated as:

data T_document u = T _document
(Seq Empty
(Seq (Rep LE_E_author ZI)
(Seq LE_E_title
(Rep LE_E_year (ZS ZZ)))) u).

Here the leading T_ serves to indicate that this declaration refers to the type document, rather
than some element (or attribute) of the same name, which would be indicated by a prefix E_ (A_
respectively). The LE_ prefixes relate to derivation and are explained below. The Rep, ZS, ZZ,
and ZI| type relate to repetition, also explained below. Finally, the leading Seq Empty after the
constructor T _document results from the translation of attributes and are also explained later.

Mixed content. The reason each group g is translated to a first-order type t:: x — % rather
than a ground type is that the argument, which we call the ‘mixity’, indicates whether a document
occurs in a mixed or element-only context.! Accordingly, mixity is restricted to be either String
or (). For example, e[t] is translated as Elem [e]a [t]c () when it occurs in element-only content,
and Elem [e]¢ [t]e String when it occurs in mixed content. The definition of this datatype

data Elem e gu = Elem u (g ())

stores with each element a value of type u corresponding to the text which immediately precedes
a document item in a mixed context. (The type argument e is a so-called ‘phantom type’, serving
only to distinguish elements with the same content g but different names.) Any trailing text in a
mixed context is stored in the second argument of the Miz data constructor.

data Mix g u = Miz (g String) String

1'We use the convention u for mixity because m is used for bounds minima.
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For example, the document
"one", e1[], "two", e[|, "three" € mix(e;, €3)
is translated as
Mix (Seq (Elem "one" (Empty ())) (Elem "two" (Empty ()))) "three"

Each of the group operators is defined to translate to a type operator which propagates mixity
down to its children. For example:

data Seq gl g2 u = Seq (gl u) (g2 u)

There are three exceptions to this ‘inheritance’. First, mix(g) ignores the context’s mixity
and always passes down a String type. Second, e[g] ignores the context’s mixity and always passes
down a () type, because mixity is not inherited “across element boundaries.” Finally, primitive
content p always ignores its context’s mixity because it is atomic.

An alternative to this treatment of mixed content is to translate mixed content with a separate
semantic function, say [—]mg. Our treatment, though, has several advantages. For example, every
type appearing in mixed content would also have to be translated differently. This means that
there would be two versions of each type bound in the schema. We would also have to account
for refinement of both versions of each type, leading to a dual hierarchy. Furthermore, the client
programmer would have to write two functions each time she wanted to a process a type which
could appear in both element-only and mixed contexts; in our translation, she need write only a
single function which is polymorphic in the mixity type argument.

Interleaving. Interleaving is modeled essentially the same way as sequencing, except with a
different abstract datatype.

data Inter gl g2 u = Inter (gl u) (g2 u)

An unfortunate consequence of this is that we lose the ordering of the document values.

For example, suppose we have a schema which describes a conference schedule where it is
known that exactly three speakers of different types will appear. A part of such a schema may
look like:

def schedule[speaker & invitedSpeaker & keynoteSpeaker | ;

The schema processor should be able to determine the order in which schedule elements appeared,
but since we do not track the permutation we cannot say what the document ordering was.

More commonly, since attribute groups are modeled as interleavings of attributes, this means
in particular that schema processors using our translation do not have access to the order in which
attributes are specified in an XML document.

Repetition. Repetitions g{m,n} are modeled using a datatype
Rep [g9]c [m,n]s u
and a set of datatypes modeling bounds:

[[0,0HB:ZZ [[O,m—l—l]]B:ZS [[O,m]]B
[0,¢] 5 = ZI [m+1,n+1]s =SS [m,n]z
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defined by?:

dataRepgbu = Rep(bgu)

dataZZ gu = 77

data Zlgu = Zl|[gu]

dataZSbgu = 7S (Maybe (g u)) (Repg b u)
dataSSbgu = SS(gu)(Repgbu).

Some sample translations are

[e{2,4}]c = Rep [ela (S5 (SS (25 (45 22))))
[e{0,00}]c = Rep [e]e 21
[e{2,0}]¢ = Rep [e]a (SS (SS ZI))

Derivation. Derivation poses one of the greatest challenges for the translation, since Haskell has
no native notion of subtyping, though type classes are a comparable feature. We avoid relying on
type classes here, however, because one of our goals is to develop a data representation which makes
it easy to write Schema-aware programs in Generic Haskell. Since generic programs operate by
recursing over the structure of a type, encoding the subtyping relation in a non-structural manner
such as via the type class relation would be counterproductive.

This situation seems to be complicated by the need to support anyType. The anyType
behaves as the union of all types, which immediately suggests an implementation in terms of
Haskell datatypes: anyType should be translated to a datatype which has one constructor for
each type which directly restricts it, the direct subtypes, and one constructor for values which are
‘exactly’ of type anyType.

In the case of our bibliographical example, we have:

data T_anyType mixity = T _anyType
data LE_T_anyType mixity = EQ_T_anyType (T_anyType mixity)
| LE_T _anySimpleType (LE_T _anySimpleType mixity)
| LE_T _anyElem (LE_T_anyElem mixity)
| LE_T_document (LE_T _document mixity).

The alternatives LFE _ indicate the direct subtypes while the F(Q_ alternative is ‘exactly’ anyType.
The document type and its subtypes are translated similarly:

data LE_T_document u EQ_T_document (T_document u)
LE_T _publication (LE_T _publication u)
EQ_T _publication (T _publication u)
LE_T_article (LE_T _article u)

EQ_T _article (T _article u).

data LE_T _publication u

data LE_T _article u

When we use a Schema type in Haskell, we can choose to use either the ‘exact’ version, say
T_document, or the version which also includes all its subtypes, say LE_T _document. Since Schema
allows using a subtype of ¢t anywhere ¢ is expected, we translate all references to a variable to
references to its LE_ variant. This explains why, for example, T_document refers to LE_E_author
rather than E_author in its body.

What about extension? To handle the ‘out-of-order’ behavior of extension on attributes we
define a function split which splits a type into a (longest) leading attribute group (e if there is
none) and the remainder. For example, if we recall our definitions above:

def t; = Qaq, e1;
def t; extends t; = Qas, es;

2 Actually the Haskell kind inferencer, which assumes unused type arguments are of kind «, requires some hints
to infer the correct kinds for these datatypes, so these datatypes have some extra, unused constructors which serve
only to force the kinds of the arguments. We omit them here.
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then split(t;) = (Qaq,e;1) and, if #} is the ‘extended part’ of ¢, then split(t;) = (Qas, e3). We then
define the translation of t; to be

fst(split(t1)) & fst(split(ts)), (snd(split(ty)) , snd(split(ts)))

In fact, to accomodate extension, every type is translated this way. Hence T_document above
begins with ‘Seq Empty ...’, since it has no attributes, and the translation of publication:

data T_publication u = T _publication
(Seq (Inter Empty Empty)
(Seq (Seq (Rep LE_E_author ZI)
(Seq LE_E_title
(Rep LE_E_year (ZS Z27))))
(Or LE_E _journal LE_E_publisher)) u).

begins with ‘Seq (Inter Empty Empty) ...”, which is the concatenation of the attributes of document
(namely none) with the attributes of publication (again none). Hence the attributes are accumu-
lated at the beginning of the type declaration.

In contrast, the translation of article, which derives from publication via restriction, corre-
sponds more directly with its declaration as written in the schema.

data T_article u = T _article
(Seq Empty
(Seq (Rep LE_E_author ZI)
(Seq LE_E_title
(Seq LE_E_year LE_E _journal))) u)

This is because, unlike with extensions where the user only specifies the new fields, the body of a
restricted type is essentially repeated as a whole.

Discussion. We have given an informal description of a translation of schema types and values
into Haskell.

It is a bit surprising that MSL translates into Haskell as well as it does: indeed, the syntax
of the Haskell types corresponding to MSL groups is almost exactly the same as that of the MSL
groups themselves. We find the treatment of mixed content, which is often cited as an ad hoc
feature of XML, via a mixity type parameter to be particularly elegant.

We have so far developed a prototype implementation of the translation and checked its correct-
ness with a few simple examples and some slightly larger ones, such as the generic parser described
in the next section, and a generic pretty-printer. The many wrapper isomorphisms involved in
translated data make them rather unwieldy in standard Haskell. This is not really an issue when
writing schema-aware XML tools in Generic Haskell, since most of the pattern-matching cases of
a generic function involve only one wrapper at a time, but poses a problem for applications which
depend on a specific schema.

There are some downsides to the translation. Although the handling of subtyping is straight-
forward and relatively usable, it does not take advantage of the l-unambiguity constraint on
Schema groups to factor out common prefixes. We will see in the next section that this has an
impact on the efficiency of generic applications. Another issue is the use of unary encoding in
repetition bounds, though this could be addressed by using a larger radix. Finally, there are some
undesirable consequences of the fact that schema types, which obey equational laws, are always
translated as abstract datatypes, which satisfy analagous laws only up-to-isomorphism.

Future work may involve extending the translation to cover more Schema features such as facets
and wildcards, adopting the semantics described in more recent work [40], which more accurately
models Schema’s named typing, and exploiting the l-unambiguity constraint to obtain a more
economical translation.
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4.3 A formalism for schemas

We now describe the syntax of documents and schemas formally and in a more complete fashion,
and give an informal sketch of the semantics.

Documents A document is a sequence of document items, which may be attributes, elements
or primitive textual data. Attribute and element content is assumed to be annotated by their
intended type (s and t) in a previous normalization phase of the XML reader. This phase does
not check that the content actually matches the indicated type.

d = document di = document item
€ empty sequence afs > d] attribute

| d,d sequence | e[t>d] element

| di document item | ¢ text

The operators , and € obey the equational laws for a monoid.

Model groups A document is typed by a (model) group. An overview of the operators which
can occur in a group has been given in the previous section.

In fact, groups per se are not actually used in XML Schema; instead, only certain restrictions
of the grammar g are allowed depending on the content sort, that is, whether it belongs to an
attribute, element or type. For example, elements and interleaving are not allowed to occur in
attribute content, and any attributes occurring in element content must come before all child
elements.

Since the validation rules do not depend on the content sort we prefer to treat content in
this more uniform fashion as it reduces some inessential complexity in our presentation. This
does not entail any loss of “precision”: Haskell programs employing our translation cannot violate
the additional constraints imposed by content sort restriction because the translator program
accepts as input only well-constrained schemas, and consequently the translated datatypes only
have values which obey those constraints.

The XML semantics of model groups is given by specifying which documents validate against
each group. A formal exposition of the semantics is given by Brown et al. [4], which we summarize
here informally. (We prefer not to reiterate the formal rules for validation because, as we shall see
in section 4.3.1, they are easily read off from the rules for our translation of XML documents into
Haskell values.)

€ matches the empty document. g¢;, ¢go matches a document matching g, followed by a
document matching g,. @ matches no document. ¢; | g2 matches a document which matches
either g1 or go. Unlike in MSL [4], we do not stipulate that these operators satisfy any equational
laws; for example, sequence , is not held to be associative. Instead, a schema model group such
as a, b, ¢ is parsed in a right-associative manner as a, (b, ¢), and similarly for choice |. Note,
however, that in contrast the document (value) operators , and e are held to satisfy the laws for
a monoid.

g{m,n} matches any sequence of documents, each of which match g, provided the sequence
is of length at least m, a natural number, and at most n, where n is a “topped natural”: it
may denote co. Arithmetic and ordering on naturals is extended to account for co as follows:
n+o0o =o00+n=o0 and n < oo is always true while co < n is always false. We sometimes
abbreviate repetitions using the syntax ?, * and T with the obvious translations.

An attribute a[d] matches a[g] iff d matches g. An element e’[d] matches e[g] iff d matches g
and e’ <: e according to the refinement order <:. A document d matches mix(g) iff d’ matches g,
where d’ is obtained from d by deleting all character data not contained in any child elements. A
document matches a component name x if it matches the content group bound to the name x by
the schema.

g1 & go behaves like g1, g2 except that the subdocuments may appear in any order. A
restriction on the syntax of schemas ensures that either: each g; is of the form e[g] or e[g]{0, 1};
or each g; is of the form alg] or a[g]{0,1}.
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Any document d matches against anyType; similarly, any element e[d] matches against
anyElem.
Atomic datatypes p are given by the grammar:

p == boolean | integer | double | string

Only character data can match against an atomic datatype. A document ¢ matches against p iff
it matches against the textual representation of a value of that datatype. In particular, every c
matches against a string. We remain imprecise about the textual representations of the remaining
possibilities since they closely resemble the syntax for literals in Haskell.

XML Schema actually includes a much larger repertoire of built-in atomic datatypes and a
notion of “facets” which allow implementing further constraints on values, but we do not treat
these here.

4.3.1 Translating a schema to a data type

Some semantic functions involved in the translation of a schema to a datatype are given in Figure
1. The function [—]¢ translates model groups, while [—]p, [-]x, [~]5 and [—]mi. translate
primitive names, component names, repetition bounds and mixities respectively. The free variable
3, which refers to the schema in question, is global to all these rules and described below. Note
that each group is translated as a type of kind * — *.

le]c = Empty l91, 92lc = Seq [g91]c [92]c
[0l = None [g1 | g2]lc = Or [g1]c [92]c
l91 & g2]c = Inter [g1]c [92]c [9{m,n}]c = Rep [glc [m,n]s
lale = [a[E(a)]]a le]lc = [e[E(e)]]e
[als]le = Attr [a] x [s]x [e[t]]lc = Elem [e] x [¢]x
[mix(g)[¢ = Mix [g]c [tle = [t]x
[boolean] p = T_boolean [integer]p = T_integer
[double] p = T_double [string] p = T_string
[elem] i = () [mix],,;, = String

Figure 1: Formal translation of types of a schema X.
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The Haskell types mentioned in 1 are given by declarations:

data Empty u = Empty

data Seq gl g2 u = Seq(glu) (g2u)
data Orgl g2 u = Or! (glu) | Or2 (g2 u)
data None u {- no constructors -}

data Attra g u = Attr (gu)

data Elemegu = Elemu(g())

data Mix g u = Mizx (g String) String
dataIntergl g2u = Inter (glu) (g2 u)
dataRepgbu = Rep (bgu)

data T_string u = T _string String
data T_boolean u = T _boolean Bool
data T_integer u = T _integer Integer

data T_double u

T _double Double

To explain the translation of names, we need an abstract model of schemas and of Haskell modules.
For the sake of readability, we prefer to remain a bit informal on some technical points.

The function [—]x converts a schema name into a Haskell identifier. If we regard names and
identifiers as strings, then this function is the identity except that it prepends a string indicating
the name’s sort: if = is a type name then [z]x = "T_"z; if an element name, then "E_"z; if an
attribute name, then "A_"x. For clarity, in the sequel, we omit the semantic brackets and simply
write x for [z] x when no ambiguity can arise.

Let G be the set of all model groups. A schema ¥ = (X, f,<%,<%) is a set of component
names X paired with a map f : X — G and two binary predicates <§ and <%, over X which
axiomatize the extension and restriction relations respectively. The refinement relation <: is
defined as the reflexive-transitive closure of <& U <%. We write X(x) for f(z). We assume X is
disjoint from the primitive names like string but includes the distinguished type names anyType,
anySimpleType and anyElem. Furthermore, we require that anyType <%, anySimpleType
and anyType <%, anyElem, and that the schema is well-formed: for example, every name except
anyType is either an extension or restriction of some other name.

By way of example, the following schema declarations in a schema X:

def e [ge];
def Qa [g4l;
def t =g;;

produce bindings:

() = elge]
E(@a) = @a[ga]
E(t) = G

We define the function split : G — G x G on model groups so that if (g1, g2) = split(g) then g is
the longest prefix of attribute content of g, and gs is the remainder. For example:

split(ay &as & -+ ap, ,g2) = (a1 & as & -+ an,g2)

If n =0 then g1 = e.

Now let K be the set of all Haskell type terms of kind x — %, and D be the set of datatype
declarations. A datatype d = (C,g) € D is a set of constructor names C' paired with a partial map
g:C — K, and we write d(c) for g(c). (If d(c) is undefined, then the constructor is a constant.)

A Haskell module H = (T, h) is a set of type names T paired with a map h : T' — D, and
we write H(z) for h(xz). We assume T is disjoint from standard Haskell names and the types
declared above like Seq, and that, for all d,d’ € cod(h), dom(d) # dom(d’) unless d = d’, i.e., no
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distinct datatypes in H share constructor names. Hence, if H(t)(c¢) = F then ¢ denotes a function
c::Va.F a—tin module H.

By way of example, a Haskell module H = ({Ty},h) where d = ({C1,C2},9), H(Ty) = d,
d(Cy) = F and d(Cs) is undefined would be realized as:

import Def -- defines Empty, Seq, Or, etc.
data Tyu=C; (Fu) | Ce

We now give a set of conditions which describe a function [—]s that, given any schema ¥ =
(X, f, <%, <%), produces a well-kinded Haskell module H = (T, h) = [X]s.

1. for all names z € X and z,"LE_"z € T
2. [¥]s(anyType)(anyType) is undefined

[¥]s(anyElem)(anyElem) is undefined

- W

forall z, [¥X]s("LE_"z)("EQ_"z) =«
5. forall z, 2" s.t. © <§ 2’ or z <%, 2/, [X]s("LE_"2')("LE_"z) = "LE_"x
6. forall z, 2" s.t. = <% 2’ [E]s(z)(z) = [Z(2)]c

7. forall z, 2’ s.t. & <§ 2’ [E]s(z)(x) = [(aw & az), cu, ci] e Where (ay, ¢;) = split(3(x)) and
(agr,cer) = split(X(z))

The first condition says that each schema name z produces two type names, a type [z]x and a
type "LE"[z] x; the first (let us call it the ‘equational’ version) is used to denote values of ezactly
type x, while the second (let us call it the ‘down-closed’ version) is used to denote values of type
x or any of its subtypes. The next two conditions essentially say that the equational versions of
anyType and anyElem carry no interesting information. Condition 4 says that the down-closed
version of a type has a constructor which injects the equational version.

Condition 5 says that if z is an immediate subtype of x’, then there is a constructor "LE_" z
which injects the down-closed version of x into the down-closed version of z’. We call such
constructors aziomatic subtyping witnesses; note that each instance of the refinement relation <:
is witnessed by a function which is expressible as either the identity or a composition of such
axiomatic witnesses.

Conditions 6 and 7 express the way subtyping coercions work. Condition 6 says that the
equational version of a type [z] x obtained by restriction simply has a constructor which injects
the content of x into [x] x, i.e., just as in schema specifications, we do not try to factor restrictions
to share any parts of a restricted type with its parent. Condition 7 expresses Schema’s notion
of extension, which reorders the content to bring together attribute content from the parent and
child; in contrast to restriction, some simple factoring is done here via the split function.

Groups The value translation is given by the inference rules of Figure 2. The conclusion of
each rule has the form d €, g = v, which can be read, “document d validates against type g
producing Haskell value v” in mixity context u. (The schema and Haskell module(s) in question
are left implicit.) This notation is a more readable alternative for describing a type-indexed value
translation function [—]{":

dey,g=v = [dl{"=v
The soundness of this translation, shown in Section 6, ensures that v :: [g]¢ [u]miz-

Interleaving The interleaving rule uses a proposition of the form d pter dy; da, defined in Figure

3, which can be read, “document items in d can be permuted to yield a pair of documents d; and
dg.”
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di €u g1 =>v1 d2 €y g2 = V2

Empty ———+—— Seq
€ €y € = Empty di, d2 €4 g1, g2 = Seq v1 v2
d€Ey g1 = v d €y g2 = v2
Choice(1) Choice(2)
d€ygi | go= Orl v d€ygr ] ge= 0r2 vy

inter

d'= di;de  di €u gi = Vi de,g=v g=2X(z)
Inter Name
d €y g1 & g2 = Inter vy v2 d €y z = "EQ_"[z]x ([z]x v)
dego {mn} 2o d Eelem S =V
Rep Attr
d €y g{m,n} = Rep v ald] Eelem als] = Attr v
deyt=wv t<:t'gf de€ye=v e<:e/§f
Elem S Refine ;
eld] €elem €[t'] = Elem () (f v) dewe = fu
dEmxg=v ¢S cZ v eld] €otem g = Elem () v'
Mix(1) Mix(2)

d,c Eclem mix(g) = Miz v v’ c,el[d] Emix g = Elem v v’

Figure 2: Formal translation of values, part I: Documents.

inter 1 inter 1
di 'V dydy d2 '+ dy;dy

Inter-Empty ——— Inter-S
nter-tmpty inter nter-seq inter 4 / 11 1
€= €€ di, do W di, dy;dy, dy

Inter-Item(1) — ; Inter-Item(2)
mter

. . . inter .
di '+ dije di — €;di

Figure 3: Formal translation of values, part II: Interleaving.
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Repetition The rules for repetition given in Figure 4 employ propositions of the form d €,
{m,n} = v :: [m,n]p, where g is a group and u is a mixity, meaning that d validates against
g{m, n} producing a value v of type [g{m,n}]¢ [u]miz-

€w € g{0,m} =

Rep(0) — Rep(1) — :
€€gu {0,0} = 22 € €50 {0,m + 1} 2 ZS Nothing v

dl Gug:>U1 d2 ST .9{7Tba’r7“}r§)l]2

Rep(1?) o Rep(2) re
€ €gu {0,00} = 71 [] di, dz €gu {m+1,n+1} = 55 v1 vy
di €Ew g=> 11 do €y 9{07 m} = V2 di €y g =11 d2 €g,u {0, OO} =71 )
Rep(3) — Rep(3’) re
di, da €gu {0,m +1} =2 ZS (Just v1) vo dis da €40 {0,00} =2 ZI (v1 : v2)

Figure 4: Formal translation of values, part III: Repetition.

Refinement The rules in Figure 5 define the witnesses to the refinement relation <:. If g <:
g’ = f then f is a coercion which witnesses the fact that we can upcast a value of type [¢g]¢ a to
one of type [¢']¢ a, for any type a.

g<:¢d=f 4gd<g" =f

Reflex ——— Trans m S
g<:g=id g<:g"=f.f
z <% 2’ z <% 2’
Res————————— Ext—————
r <:x = "LE_"x r <:x = "LE_"x

Figure 5: Formal translation of values, part IV: refinement.

5 From XML documents to Haskell data

In this section we describe an implementation of the translation outlined in the previous section
as a generic parser for XML documents. If t is a Haskell type corresponding to a Schema type ¢,
then the generic value gParse{t[} denotes a parser that accepts all and only documents validating
against t. Consequently, generic programming is not only useful for implementing XML tools, it
is already useful when constructing a data binding.

Rather than parse strings, we use a universal data representation Document which presents a
document as a tree (or rather a forest):

type Document =  [Docltem]

data Docltem = DText String

| DAttribute String Document
| DElement String Document

It is a simple matter to parse an XML document into this representation.
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We use standard techniques [25] to define a set of monadic parsing combinators operating over
Document. P a is the type of parsers that parse a value of type a. We omit the definitions here
because they are straightfoward generalizations of string parsers.

return 5 Va.a—Pa

(>=) @ Vab.Pa—(a—Pb)—Pb
fmap @  VYab.(a—b)—Pa—Pb
runP 5 Va.P a — Document — a

return and >= are the unit and bind operations of the P monad; runP p d is the result of running
parser p on a document d.
The type of generic parsers is given by the kind-indexed type GParse{t]}:

type GParse{[x}t = Pt

The generic value gParse{t]} denotes a parser which tries to read a document into a value of type
t. We now describe its functionality on the various components of Schema.

gParse{t :: k[} :: GParse{[x[} t
gParse{String} = pMized
gParse{Unit[} = pElementOnly

The first two cases handle mixities: pMized optionally matches any DText chunk(s), while parser
pElementOnly always succeeds without consuming input. Note that no schema type actually
translates to Unit or String (by themselves), but these cases are used indirectly by the other cases.

gParse{Empty ul} = return Empty
gParse{Seq gl g2ul} =  do docl < gParse{gl u}
doc2 — gParse{g2 uf}
return (Seq docl doc2)
gParse{None uf} = mzero
gParse{Or gl g2 uf} = fmap Orl gParse{gl ul}
<|> fmap Or2 gParse{g2 ul}

Sequences and choices map closely onto the corresponding monad operators. p <|> ¢ tries parser
p on the input first, and if p fails attempts again with ¢, and mzero is the identity element for
<|>.

gParse{ T string[} fmap T _string pText

gParse{T_integer[} = fmap T_integer pReadableText
gParse{T_double[} = fmap T_double pReadableText
gParse{T_boolean} = fmap T_boolean pReadableText

String primitives are handled by a parser p Texzt, which matches any DText chunk(s). The function
pReadableText parses integers, doubles, and booleans using the standard Haskell read function,
since we defined our alternative schema syntax to use Haskell syntax for the primitives.

gParse{Elemegul} =  do mizity «— gParse{uf}
let p = gParse{g[} pElementOnly
elemt gName{e[} (fmap (Elem mizity) p)
gParse{Attr a g uf} = let p = gParse{g[} pElementOnly
in attr gName{al} (fmap Attr p)

An element is parsed by first using the mixity parser corresponding to u to read any preceding
mixity content, then by using the parser function elemt to read in the actual element. elemt s p
checks for a document item DElement s d, where the parser p is used to (recursively) parse the
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subdocument d. We always pass in gParse{gl} pElementOnly for p because mixed content is
‘canceled” when we descend down to the children of an element. Parsing of attributes is very
similar.

This code uses an auxiliary type-indexed function gName{e[} to acquire the name of an element;
we omit its full definition here, since it has only one interesting case:

gName{Con ¢ a[t = drop 5 (conName c)

This case makes use of the special Generic Haskell syntax Con ¢ a, which binds ¢ to a record
containing syntactic information about a datatype. The right-hand side just returns the name
of the constructor, minus the first five characters (something like LE_T_), thus giving the correct
attribute or element name as a string.

gParse{Mixgul} = do doc «— gParse{g[} pMized
mazity «— pMized
return (Miz doc mizity)

When descending through a Mix type constructor, we perform the opposite of the procedure for
elements above: we ignore the mixity parser corresponding to u and substitute pMized instead.
pMized is then called again to pick up the trailing mixity content.

gParse{Repgbul} = fmap Rep gParse{b g ul}
gParse{ZZ g ul} = return ZZ
gParse{Zl g ul} fmap ZI $ many gParse{g ul}
gParse{ZS g b uf} = do x < option gParse{g ul}
y < gParse{b g u[}
return (ZS = (Rep y))
gParse{SS g b uf} = doxz « gParse{g u}}
y < gParse{lb g uf}
return (SS x (Rep y))

Repetitions are handled using the familiar parser combinators many p and option p, which parse,
respectively, a sequence of documents matching p and an optional p.

Most of the code handling interleaving is part of another auxiliary function, gInter{t[}, which
has the kind-indexed type:

type Ginter{xf =  Va.PermP (t —»a) — PermP a

Interleaving is handled using these permutation phrase combinators [1]:

<> 2 VYab.PermP (¢ — b) —» P a— PermP b
(<]?>) : Yab.PermP (¢ — b) — (a,P a) — PermP b
mapPerms 1 Vab.(a — b) — PermP a — PermP b
permute : Va.PermP a — P a

newperm  VYab.(a—b) — PermP (a — b)

Briefly, a permutation parser ¢ :: PermP a reads a sequence of (possibly optional) documents in
any order, returning a semantic value a. Permutation parsers are created using newperm and
chained together using <||> and <|?> (if optional). mapPerms is the standard map function for
the PermP type. permute g converts a permutation parser ¢ into a normal parser.

gParse{Inter gl g2 uf = permute $ (gInter{g2 ul} . gInter{gl ul}) (newperm Inter)

To see how the above code works, observe that:

f1 = gInter{gl ul} :: Vgl u b.PermP (gl u — b) — PermP b
12 = gInter{g2 ul} :: Vg2 u c. PermP (g2 u — ¢) — PermP ¢
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Hence:

f2.f1 :Vglg2uc.PermP (glu— g2u—c)— PermP ¢

Note that if ¢ is instantiated to Inter gl g2 u, then the function type appearing in the domain
becomes the type of the data constructor Inter, so we need only apply it to newperm Inter to get
a permutation parser of the right type.

(f1 .12) (newperm Inter) :: Vgl g2 u.PermP (Inter gl g2 u)

Many cases of function glnter need not be defined because the syntax of interleavings in Schema
is so restricted.

glnter{t :: [} i Glnter{x] t
glnter{Con c al} = (<||> fmap Con gParse{al})
gInter{Inter gl g2 uf} = gInter{gl ul}. gInter{g2 ul}

.mapPerms (\f = y — f (Inter x y))
(<|?> (Rep gDefault{(ZS ZZ) g ul}
, fmap Rep gParse{(ZS ZZ) g u}}))

gInter{|Rep g (ZS ZZ) u[}

The key to understanding this declaration is the Con case. We see that an atomic type (an element
or attribute name) produces a permutation parser transformer of the form (<||> ¢). The Inter
case composes such parsers, so more generally we obtain parser transformers of the form:

<> a <> @ <[> a<|>..)

The Rep case is only ever called when g is atomic and the bounds are of the form ZS ZZ: this
corresponds to a Schema type like {0, 1}, that is, an optional element (or attribute).?

Discussion. Schema types correspond to tree languages satisfying a ‘1-unambiguity’ rule analagous
to the LL(1) restriction on string languages. But a glance at the representation of parsers:

data P a = P{unP :: Document — Maybe (Document, a)}

shows that we have not used any of the well-known techniques [42, 31] that exploit determinism
to optimize combinator parsing of LL(1) languages. The reason we cannot use these techniques is
that the grammar defined by our translated schema types is not left-factored, i.e., the grammar
may include alternatives which share common prefixes.

For example, all three of the example types document, publication and article start with an
(optional) author. The generic parser gParse{|LE_T _document uf} can be thought of as a sum (some
alternatives are omitted):

gParse{T _article u[} <||> gParse{T _publication ul} <||> gParse{T_document ul}

If we use a deterministic parser to parse a document, the parser would commit to the first branch
as soon as it encountered an author element, because parsing an author consumes a prefix of the
input. But the difference between these three types becomes evident only after that prefix, so if
the input is actually a non-article document, we would get a parser error.

Our solution is to use a backtracking parser which tries the next alternative when the current
alternative fails, and to arrange our translation so that more-specific types occur earlier in a sum
than less-specific types. (This is always possible because every type has at most one supertype.)

The fact that we cannot exploit more efficient parser representations is a limitation of our
translation. We could attempt to use deterministic parsers by altering the translation so that

3The Generic Haskell compiler does not accept the syntax glnter{Rep g (ZS ZZ) u[}. We actually define this
case using glInter{|Rep g b u[}, where b is used consistently instead of (ZS ZZ), but the function is only ever called
when b = 7S ZZ.
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the grammars are left-factored; this is not so hard to do for types derived by extension, since
(ignoring the possibility of additional attributes) the declarations mention only a new suffix, but
much harder for types derived by restriction, where essentially the entire body of the supertype is
repeated. Even if we factor restrictions suitably, the resulting datatypes and datatype hierarchy
would bear little resemblance to the original schema, so we have opted to use the less-efficient
backtracking approach for now.

6 The correctness of the transformation

In this section we show that the translation of schemas into Haskell is correct. The two major
results are that the translation is sound w.r.t. typing and that each instance of the subtyping
relation is witnessed by a coercion. In this section we abbreviate the mixity translation function
[[*]]mzx as H*Hm

The type soundness property says that if a document validates against a schema type, then the
translation of the document is typeable against the translation of the schema type. More formally
we have:

Proposition 1 (Type soundness) Let [—]¢ and [-]v be respectively the type and value trans-
lations generated by a schema. Then, for all documents d, groups g and mixities u, d €, g =
14" A [d" : [ole [uln.

Proof: By structural induction we show that the value translation rules preserve the type
translation. Doing structural induction over the values amounts to annotating the value translation
rules with explicit types. Thus we write d €, g = v :: t tomean d €, g = [d]{" A [d]}" =
lolc [u]m. By writing

A - A,
Ao
we mean: if Ay, ...and A,, then Ag. Thus our compact format neatly presents the required

structural induction proofs.
We present the annotated rules below.

Empt,
P €, € = Empty :: Empty [u],

di €y 91 = v1 = [g1]a [ulm  d2 €u g2 = v2 = [g2]a [u]m

Seq
dy, dy €y g1, g2 = Seq v1 v2 :: Seq [g1]a [92]a [ulm
4 dey g1 = v [gi]e [ulm
Choice(1)
d€y g1l ga= Orl vy ::0r [g1]a [92]c [u]m
Choice(2) d €y g2 = v2 u: [g2] e [u]m
olce
dey g1l ga= 0r2 ve::Or [91]a [92]a [u]m
AP dyydy  di €4 g = it [gide [ulm
Inter

d €y g1 & g2 = Inter vy vo = Inter [g1]¢ [92]c [ulm
deyg=v:dle [ulm g=22(x)
d €, v = "EQ_"[z]x ([z]x v) = "LE_"[*]x [u]m

e d€gu{m,n} = v [m,n]ps [dle [ulm
Pde, g{m,n} = Rep v :: Rep [g]a [m,n]5 [u]m

Name

d Eclem S = v :: [

Attr
" ald] Eelem als] = Attr v :: Attr [a]x [s]e
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ref

deyt=v:ftleg t<t'=fuVa.[tljga—[t]ca
eld] €Eelem e[t’] = Elem () (f v) :: Elem [e]x [t']a

Elem

de, e=v:[e]a e<:e’§f::Va.[[e]]Ga—>[[e’]]Ga

Refi
e de, e = fvue]a

d Emix g = v :: 9]¢ String ¢ U o' & String

Mix(1
(1) d,c¢ Eglem Mix(g) = Miz v v’ :: Mix [¢]c ()

cZ v String  e[d] Eclem g = Elem () v/ :: Elem [e]x ()
Mix(2)

¢,e[d] Emix g = Elem v v’ :: Elem [e] x [g]¢ String

Rep(0) s
i €y {0,0} 22 27 :: 77 [g] e [ulm

ew € g{0,m} = v :: [0,m]5 [9]c [u]m
€€g.u{0,m+1} =L 78 Nothing v :: ZS [0,m]5 [9]c [u]m
Rep(1)

Rep(1)

€ €gu 0,00} = ZI [] :: ZI [gle [ulm

dy €u g =1 [gle [ulm  d2 €u g{m,n} = vyt [mynls [gl [ulm
di, dy €g {m+1,n+1} 2SS vy vy 2SS [m,n] 5 [9]a [ulm

di €y g=v1u[9le [ulm  d2 €4 g{0,m} = vz = [0,m] 5 [9]c [ulm

Rep(2)

Rep(3) o
di, dy €4 {0,m + 1} =L 78 (Just v1) ve :: ZS [0,m] 5 [9]lc [u]m
N (37)d1 €vg=uv:[g9le [u]lm da2 €gu {0,00} =L 71 vy [0,0] 5 [9]lc [u]m
ep re
di, dy €44 {0,00} = ZI (vy : vg) : ZI [0,00] 5 [9]a [w]m
Reflex

g<:g=id:Va.[glec a—[g]c a

g<ig'=fuva.lglca—[gleca g <g"= [ :Va.[g]ca—[g"]ca
g<:g"=f".fuVa.[glca—[¢9"]ca
x <y a

Sx <:2' = "LE_"z ::Va."LE_"x a— "LE_"z' a

Trans

Re

xr <§

Ext 7 7
r<:2'= "LE_"x:Va."LE_"z a— "LE_"z’ a

End of proof.

The next proposition says that if a document d appears as the content of an element and
validates against two types t; and ¢5 such that t; <: t9, then there exists a suitable function which
coerces the t;-translation [d]i}"" into a to-translation [d]2"*. (The restriction that d must appear
as the content of an element arises because this is the only place we can apply the subsumption
rule.) For example, in an element content context, if d validates against publication as v then it

validates against document as LE_T _publication v.

Proposition 2 (Existence of coercions) For all elements e of a schema, if e[d] €, e[t1] A
eld] €, elta] N t1 <: to then there exists a function f :: Va.[t1]x a — [t2]x a satisfying
£ ldly = ldly.

Proof: Recall that <: is generated as the reflexive-transitive closure of <§ U <%. It is easy
to see from the value translation rules for refinement that this implies the witness f is either the
identity or a composition of axiomatic subtyping witnesses.
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If t1 = to, then f = id and we are done.

Otherwise, Jt3.(t1 <% t3 Vi1 <§ t3) Ats <:t2. So by induction there is an f’ :: Va.[ts]x a —
[t2]x a, and f = f/."LE_"t;.

It remains to show that f [d]i-" = [d]™. Observe that, by expanding our alternate notation,
the Elem rule can be rewritten:

ldyt=v [t<st]=f

Ele 7
leld]]{f 1 = Elem () (f v)

Let t' := t5. Taking t := t;, we obtain [e[d] ‘e/[tz]’u = Elem () (f [d]$") and again, taking
t:=tg, [[e[d]]]?,[tzl’u = Elem () (id [d]3") = Elem () [d]". Therefore, by congruence of equality,

f 1Ay = [
End of proof.

7 Conclusions

We have achieved two things in this paper. Firstly, we argued that generic programming is appro-
priate for XML processing, and, as evidence of this claim, we described the generic implementation
of an XML compressor. Our compressor, XCOMPREZ, compares favourably with XMill, because
it uses information about an XML document present in its DTD. Our second contribution was
to present an encoding of Schema in terms of Haskell data types and describe a generic program
which parses and validates XML documents with respect to their purported Schema.

Several other classes of XML tools can be implemented as generic programs and would benefit
from such an implementation [21]. The combination of HaXml and generic programming in Generic
Haskell is very useful for implementing the kind of XML tools for which DTDs play an important
role. Using generic programming, such tools become easier to write, because a lot of the code
pertaining to DTD handling and optimisation is generated by the Generic Haskell compiler. The
resulting tools are more effective, because they can take advantage of the DTD’s structure. For
example, a DTD-aware XML compressor, such as XCOMPREZ described in this paper, compresses
better than XML compressors that don’t take the DTD into account, such as XMill. Furthermore,
our compressor is much smaller than XMill. Now that we have a translation of Schema into Haskell,
we can continue the development of XML tools for the more expressive Schema formalism.

Although we think Generic Haskell is very useful for developing DTD-aware XML tools, there
are some features of XML tools that are harder to express in Generic Haskell. Some of the
functionality in the DOM, such as the methods childNodes and firstChild in the Node interface,
is hard to express in a typed way. Flexible extensions of type-indexed data types [23] might offer
a solution to this problem. We think fusing HaXml, or a tool based on Schemas, with Generic
Haskell, obtaining a ‘domain-specific’ language [8] for generic programming on DTDs or Schemas
is a promising approach.

Acknowledgements. Andres Loh, Paul Hagg, and Jeroen Snijders helped with implementing
XCOMPREZ.
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