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Abstract. In this paper, we consider problems related to the network reliability problem
restricted to graphs of bounded treewidth. We consider undirected simple graphs with a
rational number in [0, 1] associated to each vertex and edge. These graphs model networks
in which sites and links can fail with a given probability, independently of whether other
computers or links fail. The number in [0, 1] associated to each element is the probability
that this element does not fail. In addition, there are distinguished sets of vertices: a set S

of servers, and a set L of clients.
This paper presents a dynamic programming framework for graphs of bounded treewidth.
For a large number of different properties Y , we can compute with this framework the
probability that Y holds in the graph formed by the nodes and edges that did not fail. For
instance, it is shown that one can compute in linear time the probability that all clients are
connected to at least one server, assuming the treewidth of the input graph is bounded. The
classical L-terminal reliability problem can be solved in linear time for graphs of bounded
treewidth as well using this framework. The method is applicable to a large number of related
questions. Depending on the particular problem, the algorithm obtained by the method uses
linear, polynomial, or exponential time.

1 Introduction

In a world with a growing need for communication and data exchange, computer as well as telecom-
munication networks play a decisive role. In most applications, it is of great importance that con-
nections between the communicating parties remain intact. Unfortunately, hardware and software
are not infallible. For this reason modern networks are designed such that two communication sites
can have more than one possibility of information exchange. Furthermore, one can often observe
that some sites in a network are of greater importance than others. For instance, connections
between servers may be more important than between clients. It is important to compute the reli-
ability of a network not only during construction process but also for improving and determining
the quality of existing networks.

In this paper, we investigate the problem of computing the probabilities that a given network
has a certain property, for several types of properties. We use the following model: To each element
of the network (node or edge), a rational value in [0, 1] is assigned, which expresses the probability
that the element is working. We assume that the occurrence of failures of elements are statistically
independent. Given a network G = (V, E), with associated probabilities of non-failure, and a
set of vertices S ⊆ V , the S-terminal reliability problem asks for the probability that there is a
connection between every pair of vertices of S. For general graphs or networks this problem is
#P -complete [10]. When restricting the set of input networks to graphs of bounded treewidth,
linear time algorithms are possible.

Much work has been done on algorithms for graphs of bounded treewidth, as well as for
(special cases of) the S-terminal reliability problem. A general description of a common ‘bottom
up’ method for graphs of bounded treewidth can be found in [3] or [4]. Arnborg and Proskurowski
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considered in [1] the case that only edges can fail and that nodes are perfectly reliable. They
gave a linear time algorithm for this problem on partial k-trees, i.e., graphs of treewidth at most
k. Mata-Montero generalized this to partial k-trees in which edges as well as nodes can fail [9].
Rosenthal introduced in [11] a decomposition method, which was applied by Carlier and Lucet
to solve the network reliability problems with edge and node failures [5]. Furthermore, with this
approach Carlier, Manouvrier and Lucet solved the 2-edge connected reliability problem for graphs
of bounded pathwidth [8].

We will generalize both the type of the problems which can be solved, and the method used
in [5] and [8]. Instead of looking at graphs of bounded pathwidth, we will deal with graphs of
bounded treewidth.

Since elements of the network can break down (i.e. the corresponding vertices are deleted
from the graph), we call the graph induced by the still existing vertices (i.e. the correspondents
to the ‘up’ network elements) the ‘surviving subgraph’. For graphs with associated non-failure
probabilities, we present a framework for answering a large number of questions, which can be
more complicated and more general than the classic S-terminal reliability problem. These questions
ask for the probability that the surviving subgraph has a certain property. We allow that there
are two types of special vertices. We have a set S of servers and a set L of clients as well as other
vertices that serve simply to build connections. With this technique, we can answer questions such
as: ‘What is the probability that all clients are connected to at least one server?’ and ‘What is the
expected number of components of the graph of the non-failed elements that contain a vertex of
S or L?’ Many of these questions are shown to be solvable in linear or polynomial time when G

has bounded treewidth.
The properties one can ask for, define the connectivity between vertices of the set S, and also

the connectivity between vertices of S and vertices of L. Furthermore, the number of connected
components which contain a vertex of S or L can be dealt with. The more information needed to
answer a question, the higher the running time of the algorithm. This starts with linear time and
can increase to exponential time.

Algorithms that require exponential time are necessary for solving problems in which most or
all of the possible information must be preserved. Hence no diminution of information or run time
is possible.

The structure of the paper is described in this paragraph. In Section 2, we give definitions,
which are important for the technique described in Section 3. In Section 3, we describe the dy-
namic programming approach that exploits a nice treedecomposition. In Section 4, we look at
how to use equivalence classes in our framework. We consider the properties of problems that are
solvable with our method. We describe how to reduce the number of objects needed during the
computation, and hence how to reduce the running time by using equivalence relations. We discuss
the structure of these equivalence relations and the correctness of using them. In Section 5, we list
some solvable problems, give a mechanism to generate certain equivalence relations automatically,
and show how these reduce the running time. The equivalence relations of problems that ask for
the probability that the surviving subgraph fulfils a number of properties, are also discussed in
Section 5. In Section 6, we look at an example that demonstrates how the method can be extended
through additional ideas to gain a better running times. The paper is concluded by the discus-
sions given in Section 7. There, we consider the consequences of simulating edge failures, using a
pathdecomposition instead of a treedecomposition, and we examine the global running times.

2 Definitions

2.1 Basic Definitions

We give some basic definitions needed to define graphs with bounded treewidth and the network
reliability problem. For more information on treewidth and the network reliability problem, see
references [1], [3], [4], [9], [11].

Definition 1. A treedecomposition of a graph G = (V, E) is a pair (T, X) with T = (I, F ) a tree,
and X = {Xi | i ∈ I} a family of subsets of V , one for each node of T , such that
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–
⋃

i∈I Xi = V .
– for all edges {v, w} ∈ E there exists an i ∈ I with {v, w} ⊆ Xi.
– for all i, j, k ∈ I : if j is on the path in T from i to k, then Xi ∩Xk ⊆ Xj .

The width of a treedecomposition ((I, F ), {Xi | i ∈ I}) is maxi∈I |Xi| − 1. The treewidth of a
graph G is the minimum width over all treedecompositions of G. A treedecomposition (T, X) is
nice, if T is rooted and binary, and the nodes are of four types:

– Leaf nodes i are leaves of T and have |Xi| = 1.
– Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex v ∈ V .
– Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V .
– Join nodes i have two children j1, j2 with Xi = Xj1 = Xj2

A treedecomposition can be converted into a nice treedecomposition with |I | = O(V |G|) of the
same width in linear time (see [7], [4]). The properties of a nice treedecomposition will in general
not provide more algorithmic power. However, designing algorithms is often easier when using a
nice treedecomposition.

A subgraph of G = (V, E) induced by V ′ ⊆ V is a graph G[V ′] = (V ′, E′) with E′ = E ∩
(V ′ × V ′). A graph G can consist of connected components O1, ..., Oq . In that case, we write
G = O1 ∪ ... ∪ Oq , where ∪ denotes the disjoint union of graphs, and each Oi (1 ≤ i ≤ q) is
connected. Throughout this paper, G = (V, E) denotes a fixed, undirected, simple graph, with V

the set of vertices and E the set of edges. T = (I, F ) is a nice treedecomposition of the graph G.
The term vertex refers to a vertex of the graph and the term node refers to a vertex of the tree
(decomposition).

A vertex v of the network or graph is either up or down. That means the network site repre-
sented by v is either functioning or it is in a failure state. The probability that v is up is denoted
by p(v). A scenario f assigns to each vertex its state of operation: v is up (f(v) = 1) or down
(f(v) = 0). Hence, a scenario describes which vertices are up and which are down in the network.
For the scenario f , W f=1 is the set of all vertices of W which are up and W f=0 = W \W f=1, for
W ⊆ V . The probability of a scenario f (for the whole graph G) is:

Pr
V

(f) =
∏

v∈V f=1

p(v) ·
∏

v∈V f=0

1− p(v)

Clearly, there are 2|V | scenarios. The elements in L ⊆ V represent special objects, the clients,
and the elements of S ⊆ V are the servers, where nS = |S| and nL = |L|. We say W ⊆ V is
connected in G, if for any two vertices of W there is a path joining them. One can easily simulate
edge failures by introducing a new vertex on each edge, and then using the methods for networks
with only node failures. Thus, to ease presentation, we will assume from now on that edges do not
fail. For more details on how to simulate edge failures, see Section 7.1.

Summary of Notations: Let G = (V, E) be a graph.

– p : V → [0, 1] assigns to each vertex its probability to be up
– f : V → {0, 1} assigns to each vertex its state for this scenario f

– W f=q = {v ∈ W | f(v) = q}, for q ∈ {0, 1}, W ⊆ V , f : V → {0, 1}
– L ⊆ V is the set of clients of G, nL = |L|
– S ⊆ V is the set of servers of G, nS = |S|

2.2 Blocks and Representatives

In this section, the definitions of blocks and representatives are given. These notions play an im-
portant role in the main methods given in this paper. We assume to have a nice treedecomposition
(T, X) = ((I, F ), {Xi | i ∈ I}) of G = (V, E). Since T is a binary rooted tree, the ancestor relation
of nodes of the tree is well defined. As described in many articles, e.g. [3] and [4], we will use a
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bottom up approach with this treedecomposition. Each node i of the tree can be viewed as the root
of a subtree. We will compute partial solutions for the subgraphs corresponding to these subtrees
step by step. These partial solutions are contained in the roots of the subtrees. To compute this
information, we only need the information stored in the children of a node, which is typical for
dynamic programming algorithm using treedecompositions. The following definition provides us
the terminology for the subgraphs.

Definition 2. Let G = (V, E) be a graph and (T = (I, F ), X = {Xi | i ∈ I}) a nice treedecompo-
sition of G.

– Vi = {v ∈ Xj | j = i or j is a descendant of i}
– Gi = G[Vi]
– Li = L ∩ Vi

– Si = S ∩ Vi

Blocks. For a certain subgraph Gi, we consider the scenarios of G restricted to Vi. A scenario

f1 causes Gi to decompose into one or more connected components O1, ..., Oq , i.e. G[V f1=1
i ] =

O1 ∪ ... ∪Oq . For these components, we consider the intersection with Xi. These intersection sets
B1 = O1 ∩Xi, ..., Bq = Oq ∩Xi are called blocks and we use the following notation:

blocksi(f
1) = {B1, ..., Bq}

Thus, each scenario f1 specifies a multiset of blocks. It is a multiset since more than one
component may have an empty intersection with Xi. When using the symbol ‘∪’ between multisets
(of blocks), it means the ‘multiunion’ of the sets, i.e. multiple occurrences are not deleted and the
result is again a multiset.

We augment the blocks with L-flags and/or S-flags. Since we are looking at reliability problems
with a set L of clients and a set S of servers, it is important to store the information whether
Oj∩Lf=1 6= ∅ and/or Oj∩Sf=1 6= ∅. If this is the case we add |Oj∩Lf=1| L-flags and/or |Oj∩Sf=1|
S-flags to the block Bj . Hence, the blocks for a scenario f reflect the connections between the

vertices of Xi in G[V f=1
i ] as well as the number of servers and clients of the components of G[V f=1

i ].
We use the notation ‘#Xflags(B)’ to refer to the number of X-flags of block B, (x ∈ {S, L}).

Definition 3. A block B of the graph Gi for scenario f is a (perhaps empty) subset of Xi extended
by x L-flags and y S-flags. For {v1, ..., vt} ⊆ Xi, we write B = {v1, ..., vt}x·L

y·S .

For small x and y instead of B = {v1, ..., vt}x·L
y·S , we can also write B = {v1, ..., vt}L..L

S..S where
the number of L-flags equals x and the number of S-flags equals y.

Example Blocks. Let Xi = {u, v, w}. Depending on Gi, example blocks could be:

– B1 = {uv}; u and v are up and connected within one component. This component contains
no vertex of S nor of L.

– B2 = { }LL
S ; this represents a component with empty intersection with Xi. Furthermore this

component contains two clients and one server.
– B3 = {w}SS ; this represents a component with nonempty intersection with Xi, namely w.

This component contains no clients but two servers.

Representatives. For G[V f1=1
i ] = O1 ∪ ... ∪ Oq , we have the following blocks B1 = O1 ∩

Xi, ..., Bq = Oq ∩Xi, which can be used to represent f 1. A block B of such a representation has x

L-flags, if and only if the component O corresponding to B contains exactly x vertices of L. The
same is also true for the S-flags.
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To each scenario of node i, we associate the multiset of its blocks. We call this representation
of a scenario f1 its representative C1:

C1 = blocksi(f
1) = {B1, ..., Bq}

for G[V f1=1
i ] = O1 ∪ ... ∪ Oq and B1 = O1 ∩Xi, ..., Bq = Oq ∩Xi. To Gi we associate a multiset

of representatives, one for each possible scenario. Note that two different scenarios f 1 and f2

can have identical representatives C1 = C2, but these will be considered as different objects
in the multiset of the representatives of Gi. In Section 4 of this paper equivalence relations on
scenarios and hence on representatives are defined. Thus equivalence classes will be formed that
can correspond to more than one scenario. It is then possible and perhaps also sensible to define C1

and C2 as equivalent. Furthermore, it will be seen that the algorithmic techniques for computing
the collection of representatives of the graphs Gi and their corresponding probabilities will carry
over with little modification to algorithms for computing the collections of equivalence classes for
many equivalence relations.

Definition 4. A representative C1 = {B1, ..., Bq} of Gi is a multiset of blocks of Gi, such that
the scenario f1 specifies B1 = O1 ∩Xi, ..., Bq = Oq ∩Xi. It must hold that #Lflags(Bj)= |Oj ∩L|

and #Sflags(Bj)= |Oj ∩ S|, for j = 1, ..., q, and G[V f1=1
i ] = O1 ∪ ... ∪ Oq.

The number of representatives per node is a crucial point to the algorithm running time as
will be demonstrated. In the Section 4.2 we examine equivalence relations between scenarios to
reduce the number of representatives.

Example Representatives. Let Xi = {u, v, w}. Some of the possible representatives are:

– C1 = ({uv}LL
S {w}{ }L{ }S); all vertices are up, u, v are in one component containing two

clients and one server, w is in another component without clients and servers. There are two
components with empty intersection with Xi, one of them contains a client the other a server.

– C2 = ({vw}{ }{ }{ }S); v and w are up and connected. There are three components with
empty intersection with Xi, one of them contains a server.

– C3 = ({vw}{ }S); v and w are up and connected. There is one component with empty inter-
section with Xi and this component contains a vertex of S.

Here, the representatives C2 and C3 are somehow ‘similar’. They only differ in the number
of empty blocks without flags. Such blocks neither give information about clients or servers nor
can be used to create additional connections. Hence, it can be sensible to define C2 and C3 to be
equivalent (see Section 4.2).

3 A Technique for Solving Network Reliability Problems with

Treedecompositions

In this section, we describe a method where treedecompositions of a network can be used to
solve variations of the network reliability problem. As already mentioned, we compute the set
of representatives for every node of the nice treedecomposition using a bottom up approach. We
will not only compute the representatives C but their associated probabilities Pr(C) as well.
For this computation, we give algorithms for each of the four types of nodes that are used in
a nice treedecomposition. Before looking at these algorithms, we consider a subroutine to repair
the structure of a representative. This subroutine is used in the algorithms for introduce- and
join-nodes.

For a representative C1 of node i, Pr(C1) is the probability that Gi is in scenario f1. To
compute Pr(C1), we could simply compute Pr(f1). We could do this for all representatives C

of node i. Nevertheless, Lemma 1 and 2 and similar easy statements for leaf and forget nodes,
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will make evident the fact that we only need the already computed representatives and their
probabilities of the children of the node, insofar as they exist. This is a relevant point for applying
the dynamic programming scheme, described in [3] or [4].

Starting at the leaves of the nice treedecomposition, we compute for each node all representa-
tives and their probabilities that are possible for this node. In this computation, the representatives
of the child(ren) of a node play a decisive role. When ‘walking up’ the treedecomposition to a node
i the representatives will be refined and split into other representatives representing the states of
the vertices of Xi and their connections. Later in Section 4.2 we will see that representatives are
not only refined, while walking up the tree, but at the same time, some representatives will ‘col-
lapse’ into one equivalence class, since they become equivalent. Once we have the probabilities of
all representatives of all nodes, especially of the root, we can easily solve problems by computing
the requested probabilities.

3.1 Repairing Representatives.

Before considering the particular algorithms, we describe a procedure that is a subroutine of
the introduce- and join-node-algorithm. It is used to repair the structure of a representative.
The procedure REPAIR receives as input a multiset of blocks. This multiset is not necessarily
a representative, as some blocks may contain common vertices in Xi. The REPAIR procedure
‘repairs’ or ‘corrects’ the multiset by unifying such blocks.

By introducing a new vertex (see Section 3.2 for the algorithm) or joining two representatives
(Section 3.2), a representative can contain blocks with nonempty intersection. Between two com-
ponents Oa and Ob corresponding to such blocks Ba and Bb exists a connection via a vertex of
Ba ∩ Bb. This means that after introducing a new vertex or joining representatives, we have a
larger component O = Oa ∪ Ob, which has to be represented by only one block B. Having two
blocks with a nonempty intersection hurts the proper structure of a representative. Hence, we
merge or unify such non-disjoint blocks Ba and Bb into one block B. Since blocks are sets of
vertices, multiple appearances of a vertex are not possible. The new component O contains all the
clients (i.e. vertices v ∈ L) of Oa and Ob. We have to add to B the number of L-flags of blocks Ba

and the number of L-flags of Bb. On the other hand, we must subtract the number of clients which
belong to both blocks Ba and Bb, because they are counted twice. The same applies to servers.
Here is the code of the procedure to repair representative C:

REPAIR(C)

while ∃Ba, Bb ∈ C with a 6= b and Ba ∩Bb 6= ∅ do

B := Ba ∪Bb

add (#Lflags(Ba) + #Lflags(Bb) - |L ∩Ba ∩ Bb|)

L-flags to B;

add (#Sflags(Ba) + #Sflags(Bb) - |S ∩Ba ∩Bb|)

S-flags to B;

C := {B} ∪ C \ {Ba, Bb}
endwhile

The while loop can be implemented to take at most O(n2
b) iterations, where nb is the maximum

number of blocks in one representative. One block can have at most k = |Xi| elements. Thus, the
condition and the body of the while loop is executable in O(k2) steps. The REPAIR algorithm
needs altogether O(k2 · n2

b) time.

3.2 Computation of the Representatives and their Probabilities

In the following we use i to denote a node of the tree T . Node i may have 0, 1 or 2 children,
depending on the type of i. These children are referred to as j or j1, j2. Accordingly, Ci denotes
a representative of i, which is computed using the representative(s) Cj (Cj1 , Cj2) of node(s) j

(j1, j2), respectively. We will have a look at each type for node i. When handling representatives,
a lower index refers to the node the representative belongs to, and an upper index is used to
differentiate different representatives belonging to the node considered.
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Leaf Nodes. For leaves i of T , we have a relatively simple algorithm, since |Xi| = 1, and leaves
have no children. Let v ∈ Xi. So we have the following possibilities, either v is up or down, and
we can have v ∈ L or v 6∈ L and v ∈ S or v 6∈ S. We distinguish these cases:

– v is up: this results in a representative Ci = { {v} }, with Pr(Ci) = p(v). We add Ci to the
set of representatives of node i.

– v is down: here we have another representative C ′
i = { }, with Pr(C ′

i) = 1 − p(v). Again, we
add it to i.

If v is up and v ∈ L and/or v ∈ S we must add one L- and/or S-flag to the block. An algorithm
performing the appropriate steps is very simple and would clearly need constant time per leaf.
Since |Vi| = 1, we have only two scenarios.

Introduce Nodes. Suppose i is an introduce node with child j, such that Xi = Xj ∪ {v}. We
use the representatives and their probabilities of node j to compute the representatives and their
probabilities of node i. For any state of v (up or down, in L or not in L, in S or not in S) we
compute the representatives and add them to the set of representatives of node i. This is done by
considering the following two cases for each representative Cj of j:

– v is up: we add v to each block B ∈ Cj which contains a neighbour of v, since there is a
connection between v and the component corresponding to B. If v is a client or a server,
then we add an L- or S-flag to block B. Now, we apply the algorithm in Section 3.1 to
repair the structure of a representative. The probability of this new representative Ci is:
Pr(Ci) = p(v) · Pr(Cj).

– v is down: we do not make any changes to the representative Cj to get Ci, since no new
connections can be made and no flags were added. However, we compute the probability:
Pr(Ci) = (1− p(v)) · Pr(Cj).

The following code formalises this procedure:

Introduce-Node-Algorithm

for every representative Cj of node j do

/* v is up */

Ci := Cj

for each block B of Ci do

if B ∩N(v) 6= ∅
then B := B ∪ {v}

if v ∈ L then add one L-flag to B endif

if v ∈ S then add one S-flag to B endif

endif

endfor

REPAIR(Ci)

Pr(Ci) := Pr(Cj) · p(v)
add Ci to the set of representatives of node i

/* v is down */

Ci := Cj

Pr(Ci) := Pr(Cj) · (1− p(v))
add Ci to the set of representatives of node i

endfor

Lemma 1. Given all representatives and their probabilities of the child j of an introduce node i,
the introduce-node-algorithm computes the representatives and their probabilities for node i cor-
rectly.
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Proof. Note that we can compute the representatives and their probabilities for node i by consid-
ering every possible scenario for node i. However, recall that v is the only vertex in Vi \Vj . So, each
scenario for node i can be obtained by taking a scenario for node j and extending it by specifying
whether v is up or down. All possible scenarios for node j are represented by the representatives
of j, whose probabilities are known. For that reason, it is sufficient to combine the representatives
of j with v to create the representatives of i. To do this we consider both v being up and down
for each representative Cj of j and make the appropriate modifications. In this way, we implicitly
look at every scenario which is possible for Gi.

It is not hard to see that the algorithm realises the description above. To demonstrate that
this is true, we consider the representative Cj of a scenario f of j, hence Cj = blocksj(f). Two
cases: v is up, or v is down, have to be considered:

Case I: v is up. We extend f by f(v) = 1, i.e. for all w ∈ Vj : f(w) is unchanged. Since v may
have neighbours in blocks of Cj , we must add v to these blocks. There is a connection between v

and these neighbours and hence, between all vertices of the component represented by this block.
Furthermore, if v is a client or a server then the component containing v has one more client or
server, respectively. Thus, we have to add an L- or S-flag to such a block. That is exactly what
happens in the inner for loop. After this we can have nonempty blocks with nonempty intersection,
namely v. We use the REPAIR algorithm to re-establish the structure of the representative. As
a final result, we obtain a new representative Ci, which we add to the set of representatives of i.
The probability of Ci is:

Pr(Ci) = Pr
Vi

(f) = Pr(Cj) · p(v)

Case II: v is down. Similar to Case I, we extend scenario f by setting v as down. Hence, no
new connections between vertices of blocks or components can be made. Thus, we do not modify
Cj to get the new representative Ci. The probability of Ci is:

Pr(Ci) = Pr(Cj) · (1− p(v))

ut

We can now analyse the running time of the algorithm. The outer for-loop is executed nc times,
the inner for-loop nb times, whereby nc is the maximum number of representatives for a node, and
nb is the maximum number of blocks of a representative and k is the treewidth. Since we have to
check only O(k) neighbours, the condition B ∩N(v) 6= ∅ can be tested in O(k2) steps. Hence, the
algorithm needs time O(nc · n

2
b · k

2).

Forget Nodes. Node i is a forget node with child j, such that Xi = Xj \ {v}. Note that Vi = Vj ,
thus i and j have the same scenarios. A representative Ci of i differs from the corresponding
representative Cj of j only because v does not appear in the blocks of Ci. Thus, we modify every
representative Cj of j in the following way to create a representative Ci of node i. We simply
delete v from every block of Cj to obtain Ci. As Ci and Cj represent the same scenarios, we
have Pr(Ci) = Pr(Cj). A simple algorithm would need time linear in nc · k to create all new
representatives. nc is the maximum number of representatives for a node and k is the treewidth.

Join Nodes. For join nodes i with children j1 and j2 we have: Xi = Xj1 = Xj2 . Note that
Vi = Vj1 ∪ Vj2 , and that Vj1 ∩ Vj2 = Xi. Let up(C) denote the set of up vertices of Xi for a
representative C of node i.

Definition 5. Let C be a representative.

up(C) := {v : v ∈ B for B ∈ C}

Two representatives C1 and C2 are compatible if up(C1) = up(C2).
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Each scenario f of node i can be seen as the ‘merge’ of its restriction f1 to Vj1 and its restriction
f2 to Vj2 . Conversely, scenarios f1 of j1, and f2 of j2 can be merged, if and only if the same vertices
in Xi are up, i.e. corresponding representatives must be compatible.

A representative Cj1 of j1 represents states and connections of vertices of Xj1 . The same is true
for a representative Cj2 of j2. Note that there is no connection between vertices of a representative,
if they belong to two different blocks.

Combining two compatible representatives means checking for new connections, since this
translates to combining the corresponding subgraphs. If we have a representative Cj1 with two
nonempty blocks B1 and B2, this means there is no connection in Gj1 between vertices of the cor-
responding components. Note that there is no connection between two blocks of a representative if
they are disjoint. However, when combining this representative with a compatible representative
Cj2 , it is possible that there will be a connection between B1 and B2 via a connection of Cj2 .
Therefore, to combine two representatives, we unite all blocks with nonempty intersection. Specif-
ically this is done by the REPAIR algorithm given in Section 3.1. Since the probabilities of the
states of vertices of Xi are ‘contained’ in Pr(Cj1) and in Pr(Cj2 ) as well and since the probabilities
of the vertices of Vi \Xi, being in their appropriate state, are independent, we compute

Pr(Ci) =
Pr(Cj1 ) · Pr(Cj2 )

PrXi
(Ci)

with
Pr
Xi

(Ci) =
∏

v∈up(Ci)

p(v) ·
∏

v∈Xi\up(Ci)

1− p(v)

Again, we give pseudocode to formalize the complete method for join nodes:

Join-Node-Algorithm

for every representative Cj1 of node j1 do

for every representative Cj2 of node j2 do

if up(Cj1 ) = up(Cj2)
then Ci := Cj1 ∪ Cj2

REPAIR(Ci)

Pr(Ci) = Pr(Cj1) · Pr(Cj2 )÷ PrXi
(Ci)

add Ci to the set of representatives of node i

endif

endfor

endfor

Lemma 2. Given all representatives and their probabilities of the children j1 and j2 of a join node
i, the join-node-algorithm computes the representatives and their probabilities for node i correctly.

Proof. We consider a representative Ci of node i. Ci represents a scenario f with Ci = blocksi(f).
Such a scenario f determines two scenarios f1 of Gj1 and f2 of Gj2 . These scenarios f1 and f2

are represented by representatives Cj1 and Cj2 of node j1 or j2, respectively. Cj1 and Cj2 are
compatible and already computed. Hence, we combine them to get representative Ci. Thus, it is
sufficient to combine a representative of j1 with a compatible one of j2. By this means, we compute
all possible representatives of i.

The search for and processing of compatible representatives is done in the body of the two
nested for-loops. Two compatible representatives Cj1 and Cj2 represent a scenario f of Gi or its
restrictions f1 and f2 to Gj1 and Gj2 , respectively. They correspond to components of Gj1 and
Gj2 . If we find one block B1 in Cj1 and another block B2 in Cj2 with B1∩B2 6= ∅, this means that
there is a path from a vertex of the component represented by B1 to a vertex of the component
represented by B2, via a vertex of B1 ∩B2. In the new representative for i these two components
are connected and hence make up one component, with the number of servers and clients added
together. Thus, we must join both blocks B1 and B2 and modify the number of flags. This is done
by using the REPAIR algorithm, described in Section 3.1.
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Before demonstrating that the formula for computing Pr(Ci) is correct, we introduce and repeat
the following notations:

Pr
W

(f) =
∏

v∈W f=1

p(v) ·
∏

v∈W f=0

1− p(v); for a scenario f and W ⊆ V

Pr
Xi

(C) =
∏

v∈up(C)

p(v) ·
∏

v∈Xi\up(C)

1− p(v); for a set of blocks C

We look at representative Ci of node i which is the combination of representative Cj1 of j1 and
Cj2 of j2. Since PrXi

(Ci) = PrXi
(f) with Ci = blocksi(f), we have:

Pr(Ci) = Pr
Vi

(f) = Pr
Vj1

(f1) · Pr
Vj2

(f2) · Pr
Xi

(Ci)

=
1

PrXi
(Ci)

· Pr
Vj1

(f1) · Pr
Xi

(Ci) · Pr
Vj2

(f2) · Pr
Xi

(Ci)

=
1

PrXi
(Ci)

· Pr
Vi

(f1) · Pr
Vi

(f2)

=
1

PrXi
(Ci)

· Pr(Cj1) · Pr(Cj2)

ut

The two nested for-loops have O(n2
c) iterations. At most k2 steps are required for the if-

condition and O(k2 · n2
b) for the REPAIR algorithm. Altogether, we have O(n2

c · n
2
b · k

2) steps. nc

is the maximum number of representatives for a node, nb is the maximum number of blocks of a
representative and k is the treewidth.

4 The Framework and Equivalence Classes

The classic S-terminal reliability problem can be expressed as the question for the probability
that the surviving subgraph has a certain property. In this example, the property would be the
connection between all pairs of vertices of S. The framework given in the previous section can
handle more complex properties, and hence can answer the appropriate question for the probability
of such more complex properties. In this section, we take a close look at properties that can be
handled by the given framework. We also consider equivalence relations between scenarios (i.e.
their representatives). With the help of equivalence relations, it is possible to speed up the entire
method. Of course, such relations must meet certain requirements for a given problem, which will
also be discussed.

4.1 Properties of Solvable Network Reliability Problems

Our results which can be obtained with the method described above, can be divided into two
groups. The first group does not use an equivalence relation between scenarios. Its consideration
is a kind of preparation or warm up for the second group which uses equivalence relations between
scenarios (see Section 4.2).

So far, a representative C of a node i represents only one scenario f of Gi, and Pr(C) is
the probability that this scenario occurs for Gi. C = blocksi(f) contains information about the
connectivity of vertices of S and L. More precise, the blocks of C reflect the components and
the flags the number of vertices of S and L in each component of the graph G[V f=1

i ]. Since we
are dealing with network reliability problems, the term ‘property of the graph’ should refer to a
property concerning the components and connectivity of vertices of S and L. Hence, any question
which asks for the probability of such a property can be answered. Clearly, only graphs can have
such properties, but we will generalise this to scenarios and representatives.
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Definition 6. A scenario f for node i has property Y , if G[V f=1
i ] has property Y . A representative

C of node i has property Y , if the scenario f with C = blocksi(f) has property Y .

Now, we know that representatives can have properties. If we want to use them for solving
problems, it is also very important to be able to make the decision whether a (representative of
a) scenario has a certain property just by considering the information given by the blocks of the
representative. If this information is sufficient to determine that a representative has a property,
we say that it shows this property.

Definition 7. A representative C of node i shows property Y , if the information given by the
blocks of C is sufficient to determine that C has Y .

The following definition describes all the properties that can be handled or checked with our
approach. Therefore, an equivalence between showing and having is necessary.

Definition 8. A possible property Y of Gi can be checked by using representatives of i, if for all
representatives C of i hold:

C has property Y ⇐⇒ C shows property Y

Note that from Definition 7, it already follows that the implication from right to left always
holds. After having computed all representatives for node i and their associated probabilities, we
can use them to easily solve several problems for Gi.

Lemma 3. Let Y be a possible property of Gi that can be checked by the representatives of i. The
probability that Gi has property Y equals the sum over the probabilities of the representatives of
node i which show this property Y .

Proof. This can easily be seen, since obviously we have to collect the scenarios with properties
Y . Such scenarios are represented by representatives which also have this property Y . Hence, we
have to add together the probabilities of representatives showing Y . ut

When considering representatives of the root r of the treedecomposition, we can solve problems
for the entire graph G. Since there are O(2|Vi|) scenarios, this results in a method with exponential
running time, because the number of representatives is a crucial point for the running time of the
algorithm. Thus, in the next Section 4.2, we consider how to reduce the number of representatives.
However, the more representatives per node we ‘allow’ the more information we conserve during
the bottom up process and hence the more problems we can solved.

4.2 Reducing the Number of Representatives

In this section we will have a global look at the strategy. The correctness and restrictions follow
in subsequent sections.

By using an equivalence relation between scenarios it is possible to reduce the number of
representatives or in other words: it is possible to reduce the number of objects that have to be
considered during the algorithms. For this, we join several scenarios to one equivalence class. We
extend this formalism to representatives and say that two representatives (of equivalence classes)
are equivalent if the corresponding scenarios (belonging to these classes) are equivalent. Equivalent
scenarios, however, must be ‘similar’ with regard to the way they are processed by the algorithms.
Additionally, it is reasonable to consider equivalence of scenarios of one node at a time. We have
to take care that the equivalence relation R we have chosen, is suitable to solve our problem.
Further, we have to show that R is ‘preserved’ by the algorithms, i.e. if we have two equivalent
scenarios of a node as input to an algorithm, then the resulting scenarios are also equivalent. (This
is described in detail in Section 4.4.) Then, we use the algorithms given in Section 3.2 with the
equivalence classes (or better: with their representatives) instead of using the representatives of
only one scenario. For that reason, it is only reasonable if we define classes to be equivalent, which
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are treated in ‘the same way’ by the algorithms. We have to modify the algorithms slightly, since
we have classes now and we have to check after processing each node, if (the scenarios of) two
classes became equivalent. If this is the case, we join them into one equivalence class with new
probability the sum of the probabilities of the joined representatives (of equivalence classes).

The following list of steps summarises what we have to do.

– Step 1: We have to define an equivalence relation R which is fine enough to solve our problem.
On the other hand it should be as coarse as possible to reduce the number of classes (i.e. the
number of representatives) and hence the running time as much as possible. In Section 4.3, we
give more details.

– Step 2: We must modify our algorithms to handle (representatives of) classes now and to main-
tain them, i.e. it is necessary to check for equivalent representatives/classes after processing
each node. If we find such two classes among all classes of a node, we keep only one of them
with accumulated probability. For doing this, we add as a last step the following code to the
algorithms:

while ∃ representatives Ca, Cb of i with a 6= b and Ca ≡ Cb do

Pr(Ca) := Pr(Ca) + Pr(Cb)
delete Cb for node i

endwhile

Let nc be the maximum number of equivalence classes per node, and nb be the maximum
number of blocks per representative. This code-fragment can be implemented to take O(n2

c)
iterations. We assume that the check for equivalence of two representatives can be performed
in O(n2

b) time. Thus, we need O(n2
c · n

2
b) steps, altogether.

– Step 3: We have to show that it is correct to use the class representatives of R instead of scenario
representatives, i.e. we have to show that the algorithms preserve R. This is considered in detail
in Section 4.4.

– Step 4: We analyse the running time by estimating the maximum number of equivalence
classes. The maximum number of blocks is therefore very important.

A representative C is a multiset of blocks. When considering equivalence relations with an
equivalence class representative C, we use [C] to denote the equivalence class represented by C,
i.e. [C] is a set containing all scenarios represented by C.

4.3 Information Content of Equivalence Classes

In Section 4.1, we introduced some notations for scenarios. Here, we give analogous notations
for equivalence classes. Therewith, we want to express the information ‘contained’ in equivalence
classes. Furthermore, we clarify what it means for a relation to be fine enough, and we give a
lemma that tells us what we can do with relations that are fine enough.

When using an equivalence relation, we define scenarios to be equivalent which may not be
equal. Thus, by doing this, we lose the information that these scenarios were different and also
why they were different. However, we reduce the number of class representatives, as intended.
Clearly, using no equivalence relation provides as much information as possible with this method.
However, for solving the S-terminal reliability problem a rather coarse equivalence relation is
sufficient. Hence, we are faced with a trade-off between information content and efficiency. In
analogy to the Definitions 6, 7 and 8, we give the following definition for equivalence classes.

Definition 9. An equivalence class [C] of scenarios for node i has property Y , if each scenario
belonging to [C] has property Y . An equivalence class [C] of node i shows property Y , if its
representative C shows Y .

Definition 10. An equivalence relation R is fine enough for property Y , if for all nodes i of the
treedecomposition the following holds: For all equivalence classes [C] of node i it holds:

(∀f ∈ [C] : f has property Y ) ∨ (∀f ∈ [C] : f does not have property Y )
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That means that R is fine enough for Y , iff there is no equivalence class which contains a
scenario that has property Y and another scenario which does not have property Y .

In the same flavour as Lemma 3, the next one tells us that under certain conditions, we can
use equivalence classes to solve problems for a graph G, after computing all equivalence classes of
all nodes until we reached the root r.

Lemma 4. Let R be an equivalence relation which is fine enough for property Y that can be
checked using representatives. The probability that Gi has property Y equals the sum over the
probabilities of the equivalence classes of node i which show this property Y .

Proof. This can be proven very similar to the proof of Lemma 3. Again, we have to add together the
probabilities of the scenarios with property Y . These scenarios are collected in equivalence classes
which also have and show this property Y , because Y can be checked using representatives. Since
R is fine enough, it is sufficient to sum up the probabilities of these equivalence classes. ut

4.4 Conditions for Using Equivalence Relations

In earlier sections, we discussed when an equivalence relation is fine enough. In this section we
will see under which conditions we can use (the representatives of) the equivalence classes during
the execution of the bottom-up computation in the treedecomposition by means of the leaf-,
introduce-, forget-, and join-node algorithms.

The choice of the equivalence relation R cannot be made arbitrarily. As mentioned in Step 1,
R has to be fine enough to provide enough information to solve the problem. Furthermore, R must
have some structural properties, i.e. R must be ‘respected’ or ‘preserved’ by the algorithms. This
targets to the property that if two scenarios are equivalent before being processed by one of the
algorithms for the four types of nodes, they are also equivalent after this processing. To capture
exactly the notion of ‘preserving an equivalence relation’, some definitions are required.

Leaf nodes need no consideration, since we have no class representatives as input to the algo-
rithm for leaf nodes. For forget nodes, the situation is rather simple.

Definition 11. Let i be a forget node with child j. Cx
j is a representative of j which results, after

processed by the forget-node-algorithm, in Cx
i of node i. The forget-node-algorithm preserves the

equivalence relation R if the following holds:

∀C1
j , C2

j : (C1
j , C2

j ) ∈ R =⇒ (C1
i , C2

i ) ∈ R

Now, we look at introduce nodes. The introduce-node-algorithm produces two output-represen-
tatives for each input-representative, namely one for the introduced vertex v being up and one for
v being down.

Definition 12. Let i be an introduce node with child j with Xi = Xj ∪{v}. Representative Cx
j of

node j is the input for the introduce-node-algorithm, which gives as output C
x,up
i and C

x,down
i of

node i, for v is up and down, respectively. The introduce-node-algorithm preserves the equivalence
relation R if the following holds:

∀C1
j , C2

j : (C1
j , C2

j ) ∈ R =⇒ (C1,up
i , C

2,up
i ) ∈ R ∧ (C1,down

i , C
2,down
i ) ∈ R

For join nodes, we have to consider representatives of two children.

Definition 13. Let i be a join node with children j1 and j2. Furthermore, let Cx
j1

and C
y
j2

be
representatives of node j1 and j2, respectively. C

x,y
i is the result of the join-node-algorithm for

processing Cx
j1

and C
y
j2

. The join-node-algorithm preserves the equivalence relation R if the fol-
lowing holds:

∀C1
j1

, C2
j1

, C1
j2

, C2
j2

:

(C1
j1

, C2
j1

) ∈ R ∧ (C1
j2

, C2
j2

) ∈ R ∧ up(C1
j1

) = up(C2
j1

) = up(C1
j2

) = up(C2
j2

)

=⇒

(C1,1
i , C

1,2
i ) ∈ R ∧ (C1,2

i , C
2,1
i ) ∈ R ∧ (C2,1

i , C
2,2
i ) ∈ R



Network Reliability on Graphs of Bounded Treewidth 15

If we use only (the representatives of) the equivalence classes in the algorithms, we can process
all scenarios represented by such equivalence classes by only one ‘central execution’ of an algorithm.
The results will be, again, equivalence classes. Using an equivalence relation which is preserved
by the algorithms is therefore important. That means that we do not have to worry whether an
algorithm ‘hurts’ R by creating a result that actually is not an equivalence class of R.

Lemma 5. When using equivalence classes of R as input for the forget-, introduce- and join-
node-algorithm, then the result will be equivalence classes of R as well, if R is preserved by the
forget-, introduce- and join-node-algorithm.

Proof. It follows directly from the corresponding definitions above that all scenarios represented
by a resulting ‘equivalence class’ are indeed equivalent. The algorithm-fragment given in Step 2 in
Section 4.2 ensures that all equivalent scenarios are pooled together in one equivalence class. ut

From the previous definition, we can see that it is important that equivalent scenarios are
compatible. Actually, this is not sufficient for being able to apply our framework. The idea is to
handle equivalent scenarios with only one computation. The algorithms modify only the nonempty
blocks and two equivalent scenarios have to be modified in the same way. Hence, for applying the
framework equivalent scenarios must have the same set of nonempty blocks. However, there are
reasonable exceptions to this, which will not be considered here in general, to keep the framework
and its presentation less technical. The next definition summarises the two conditions discussed
above.

Definition 14. An equivalence relation R is called proper if

– for all equivalence classes C of R it holds that: for all scenarios f, f ′ ∈ C, the sets of nonempty
blocks of f and f ′, respectively, are equal and

– R is preserved by the forget-, introduce- and join-node-algorithm.

4.5 The Correctness of the Algorithms for Classes

In this section, we look at the correctness of the counterparts of the algorithms given in Section 3.2.
As described earlier, only little modifications are needed to get algorithms for (representatives
of) equivalence classes rather than (representatives of) scenarios. We can take the algorithms
described in Section 3.2 and extend them by the while loop given in Step 2 in Section 4.2. While
the algorithms are straightforward, the proof of their correctness is slightly more complicated.

We use the same terminology as in Section 3.2: i denotes a node of the tree T . Node i may
have 0, 1 or 2 children, depending on the type of i. These children are referred to as j or j1, j2. Ci

denotes a representative of a class of i, which is computed using the representative(s) of class(es)
Cj (Cj1 , Cj2) of node(s) j (j1, j2), respectively. We will have a look at each type for node i.

When handling representatives, a lower index refers to the node the representative belongs
to, and an upper index is used to differentiate different representatives belonging to the node
considered. In general, the algorithms given in Section 3.2 can be used here as well. However, they
have to be extended by the code-fragment of Step 2 in Section 4.2 to check for new equivalences.
It is easy to see, that each of these ‘new’ algorithms can be performed in time O(n2

c · n
2
b · k

2).

Leaf Nodes. As seen before, for leaves i of T , the algorithm is rather simple, since |Xi| = 1. It
is very similar to the description for leaves given in Section 3.2, because we have two scenarios for
a leaf. For proper relations, these scenarios will never be in one equivalence class at a leaf, since
their sets of nonempty blocks are not equal. Hence, we have two equivalence classes for a leaf. The
remaining argumentation is very similar to the part in Section 3.2 concerning leaf nodes.
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Introduce Nodes. Suppose i is an introduce node with child j, such that Xi = Xj ∪{v}. We use
the representatives of the classes and their probabilities of node j to compute the representatives
and their probabilities of node i. For any state of v (up or down, in L or not in L, in S or not in
S) we compute the representatives and add them to the set of representatives of node i. This is
done in an analogous way as described in Section 3.2.

Lemma 6. Given the representatives of all equivalence classes of a proper equivalence relation
and their probabilities of the child j of an introduce node i, the introduce-node-algorithm computes
(the representatives of) all equivalence classes and their probabilities for node i correctly.

Proof. We can compute the representatives and their probabilities for node i by considering every
possible scenario for node i and creating equivalence classes according to the equivalence relation.

However, recall that v is the only vertex in Vi \Vj . So, each scenario for node i can be obtained
by taking a scenario for node j and extending it by specifying whether v is up or down. All
possible scenarios for node j are represented by the representatives of equivalence classes of j,
whose probabilities are known. Since the considered equivalence relation is proper, two scenarios
which are equivalent at node j will result in equivalent scenarios of node i (for v being fixed to
up or down). For that reason, it is sufficient to combine the representatives of classes of j with
v to create the representatives of classes of i. To do this we consider both v being up and down
for each class representative Cj of j and make the appropriate modifications. By doing this, we
implicitly look at every scenario which is possible for Gi. For the correctness, we consider for a
class representative Cj of j, two cases: v is up, or v is down:

Case I: v is up. For all f ∈ [Cj ], we extend f by f(v) = 1, i.e. for all w ∈ Vj : f(w) is
unchanged. The argumentation is very similar to the proof of Lemma 1. We have to use only one
more argument. Since the relation is proper, all scenarios f ∈ [Cj ] have the same set of nonempty
blocks. And hence, all these scenarios would be handled in the same way when treated individually.
That is why we can handle them by a single pass of the outer loop of the algorithm when using
the representative Cj . The probability of the new class with representative Ci is:

Pr(Ci) =
∑

f∈[Ci]

Pr(f) =
∑

f∈[Cj ]

Pr(f) · p(v) = Pr(Cj) · p(v)

Here, [Ci] contains scenarios, which are scenarios belonging to [Cj ] extended by f(v) = 1.

Case II: v is down. Similar to Case I, we extend all scenarios f by ‘v is down’. Hence, no new
connections between vertices of blocks or components can be made. Thus, we do not modify Cj

to get the new class representative Ci. The probability of Ci is:

Pr(Ci) = Pr(Cj) · (1− p(v))

ut

Forget Nodes. For a forget node i with child j, let Xi = Xj \ {v}. Note that Vi = Vj , thus i and
j have the same scenarios. However, they might have different representatives. Let Cj and Ci be
two representatives of the same scenario of node j and i, respectively. Because v does not appear
in the blocks of Ci, Cj and Ci are different or equal, depending on the state of vertex v (up or
down). Each scenario belongs to an equivalence class. Thus, we modify every class representative
Cj of j in the following way to create a class representative Ci of node i. We simply delete v

from every block of Cj containing v to obtain Ci. For a proper equivalence relation, all scenarios
belonging to an equivalence class [Cj ] have the same set of nonempty blocks. Hence, by deleting
v from the blocks of Cj , we implicitly delete v from all scenarios represented by Cj . This results
in the new equivalence class Ci for node i. Because Ci and Cj represent the same scenarios, we
have Pr(Ci) = Pr(Cj).
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Join Nodes. For join nodes i with children j1 and j2 we have: Xi = Xj1 = Xj2 . Note that
Vi = Vj1 ∪ Vj2 , and that Vj1 ∩ Vj2 = Xi.

We proceed as described in Section 3.2. We combine compatible class representatives of nodes
j1 and j2. After combining, we repair them with the procedure given in Section 4.2. By doing this,
we get equivalence classes of node i.

Lemma 7. Given all the representatives of equivalence classes of the children j1 and j2 of a
join node i and the probabilities of these equivalence classes with a proper underlying equivalence
relation, the join-node-algorithm computes the representatives and the probabilities of classes of
node i correctly.

Proof. We consider an equivalence class representative Ci of node i. By restricting a scenario
f ∈ [Ci] to Vj1 and Vj2 , respectively, it determines two scenarios f1 of Gj1 and f2 of Gj2 . Those
two scenarios f1 and f2 belong to equivalence classes Cj1 and Cj2 of nodes j1 and j2, respectively.
The representatives of these classes and their probabilities are already computed in our bottom up
approach. Note that these representatives are compatible. Furthermore, we have due to equivalence
(and hence compatibility) that any scenario in [Cj1 ] combined with any scenario in [Cj2 ] results
in a scenario in [Ci]. This yields the Cartesian product of [Cj1 ] and [Cj2 ] with |[Cj1 ]| · |[Cj2 ]|
combinations. Fortunately, since any such combination results in a scenario in [Ci], we can compute
all combinations by a single pass of the algorithm by using the representatives of [Cj1 ] and [Cj2 ].
Hence, simply combining the representatives Cj1 and Cj2 is sufficient to handle all scenarios
represented by them and to create (a subset of) [Ci].

To create the entire set of scenarios [Ci], we have to process all equivalence classes emerging
from restrictions of scenarios of [Ci] to Vj1 and Vj2 . However, the same argumentation as above
holds for these as well, and the added code-fragment of Step 2 in Section 4.2 will check for
equivalent classes and produce the final class [Ci].

Let Cj1 and Cj2 be two compatible equivalence class representatives of node j1 and j2, respec-
tively. [Cj1 ] and [Cj2 ] are combined to get class [Ci] of node i. Then we have for the probability
of Ci of node i:

Pr(Ci) =
∑

f∈[Ci]

Pr
Vi

(f)

This product can be split into factors with regard to the children of node i. However, the set Xi

is contained in both sets Vj1 and Vj2 . Hence, this product would contain a factor for the state
probabilities of vertices of Xi twice, which we correct by an appropriate division:

Pr(Ci) =
∑

f∈[Ci]

Pr
Vj1

(f) · Pr
Vj2

(f) ·
1

PrXi
(f)

Since the latter factor is constant for all f ∈ [Ci] for a proper equivalence relation, we have:

Pr(Ci) =
1

PrXi
(f)

·
∑

f∈[Ci]

Pr
Vj1

(f) · Pr
Vj2

(f)

Because the equivalence class [Ci] contains all scenarios, which result from the Cartesian product
of compatible classes [Cj1 ] and [Cj2 ] of j1 and j2, respectively, we have:

∑

f∈[Ci]

Pr
Vj1

(f) · Pr
Vj2

(f) =
∑

f∈[Ci]

Pr
Vj1

(f) ·
∑

f∈[Ci]

Pr
Vj2

(f) =
∑

f∈[Cj1
]

Pr
Vj1

(f) ·
∑

f∈[Cj2
]

Pr
Vj2

(f)

And hence, this results in:

Pr(Ci) =
1

PrXi
(f)

·
∑

f∈[Cj1
]

Pr
Vj1

(f) ·
∑

f∈[Cj2
]

Pr
Vj2

(f)

=
1

PrXi
(f)

· Pr(Cj1 ) · Pr(Cj2 )
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After computing the new classes of node i, which contain scenarios corresponding to the Carte-
sian product of scenarios of compatible classes of j1 and j2, we have to check for new equivalences.
The correctness of the procedure we use for this, is easy to see. ut

We are now ready to bring everything together.

Theorem 1. Let R be a proper equivalence relation of scenarios that is fine enough for property
Y which can be checked using representatives. Then we can use our framework to compute the
probability that Gi has property Y .

Proof. The correctness of the computation of the representatives and their probabilities follows
from the correctness of the particular algorithms for the four types of nodes. Lemma 6 and 7 show
this for introduce- and join-nodes. The situation is trivial for leaf- and forget-nodes. The theorem
follows now from Lemma 4 and 5. ut

The running time depends on the relation R. For a fixed size of Xi, if R has a finite number
of equivalence classes, then the algorithm is linear time. If the number of equivalence classes is
bounded by a polynomial in the number of vertices of G, then the algorithm uses polynomial time.
For further discussion, see Section 7.3.

5 Which Problems fit into this framework

In this section, we look at examples of solvable problems which yield different running times. Later
in this section, we look at relations (and the resulting running times) that meet all conditions
described in the previous section, because they are generated by specific operations or because
they are a combination of relations.

5.1 Solvable Problems

It is not possible to give an exhaustive list of problems that can be handled with this approach,
because many equivalence relations can be used, and very often, many different questions can be
handled with a single relation. Note that we assume in this entire section that a treedecomposition
of bounded width of the graph is given. Fortunately, Theorem 1 gives information about solvable
problems. We simply can say that every problem that asks for the probability of a property Y of G

can be solved, if Y can be checked using classes. Therefore we should find an equivalence relation
R as coarse as possible, but still fine enough for Y . Furthermore, to apply the framework described
in this paper, R must be preserved by the algorithms. Below, we list some example properties.

To obtain relations that allow algorithms with linear running time, we can restrict the maximum
number of blocks and the number of flags per block to be constant. With such relations we can
answer questions like: ‘What is the probability that all clients are connected to at least one server?’
or ‘What is the probability that all servers are useful, i.e. have a client connected to them?’ We
can also use only one kind of special vertices, e.g. only servers. With such a relation we are able to
give an answer to ‘What is the probability that all servers are connected?’, which is the classical L-
terminal reliability problem. With additional ideas and modifications, it is also possible to answer
the following question in linear time: ‘What is the expected number of components that contain
at least one vertex of S (of L; of S and L)?’

A possible assumption would be to consider the number of servers nS to be small. We can use
a different S-flag for each server. In this case, a relation which does not conflate empty blocks with
S-flags, but only with L-flags, can be utilised. Further, each block can have multiple flags of each
type. Unfortunately, this relation leads to a maximum number of classes bounded exponentially
in nS . With this relation we can answer the question with which probability certain servers are
connected, and with what probability server x has at least y clients connected to it (x, y are
integers). We can also determine the ‘most useless’ server, i.e. the server with smallest expected
number of clients connected to it. Of course, this relation enables us to compute the expected
number of components with at least one server.
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Polynomial running time in nL and nS is needed by relations which bound nb by a constant,
however the number of flags per block is only bounded by nL and nS . Such relations enable
properties like: at least x clients are not connected to a server, or at most y server are not
connected to a client, as well as at least x clients are connected to at least one server while at least
y servers are connected to at least one client.

5.2 Generating Relations

The relation which is the finest we can have, is the relation R̂, which assigns to each scenario its
own equivalence class. This relation is clearly preserved by the algorithms. We show below, that if
we modify R̂ by applying a sequence of specific operations to get a relation R, then R is preserved
by the algorithms as well. The goal is to ‘construct’ relations which are ‘automatically’ preserved.

As a reminder, a representative is a multiset of blocks, not necessarily representing a scenario.
With an operation h : C → C (where C is the set of multisets of blocks), which takes the representa-
tion, i.e. the set of blocks of an equivalence class as input, we can define a new equivalence relation
Rh. We give a list of a few basic operations, with which many useful relations can be created.
Therefore, we can start with the finest relation which equivalence classes represent exactly one
scenario. The general form of an operation is: hblock−sel

action , whereby block-sel selects the blocks for
the action, which is one of the following:

– ‘del’: We delete all blocks that are selected by block-sel.
– ‘dmulS’: Here, we drop multiple S-flags and keep only one. That means each block selected

by block-sel is replaced by the same block at which we delete multiple S-flags and we keep
only one of them.

– ‘dmulL’: The same as dmulS, but here we drop multiple L-flags.
– ‘con’: We conflate all selected blocks and concatenate their lists of flags. That means all blocks

selected by block-sel are united to one block with as many S- and L- flags as those of the united
blocks together.

As already mentioned, blocks are selected by block-sel, which is a sequence of the following
symbols:

– ‘= ∅’ or ‘6= ∅’, which determines that either empty blocks or nonempty blocks are selected,
respectively.

– ‘S’ or ‘6S’, which determines that either blocks that must have at least one S-flag or blocks
that must not have any S-flag are selected.

– ‘L’ or ‘6L’, which is the same as above for L-flags.

We give the set of those block-selectors that are considered in this paper.

BSel = {6=∅, 6=∅ 6S 6L, 6=∅S 6L, 6=∅ 6SL, 6=∅SL, =∅, =∅ 6S 6L, =∅S 6L, =∅ 6SL, =∅SL}

For the sake of clarity, we will look at some examples:

– h
=∅6S 6L
del (C) = the multiset of blocks consisting of exactly all blocks of C but without empty

blocks without any flag:

h
=∅6S 6L
del ( {u}, {v, w}LLL, { }SSS

LL , { }SS, { }S, { } )
= { {u}, {v, w}LLL, { }SSS

LL , { }SS, { }S }

– h=∅SL
dmulS(C) = the multiset of blocks consisting of exactly all blocks of C but for each empty

block with at least one S-flag and at least one L-flag, we drop (or delete) all but one S-flag:

h=∅SL
dmulS ( {u}, {v, w}LLL, { }SSS

LL , { }SS , { }S , { } )
= { {u}, {v, w}LLL, { }S

LL, { }SS , { }S , { } }
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– h
6=∅6SL
dmulL(C) = the multiset of blocks consisting of exactly all blocks of C but each nonempty

block {...}L...L with at least one L-flag and no S-flag is replaced by the same block {...}L with
only one L-flag:

h
6=∅6SL
dmulL ( {u}, {v, w}LLL, { }SSS

LL , { }SS , { }S , { } )
= { {u}, {v, w}L, { }SSS

LL , { }SS , { }S , { } }

– h=∅S 6L
con (C) = the multiset of blocks consisting of exactly all blocks of C but all empty blocks

with at least one S-flag and no L-flag are replaced by one empty block with as many S-flags
as those of the replaced blocks together:

h=∅S 6L
con ( {u}, {v, w}LLL, { }SSS

LL , { }SS, { }S, { } )
= { {u}, {v, w}LLL, { }SSS

LL , { }SSS, { } }

Compiling all operations which we will consider, we get the set H:

H = {h=∅6S 6L
del , h

=∅S 6L
del , h

=∅6SL
del , h=∅SL

del , h
=∅S 6L
dmulS , h=∅SL

dmulS , h
6=∅S 6L
dmulS , h

6=∅SL
dmulS ,

h
=∅6SL
dmulL, h=∅SL

dmulL, h
6=∅6SL
dmulL, h

6=∅SL
dmulL, h=∅S 6L

con , h=∅6SL
con , h=∅SL

con }

Note that in this list the only operations mapping nonempty sets are operations that drop
multiple flags, i.e. that do not change any vertex of the block.

So far, h is an operation which takes a multiset of blocks as input and gives a multiset of blocks
as output. In the following definition, we extend the applicability of h to equivalence relations
R. Note, that the relation R̂ is the finest relation possible. It assigns to each scenario its own
equivalence class.

Definition 15. Let R0 = {R̂} and h ∈ H. For R ∈ Ri we define a new equivalence relation h(R)
in the following way: Let C1 and C2 be two representatives of two equivalence classes [C1] and
[C2] of R, respectively. Then

(C1, C2) ∈ h(R) ⇐⇒ h(C1) = h(C2)

Furthermore, we have:

Ri+1 = {R′|R′ = h(R) for R ∈ Ri and h ∈ H}

and

R =

∞
⋃

i=0

Ri

If (C1, C2) ∈ h(R), it might be convenient to choose the representative C of the new equivalence
class [C] with C1, C2 ∈ [C] as follows: C = h(C1) = h(C2). However, the algorithms have to be
modified to maintain this. As an example, if the forget-node-algorithm creates a new empty block
without any flags and if we use the operation h

=∅6S 6L
del to define the new relation, then we have to

modify the forget-node-algorithm to delete the new empty block.
Thus, applying an operation to the multiset of blocks of the representation of an equivalence

class immediately results in the multiset of blocks of an equivalence class of the new relation. Now,
the idea is to consider operations h ∈ H, and prove that h(R) is preserved by the algorithms if
h(R) is obtained by applying a sequence of operations of H to R̂. We require some intermediate
lemmas.

In the upcoming proofs, we use the following terms: For A a multiset of blocks, blocksα(A) is
the multiset of all blocks of A selected by α ∈ BSel. We call these sets categories. Here are a few
examples:

– blocks 6=∅(A) is the set of all nonempty blocks of A.
– blocks 6=∅6SL(A) is the set of all nonempty blocks of A with at least one L-flag and no S-flags.
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– blocks=∅6S 6L(A) is the multiset of all empty blocks of A with no flags.

Lemma 8. Let h be a sequence of operations of H, A be a multiset of blocks, and α ∈ BSel.

blocksα(h(A)) = h(blocksα(A))

Proof. This is easy to see for a single operation h ∈ H. By applying this repetitively for each
operation in a sequence h, we obtain the statement of the lemma. ut

As a reminder, the symbol ‘∪’ between multisets denotes the multiunion. (See the paragraph
about blocks in Section 2.2 for more details.)

Lemma 9. Let A be a multiset of blocks and let h be a sequence of operations of H.

h(A) = h(blocks 6=∅6S 6L(A)) ∪ h(blocks=∅6S 6L(A))
∪ h(blocks 6=∅S 6L(A)) ∪ h(blocks=∅S 6L(A))

∪ h(blocks 6=∅6SL(A)) ∪ h(blocks=∅6SL(A))
∪ h(blocks 6=∅SL(A)) ∪ h(blocks=∅SL(A))

Proof. The multiset A of blocks can be partitioned into:

A = blocks 6=∅6S 6L(A) ∪ blocks=∅6S 6L(A)
∪ blocks 6=∅S 6L(A) ∪ blocks=∅S 6L(A)

∪ blocks 6=∅6SL(A) ∪ blocks=∅6SL(A)

∪ blocks 6=∅SL(A) ∪ blocks=∅SL(A)

It follows from the definition of the categories blocksα(A) above (for α ∈ BSel \ {6=∅, =∅}) that
this is indeed a partition. Each single operation handles only the blocks of one category and leaves
the other categories untouched. Therefore, it is easy to see that the claim is true for h being a
single operation. Now, the result follows from Lemma 8. ut

Lemma 10. Let A and B be multisets of blocks and let h be a sequence of operations of H.

h(A) = h(B) ⇐⇒

∀α ∈ BSel : h(blocksα(A)) = h(blocksα(B))

Proof. The ‘⇐’ direction follows from Lemma 9. To see the ‘⇒’ direction, let D ∈ h(A). Clearly,
D ∈ h(B) and there is an α ∈ BSel \ {6=∅, =∅}, with D ∈ blocksα(h(A)). Since h(A) = h(B), we
have D ∈ blocksα(h(B)). Because this is true for all D ∈ blocksα(h(A)), we have: blocksα(h(A)) ⊆
blocksα(h(B)), and by symmetry: blocksα(h(A)) = blocksα(h(B)). By Lemma 8, we conclude:
h(blocksα(A)) = h(blocksα(B)). Since D was chosen arbitrarily, α was chosen arbitrarily as well,
and we see that the last equation is true for all α ∈ BSel. ut

Lemma 11. Let A, B be multisets of blocks and h ∈ H \ {h=∅S 6L
con , h=∅6SL

con , h=∅SL
con } Then it holds

that:
h(A ∪ B) = h(A) ∪ h(B)

Proof. This is easy to see, because such an h modifies a multiset of blocks locally, namely block by
block, which means that each block is exchanged by another one of the same category or deleted.

ut

It is not possible to give an easy to prove statement as in Lemma 11 if h=∅S 6L
con , h=∅6SL

con or h=∅SL
con

is involved. In this case, it is possible that several blocks are exchanged by one other block. We
will have a closer look at a sequence containing h=∅S 6L

con . Operation h=∅S 6L
con only affects empty blocks

with at least one S-flag and no L-flags. As we have seen above, there is no interference between
different categories. Thus, in the next lemma, we restrict ourself to this category and only to
operations which have an effect to this category.
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Lemma 12. Let A, B, C, D be multisets of empty blocks with at least one S-flag and no L-flags.
For h a sequence of operations of {h=∅S 6L

del , h
=∅S 6L
dmulS , h=∅S 6L

con }, we have:

h(A) = h(B) ∧ h(C) = h(D) =⇒ h(A ∪ C) = h(B ∪D)

Proof. We consider a number of cases:

– Case 1: If h=∅S 6L
con is not in the sequence h, the result follows directly from Lemma 11.

– Case 2: If there is any h
=∅S 6L
del in the sequence h, we have the situation, that there are no empty

blocks with at least one S-flag and no L-flags anymore, and the result trivially holds.

Hence, we suppose in the following cases that h=∅S 6L
con ∈ h and h

=∅S 6L
del 6∈ h.

– Case 3: h(X) = ...h
=∅S 6L
dmulS(...h=∅S 6L

con (...(X)...)...)...; i.e. first we apply h=∅S 6L
con and then h

=∅S 6L
dmulS .

Sequence h will turn all empty blocks with at least one S-flag and no L-flags into a single
empty block with a single S-flag. Then we know that h(A) = h(B) ∈ { { }S , ∅ } and h(C) =
h(D) ∈ { { }S , ∅ }. (We have h(A) = h(B) = ∅ iff A and B do not contain any empty block
with at least one S-flag and no L-flags. The same also holds for sets C and D.) If A∪C contains
an empty block with only S-flags, then B∪D as well and we have: h(A∪C) = h(B∪D) = { }S

otherwise we have: h(A ∪ C) = h(B ∪D) = ∅.

– Case 4: h(X) = ...h=∅S 6L
con (...h=∅S 6L

dmulS(...(X)...)...)...; i.e. first we apply h
=∅S 6L
dmulS and then h=∅S 6L

con .
The result of h(X) in this case is { }S...S, whereat the number of S-flags equals the number
of empty blocks in X with at least one S-flag and no L-flags. Let a be the number of empty
blocks of A with at least one S-flag and no L-flags. We define b, c, d in the same way. Then we
trivially have: a = b ∧ c = d =⇒ a + c = b + d, which implies h(A ∪ C) = h(B ∪D).

– Case 5: only h=∅S 6L
con and no h

=∅S 6L
dmulS is applied. Let a be the total number of all S-flags of all

empty blocks of A with at least one S-flag and no L-flags. We define b, c, d in the same way.
Since h(A) is exactly one empty block with a S-flags and no L-flags, we have: a = b ∧ c =
d =⇒ a + c = b + d. Hence h(A ∪ C) = h(B ∪D).

– Case 6: h(X) = ...h=∅S 6L
con (...h=∅S 6L

dmulS(...h=∅S 6L
con (...(X)...)...)...)...; i.e. first we apply h=∅S 6L

con , then

h
=∅S 6L
dmulS and then h=∅S 6L

con again. Here the outermost h=∅S 6L
con has no effect and hence we have

already considered this case above.
– Case 7: h(X) = ...h

=∅S 6L
dmulS(...h=∅S 6L

con (...h=∅S 6L
dmulS(...(X)...)...)...)...; i.e. first we apply h

=∅S 6L
dmulS , then

h=∅S 6L
con and then h

=∅S 6L
dmulS again. In this case the innermost h

=∅S 6L
dmulS has no effect and thus already

handled above.
ut

We can easily see that lemmas similar to the previous one are true, for considering blocks with
at least one L-flag and no S-flags (or for blocks with at least one S-flag and at least one L-flag).
The proofs are very similar and hence we omit them. We generalize the previous lemma which is
the last intermediate step.

Lemma 13. Let A, B, C, D be multisets of blocks. For h a sequence of operations of H, we have:

h(A) = h(B) ∧ h(C) = h(D) =⇒ h(A ∪ C) = h(B ∪D)

Proof. As discussed above, operations for different categories of blocks do not affect each other,
and hence we can consider each category separately. Thus, the result follows easily from Lemma 9,
10, 12, and the variants of Lemma 12, discussed above. ut

Lemma 14. Let R be an equivalence relation with R ∈ R. R is preserved by the introduce-, forget-,
and join-node-algorithm.

Proof. Let h be the sequence of operations with h(R̂) = R. In many equations below, we make
use of Lemmas 12 and 13. We consider each algorithm separately:
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– The forget-node-algorithm:
Node i is a forget node with child j. Let C1

j , C2
j be representatives of node j and let C1

i , C2
i be

representatives of node i which are the results of the forget-node-algorithm of representatives
C1

j , C2
j , respectively. We have:

h(C1
j ) = h(C2

j ) =⇒ blocks 6=∅(C1
j ) = blocks 6=∅(C2

j ) ∧

blocks 6=∅(C1
i ) = blocks 6=∅(C2

i ) ∧

h(blocks=∅(C1
j )) = h(blocks=∅(C2

j )) (1)

Now, we can distinguish two cases:
Case 1: No new empty block arises. Then we have:

blocks=∅(C1
j ) = blocks=∅(C1

i ) ∧ blocks=∅(C2
j ) = blocks=∅(C2

i )

Together with equation 1, we see:

h(C1
j ) = h(C2

j ) =⇒ h(blocks=∅(C1
j )) = h(blocks=∅(C2

j ))

=⇒ h(blocks=∅(C1
i )) = h(blocks=∅(C2

i ))

=⇒ h(C1
i ) = h(C2

i )

Case 2: A new empty block B∗ arises. Here, we have:

blocks=∅(C1
i ) = blocks=∅(C1

j ) ∪ B∗ ∧ blocks=∅(C2
i ) = blocks=∅(C2

j ) ∪ B∗

Applying Lemma 13 with A = blocks=∅(C1
j ), B = blocks=∅(C2

j ) and C = D = B∗, we have:

h(blocks=∅(C1
j ) ∪ B∗) = h(blocks=∅(C2

j ) ∪ B∗)

=⇒ h(blocks=∅(C1
i )) = h(blocks=∅(C1

i ))

=⇒ h(C1
i ) = h(C2

i ).

In both cases, we have h(C1
i ) = h(C2

i ) and hence R is preserved by the forget-node-algorithm.

– The introduce-node-algorithm:
Node i is an introduce node with child j. Let C1

j , C2
j be representatives of node j. Also,

let C
1,up
i , C

2,up
i , C

1,down
i , C

2,down
i be representatives of node i which are the results of the

introduce-node-algorithm of representatives C1
j , C2

j , with respect to newly introduced vertex
being up or down.

h(C1
j ) = h(C2

j ) =⇒ blocks 6=∅(C1
j ) = blocks 6=∅(C2

j )

=⇒ blocks 6=∅(C1,up
i ) = blocks 6=∅(C2,up

i ) ∧

blocks 6=∅(C1,down
i ) = blocks 6=∅(C2,down

i ) (2)

Furthermore, the algorithm does not modify the empty blocks of the classes:

blocks=∅(C1
j ) = blocks=∅(C1,up

i ) = blocks=∅(C1,down
i )

blocks=∅(C2
j ) = blocks=∅(C2,up

i ) = blocks=∅(C2,down
i )

Thus, we have:

h(C1
j ) = h(C2

j ) =⇒ h(blocks=∅(C1
j )) = h(blocks=∅(C2

j ))

=⇒ h(blocks=∅(C1,up
i )) = h(blocks=∅(C2,up

i ))
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Using this and equation 2, we see:

h(C1,up
i ) = h(blocks=∅(C1,up

i ) ∪ blocks 6=∅(C1,up
i ))

= h(blocks=∅(C1,up
i )) ∪ blocks 6=∅(C1,up

i )

= h(blocks=∅(C2,up
i )) ∪ blocks 6=∅(C2,up

i )

= h(C2,up
i )

The statement h(C1,down
i ) = h(C2,down

i ) follows directly from:

blocks 6=∅(C1
j ) = blocks 6=∅(C1,down

i ) ∧ blocks 6=∅(C2
j ) = blocks 6=∅(C2,down

i )

We conclude that R is preserved by the introduce-node-algorithm.

– The join-node-algorithm:
Node i is a join node with children j1, j2. Let C1

j1
, C2

j1
, C3

j2
, C4

j2
be compatible classes of nodes

j1 and j2, respectively. Let C13
i be the result of the join-node-algorithm when processing C1

j1

and C3
j2

. C14
i , C23

i and C24
i are defined in the same way. We have:

h(C1
j1

) = h(C2
j1

) =⇒ blocks 6=∅(C1
j1

) = blocks 6=∅(C2
j1

) ∧

h(blocks=∅(C1
j1

)) = h(blocks=∅(C2
j1

))

An analogous implication can be obtained with h(C3
j2

) = h(C4
j2

). Let C be a multiset of blocks,
then REPAIR(C) is the result of the REPAIR-algorithm of Section 3 applied to C. Then we
can see:

blocks 6=∅(C13
i ) = REPAIR(blocks 6=∅(C1

j1
) ∪ blocks 6=∅(C3

j2
))

= REPAIR(blocks 6=∅(C2
j1

) ∪ blocks 6=∅(C4
j2

))

= blocks 6=∅(C24
i ) (3)

Applying Lemma 13 with A = blocks=∅(C1
j1

), B = blocks=∅(C2
j1

), C = blocks=∅(C3
j2

) and

D = blocks=∅(C4
j2

), we get:

h(blocks=∅(C13
i )) = h(blocks=∅(C1

j1
) ∪ blocks=∅(C3

j2
))

= h(blocks=∅(C2
j1

) ∪ blocks=∅(C4
j2

))

= h(blocks=∅(C24
i )) (4)

From equations 3 and 4 it follows that h(C13
i ) = h(C24

i ). We can see h(C13
i ) = h(C24

i ) =
h(C23

i ) = h(C14
i ) by using symmetric arguments. Now it follows that R is preserved by the

join-node-algorithm. ut

We conclude that all relations of R are preserved by the algorithms. As an example, we con-
sider R = h=∅SL

con (h=∅6SL
con (h=∅S 6L

con (h=∅6S 6L
del (R̂)))). With this relation R ∈ R, we can answer the ques-

tions which ask for the probabilities of (among others) the following properties: ‘at least half of
the clients are connected to at least one server’ or ‘at most x servers are not connected to a
client’. The classical S-terminal reliability problem can be solved with, e.g., the following relation:
h=∅SL

con (h=∅S 6L
con (h 6=∅SL

dmulS(h 6=∅S 6L
dmulS(h=∅SL

dmulS(h=∅S 6L
dmulS(h=∅6SL

del (h=∅6S 6L
del (R̂)))))))).

The next theorem summarises this section.

Theorem 2. Let R ∈ R be an equivalence relation which is fine enough for property Y . There is
an O(n · n2

c · n
2
b · k) time algorithm for computing the probability that graph G has Y .

Proof. The correctness follows directly from Theorem 1, Lemma 14 and the discussion of the global
running time in Section 7.3. ut

Because of their special structure, we will analyse the running times of generated relations in
the next section. We will see that applying certain operations bounds the number of classes nc

polynomially or by a constant.
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5.3 Running Times of Generated Relations

In general, the running times of the procedures heavily depend on the chosen equivalence relations.
The choice of the relation is a crucial point. Hence, it is very hard to make a statement about
running times in general. For our generated or constructed relations, however, we are in a slightly
better situation. The relation that can be used for the largest collection of properties R̂ has
exponentially many equivalence classes, and needs therefore exponential time. By applying our
operations in H, we reduce the number of equivalence classes by an ‘roughly’ determinable amount.

Instead of giving a list of all possible combinations of operations, we consider a few cases which
appear especially useful. As an example, when using operation h

=∅S 6L
dmulS , it can be reasonable to

use operation h
6=∅S 6L
dmulS (and h=∅SL

dmulS) as well. Furthermore, operation h
=∅6S 6L
del can almost always be

used, since empty blocks without flags cannot be used to make further connections, and they do
not give any information about servers or clients.

When giving upper bounds for the number of representatives, we can distinguish between the
number of possibilities due to the nonempty blocks and due to the empty blocks. For now, we only
consider the number of possibilities due to the nonempty blocks, with no respect to flags, because
this number is a constant and hence is not influenced by other input parameters apart from the
treewidth k. Therefore, we have to consider at most k + 1 elements per node which can be taken
to form blocks and classes. A rough upper bound for this number is

δ :=

k+1
∑

i=1

(

k + 1
i

) i
∑

j=1

{

i

j

}

This can be shown as follows. The rightmost term gives the number of partitions of i elements
into j nonempty subsets. It is referred to as the Stirling number of the second kind. See [6] for
notations and details. With the inner summation, we get the number of partitions of i elements
into at most i nonempty subsets. The binomial coefficient chooses i elements for partitioning
among k + 1 elements, which are the vertices of one node of the treedecomposition. Since not all
nodes must have exactly k + 1 vertices and not all vertices have to be up, we have to use the left
summation. Although, this number can be rather large, it is a constant (which we refer to as δ)
when k considered a constant. After this preparatory work, we consider a number of cases:

Case 1: The sequence h contains: h
=∅6S 6L
del , h

=∅S 6L
dmulS , h=∅SL

dmulS , h
6=∅S 6L
dmulS, h

6=∅SL
dmulS .

Any nonempty block can have 0 or 1 S-flags and between 0 and nL L-flags. These give at most
2 · (nL + 1) possibilities per nonempty block. When working with a treedecomposition of width k,
there can be at most k + 1 nonempty blocks in any representative. For k + 1 blocks, this results in
at most (2 · (nL + 1))k+1 possibilities. Now, we look at the number of possible equivalence classes
caused by the empty blocks. We denote the number of possibilities of empty blocks with at least
one L-flag and no S-flag by δ′. This number only depends on nL. Each of these blocks can have
0 or 1 S-flags and since we have at most nL such blocks, this results in at most 2nL possibilities.
Furthermore, we can have between 0 and nS empty blocks with exactly one S-flag and no L-flags.
(There are no empty blocks without flags.) Altogether, we have that the number of equivalence
classes is bounded by:

δ · (2 · (nL + 1))k+1 · δ′ · 2nL · (nS + 1)

Example 1. With the relation

R = h
=∅6S 6L
del (h=∅S 6L

dmulS(h=∅SL
dmulS(h 6=∅S 6L

dmulS(h 6=∅SL
dmulS(R̂)))))

we can solve among others the following problem for every x: What is the probability that there
are at least x clients connected to each server?

Corollary 1. If we do not allow empty blocks without any flags and if we bound the number of
S-flags per block to be at most one, we have O(nS · 2nL) classes per node, i.e. linear in nS, but
exponential in nL.



26 Thomas Wolle

Case 2: The sequence h contains: h
=∅6S 6L
del , h

=∅S 6L
dmulS , h

=∅6SL
dmulL, h=∅SL

dmulS , h=∅SL
dmulL,

h
6=∅S 6L
dmulS , h

6=∅6SL
dmulL, h

6=∅SL
dmulS , h

6=∅SL
dmulL.

For a nonempty block, there are 4 possibilities: no flag, one S-flag, one L-flag, one of each flags.
Hence, we have at most 4k+1 possibilities for at most k+1 nonempty blocks. One equivalence class
can have at most nS empty blocks with exactly only one S-flag. The situation is similar for blocks
with only L-flags, and the number of empty blocks with one S-flag and one L-flag is bounded by
min(nS , nL). In this case, the number of equivalence classes is bounded by:

δ · 4k+1 · (nS + 1) · (nL + 1) · (min(nS , nL) + 1)

Example 2. With the relation R =

h
=∅6S 6L
del (h=∅S 6L

dmulS(h=∅6SL
dmulL(h=∅SL

dmulS(h=∅SL
dmulL(h 6=∅S 6L

dmulS(h 6=∅6SL
dmulL(h 6=∅SL

dmulS(h 6=∅SL
dmulL(R̂)))))))))

we can solve among others the following problem for every x and y: What is the probability that
there are x connected components with at least one client and no server, while there are at least
y connected components containing at least one server and no client?

Corollary 2. If we do not allow empty blocks without any flags and if we bound the number of
S-flags and L-flags per block to be at most one, respectively, we have O(nS · nL · min(nS , nL))
classes per node.

Case 3: The sequence h contains: h
=∅6S 6L
del , h=∅S 6L

con , h=∅6SL
con , h=∅SL

con .

For one nonempty block, we have at most (nS + 1) · (nL + 1) possibilities for the number of L-
and S-flags. Considering k +1 nonempty blocks results in ((nS +1) · (nL +1))k+1 possibilities. We
have at most one empty block with S-flags and no L-flags, which gives nS + 1 possibilities. The
situation is similar for a possible block with only L-flags, and if we have a block with both types
of flags, then there are nS · nL possible flag distributions. Multiplying these bounds results in an
upper bound for the number of equivalence classes:

δ · ((nS + 1) · (nL + 1))k+1 · (nS + 1) · (nL + 1) · (nS · nL + 1)

Example 3. With the relation

R = h
=∅6S 6L
del (h=∅S 6L

con (h=∅6SL
con (h=∅SL

con (R̂))))

we can solve among others the following problem: What is the probability that at least x clients
are not connected to a server while at least y servers have no client connected to it?

Corollary 3. If we do not allow empty blocks without any flags and if we have at most one empty
block with S-flags, at most one empty block with L-flags and at most one empty block with S- and
L-flags, then we have O(nk+3

S · nk+3
L ) classes per node, i.e. polynomial in nS and nL.

Case 4: The sequence h contains: h
=∅6S 6L
del , h=∅S 6L

con , h=∅6SL
con , h=∅SL

con , h
=∅S 6L
dmulS ,

h
=∅6SL
dmulL, h=∅SL

dmulS, h=∅SL
dmulL, h

6=∅S 6L
dmulS , h

6=∅6SL
dmulL, h

6=∅SL
dmulS , h

6=∅SL
dmulL and the h ...

con operations are applied earlier
than the h ...

dmulS and h ...
dmulL operations.

This means, that after applying h each block can have at most one flag of each type. As in
Case 2, we have for the nonempty blocks 4k+1 possibilities. There are only 8 possibilities for the
empty blocks, since we only can have the following three blocks: { }S , { }S

L, { }L, which may or
may not exist in an equivalence class. Hence, we have 8 possibilities. Altogether, the number of
equivalence classes is bounded by:

δ · 4k+1 · 8
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Example 4. With the relation

R = h
=∅S 6L
dmulS(h=∅6SL

dmulL(h=∅SL
dmulS(h=∅SL

dmulL(h 6=∅S 6L
dmulS(h 6=∅6SL

dmulL(h 6=∅SL
dmulS(h 6=∅SL

dmulL(

h
=∅6S 6L
del (h=∅S 6L

con (h=∅6SL
con (h=∅SL

con (R̂))))))))))))

we can solve among others the following problem: What is the probability that each client is
connected to a server while each server has a client connected to it?

Corollary 4. If we do not allow empty blocks without any flags and if we bound the number of S-
and L-flags per block to be at most one, respectively, and if we bound the number of empty blocks
to be constant, then we have a constant number of classes per node.

These four corollaries show, how applying operations from H can help to reduce the number
of classes. Recall that this yields algorithms that compute the corresponding probabilities of the
properties for graphs, given with a treedecomposition of width at most k. The running time of such
an algorithm is O(n) times the number of equivalence classes (i.e. representatives) per node. In
the next section, we consider answering questions, which ask for the probability that the surviving
subgraph has property Y1 and property Y2. For such a combination of properties, we can use a
combination of equivalence relations.

5.4 Combining Relations

Once we have relations for solving problems, we can combine them to create relations for ‘combined
problems’. We know that many relations allow us to solve more than one problem. Assume that we
are faced with a problem like ‘What is the probability that the surviving subgraph has properties
A and B?’ Let us assume further that we already have relations RA and RB for computing the
probabilities of A and B, respectively. We will see that we can use RA and RB to create a new
relation for property (A ∧ B).

Lemma 15. Let RA and RB be two relations, that are proper and fine enough for property A and
B, respectively. Let RA∧B be the relation, such that for all C1 and C2 that are representatives of
scenarios f1 and f2, respectively, we have:

(C1, C2) ∈ RA∧B ⇐⇒ (C1, C2) ∈ RA ∧ (C1, C2) ∈ RB

Then RA∧B is proper and fine enough for property (A ∧ B).

Proof. We have to show three properties: blocks 6=∅(C1) = blocks 6=∅(C2), the preservation by the
algorithms and the fineness of RA∧B .

The first property is easy to see, because two scenario representatives C1 and C2 can only be
equivalent under RA∧B if they are equivalent under RA and RB . Since RA and RB are proper,
we have: blocks 6=∅(C1) = blocks 6=∅(C2).



28 Thomas Wolle

To see the preservation by the algorithms, we look at a join node i with children j1 and j2. We
use the notation introduced in Section 3.2 and utilised in Section 4.5. Then we have:

(C1
j1

, C2
j1

) ∈ RA∧B ∧ (C1
j2

, C2
j2

) ∈ RA∧B

=⇒





(C1
j1

, C2
j1

) ∈ RA

∧
(C1

j1
, C2

j1
) ∈ RB



 ∧





(C1
j2

, C2
j2

) ∈ RA

∧
(C1

j2
, C2

j2
) ∈ RB





=⇒





(C1
j1

, C2
j1

) ∈ RA

∧
(C1

j2
, C2

j2
) ∈ RA



 ∧





(C1
j1

, C2
j1

) ∈ RB

∧
(C1

j2
, C2

j2
) ∈ RB





=⇒





(C11
i , C12

i ) ∈ RA ∧
(C12

i , C21
i ) ∈ RA ∧

(C21
i , C22

i ) ∈ RA



 ∧





(C11
i , C12

i ) ∈ RB ∧
(C12

i , C21
i ) ∈ RB ∧

(C21
i , C22

i ) ∈ RB





=⇒





(C11
i , C12

i ) ∈ RA∧B ∧
(C12

i , C21
i ) ∈ RA∧B ∧

(C21
i , C22

i ) ∈ RA∧B





Hence, RA∧B is preserved by the join-node algorithm. The preservation by the introduce-node and
forget-node algorithm can be proven in an analogous way.

Next, we prove the fineness of the relations. We look at a node i of T . There we select an
equivalence class representative C of RA∧B . We will derive a contradiction: Assume we have two
scenario representatives C1 and C2 with: C1 has property (A ∧B) and C2 does not have (A∧B)
and C1, C2 ∈ C. That means ‘C1 has A and C1 has B’ and ‘C2 does not have A or C2 does not
have B’ and:

(C1, C2) ∈ RA∧B =⇒

(C1, C2) ∈ RA ∧ (C1, C2) ∈ RB

=⇒





[

C1 has A ∧ C2 has A
]

∨
[

C1 has ¬A ∧ C2 has ¬A
]



 ∧





[

C1 has B ∧ C2 has B
]

∨
[

C1 has ¬B ∧ C2 has ¬B
]





From the assumption ‘C1 has (A ∧ B)’, we have:

C1 has A ∧ C1 has B =⇒ C2 has A ∧ C2 has B,

which is a contradiction to ‘C2 has ¬(A ∧B)’, and hence RA∧B is fine enough for (A∧B), which
completes the proof. ut

Other Combinations. The previous lemma only considers the combination of two relations with
the logical ‘and’. A natural question to ask is whether combining relations can also be applied to
the logical ‘not’ and the logical ‘or’.

Given a graph property A and a relation RA to compute the probability pA that the surviving
subgraph has property A. To compute the probability p¬A that the surviving subgraph does not
have property A, i.e. it has ¬A, we can simply compute p¬A = 1 − pA using RA. Hence, the
relations RA and R¬A for property A and ¬A, respectively, are identical.

We assume now, that we have two relations RA and RB for properties A and B, respectively.
Defining RA∨B in the way of Lemma 15 will not result in an equivalence relation, because due to



Network Reliability on Graphs of Bounded Treewidth 29

the transitivity of such a relation, two scenarios would be equivalent under RA∨B even if they are
neither equivalent under RA nor under RB . However, using basic logical rules, we still can compute
the probability pA∨B that the surviving subgraph has property A or property B (whereat p¬A∧B

is the probability that the surviving subgraph does not have property A, but it has property B;
pA∧B , pA∧¬B, p¬A∧¬B are defined accordingly):

pA∨B = pA∧B + p¬A∧B + pA∧¬B = 1− p¬A∧¬B

The two previous Lemmas 14 and 15 give us powerful tools for generating and combining rela-
tions. For these new relations, it is not necessary to prove the properness and fineness, respectively,
as long as the original relations have these properties. We will look at examples of questions that
can be answered with the framework:

– What is the probability that in the surviving subgraph not each client is connected to a server?
– What is the probability that in the surviving subgraph each client is connected to a server and

that each server has a client connected to it?
– What is the probability that in the surviving subgraph all servers are connected or that each

server is connected to at least 5 clients?

For these, we need equivalence relations for the single properties in each question. These single
properties, however, fit into our framework and hence, due to Lemma 15, the three combined
properties of the questions above fit as well.

6 Additional Ideas - The Expected Number

of Components with a Certain Property

We give a description of an example relation R, which cannot be generated by the methods of the
previous sections. The goal is to answer the questions: ‘What is the expected number of components
with at least one server and no clients?’ (at least one client, no servers; at least one client and
at least one server) This question differs from ‘What is the probability that G has property Y ?’
Even though, our framework can be used to answer this question, since the representatives of the
equivalence classes ‘show enough information’. However, some modifications are necessary.

Definition of R. We consider two scenario representatives C1 and C2 of node i, The scenarios
represented by C1 and C2 are defined to be equivalent, if they are equal on their nonempty blocks,
i.e.:

(C1, C2) ∈ R ⇐⇒

h
=∅6S 6L
del (h=∅S 6L

del (h=∅6SL
del (h=∅SL

del (C1)))) = h
=∅6S 6L
del (h=∅S 6L

del (h=∅6SL
del (h=∅SL

del (C2))))

Even though we can use the operations of Section 5.2 to define the considered equivalence
relation, we are not able to use our framework without further modifications. This is because
the representative C of an equivalence class [C] of node i will have a special structure. All empty
blocks will be replaced by three special blocks: {eS(C)}S , {eL(C)}L and {eSL(C)}S

L. The nonempty
blocks will be the same as the ones of the represented scenarios and eS(C), eL(C) and eSL(C) are
real numbers. We will only go into details for eS(C), since for eL(C) and eSL(C) it is analogue.
The number eS(C) is the expected number of components of Gi, with empty intersection with Xi,
with at least one server and no client given the fact that Gi is in one of the scenarios represented
by C. The number of components of G[V f=1

i ] with at least one server and no client and with
empty intersection with Xi is |blocks=∅S 6L(blocksi(f))|, which is the number of empty blocks with
at least one S-flag and no L-flags of the representative for scenario f . Then we have:

eS(C) =
∑

f∈C

Pr(f) · |blocks=∅S 6L(blocksi(f))|
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Fineness and Preservation of R. The preservation is easy to see, since the algorithms only
affect the nonempty blocks. Thus, in each case equivalent scenarios are treated in the same way
and, hence, are equivalent after processing by the algorithms. A formal proof uses the same ideas
and would be similar to the proof of Lemma 14.

The fineness of a relation is defined using the fact that scenarios can or cannot have specific
properties. On the other hand, ‘the expected number of components with at least on server and no
client’ is a number and not a property. That is why the term ‘fine enough’ is not really applicable
for our question. However, we can use the equivalence classes of R in the following way. We consider
a node i and all its equivalence classes [C]. Then, the expected number of components of Gi with
at least one server and no client is:

∑

[C]:[C] is eq.class of i

Pr([C]) · (eS(C) + |blocks 6=∅S 6L(C)|)

Modification of the Algorithms. Since we have a different structured problem, we modify our
algorithms slightly. These modifications maintain eS from node to node (as well as eL and eSL).
Introduce-nodes need no special treatment, because the set of empty blocks is not changed. This is
different with forget-nodes. We consider an equivalence class [C]. If we create a new empty block
with only S-flags, then we delete it and increase eS(C) by one. The correctness of this is easy
to see, since all scenarios of [C] would now have one more empty block with only S-flags. For a
join-node i with children j1 and j2, we add the two eS numbers of the ‘source’ representatives
together to obtain eS(C) of the resulting class C. This can be understood by bringing to mind
that an equivalence class C of i represents scenarios of Gi which contains as subgraphs Gj1 and
Gj2 . Furthermore, the empty components of Gj1 and Gj2 are not influencing each other.

There is one thing left we have to do: the modification of the code-fragment in Step 2 in
Section 4.2. If two equivalence classes [C1] and [C2] become equivalent, we have to modify eS(C)
of the resulting equivalence class [C], using eS(C1) and eS(C2) in the following way, which is not
hard to see.

eS(C) =
eS(C1) · Pr(C1) + eS(C2) · Pr(C2)

Pr(C)

The numbers eL(C) and eSL(C) are computed in the same way.

Running Time. The overall running time of the algorithms is O(n2
c · n

2
b · k

2). For our relation
R we have nb ≤ k + 1 + 3, since we have at most k + 1 nonempty blocks and 3 special blocks,
which actually do not play a role in class distinction. The analysis of the maximum number of
equivalence classes is similar to Case 4 in Section 5.3. Hence, nc is a constant.

Conclusion. The problem ‘What is the expected number of components with at least one server
and no clients?’ does not fit into the framework as described in the previous sections. However,
we have seen that with additional modifications of the framework we can obtain an algorithm to
solve this problem in linear time on graphs with given treedecomposition of width at most k.

7 Discussion

We presented a framework for a variety of network reliability problems for graphs of bounded
treewidth. The method itself is open enough for extensions which may enable faster running times
and/or additional properties to check. Those properties that can be checked with classes, i.e. those
properties for which our framework is applicable, concern connections between sets of vertices. It
remains a further research topic, to develop a more powerful framework that can handle much
more properties, e.g. properties like ‘What is the probability that the surviving subgraph has a
dominating set of size ≤ k?’
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7.1 Edge Failures

The framework described in this paper considers only vertex failures. As mentioned earlier edge
failures can be simulated by vertex failures. To do this, we place a new vertex on each edge. The
reliability of the new vertex will be the one of the corresponding edge. All edges of the resulting
graph will be defined to be perfectly reliable. We clearly increase the number of vertices of the
graph by doing this. The resulting graph has |V | + |E| vertices. For arbitrary graphs it holds

|E| ≤ |V |·(|V |−1)
2 which would mean a potential quadratic increment. When restricted to graphs of

treewidth at most k, we have |E| ≤ k · |V |− k·(k+1)
2 (see [2]). Hence, only an increment linear in |V |,

if k considered a constant. The effect on the treewidth of a graph itself is also rather secondary.
We consider an edge {u, v}. In our treedecomposition, we have one node i with {u, v} ⊆ Xi. When
placing vertex w on this edge, we can simply attach a new node {u, v, w} to the node i. It is easy
to see that this results in a proper treedecomposition and does not increase its width, if the width
is at least 2.

7.2 Treewidth vs. Pathwidth

In Section 4.4, we required a relation R to be preserved by all three algorithms. We can refrain
from this demand, if we look at graphs of bounded pathwidth. A path decomposition of G is a
treedecomposition (T, X) of G whereat T is a path. Hence, join-nodes do not appear and thus R

has not to be preserved by the join-node-algorithm. This may enable more relations, but at the
other hand we have to use a path-decomposition.

7.3 Running Times

The running time for our algorithm heavily depends on the chosen relation R. We can see it is
very important to choose a relation ‘as coarse as possible’. All considered algorithms run in time
O(n2

c · n
2
b · k

2) per node. In [7], Kloks shows that there are nice treedecompositions with at most
4 · n nodes (thus linear in n = |V (G)|). Hence, we have the global running time O(n · n2

c · n
2
b · k

2).
Furthermore, the framework provides enough possibilities for using additional tricks, ideas and

modifications. It may be necessary to use them to get the best running time, as shown in Section 6.
One general possibility to decrease the running time would be to delete classes that can never have
the required property as soon as possible. However, the performance gain is not easy to analyse.
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