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Preface

The power of objects lies in the flexibility of their interconnection
structure. But this flexibility comes at a cost. Because an object
can be modified via any alias, object-oriented programs are hard to
understand, maintain, and analyse. Aliasing makes objects depend
on their environment in unpredictable ways, breaking the encapsu-
lation necessary for reliable software components, making it difficult
to reason about and optimise programs, obscuring the flow of infor-
mation between objects, and introducing security problems.

Aliasing is a fundamental difficulty, but we accept its presence. In-
stead we seek techniques for describing, reasoning about, restricting,
analysing, and preventing the connections between objects and/or
the flow of information between them.

So how then do we take arms against the sea of objects?

Topics the workshop aims to address include:

• models, type and other formal systems, programming language
mechanisms, analysis and design techniques, patterns and no-
tations for expressing object ownership, aliasing, confinement,
uniqueness, and/or information flow.

• optimisation techniques, analysis algorithms, libraries, applica-
tions, and novel approaches exploiting object ownership, alias-
ing, confinement, uniqueness, and/or information flow.

• empirical studies of programs or experience reports from pro-
gramming systems designed with these issues in mind.

• novel applications of aliasing management techniques such as
ownership types, confined types, region types, and uniqueness.

Dave Clarke, Sophia Drosspoulou, James Noble
Workshop Organisers
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Safe Runtime Downcasts With Ownership Types

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology

200 Technology Square, Cambridge, MA 02139
{chandra,rhlee,rinard}@lcs.mit.edu

Abstract. This paper describes an efficient technique for supporting
safe runtime downcasts in a system with ownership types. This tech-
nique uses the type passing approach, but avoids the associated signif-
icant space overhead by storing only the runtime ownership informa-
tion that is potentially needed to support safe downcasts. Moreover, this
technique does not use any inter-procedural analysis, so it preserves the
separate compilation model of Java. We implemented our technique in
the context of Safe Concurrent Java, which is an extension to Java that
uses ownership types to statically guarantee the absence of data races
and deadlocks. Our approach is JVM-compatible: our implementation
translates programs to bytecodes that can be run on regular JVMs.

1 Introduction

Ownership types [4, 5, 7, 12, 13] provide a statically enforceable way of specify-
ing object encapsulation. The idea is that an object can own subobjects that
it depends on, thus preventing them from being accessible outside. Object en-
capsulation enables local reasoning about program correctness in object-oriented
programs. Ownership-based type systems have also been used for preventing data
races [7] and deadlocks [4] in multithreaded programs, for preventing memory er-
rors in programs that use region-based memory management [8], for supporting
modular software upgrades in persistent object stores [6], for modular specifica-
tion of effects clauses in the presence of subtyping [5, 7, 12] (so that they can be
used as an alternative to data groups [16]), and for program understanding [2].

In ownership type systems, programmers parameterize classes and methods
by owners. This enables the writing of generic code that can be used in many
different contexts. The parameterization is somewhat similar to the proposals
for parametric types for Java [1, 9, 18, 20]. Ownership type systems are primar-
ily static type systems. The type checker uses the ownership type annotations
to statically ensure the absence of certain classes of errors (e.g., data races in
PRFJ [7]), but it is usually unnecessary to preserve the ownership information
at runtime. However, languages like Java [15] are not purely statically typed
languages. Java allows downcasts that are checked at runtime. To support safe
runtime downcasts, the system must preserve some ownership information at
runtime when ownership types are used in the context of a language like Java.
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There are primarily three techniques for implementing parametric polymor-
phism in a language like Java. The type erasure approach [9, 10] is based on the
idea of deleting type parameters (so Stack〈T〉 erases to Stack). But this approach
will not preserve ownership information at runtime, so it is unsuitable for sup-
porting safe runtime downcasts with ownership types. In the code duplication ap-
proach [1], polymorphism is supported by creating specialized classes/methods,
each supporting a different instantiation of a parametric class/method. But since
the parameters in ownership types are usually objects, this approach will lead
to an unacceptably large number of classes/methods. In the type passing ap-
proach [18, 20, 19], information on type parameters is explicitly stored in objects
and passed to code requiring them. But if the system stores the owners of every
object at runtime, this approach has the potential drawback of adding a per-
object space overhead. Java objects are typically small, so adding even a single
field to every object increases the size of most objects by a significant fraction.

This paper describes an efficient technique for supporting safe runtime down-
casts with ownership types. This technique uses the type passing approach, but
avoids the associated significant space overhead by storing only the runtime own-
ership information that is potentially needed to support safe downcasts. More-
over, this technique does not use any inter-procedural analysis, so it preserves
the separate compilation model of Java. We implemented our technique in Safe
Concurrent Java [4, 7], which is an extension to Java that uses ownership types
to guarantee the absence of data races and deadlocks in well-typed programs.
Our approach is JVM-compatible: our implementation translates programs to
bytecodes that can be run on regular JVMs [17].

We note that a similar approach has been used in [2] to implement safe
runtime downcasts with ownership types.

The rest of this paper is organized as follows. Section 2 gives an overview of
ownership types in subset of Safe Concurrent Java (SCJ). Section 3 describes
how we support safe runtime downcasts. Section 4 concludes.

2 Mini Safe Concurrent Java

This section presents Mini Safe Concurrent Java (MSCJ), which is a subset of
SCJ that prevents data races in well-typed programs. To simplify the presenta-
tion of key ideas behind our approach, the rest of the discussion in this paper
will be in the context of MSCJ. Our implementation, however, works for the
whole of SCJ and handles all the features of the Java language. The key to the
MSCJ type system is the concept of object ownership. Every object in MSCJ has
an owner. An object can be owned by another object, by itself, or by a special
per-thread owner called thisThread. Objects owned by thisThread, either directly
or transitively, are local to the corresponding thread and cannot be accessed by
any other thread. Figure 1 presents an example ownership relation. We draw an
arrow from object x to object y if x owns y. Our type system statically verifies
that a program respects the ownership properties shown in Figure 2.
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thisThread

o1 o2

o3

Thread1 Objects Potentially Shared ObjectsThread2 Objects

thisThread

o4
o6

o7

o8

o5
o9

o10

Fig. 1. An Ownership Relation

1. The owner of an object does not change over time.
2. The ownership relation forms a forest of rooted trees. The roots can have self loops.
3. To safely access an object, a thread must hold the lock on the root owner of that

object (the root of the ownership tree that the object belongs to).
4. Every thread implicitly holds the lock on its corresponding thisThread owner. A

thread can thus access objects owned by its thisThread without synchronization.

Fig. 2. Ownership Properties

Figure 3 shows the grammar for MSCJ. Figure 4 shows a TStack program in
MSCJ. For simplicity, all the examples in this paper use an extended language
that is syntactically closer to Java. A TStack is a stack of T objects. A TStack
is implemented using a linked list. A class definition in MSCJ is parameterized
by a list of owners. This parameterization helps programmers write generic code
to implement a class, then create different objects of the class that have dif-
ferent protection mechanisms. In Figure 4, the TStack class is parameterized by
thisOwner and TOwner. thisOwner owns the this TStack object and TOwner owns
the T objects contained in the TStack. In general, the first formal parameter of a
class always owns the this object. In case of s1, the owner thisThread is used for
both the parameters to instantiate the TStack class. This means that the main
thread owns TStack s1 as well as all the T objects contained in the TStack. In
case of s2, the main thread owns the TStack but the T objects contained in the

P ::= defn* e
defn ::= class cn〈owner f*〉 extends c {field* meth*}

c ::= cn〈owner+〉 | Object〈owner〉
owner ::= f | self | thisThread | efinal
meth ::= t mn(arg*) accesses (efinal*) {e}
field ::= [final]opt t fd = e

arg ::= [final]opt t x

t ::= c | int

e ::= new c | x | x = e | e.fd | e.fd = e | e.mn(e*) | e;e | let (arg=e) in {e} |
synchronized (e) in {e} | fork (x*) {e}

efinal ::= e

cn ∈ class names, fd ∈ field names, mn ∈ method names, x ∈ variable names, f ∈ owner names

Fig. 3. MSCJ Grammar
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1 // thisOwner owns the TStack object, TOwner owns the T objects in the stack.
2 class TStack<thisOwner, TOwner> {
3 TNode<this, TOwner> head = null;
4 TStack() {}
5 void push(T<TOwner> value) accesses (this) {
6 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head); head = newNode;
7 }
8 T<TOwner> pop() accesses (this) {
9 T<TOwner> value = head.value(); head = head.next(); return value;
10 }
11 }
12 class TNode<thisOwner, TOwner> {
13 T<TOwner> value; TNode<thisOwner, TOwner> next;
14 TNode(T<TOwner> v, TNode<thisOwner, TOwner> n) accesses (this) {
15 this.value = v; this.next = n;
16 }
17 T<TOwner> value() accesses (this) { return value; }
18 TNode<thisOwner, TOwner> next() accesses (this) { return next; }
19 }
20 class T<thisOwner> { int x=0; }
21
22 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;
23 TStack<thisThread, self> s2 = new TStack<thisThread, self>;

Fig. 4. Stack of T Objects in MSCJ

s1.head
(TNode) (TNode)

s1.head.next s2.head.next.next
(TNode)

s1.head.next.next
(TNode)

s2.head.next.value

s2.head.value s2.head.next.next.value
(T)

(T)

(T)

s2.head.nexts2.head
(TNode) (TNode)

s2 (TStack)

thisThread

s1 (TStack)

s1.head.value
(T) s1.head.next.value

s1.head.next.next.value

(T)

(T)

Fig. 5. Ownership Relation for TStacks s1 and s2

TStack own themselves. The ownership relation for the TStack objects s1 and
s2 is depicted in Figure 5 (assuming the stacks contain three elements each). In
MSCJ, a method can contain an accesses clause that specifies the objects the
method accesses that must be protected by externally acquired locks. Callers
are required to hold the locks on the root owners of the objects specified in the
accesses clause before they invoke a method. In the example, the value and next
methods in the TNode class assume that the callers hold the lock on the root
owner of the this TNode object.

2.1 Static Type Checking

This section describes some of the important type checking rules. The full set
of rules can be found in [4]. The core of our type system is a set of rules for
reasoning about the typing judgment: P ; E; ls � e : t. P , the program being
checked, is included here to provide information about class definitions. E is an
environment providing types for the free variables of e. ls describes the set of
locks that are statically known to be held when e is evaluated. t is the type of e.
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The rule for accessing field e.fd checks that e is a well-typed expression of
some class type cn〈o1..n〉, where o1..n are actual owner parameters. It verifies
that the class cn with formal parameters f1..n declares or inherits a field fd
of type t and that the thread holds the lock on the root owner of e. Since t is
declared inside the class, it might contain occurrences of this and the formal class
parameters. When t is used outside the class, we rename this with the expression
e, and the formal parameters with their corresponding actual parameters.

[EXPRESSION REFERENCE]

P ; E; ls � e : cn〈o1..n〉 P � (t fd) ∈ cn〈f1..n〉 P ; E � RootOwner(e) ∈ ls

P ; E; ls � e.fd : t[e/this][o1/f1]..[on/fn]

The rule for invoking a method checks that the arguments are of the right
type and that the thread holds the locks on the root owners of all expressions
in the accesses clause of the method. The expressions and types used inside the
method are renamed appropriately when used outside their class.

[EXPRESSION INVOKE]

Renamed(α)
def
= α[e/this][o1/f1]..[on/fn][e1/y1]..[ek/yk]

P ; E; ls � e : cn〈o1..n〉 P � (t mn(tj yj
j∈1..k) accesses(e′*) {...}) ∈ cn〈f1..n〉

P ; E; ls � ej : Renamed(tj)

P ; E � RootOwner(Renamed(e′i)) ∈ ls

P ; E; ls � e.mn(e1..k) : Renamed(t)

The rule for checking a method assumes that the locks on the root owners of
all the expressions specified in the accesses clause are held. The rule then type
checks the method body under this assumption.

[METHOD]

E′ = E, arg1..n P ; E′ �final ei : ti P ; E′ � RootOwner(ei) = ri

P ; E′; thisThread, r1..r � e : t

P ; E � t mn(arg1..n) accesses(e1..r) {e}

The subtyping rule ensures that the parameters of the supertype are instanti-
ated either with constants (self or thisThread) or with owners that are in scope,
preserving the owner in the first position. The first owner must be preserved
because the first owner in our system is special, in that it owns the this object.

[SUBTYPE]

P ; E � cn1〈o1..n〉 P � class cn1〈f1..n〉 extends cn2〈f1 o′*〉 {...}
∀ o′. (o′ = self) ∨ (o′ = thisThread) ∨ (∃ j. o′ = fj)

P ; E � cn1〈o1..n〉 <: cn2〈f1 o′*〉 [o1/f1]..[on/fn]

3 Safe Runtime Downcasts

This section describes how we support safe runtime downcasts efficiently. We
describe our technique in the context of Mini Safe Concurrent Java (MSCJ).
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The type system for MSCJ described in Section 2 is a purely static type system.
In fact, one way to compile and run a MSCJ program is to convert it into a
Java program after type checking, by removing the type parameters and the
accesses clauses. However, a language like Java is not a purely statically typed
language. Java allows downcasts that are checked at runtime. To support safe
downcasts, the system must preserve some ownership information at runtime
when ownership types are used in the context of a language like Java. To express
runtime casts, we extend the MSCJ grammar as follows.

e ::= ... | (cn〈o1..n〉) e

Fig. 6. Grammar Extensions to Support Runtime Casts

We next present the static type checking rules for casts. Casting an object
to a supertype of its declared type is always safe. Casting to a subtype of the
declared type requires runtime checking. Section 2.1 contains the subtyping rule.

[EXPRESSION UPCAST]

P ; E; ls � e : c2 P ; E � c2 <: c1

P ; E; ls � (c1) e : c1

[EXPRESSION DOWNCAST (REQUIRES RUNTIME CHECK)]

P ; E; ls � e : c1 P ; E � c2 <: c1

P ; E; ls � (c2) e : c2

To support downcasts, we store information on type parameters explicitly
in objects and pass the information to code requiring the information. But if
the system stores the owners of every object at runtime, this approach has the
potential drawback of adding a per-object space overhead. Java objects are typ-
ically small, so adding even a single field to every object increases the size of
most objects by a significant fraction. Our technique avoids the associated sig-
nificant space overhead by storing only the runtime ownership information that
is potentially needed to support safe downcasts. Our technique is based on two
key observations about the nature of parameterization in ownership types.

The remainder of this section is organized as follows. Sections 3.1 and 3.2
describe the key observations that enable us to support downcasts efficiently.
Sections 3.3 and 3.4 presents our technique for supporting safe downcasts.

3.1 Downcasts to Types With Single Owners

A key observation that enables efficient implementation of downcasts is as fol-
lows. Consider the code in Figure 7. In Line 16, object o1 of declared type
Object〈thisThread〉 is downcast to type T〈thisThread〉. For this downcast, the
owner of the declared type of o1 matches the owner of the type that o1 is being
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1 class T<thisOwner> {...}
2 class TStack<thisOwner, TOwner> {...}
3 class TStack2<thisOwner, TOwner> extends TStack<thisOwner, TOwner> {...}
4
5 Object<thisThread> o1, o2, o3;
6 ...
7 T<thisThread> t1;
8 T<self> t2;
9 ...
10 TStack<thisThread, thisThread> s1;
11 TStack<thisThread, self> s2;
12 ...
13 TStack2<thisThread, thisThread> q1;
14 TStack2<thisThread, self> q2;
15 ...
16 t1 = (T<thisThread>) o1; // Safe iff o1 belongs to class T
17 t2 = (T<self>) o2; // Compile time error
18 ...
19 s1 = (TStack<thisThread, thisThread>) o3; // Requires checking runtime ownership
20 s2 = (TStack<thisThread, self>) o3; // Requires checking runtime ownership
21 ...
22 q1 = (TStack2<thisThread, thisThread>) s1; // Safe iff s1 belongs to class TStack2
23 q2 = (TStack2<thisThread, self>) s1; // Compile time error

Fig. 7. Runtime Downcasts

downcast into. Hence, this downcast is safe iff o1 belongs to class T at runtime.
It is unnecessary to check ownership information at runtime for this downcast.

In general, for any subtype declaration where all the formal owner parame-
ters in the subtype are included in the supertype, it is not necessary to check
ownership information at runtime when an object is downcast from the super-
type to the subtype. If the owners of the supertype match the owners of the
subtype, then the downcast will be safe iff the object belongs to the appropriate
class at runtime (e.g., Lines 16 and 22 in Figure 7). If the owners do not match,
the downcast will always fail (e.g., Lines 17 and 23 in Figure 7).

The primary benefit of this observation is that whenever an object is down-
cast into a type with a single owner, it is unnecessary to check ownership infor-
mation at runtime to ensure that the downcast is safe. Since a vast majority of
classes in a system with ownership types have single owners, this implies that it
is unnecessary to check ownership information at runtime for most of the down-
casts. The only classes that usually have multiple owners are collection classes.
The only times when it might be necessary to check ownership information at
runtime to ensure that the downcast is safe is when an object is downcast into
a type with multiple owners (e.g., Lines 19 and 20 in Figure 7).

3.2 Anonymous Owners

Another key observation that enables efficient implementation of downcasts is as
follows. Consider the code in Figure 4. The TStack class in the figure is param-
eterized by thisOwner and TOwner. However, the owner parameter thisOwner is
not used in the static scope where it is visible. Similarly, the owner parameter
thisOwner for class T is not used in the body of class T. If an owner parameter is
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not used, it is unnecessary to name the parameter. Our system allows program-
mers to use 〈-〉 for such anonymous owner parameters. Figure 8 shows how we
extend the MSCJ grammar to support anonymous owner parameters. Figure 11
shows the TStack example in Figure 4 implemented using anonymous owners.

defn ::= ... | class cn〈- f*〉 extends c {field* meth*}

Fig. 8. Grammar Extensions to Support Anonymous Owners

The primary benefit of having anonymous owners is that if an owner param-
eter of a class is not named, it is unnecessary to store the owner parameter of
the class at runtime, or pass the owner parameter to code that uses the class
at runtime. In a system with ownership types, the only classes that usually
have named owners are collection classes with multiple owners. Examples in-
clude Vector〈-,elementOwner〉, Hashtable〈-,keyOwner,valueOwner〉, etc. But most
classes have single owners that are anonymous. It is unnecessary to store own-
ership information for those classes, or pass ownership information to code that
uses those classes. Thus, our system incurs a runtime space and time overhead
only for code that uses classes with named owner parameters like the collection
classes. The rest of the code has no overhead in our system.

3.3 Preserving Ownership Information at Runtime

This section describes how our system preserves ownership information at run-
time for classes with named owner parameters in the context of MSCJ. We
presented the grammar for MSCJ in Figure 3 with extensions in Figures 6 and
8. This section presents the rules for translating a MSCJ program into an equiv-
alent program in a Java-like language without ownership types. If we did not
have to support safe runtime downcasts, the translation process would have been
simple. We could have converted a MSCJ program into an equivalent Java-like
program by simply removing the owner parameters and the accesses clauses.
However, to support safe runtime downcasts, we must preserve some ownership
information in the translation process.

The core of our translation is a set of rules of the form: (T [[C]] P E) = C ′.
The rule translates a code fragment C to a code fragment C ′. P , the program
being checked, is included here to provide information about class definitions.
E is an environment containing the formal owner parameters in scope in C.
The translated code uses the $Owner class shown in Figure 9. The $Owner class

1 public class $Owner {
2 public static Object self = "self";
3
4 public static Object SELF() { return self; }
5 public static Object THISTHREAD() { return Thread.currentThread(); }
6 }

Fig. 9. The $Owner Class
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(T [[P ]]) = (T [[defn* e]])
= (T [[defn]] P )* (T [[e]] P ∅)

(T [[defn]] P ) = (T [[class cn〈f1..n〉 extends cn′〈o1..n′ 〉 {field* meth*}]] P )
= class cn extends cn′

{Object $f1..n (T [[field]] P [f1..n])* (T [[method]] P [f1..n])*}

(T [[defn]] P ) = (T [[class cn〈- f2..n〉 extends cn′〈o1..n′ 〉 {field* meth*}]] P )
= class cn extends cn′

{Object $f2..n (T [[field]] P [f2..n])* (T [[method]] P [f2..n])*}

(T [[meth]] P E) = (T [[t mn(arg*) accesses (efinal*) {e}]] P E)
= (T [[t]] P E) mn ((T [[arg]] P E)*) {(T [[e]] P E)}

(T [[field]] P E) = (T [[[final]opt t fd = e]] P E)

= [final]opt (T [[t]] P E) fd = (T [[e]] P E)

(T [[arg]] P E) = (T [[[final]opt t fd]] P E)

= [final]opt (T [[t]] P E) fd

(T [[t]] P E) = (T [[cn〈owner+〉]] P E)
= cn

(T [[t]] P E) = (T [[int]] P E)
= int

(T [[e]] P E) = (T [[(cn〈o1..n〉) e]] P E)
= {$temp = (cn) (T [[e]] P E);

if ($temp.$f2 != (O[[o2]] P E)) throw new ClassCastException;
...;
if ($temp.$fn != (O[[on]] P E)) throw new ClassCastException;
$temp}

(T [[e]] P E) = (T [[new cn〈o1..n〉]] P E)
= {$temp = new cn;

$temp.$f1 = (O[[o1]] P E); ...; $temp.$fn = (O[[on]] P E);
$temp}

where (class cn〈f1..n〉 ...) ∈ P

(T [[e]] P E) = (T [[new cn〈o1..n〉]] P E)
= {$temp = new cn;

$temp.$f2 = (O[[o2]] P E); ...; $temp.$fn = (O[[on]] P E);
$temp}

where (class cn〈- f2..n〉 ...) ∈ P

(O[[o]] P E) = (O[[thisThread]] P E) = $Owner.THISTHREAD()
(O[[o]] P E) = (O[[self]] P E) = $Owner.SELF()
(O[[o]] P E) = (O[[f ]] P [... f ...]) = $f
(O[[o]] P E) = (O[[e]] P E) = (T [[e]] P E)

(T [[e]] P E) = (T [[x]] P E) = x
(T [[e]] P E) = (T [[x = e]] P E) = x = (T [[e]] P E)
(T [[e]] P E) = (T [[e.fd]] P E) = (T [[e]] P E).fd
(T [[e]] P E) = (T [[e1.fd = e]] P E) = (T [[e1]] P E).fd = (T [[e]] P E)
(T [[e]] P E) = (T [[e1.mn(e*)]] P E) = (T [[e1]] P E).mn((T [[e]] P E)*)
(T [[e]] P E) = (T [[e1;e2]] P E) = (T [[e1]] P E);(T [[e2]] P E)
(T [[e]] P E) = (T [[let (arg=e1) in {e}]] P E) = let (arg=(T [[e1]] P E)) in {(T [[e]] P E[arg])}
(T [[e]] P E) = (T [[synchronized (e1) in {e}]] P E) = synchronized ((T [[e1]] P E)) in {(T [[e]] P E)}
(T [[e]] P E) = (T [[fork (x*) {e}]] P E) = fork (x*) {(T [[e]] P E)}

Fig. 10. Translation Function
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1 // TStack has an anonymous owner, TOwner owns the T objects in the stack.
2
3 class TStack<-, TOwner> {
4
5 TNode<this, TOwner> head = null;
6
7 TStack() {}
8 void push(T<TOwner> value) accesses (this) {
9 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head); head = newNode;
10 }
11 T<TOwner> pop() accesses (this) {
12 T<TOwner> value = head.value(); head = head.next(); return value;
13 }
14 }
15
16 class TNode<thisOwner, TOwner> {
17
18 T<TOwner> value; TNode<thisOwner, TOwner> next;
19
20 TNode(T<TOwner> v, TNode<thisOwner, TOwner> n) accesses (this) {
21 this.value = v; this.next = n;
22 }
23 T<TOwner> value() accesses (this) { return value; }
24 TNode<thisOwner, TOwner> next() accesses (this) { return next; }
25 }
26
27 class T<-> { int x=0; }

Fig. 11. TStack With Anonymous Owners

1 class T<-> {...}
2 class TStack<-, TOwner> {...}
3 class TStack2<-, TOwner> extends TStack<-, TOwner> {...}
4
5 Object<thisThread> o1;
6 Object<thisThread> o2;
7 ...
8 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;
9 TStack<thisThread, self> s2 = new TStack<thisThread, self>;
10 ...
11 TStack2<thisThread, thisThread> q1;
12 TStack2<thisThread, self> q2;
13 ...
14 s1 = (TStack<thisThread, thisThread>) o1;
15 s2 = (TStack<thisThread, self>) o2;
16 ...
17 q1 = (TStack2<thisThread, thisThread>) s1;
18 q2 = (TStack2<thisThread, self>) s2;
19 ...
20 boolean b1 = (o1 instanceof TStack<thisThread, thisThread>);
21 boolean b2 = (o2 instanceof TStack<thisThread, self>);

Fig. 12. Client Code for TStack
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1 // TStack has an anonymous owner, TOwner owns the T objects in the stack.
2
3 class TStack {

Object $TOwner;
4
5 TNode head = null;
6
7 TStack(Object $TOwner) {

this.$TOwner = $TOwner;
}

8 void push(T value) {
9 TNode newNode = new TNode(this, $TOwner, value, head); head = newNode;
10 }
11 T pop() {
12 T value = head.value(); head = head.next(); return value;
13 }
14 }
15
16 class TNode {

Object $thisOwner, $TOwner;
17
18 T value; TNode next;
19
20 TNode(Object $thisOwner, Object $TOwner, T v, TNode n) {

this.$thisOwner = $thisOwner; this.$TOwner = $TOwner;
21 this.value = v; this.next = n;
22 }
23 T value() { return value; }
24 TNode next() { return next; }
25 }
26
27 class T { int x=0; }

Fig. 13. Translation of TStack in Figure 11

1 class T {...}
2 class TStack {...}
3 class TStack2 extends TStack {...}
4
5 Object o1;
6 Object o2;
7 ...
8 TStack s1 = new TStack($Owner.THISTHREAD());
9 TStack s2 = new TStack($Owner.SELF());
10 ...
11 TStack2 q1;
12 TStack2 q2;
13 ...
14
15 s1 = (TStack) o1;

if (s1.$TOwner != $Owner.THISTHREAD()) throw new ClassCastException();
16 s2 = (TStack) o2;

if (s2.$TOwner != $Owner.SELF()) throw new ClassCastException();
17 q1 = (TStack2) s1;

if (q1.$TOwner != $Owner.THISTHREAD()) throw new ClassCastException();
18 q2 = (TStack2) s2;

if (q2.$TOwner != $Owner.SELF()) throw new ClassCastException();
19 ...
20 boolean b1 = ((o1 instanceof TStack) && (((TStack) o1).$TOwner == $Owner.THISTHREAD()));
21 boolean b2 = ((o2 instanceof TStack) && (((TStack) o2).$TOwner == $Owner.SELF()));

Fig. 14. Translation of TStack Client Code in Figure 12
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contains two static methods that return objects that represent the thisThread
owner and the self owner respectively. The translation rules are presented in
Figure 10. Section 3.4 explains the translation process with examples.

3.4 Implementation

This section illustrates with examples how our implementation preserves own-
ership information at runtime for classes with named owner parameters. If a
Safe Concurrent Java (SCJ) program is well-typed with respect to the rules for
static type checking, our implementation translates the program into an equiv-
alent Java program. (Actually, our implementation translates a SCJ program
into Java bytecodes directly. But for ease of presentation, we will describe an
equivalent translation into Java code.) The translation mechanism is illustrated
in Figures 11, 12, 13, and 14. Figure 11 shows a TStack class with anonymous
owners. Figure 12 shows client code that uses the TStack class. Figures 13 and
14 show the translation of the TStack code and the client code.

Classes Classes in the translated code contain extra owner fields, one for each
named owner parameter. For example, in Figure 13, the translated TStack class
has an extra $TOwner field. The translated TNode class has two extra fields:
$thisOwner and $TOwner. The translated T class has no extra fields since the T
class does not have any named owner parameters.

Constructors Constructors in the translated code contain extra owner argu-
ments, one for each named owner parameter of the class. The constructors in the
translated code initialize the owner fields of the class with the owner arguments
of the constructor. For example, in Figure 13, the constructor for TStack has an
extra $TOwner argument. The constructor initializes the $TOwner field of the
TStack object from the $TOwner argument.

Allocation Sites Allocation sites in the translated code must pass extra owner
arguments to constructors, one for each named owner parameter of the corre-
sponding class. If the owner is an expression that evaluates to an object, the
client code passes the object to the constructor. For example, in Figure 13, the
push method in TStack passes the this object as the first argument to the TNode
constructor. If the owner is a formal parameter, the client code passes the value
of the formal parameter stored in one of its extra owner fields. For example, in
Figure 13, the push method in TStack passes the value stored in the $TOwner
field as the second argument to the TNode constructor. If the owner is thisThread
or self, the client code passes the object returned by $Owner.THISTHREAD() or
$Owner.SELF() to the constructor. For example, in Figure 14, the client code cre-
ates TStacks s1 and s2 by passing $Owner.THISTHREAD() and $Owner.SELF()
to the TStack constructor respectively.

Casts Casts in the translated code not only check that the Java types match,
but also check that the owners match. For example, in Figure 14, in Line 15, the
translated code not only checks that o1 is of Java type TStack, but also checks
that the owner of the T elements in the TStack is thisThread. In Line 16, the
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translated code not only checks that o2 is of Java type TStack, but also checks
that the owner of the T elements in the TStack is self.

InstanceOf The instanceof operation in the translated code returns true iff the
Java types match and the owners match. For example, in Figure 14, in Line 20,
instanceof returns true iff o1 is of Java type TStack and the owner of the T
elements in the TStack is thisThread. In Line 21, instanceof returns true iff o2 is
of Java type TStack and the owner of the T elements in the TStack is self.

Arrays The technique described in this paper does not support safe runtime
downcasts to array types. This is because we cannot add extra owner fields
to array objects in the translated code and yet remain JVM-compatible. If a
programmer wants to downcast from java.lang.Object to an array type in our
system, the programmer can create a wrapper object that contains the array
object and perform the downcast on the wrapper object.

Parameterized Methods Parameterized methods are handled similar to pa-
rameterized classes. For ease of presentation, the MSCJ language we described in
Section 2 has only parameterized classes but not parameterized methods. But our
implementation handles both parameterized classes and parameterized methods.
Named owner parameters of methods are explicitly passed as arguments to the
methods in the translated code.

4 Conclusions

This paper describes an efficient technique for supporting safe runtime downcasts
in a system with ownership types. This technique uses the type passing approach,
but avoids the associated significant space overhead by storing only the runtime
ownership information that is potentially needed to support safe downcasts.
The technique preserves the separate compilation model of Java and is JVM-
compatible: it translates programs to bytecodes that can be run on regular JVMs.
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Abstract. We use ownership types to facilitate program verification.
Namely, an assertion that has been established for a part of the heap
which is unaffected by some execution will still hold after this execution.
We use ownership and effects, and extend them to assertions to be able
to make the judgement as to which executions do not affect which as-
sertions. We describe the ideas in terms of an example, and outline the
formal system.

1 Introduction

We outline ways in which ownership types can aid program verification in the
context of a Hoare logic for a language with a type and effects ownership system.
Previous work [4] describes Joe1, a Java-like language with such a type system,
where disjoint types characterise disjoint regions of the heap. Importantly, heap
disjointness can be deduced statically.

In this paper we make use of these results to enhance a system for program
reasoning: We assume a (sound) underlying Hoare logic for a language like Joe1.
We then describe “read effects” for assertions in terms of the effects from [4]. We
can then extend the Hoare logic with a further rule, which states that assertions
are preserved by executions whose write effect is disjoint from the assertions’
read effect. We argue that the extended Hoare logic is still sound. In this paper
we are assuming an underlying Hoare logic with non-standard assertions which
allow predicate definitions. We are making that assumption because we believe
that this allows for a natural way of reasoning about programs, and also because
it allows us to express a compelling example. However our approach is orthogonal
to the choice of underlying Hoare logic.

Section 2 discusses alternative approaches to dealing with aliases in program
verification and the logics of separation. Section 3 introduces our example. Sec-
tion 4 introduces Joe1 through extension of our example with ownership types
and discusses the features and properties of Joe1 essential to our work. Section 5
discusses our contribution in terms of additions to a Hoare Logic system. Section
6 revisits our example in terms of the formal system. Section 7 discusses further
directions for this work and concludes.
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2 Related Work

Aliasing is a fundamental part of the OO paradigm but it makes reasoning
about programs more cumbersome [9]. In a setting with aliasing, changing one
object may affect properties of another. Several existing works on reasoning in
the presence of aliasing, for OO languages at least, focus on reasoning safely in
a language with pointers. [3] describes a system whereby one can safely reason
about programs with pointers. The Hoare systems of [14] and [13] deal with a
Java subset and so naturally deal with aliasing.

Our work differs from these in that we do not attempt to develop a Hoare
logic for reasoning in the presence of aliasing, rather we extend such a Hoare
logic. We use knowledge provided from static typing about the areas affected
by execution, and the areas affecting assertions, in order to be able to deduce
preservation of assertions in a simple way.

Attacking similar problems from a different direction (and at a different level
of abstraction) is work on separation logics [15, 11]. Separation logics introduce
logical primitives (* for example) which state that two areas of a heap are sepa-
rate (disjoint). Assertions about one area of the heap remain unchanged when a
separate area is modified. The frame rule of separation logics states that a Hoare
sentence {P*R}C{Q*R} is valid if the sentence {P}C{Q} is valid and the com-
putation C does not modify any of the free variables of R. The rule we introduce
in Sec. 5.5 bears close resemblance to this. We achieve these goals through static
typing and at a higher level.

3 Example

Figure 1 shows a simple project management example, written in a Java-like
language . An Employee has a Timetable, a linked-list of Project/Duration
pairs. We propose two properties for the Timetables of an Employee, e:

nonO(e) The entries in e.t are non-overlapping (with respect to their start and
finish dates)

durInP(e) The duration of each entry in e.t is contained within the duration
of the project for that entry

We allow Timetables to change and consider a simple mutation whereby all
an employee’s Timetable entries are delayed by some number of days i.e. the
method delay in class Employee.

Suppose we wish to prove that the properties nonO and durInP, of an object
e, are preserved when executing the delay method of Employee on e.

The possible side effects of performing delay on e make such assertions
difficult to prove. Employees might share Timetable objects and thus perform-
ing delay on e might affect the properties of any number of other Employees.
To ensure the properties hold through execution of delay we would need to
directly reason about employees which might alias Timetables of e. For exam-
ple, assume two Employees, alice and bob, which are guaranteed not to be
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class Duration{

int start;

int end;

void shunt(int period){

start += period;

end += period;

}

}

class Employee{

Timetable t;

void delay(int period){

// invokes delay on t

}

}

class Timetable{

Project p;

Duration d;

Timetable next;

void delay(int period){

// shunts d by period

// and call on next

}

}

class Project{

Duration d;

}

Fig. 1. Project Example in almost-Java

aliases. Assume also, that for some program point, p1 we have established that
nonO(alice.t), nonO(bobt.t), durInP(alice.t) and durInP(bob.t). Then
we execute alice.delay(23). Because of the potential for aliasing, all these as-
sertions need to be re-established not just those pertaining to alice. However,
if we knew that bob’s Timetable was not accessible through alice, we would
argue that alice.delay(23) cannot affect bob’s timetable and expect that the
assertions nonO(bob.t) and durInP(bob.t) should be preserved through exe-
cution of alice.delay(23).

Ownership types [6, 4] give the machinery to restrict, through the type sys-
tem, which objects may be accessible from which other objects. Joe1, the exten-
sion of ownership to effects and disjointness ([4]), gives the machinery to deduce
when certain expressions will not affect certain areas of the heap. In this paper
we use the machinery from [4] to extend a Hoare logic.

4 Joe1

Joe1 is a Java-like language with ownership types and effects [4]. We give a brief
outline here, which we hope allows an intuitive understanding of our current
work.

In Joe1 types are parameterised with ownership contexts(p,q etc.). Classes
are defined using context variables which are bound to objects or the global
context, world, when types are instantiated.

In Fig. 2 we add ownership types (and effects) to the example of Fig. 1. Figure
3 shows a possible instantiation of classes from Fig. 2. The rounded boxes rep-
resent objects in a UML-like notation. For example alice:Employee represents
the object alice of class Employee. The square boxes in the diagram represent
the ownership hierarchy, the box on the border being the owner of those im-
mediately inside. Arrows are references i.e. fields. Note that as one expects for
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ownership systems, arrows can break out of boxes but not into them1. All the
employees and projects are owned by some higher object, the company or depart-
ment perhaps. Each Employee owns their Timetable objects, the Timetables
in turn own the underlying duration objects.

class Duration<owner>{

int start;

int end;

void shunt(int period)

wr this {

start += period;

end += period;

}

}

class Employee<owner, proj>{

Timetable<this, proj> t;

void delay(int period)

wr under(this) {

// invokes delay on t

}

}

class Timetable<owner, proj>{

Project<proj> p;

Duration<this> d;

Timetable<owner,proj> next;

void delay(int period)

wr under(this){

// shunts d by period

// and call on next

}

}

class Project<owner>{

Duration<this> d;

}

Fig. 2. Project Example in with ownership types in Joe1

Joe1 differs from the original ownership types systems [6] as it allows (in con-
trolled circumstances) access to objects across ownership boundaries i.e. breaking
into boxes. let statements in Joe1 allow assignment of any reachable statement
to a local variable. The variable name can then be used as an ownership context
and replaces this in types of objects from inside an ownership box. This is safe
as the variable is a “short lived dynamic alias”–to borrow the terminology of [4].
The variable is visible only inside the let statement and the type system will
not allow the referenced object to ‘leak’ out of the let through methods calls etc.
We shall also be making use of these let statements in our assertions and type
system though at some times we shall omit them in either context for brevity.

Two contexts are disjoint when they refer to different objects or one is world
and the other isn’t. Disjointness can be reasoned from type/ownership informa-
tion stored in the typing environment. Disjointness of types is based on the class
hierarchy and the disjointness of contexts. Types are disjoint when i) one is not
a subclass of the other, or ii) any of their ownership parameters are disjoint, or
iii) one is a subtype of some type which is disjoint from the other.

Since we know that each Employee owns its Timetable and each Timetable
owns its durations we also know that no Timetable object can be shared be-
tween two Employees (they have disjoint types). Thus, changes which only affect
1 Therefore alice may not point to t3 nor to d1.
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bigDaddy

alice : Employee

t1 : Timetable t2 : Timetable

d1 : Duration d2 : Duration

bob : Employee

t3 : Timetable

d3 : Duration

dbProj : Project

dbDur : Duration

guiProj : Project

guiDur : Duration

Fig. 3. Possible instantiation of code of Fig. 2
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alice’s Timetable leave bob’s Timetable unaffected. Hence the properties nonO
and durInP would be preserved for bob.

Types in Joe1 come paired with an effect which describes where, in the heap,
the typed expression will read or write. The read/write components are described
by shapes (φ, φ′ etc.) which characterise the affected portions of the heap. Thus
effects have the form rd φ wr φ′ ranged over by ψ. The typing judgement of Joe1

has the form E � e :t !ψ meaning that with respect to some type environment,
E , the expression e has type t and produces at most the effect ψ when executed.
For example:
alice:Employee<x ,x >,x ≺∗x � alice.delay(23):void !wr under(alice)
for some x . Type environments store information of two kinds. The first is

the conventional binding of program variables (including this) to types. The
second kind of information is in the form of ordering of ownership contexts. Joe1

puts certain restrictions on ownership parameters, specifically that the owner of
an object should be inside all the other contexts. Along with additional rules
this information enables us to reason properties such as disjointness.

Shapes describe sections of the heap in terms of contexts and are based on
the ownership hierarchy. A shape could be just the object bound to a context
parameter p, say. The shape under(p) refers to the union of all the objects
directly or indirectly owned by p. φ ∪ φ′ is the shape derived from set union of
φ and φ′.

It is possible to reason not only disjointness of types but also of shapes based
on some type environment E . Two shapes are disjoint just when they have no
objects in common. Read E �φ # φ′ as φ and φ’ are disjoint. One can deduce
some disjointness of context from the type environment and further disjointness
of shapes follows intuition from set theory. For example, if two contexts, p, q ,
are disjoint and have a common owner then the shapes under(p) and under(q)
are also disjoint.

Soundness of the shapes of expressions is an important result of [4]. Lemma
6.1 of that paper states that if an expression e having type t and effect rd φ wr φ′

is executed in the context of some heap H and stack S , then the areas of the
heap not contained in φ′ are unchanged in execution2. This result is important
for this work as we apply the effects of Joe1 to assertions.

5 Hoare Logics with Ownership

5.1 Assertions

We assume a logic with assertions, based on first order logic with predicates.
Π , a predicate declaration, consists of a name, p, a list of arguments with their
types, a shape φ, and a predicate body, B . φ is the declared shape of a predi-
cate, in terms of the ownership parameters of the arguments and the arguments

2 [4] includes a method of projecting an effect from its abstract contexts onto its
underlying heap locations
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themselves. Assertions and predicates are as follows:

Π ::= p (arg∗)φ (B)
Πs ::= Π ∗

arg ::= t z
z ::= this | x
B ::= let x = a in B | A
A ::= A0 ∧ A1 | ¬(A) | ff | a0 =a1 | p (z∗)
a ::= z | z .f | null

where this is the current receiver, x ranges over local programme variables
and predicate parameters and f ranges over field identifiers. Assertion expres-
sions, a, are a restricted form of program expressions without side-effects.

a0 =a1 states that the two expressions are equal i.e. they refer to the same
heap location. Conjunction and negation are as one expects. p ranges over
predicate names and p (z ) is the application of a predicate.

We also employ the let statements of Joe1 to allow predicates to look inside
ownership boundaries. This is safe not only by virtue of safety of Joe1 but
intuitively as assertions (particularly equality) have no computational effect, as
no reassignment is occurring no ownership properties can be compromised.

We shall adopt the overscored notation observed in [10] meaning an indexed
sequence, for example t x stands for t1 x1 ,. . . ,tn xn and a stands for a1 ,. . . ,am .

Note that we allow a very powerful language for predicates - much more
powerful than [14, 11] as we allow predicate definitions. We need such predicates
in order to express the example of Sec. 3. We omit quantification since it is not
useful for our example. As we said in the Introduction, the main thrust of this
work is orthogonal to the choice of Hoare logic. If it should prove difficult to find
such a logic we are confident that we shall be able to apply our work to a more
usual one.

Example The following predicate definition, declared with respect to the code
of Fig. 2 captures nonO from Sec. 3. It exploits recursion to traverse the list
of Timetable. For convenience we assumed that the entries in t are ordered.
We omit the details of the shape φ for now. In this example we write out let
statements in full, in future we shall omit them for brevity’s sake.

nonO(Timetable<o, po> t)φ (
let dur = t.d in

let next = t.next in
let ndur = next.dur in

let start = ndur.start in
end≤start ∧ nonO(next)

)
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5.2 Shapes of Assertions

The judgement E �B :φ states that the assertion body, B , depends on the part
of the heap characterised by φ, with respect to the type environment E . By
depends we mean that all the variables, fields etc. referenced are in a part of the
heap covered by φ. We take the program P and the predicate declarations Πs as
implicit. The judgement is defined as follows:

E � A0 : φ0 E � A1 : φ1
ASS-CONJ

E � A0 ∧A1 : φ0 ∪ φ1

E � A : φ
ASS-NEG

E � ¬(A) : φ

p(t x )φ(A) ∈ Πs
E � z : σ(t)!ψ

ASS-PRED
E � p(z ) : σ[x �→ z](φ)

E � a0 : t0 !rd φ0

E � a1 : t1 !rd φ1
ASS-EQ

E � a0 = a1 : φ0 ∪ φ1

E � a :t !rd φ0 wr φ1

E , x : t � B : φ′

E , x : t � φ′ 
 φ
E � φ

ASS-LET
E � let x = a in B : φ

ASS-FF
E � ff : ∅

The rules for evaluating the shape of a judgement are similar to those of Joe1.
In rules ASS-EQ, ASS-RED and ASS-LET we use the typing judgement of Joe1

(as described in Sec. 4) to type the assertion expressions, a, since these are valid
Joe1 syntax. Note that we do not include the shape of the parameters (in rule
ASS-PRED) or a (in rule ASS-LET) since we are only interested in the shape of
the assertions; we do not accumulate computational effect as in Joe1. The shape
of a predicate is declared in terms of the declared contexts of its parameters and
the parameters themselves. The shape of a predicate application is the declared
shape under the substitution which maps the ownership variables of the predicate
declaration to those of the supplied arguments and the formal arguments to the
actual parameters.

An assertion, A, and the predicate definitions, Πs, are well-formed with re-
spect to a type environment (and also implicitly the program and the predicate
declarations) if all assertion expressions a, are well-formed, and types of argu-
ments to predicates match the declared types. Using the type system of Joe1 to
find the shape of a0 and a1 has the added benefit that assertions which have a
shape are ‘well-formed’ i.e. expressions of the form z .f are type correct and thus
we needn’t check elsewhere that field, f exists.

Well-formedness of predicate definitions must be checked separately to en-
sure the declared shape is valid for the body of the predicate.

t x , constr(t x ) � B : φ′ t x , contr(t x ) � φ′ 
 φ

� p(t x )φ(B)
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A predicate declaration is well-formed if i) the type environment generated
from the declared types of its parameters is valid, ii) the shape of its body, in
the context of the constructed environment is well-formed with shape φ′, and
iii) the calculated shape of the body is a subshape of the declare shape (which
also requires that φ is well-formed w.r.t. the environment. The type environment
pairs the formal parameters to their declared types and has ownership constraints
(generated by constr) as required by Joe1 (we omit details).

Note that the body of the predicate, A, is typed in the environment t x ,
created by the formal parameters of the predicate. Therefore the identifier this
may not appear in A (nor indeed any variable names other than the formal
parameters), thus reflecting the fact that the predicates are not declared within
classes.

Example The shape under(o) would be a valid shape for the predicate nonO
defined previously3.

5.3 Satisfaction of Assertions

We express satisfaction of an assertion with respect to a heap, H , and a stack,
S , by the partial function S mapping assertions, heaps and stacks (and implicit
predicate declarations) to {tt, ff,⊥ }4

S is defined as follows:

S(H ,S , let x = a in B) = S(H ,S [x �→ (H ,S )(a)],B)
S(H ,S ,A0 ∧A1 ) = S(H ,S ,A0 ) ∧ S(H ,S ,A1 )

if S(H ,S ,Ai) �=⊥ i ∈ {0 , 1}
S(H ,S ,¬(A)) = ¬(S(H ,S ,A)) if S(H ,S ,A) �=⊥
S(H ,S , ff) = ff
S(H ,S , a0 = a1 ) = (H ,S )(a0 ) = (H ,S )(a1 ) if (H ,S )(ai) �=⊥ i ∈ {0, 1}
S(H ,S , p(z )) = S(H ,S ,A[x/z ]) where p(t x )φ(B) ∈ Πs
S(H ,S ,A) = ⊥ otherwise

The auxiliary function (H ,S )(. . . ) maps expressions to the appropriate heap
location.

3 Since ints are passed by value in Java we assume they are under the object refer-
encing them

4 S has to be a partial function since we can define inconsistent predicates in our
system, for example:

p (c<. . .> x )∅ (¬(p (x )))
Alternatively we could have defined satisfaction through the interpretation of pred-
icates from Πs into H ,S as e.g. in [1]. The function S is undecidable in the general
case however this does not affect the applicability of our result.
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(H ,S )(x ) = S (x )

(H ,S )(a.f ) =
{
H ((H ,S )(a))(f ) if (H ,S )(a) �=⊥, null
⊥ otherwise

(H ,S )(this) = S (this)
(H ,S )(null) = null

5.4 The Assumed Hoare Logic

Suppose there exists a Hoare Logic for the language with sentences of the form:
E �A0 {e }A1

where E is a typing environment, binding this and local variables to types. The
program P , and predicate definitions Πs are taken to be implicit. Soundness of
the Hoare logic is defined as follows:

Definition 1. The Hoare logic is sound if:
∀E,A0 ,A1 ,e,H ,H ′ S,v:

E � H
E � e :t !ψ

< H ;S ; e >
ψ′
→< H ′; v >

S(H ,S ,A0 ) = tt
E �A0 {e }A1




⇒ S(H ′,S ,A1 ) = tt

5.5 Hoare Logic Extension

Assuming a system as described previously, we define an ownership extended
Hoare logic as follows:

E �A0 {e }A1 E � A : φ E � e :t !rd φ0 wr φ1 E �φ # φ1

E �OA0 ∧ A {e }A1 ∧ A

The first judgement, E �A0 {e }A1 , is a derivation of the assumed Hoare
logic. It does not utilise the properties of ownership types. The second judgement,
E �A:φ, is the calculation of the shape of the assertion, A, as described in Sec.
5.2. E � e :t !rd φ0 wr φ1 is the typing judgement of Joe1 as described in Sec.
4. E �φ # φ1 is the disjointness judgement described in Sec. 4. Thus, the Hoare
logic rule we propose states that any assertion which is true before the execution
of an expression and which inhabits a part of the heap which is not written
to by the expression, is true after execution of the expression. Note that the
subscript on � makes the distinction between judgements of the original and the
“ownership-aware” Hoare logic.

The following conjecture states that the extension we suggest preserves sound-
ness of the Hoare logic.
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Conjecture 1. If a Hoare logic � is sound, then the ownership aware extension,
�O, is also sound.

We prove that conjecture using the following conjecture which states that
execution of an expression e with disjoint shape from assertion A preserves the
satisfaction of that assertion.

Conjecture 2.

E � e :t !rd φ0 wr φ1

E � A : φ
E �φ # φ1

E � H

< H ;S ; e >
ψ→< H ′; v >

S(H ,S ,A) = tt




⇒ S(H ′,S ,A) = tt

We expect this to follow as a corollary of Lemma 6.1 in [4] which states that
on execution of some instruction the portion of the heap which is not in the
shape written by the execution is unchanged.

6 Once More with Formality

We shall now roughly show how one might apply our system in the context of
the example of Fig. 2.

Consider the following set of predicate definitions, intended to capture the
properties discussed in Sec. 3:

Πs =
within(Duration<o1> d1, Duration<o2> d2) under(o1) ∪ under(o2)

( d1.start ≥ d2.start ∧ d1.end ≤ d2.end )

nonO(Timetable<o, po> t) under(o)
( t.next �= null⇒

t.d.end ≤ t.next.d.start ∧ nonO(t.next) )

durInP(Timetable<o,op> t) under(op)
( t.next �= null⇒ within(t.d,t.p.d) ∧ durInP(t.next) )

nonO(Employee<o,op> e) under(() o)
( nonO(e.t) )

durInP(Employee<o,op> e) under(op)
( durInP(e.t) )

Suppose:
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E = alice:Employee<bigDaddy, bigDaddy>,
bob:Employee<bidDaddy, bigDaddy>

and we also know that E � alice#bob (which we have if we know alice
and bob are not aliases).

By application of type rules of [4] we obtain that:

E � alice.delay(23) : void!wr under(alice)

By further application of the rules of [4] and those of Sec. 5.2 we obtain

E � nonO(alice) : under(alice)
E � durInP(alice) : under(bigDaddy)
E � nonO(bob) : under(bob)
E � durInP(bob) : under(bigDaddy)

Therefore, by application of the Hoare logic extension rule, we obtain that:

E �O nonO(bob) { alice.delay(23) } nonO(bob)

Furthermore, if we were able to derive (the hard way) that:

E � nonO(alice) { alice.delay(23) } nonO(alice)

then we could also obtain (the cheap way) through the extension rule that:

E �O nonO(bob) ∧ nonO(alice) { alice.delay(23) }
nonO(bob) ∧ nonO(alice)

So, we were able to obtain the preservation of the assertion nonO(bob) after
the execution of alice.delay(23) through mechanisms of the type system.

Note, however, that we are not able to deduce that:
E �OdurInP(bob){alice.delay(23)}durInP(bob)

even though we know alice.delay(23) only shifts the timetable of alice
and thus does not affect the validity of durInP(bob). This is so because in our
current system the effects/shapes are too coarse. In further work we aim to refine
shapes through e.g. data groups [7, 12].

7 Conclusions and Further Work

We have shown how to extend a Hoare logic with ownership awareness and
how this will support locality of reasoning, thus allowing the re-establishing of
properties after execution of some code in a cheap way.
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Our approach is “parametric” in the choice of the underlying Hoare logic.
Any logic which supports assertions of the kind described in Sec 5.1 can be
extended and soundness will be preserved. Thus we should be able to “plug”
and experiment with various such logics.

Our approach should also be extensible to be made “parametric” with respect
to the containment system. We have used ownership types in order to be able to
isolate the shape of expressions and assertions. We should be able to generalise
to any approach which supports the expression of shapes of expressions and
notions of disjointness, e.g. datagroups, balloons etc.

The current extension of the Hoare logic is limited in that we may only apply
our extension at the last step. The full extension of the the Hoare logic would
allow the application of the new rule at any part of the derivation. We have not
considered this here as we were not sure how to prove preservation of soundness.
It has been recently pointed out to us 5 that if all rules of the underlying sys-
tem preserve soundness then the extension also preserves soundness. We shall
describe the full extension in future work.

As well as the above, further work includes:

– investigation of suitable Hoare logics for application of these results
– details and proofs of the presented work
– further examples which will demonstrate the benefits or point to further

extensions
– an extension of Joe1 to support datagroups [7, 12, 2] so that we can better

localise the shapes and effects
– incorporation of further ideas from ownership e.g. uniqueness [5]
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Abstract. Ongoing work is described in which a theory of Eiffel reference and

expanded (composite) types is formalised. The theory is expressed in the PVS

specification language, thus enabling the use of the PVS theorem prover and

model checker to semi-automatically prove properties about Eiffel structures and

programs. The theory is being used as the basis for automated support for the

Eiffel Refinement Calculus.

1 Introduction

There is a definite need to be able to formally reason about models of object-oriented

(OO) systems, e.g., as written in UML, in order to be able to analyse requirements

and verify and validate design alternatives. Such techniques can let us discover er-

rors, omissions, and ambiguities early in the system development process. Equally, it

is vitally important to be able to reason formally about object-oriented programs, writ-

ten in industrial-strength OO programming languages such as Java, C++, Eiffel, and

Smalltalk. This is challenging for a number of reasons:

– Industrial-strength OO languages are typically very large, with numerous features

that are not easily formalised, and for which formal reasoning can be difficult, such

as pointers, deep loop exits, dynamic dispatch, and aggregate types.
– Industrial-strength OO languages are invariably complex, with sophisticated type

systems that enable efficient execution and programming, but which are not neces-

sarily designed for formal reasoning.
– Industrial-strength OO programs are usually very large, thus presenting a need for

monotonic and compositional reasoning.

Despite these obvious difficulties, the need for reasoning about industrial-strength

OO programs and programming languages remains: if engineers are to adopt reasoning

techniques and tools, these mechanisms must support the languages and techniques that

are applied in practice.

There is ongoing work on supporting reasoning about OO programs. Some of this

focuses on defining new precise OO specification languages that can be translated into

more widely used programming languages such as Java and C++. Perfect Developer

[Es00] is an example of this, supporting formal OO specification, theorem proving,

and code generation; it requires learning a new specification language, but thereafter
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can generate code in a number of widely used languages, such as C++. The work of

Cavalcanti et al [CN00] has produced a wp semantics for a subset of typical OO pro-

gramming features; this semantics can thereafter be used to define a refinement calculus

for transforming OO specifications into programs.

Other work has tackled the complexities of reasoning about OO programming lan-

guages head on. The LOOP project [BJ01] has focused on producing theories for the

PVS system [CO95] that allow reasoning about Java programs; this should be contrasted

with our work which is intended to support reasoning about specifications and trans-

forming specifications into executable programs. The Extended Static Checker [LN00]

provides a lightweight approach to verifying Java programs via source code annota-

tion and a lint-like tool interface that detects many typical OO programming bugs at

compile time, e.g., null reference access.

This paper reports on ongoing work on formalising a theory of reference and ex-

panded types in the Eiffel programming language [Mey92]. A set of axioms expressing

this theory was proposed in [PO03]. Meyer also has ongoing work on formalising parts

of the Eiffel language using Hoare triples [Mey03]. This paper extends [PO03] by show-

ing how the axioms can be formalised in the PVS language; the PVS theorem prover,

model checker, and ground evaluator can thereafter be used to semi-automatically rea-

son about and simulate specifications of Eiffel programs. Immediate applications of the

PVS theory would be to support reasoning about aliasing in Eiffel, and about particu-

larly complicated interactions between Eiffel reference types and expanded types. The

PVS theories produced form the basis for automated support for the Eiffel Refinement

Calculus [PO03].

We commence with a brief introduction to Eiffel and PVS, and attempt to provide

some justification for combining the use of these two technologies in the calculus.

1.1 Eiffel

Eiffel is an object-oriented programming language and method [Mey97]; it provides

constructs typical of the object-oriented paradigm, including classes, objects, inheri-

tance, associations, composite (“expanded”) types, generic types, polymorphism and

dynamic binding, and automatic memory management.

However, Eiffel is not just a programming language — it also includes the notion

of a contract to specify the duties of clients and suppliers. A valid Eiffel program may

consist only of contracts – that is, it may possess no program code whatsoever – or it

may be a combination of contract and code. or code only. It is in part because of its

support for contracts that we have chosen Eiffel as the target language for the refine-

ment calculus referenced in [PO03], and as the specification language to be partially

formalised in PVS.

A short example of an Eiffel class is shown in Fig. 1. The class CITIZEN inherits

from PERSON (thus defining a subtyping relationship). It provides several attributes,

e.g., spouse, children which are of reference type (in other words, spouse refers to an

object of type CITIZEN ); these features are publicly accessible (i.e., are exported to

ANY client). Attributes are by default of reference type; a reference attribute either

points at an object on the heap, or is Void . The class provides one expanded attribute,

blood type. Expanded attributes are also known as composite attributes; they are not
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references, and memory is allocated for expanded attributes when memory is allocated

for the enclosing object.

The remaining features of the class are routines, i.e., functions (like single , which

returns true iff the citizen has no spouse) and procedures (like divorce , which changes

the state of the object). These routines may have preconditions (require clauses) and

postconditions (ensure clauses), but no implementations. Routines may also have a

modifies clause, which specifies those entities that may be changed by the routine – i.e.,

the frame of the routine. The purpose of the Eiffel Refinement Calculus is to transform

such contracts into immediately executable Eiffel code, with a guarantee that the code

is consistent with the contract. Finally, the class has an invariant, specifying properties

that must be true of all objects of the class at stable points in time, i.e., before any valid

client call on the object. While we have used predicate logic in specifying the invariant

of CITIZEN , it should be observed that Eiffel does not support this exact syntax. It

does possess a notion of agent that can be used to simulate quantifiers like the ones

used in the example.

class CITIZEN inherit PERSON
feature {ANY }

spouse : CITIZEN
children, parents : SET [CITIZEN ]
blood type : expanded BLOOD TYPE
single : BOOLEAN is

ensure Result = (spouse = Void)
feature {BIG GOVERNMENT}

marry · · ·
have child · · ·
divorce is

modifies single, spouse
require ¬ single
ensure single ∧ (old spouse).single

invariant
single ∨ spouse.spouse = Current ;

parents.count ≤ 2;

∀ c ∈ children • ∃ p ∈ c.parents • p = Current
end

Fig. 1. Eiffel Class Interface

Other facilities offered by Eiffel, but not demonstrated here, include generic (pa-

rameterised) types, dynamic dispatch, multiple inheritance, static typing, and agents

(function objects). We refer the reader to [Mey92] for full details.

1.1.1 Reference and Expanded Types in Eiffel Eiffel is a novel language in that

it supports both user-defined reference variables and expanded variables. A reference

variable may be attached to an object at run-time; thus, it is effectively a (safe) pointer
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to a memory location. The pointer is “safe” in the sense that its address cannot be

taken (easily), and pointer arithmetic cannot be applied to it. To use a reference vari-

able requires two steps: declaration of the variable, and allocation/attachment of an

object to the variable. This mechanism is somewhat cumbersome and inefficient for

basic datatypes, such as integers. Thus, a shortcut is provided wherein a declaration of

a variable i of type INTEGER associates i directly with a storage location. This is

roughly equivalent to stack allocation of memory in languages such as C and Pascal.

Basic types, such as integers, are by default allocated in this way, but Eiffel provides a

generalised mechanism by which any variable can be directly associated with a storage

location; such variables are declared to be of expanded type. This allows programmers

to avoid using reference mechanisms where they deem it appropriate; this should be

contrasted with Java, which does not support a similar user-defined notion of expanded

type. Interesting compatibility issues arise when using reference and expanded variables

together in expressions and, particularly, assignment statements.

1.2 PVS

The PVS system [CO95] combines an expressive specification language with an in-

teractive theorem prover and proof checker. The specification language is founded on

classical typed higher-order logic with typical base types bool, nat, int, real, etc.

It also provides function constructors of the form [A->B]. The type system of PVS is

augmented with dependent types, abstract data types, and predicate subtypes, the last

of which is a distinguishing characteristic of the specification language. The subtype

{x:A|P(x)} consists of those elements of type A that satisfy the predicate P. The

presence of predicate subtypes means that type checking of PVS specifications is un-

decidable in general, and thus requires use of the PVS theorem prover. Thus, the type

checker generates proof obligations (called type correctness conditions (TCCs) in those

cases where type conflicts cannot be resolved automatically. Frequently, large numbers

of TCCs are discharged automatically by special stategies.

The PVS system has been used successfully in industrial projects, particularly for

protocol and microprocessor verification. It is widely considered to be one of the most

powerful theorem provers in use today. It is because of the power of the theorem prover,

the expressiveness of its specification language, and the wealth of PVS libraries and

expertise available in the research community, that we have targeted it as the means for

providing automated support for the refinement calculus.

2 Overview of the Theory of Eiffel Reference Types

The paper [PO03] proposes a refinement calculus for Eiffel, which allows specifica-

tions – written in a pre- and postcondition style, using Eiffel’s built-in support for such

facilities – to be refined directly to Eiffel programs. The calculus is built atop Hehner’s

predicative programming theory [Heh03]. The calculus was produced by formalising

the precisely stated semantics of Eiffel statements given in [Mey92] using Hoare logic.

At the basis of this formalisation is a theory of Eiffel reference types, based on so-called
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entity groups, which are the equivalence classes induced by the reference equality op-

erator in Eiffel. This theory is used in formalising assignment statements, object create
statements, and method calls. The theory, and its axioms, are based on careful analysis

of the partial formalisation of Eiffel’s semantics given in [Mey92].

We summarise elements of the theory here. Eiffel programs are made up of a number

of classes, each of which possess routines; a routine is either a query (which returns

a result without side effects) or a command (which changes the state of an invoking

object). Routines may declare entities (variables) as local variables; entities may also

be introduced as attributes of a class. Classes themselves are connected via associations

and inheritance relationships.

Given routine r of class C , we let r .ρ denote the set of reference entities that could

appear in the routine body (including attributes of C , arguments and local variables of

r , and syntactically legal dots and multi-dots expressions). If routine r is a query then

Result ∈ r .ρ because Result is a predefined local variable of the query. Each entity

in r .ρ is potentially the subject of a creation instruction either directly in the body of r
itself, or in a routine called by r .

Associated with each entity e ∈ r .ρ there is a corresponding entity group which we

denote by e . Before the first creation statement in the body of r , the group is an empty

set. After a create e instruction, e = {e}, and this entity group is used to keep track

of all reference entities in r .ρ that point to the same object as e . We let r .π denote all

entity groups of routine r , and we require that these groups be disjoint (this equivalence

relation will be formalized in the sequel).

The boolean expression equal(e1, e2) is used for object equality. It can be defined

recursively, provided that its occurrence in a program is syntactically legal; the formal-

isation is in [PO03]. An axiom is also needed that asserts that reference equality is at

least as strong as object equality:

e1 r= e2 → equal(e1, e2) (1)

The remaining axioms defining entity groups are as follows. Consider a routine r
with bunch of entity groups r .π:

∀ ei , ej ∈ r .π • ei = ej ∨ ei ∩ ej = ∅ (2)

Axiom (2) states that two entity groups are either disjoint or identical. Only reference

entities are subject to aliasing, and hence only reference entities have associated groups.

Thus if e1 and e2 point to the same object, then they are in the same group.

∀ e ∈ r .π • (∀ e1, e2 ∈ e • e1 r= e2) (3)

Axiom (3) states that if two entities are in the same entity group, they refer to the same

object.

∀ e ∈ r .π • ∀ e1, e2 ∈ e • e1 = e2 (4)

(4) asserts that if two entities are in the same group, then the group can be referred to in

expressions by either name.
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∀ e ∈ r .π • ∀ e ∈ e • e 	= Void (5)

∀ e ∈ r .ρ • (∀ e ′ ∈ r .π • e 	∈ e ′) ≡ e = Void (6)

∀ e ∈ r .ρ • (e = Void) ≡ (e = ∅) (7)

Axiom (5) states that any entity in an group is attached to an object, and thus cannot be

Void . Axiom (6) states that if an entity e is in no group, then it is Void . This is the state

an entity is in after declaration, or after an assignment e := Void . Axiom (7) equates

a Void reference with an empty entity group. It is perhaps not clear why entity groups

have been used to formalise reference types in Eiffel, as opposed to obvious approaches,

e.g., formalising a memory model with memory locations, pointers, and objects. One

issue with the latter approach is that it can lead to long expressions (typically stating

what values are stored in what memory locations) appearing in refinement steps. We

desire to make the refinement calculus useful for carrying out refinement steps by hand

and with automated assistance. Long expressions do not arise with entity groups, as they

effectively let developers express only those entities that are of interest in a refinement

step. Certainly, when using PVS it would be reasonable to specify an Eiffel memory

model, and to define entity groups in terms of that memory model. In formulating the

Eiffel memory model, we would envision using an approach similar to that for the

Extended Static Checker for Java [LN00]. We are considering this approach in revisions

to our theories, but for now are simply formalising the axioms directly so as to make it

easier to validate and check our PVS formulation of the Eiffel refinement calculus.

The notion of entity groups can be used to define the semantics of instructions that

use reference types in Eiffel such as the create statement, assignment and feature call.

The create e instruction creates a new object and attaches it to entity e; any previous

reference or attachment via entity e is lost; however, any other entities that referred to

the object originally attached to e remain. This continued attachment is established by

the previous axioms, specifically (4) and (5). The semantics of create e is given in

Definition 1.

Definition 1. [Entity creation semantics] Given a reference entity e , the instruction

create e is defined as

modifies e, t
ensure e = {e} ∧ default(e)

where t represents the global clock (it is used in refining specifications to loops or

recursive programs). The default(e) clause asserts that each attribute e.a is set to its

default value on creation as described in [Mey97] (e.g., if a is a BOOLEAN it is

set to false, if it’s a reference it is set to Void etc.). If the class e.type has a creation

routine r (whose purpose is to establish the class invariant), then we must execute this

routine after the creation statement, i.e., create e; e.r .



35

The type-compatible reference assignment statement e1 := e2 changes entity e1
to refer to the same object as entity e2. Definition 2 provides the semantics for the

reference assignment (i.e., assigning references to references), leaving assignments in-

volving both references and expanded types for the sequel.

Definition 2. [Reference assignment semantics] Suppose e1 and e2 are references

and their declared types are compatible according to [Mey97], so that e2 can be as-

signed to e1. Then e1 := e2 is defined as

modifies e1, t
ensure e1 = e2

We now present the meaning of procedure calls, to illustrate how the theory can be

applied to feature calls; query calls are formalised in [PO03]. Definition 3 provides the

meaning of a targeted command call e1.c(e2), where e1 and e2 are reference entities

and c is a command of class SUPPLIER. The meaning of this call is supplied by the

precondition and postcondition of c, targeted to the entities e1 and e2 (in the definition, �
applied to any expression refers to the value of the expression evaluated in the prestate).

Definition 3. [Targeted command call] The call e1.c(e2) for command c(x1 :
TYPE ), which changes entities contained in c.modifies , and which is in a class hav-

ing attribute a , means

modifies c.modifies[a := e1.a, x1.a := e2.a]
require e1 	= Void ;

c.pre[x1 := e2, a := e1.a,Current := e1]
ensure c.post [�a := �e1.a, �Current := �e1,

x1 := e2, a := e1.a,Current := e1];
e2 = �e2

Local variables can be introduced to deal with more complicated, and potentially mul-

tiple, arguments.

Such statements, e.g., assignment statements and command calls, can be introduced

during refinement, and thus it is possible to check that routine implementations are

consistent with the pre- and postconditions specified in class interfaces.

2.1 Expanded types

We have not yet discussed the effect of assigning an expanded object to a reference,

and vice versa. The interplay between expanded (composite) types and reference types

is somewhat complicated by the fact that Eiffel allows user-defined expanded types,

and thus the semantics of the assignment statement needs to be generalised in order

to allow interactions between the two kinds of variables. The table in Fig. 2 suggests



36

e1 expanded and e2 reference e1 reference and e2 expanded

e1 := e2 equivalent to e1.copy(e2) e1 := e2 equivalent to e1 := clone(e2)

modifies t , e1 modifies t , e1
require e2 �= Void require true
ensure equal(e1, e2) ensure e1 = {e1} ∧ equal(e1, e2)

Fig. 2. Hybrid assignments

how to extend our approach to handle them, leaving a full treatment (e.g., expanded

parameters) for later work.

Thus, full formalisation of expanded types will require formalisation of Eiffel’s

copy and clone statements. This can be carried out using the notion of entity groups

described previously.

3 PVS Formulation

The axiomatisation of Eiffel reference types presented in the previous section is suffi-

cient and useful for manual reasoning; examples in [PO03] demonstrate its efficacy. We

are currently formalising the axioms and definitions in the PVS specification language,

so that we can use particularly the PVS prover to reason about references automatically.

In this section, we briefly outline progress that has been made on the formalisation.

The PVS theory includes four main sections:

– declarations of basic types for entities, entity groups, and primitive types;

– declaration of primitive functions for entity comparison, identifying different kinds

of entities (i.e., basic types versus reference types), as well as conversions of Eiffel

basic types into PVS types;

– the axioms from Section 2;

– Definitions of create, reference assignment, feature calls, and hybrid assignments

involving expanded and reference types.

To use the theory, programmers import it in a theory that defines PVS translations

of programmer-defined classes. The PVS translations define new types, functions, and

axioms that constrain the programmer classes. This is discussed further in the sequel.

3.1 Declarations of basic types and functions

Fundamental types must be declared in PVS for Eiffel entities (i.e., variables), entity

groups, and entity groups associated with routines.

ENTITY: TYPE+
ENTITY_GROUP: TYPE+ = set[ENTITY]
SET_GROUP: TYPE+ = set[ENTITY_GROUP]
ROUTINE: TYPE+
QUERY, COMMAND: TYPE+ FROM ROUTINE
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Each new class introduced in an Eiffel program (not including basic/primitive types)

will introduce a new PVS type holding attributes. These PVS types all are subtypes of

pre-declared PVS type OBJECT. This type is declared primarily for generality: to be

able to define functions that apply to all classes. Note that basic/primitive Eiffel types

are subtypes of OBJECT.

OBJECT: TYPE+
EIFFEL_TYPE: TYPE+ FROM OBJECT
EIF_INT, EIF_REAL, EIF_CHAR: TYPE+ FROM EIFFEL_TYPE

Useful functions can now be declared. In particular, we will need to know whether

an entity is attached to an object, whether two entities have the same declared/static

type, whether two entities are reference (or object) equal, etc. Finally, we need to define

functions to implement the entity groups from the previous section, i.e., r .ρ and r .π.

isvoid: [ ENTITY -> bool ]
deref: [ ENTITY -> OBJECT ]
sametype: [ ENTITY, ENTITY -> bool ]
ref_equal: [ ENTITY, ENTITY -> bool ]
obj_equal: [ ENTITY, ENTITY -> bool ]
routine_entities: [ ROUTINE -> set[ENTITY] ]
pi: [ ROUTINE -> SET_GROUP ]
ep_from_entity: [ ENTITY -> ENTITY_GROUP ]
pre: [ ROUTINE, ENTITY, ENTITY -> bool ]
post: [ ROUTINE, ENTITY, ENTITY, ENTITY -> bool ]
frame: [ ROUTINE -> bool ]

We will also need to provide conversions from Eiffel built-in types, such as integers

and characters, to their PVS equivalents. In this sense, we need to implement a PVS em-

bedding of Eiffel primitives. Since PVS provides a conversion facility, this is relatively

straightforward.

int_c: [ EIF_INT -> int ]
real_c : [ EIF_REAL -> real ]
char_c : [ EIF_CHAR -> char ]

CONVERSION int_c, real_c, char_c

3.2 PVS specification of entity group axioms

The axioms from Section 2 can now be expressed in PVS, based on the functions and

basic types previously declared. We present several axioms to illustrate the process.

First, the axiom that states that reference equality is stronger than object equality. This

is a direct transliteration of the ERC axiom.

ax2: AXIOM
(FORALL (em, en: ENTITY):
ref_equal(em,en) IMPLIES obj_equal(em,en))

More complex is the axiom that states that entity groups associated with routines

are either equal or they do not intersect.
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ax3: AXIOM
(FORALL (r:ROUTINE):
(FORALL (ei,ej:ENTITY_GROUP):
member(ei, pi(r)) AND member(ej, pi(r)) IMPLIES
((ei=ej) OR (empty?(intersection(ei,ej))) ) ))

Two final examples demonstrate PVS specifications of: the axiom that states that

entities in the same entity group refer to the same entity; and, an entity in an entity

group must be non-Void .

ax5: AXIOM
(FORALL (r:ROUTINE): (FORALL (ei:ENTITY_GROUP):
(FORALL (em,en: ENTITY):
(member(ei,pi(r)) AND member(em,ei) AND member(en,ei)) IMPLIES
ep_from_entity(em)=ep_from_entity(en) )))

ax6: AXIOM
(FORALL (r:ROUTINE): (FORALL (em:ENTITY):
(member(ei,pi(r)) AND member(em,ei)) IMPLIES NOT isvoid(em) )))

Based on these axioms, and the functions declared in the previous subsection, ref-

erence and object equality can be defined as well.

3.3 PVS definitions of operations

We can now specify some of the fundamental Eiffel instructions in PVS, particularly

those that manipulate reference types. As two examples, we show how to specify Eif-

fel’s create statement, and reference assignment.

Eiffel’s creation and initialisation statement has the form create e , where e is an

entity that may or may not be attached to an object. It is formulated in PVS as follows.

create: [ ENTITY -> bool ] =
(LAMBDA (em: ENTITY): ep_from_entity(em)= singleton(em) AND default(em))

default is a function that, given an entity, returns true iff the entity has been ini-

tialised to its default value. The default value depends on the type of the object attached

to the entity (but typically it is made up of default values for the attributes of the object

- e.g., 0 for integers, true for booleans, Void for references).

Reference assignment of the form e := e1 is formalised as follows. ref_assign
returns true iff the two argument entities are reference equal. In other words, e := e1
is represented in PVS as the function call ref equal(em, en) - we are representing the

effect of the assignment in PVS.

ref_assign: [ENTITY, ENTITY -> bool ] = (LAMBDA (em,en:ENTITY): ref_equal(em,en))



39

3.4 Feature calls

The fundamental construct in any object-oriented program is the targetted feature call,

which has the form o.f (a), where o is an entity/variable – the target – that is attached

to an object, f is a function or procedure, and a is a set of arguments. Targetted proce-

dure calls are statements, and can thus be sequentially composed with other typically

programming constructs, such as assignments, loops, and selections. Targetted function

calls return values, and as such can be used as r-values in assignment statements, in

guards, as arguments, or in pre- and postconditions. We show how to formalise Eiffel

targetted function and procedure calls in PVS, starting with the function call e2.q(e3).
This call might appear in an assertion, and as such it is important to formalise it sep-

arately from any statement in which it can be used. Its PVS formulation is as follows.

To start with, we declare a PVS function eval which returns an entity when applied

to a function, target, and set of arguments; the return type should be constrained to be

that of the Eiffel function. This PVS function is then implicitly defined in the axiom

eval_ax, which defines what it means to call q with target e2 and argument e3. The

axiom assumes that functions to obtain the precondition and postcondition of a routine

are available, respectively, as pre and post.

eval:[ ROUTINE, ENTITY, ENTITY -> ENTITY ]

eval_ax: AXIOM
(FORALL (em,en:ENTITY): FORALL (r:ROUTINE):

(pre(r,em,en) AND NOT isvoid(em) IMPLIES post(r,em,en,eval(em,en,r))))

To use the above axiom, one makes use of the function eval. For example, to

define the meaning of the assigned query call e1 := e2.q(e3), one would make use of

the following PVS function.

acq:[QUERY, ENTITY, ENTITY, ENTITY -> bool ] =
(LAMBDA (q:QUERY,e1:ENTITY,e2:ENTITY,e3:ENTITY):
(NOT isvoid(e2) and reference(e1) AND
reference(e2) and compatible(e1,result_type(q))) IMPLIES e1 = eval(e2,e3,q))

Finally, we formalise the targetted procedure call e1.c(e2) in PVS. We first assume

that the frame of each procedure can and has been specified by the programmer, and is

available via the function frame. The call can then be formalised as follows.

tcq:[ COMMAND, ENTITY, ENTITY, ENTITY, ENTITY -> bool ] =
(LAMBDA (c:COMMAND,e1:ENTITY, e2:ENTITY,

old_e1:ENTITY, old_e2:ENTITY):
(NOT isvoid(e1) AND pre(c,old_e1,e2)) IMPLIES
(post(c,e1,e2,old_e1) AND e2=old_e2 AND frame(c))))

Notice that the call introduces both old and new variables, i.e., pre- and poststate.
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3.5 Expanded types

Based on the axioms and functions defined previously, it is now possible to formalise

hybrid assignment statements, involving both expanded and reference types. For exam-

ple, consider the assignment statement e1 := e2, where e1 is an expanded type and e2
is a reference type. In Eiffel, the meaning of this statement is identical to the instruc-

tion e1.copy(e2). In other words, an attribute-by-attribute copy is made of the object

attached to e2, stored in e1. We can thus formalise this instruction by partly formalising

the Eiffel feature copy , as follows1.

copy: [ ENTITY, ENTITY -> bool ] =
(LAMBDA (e1, e2: ENTITY):
(reference(e2) AND NOT reference(e1) AND
NOT isvoid(e2)) IMPLIES (obj_equal(e1,deref(e2)))

3.6 Using the theory

The above suite of functions, declarations, definitions, and axioms is part of the PVS

theory of Eiffel reference types. It is intended to be used in PVS translations of Eiffel

specifications2. Thus, an Eiffel program will be translated into a set of PVS theories –

one per class – where each theory imports the above PVS theory of reference types.

Each Eiffel class is translated into a PVS record, declaring the class’s attributes and

types. For example, a class C with attributes x : INTEGER and c : C (i.e., one

expanded attribute and one reference) will be mapped to the PVS type

C: TYPE+ FROM OBJECT =
[# x: EIF_INT, c: ENTITY #]

C_ax: AXIOM
(FORALL (varc:C): EXISTS (oc:C):
NOT isvoid(c(varc)) IMPLIES deref(c(varc)) = oc )

The axiom states that whenever c is attached to an object, it must be attached to an

object of type C .

Translations of routines (as PVS functions) and their contracts can be carried out in

much the same way, though details remain to be worked out. We have concentrated so

far on fixing the details of the theory of reference types in PVS, since the formalisation

of classes and contracts depends on it.

A challenge with using the theory will be in proving that sequential compositions

of routine calls that appear in method bodies satisfy a contract. This is challenging be-

cause intermediate state needs to be introduced. However, the formalisation of sequen-

tial composition in [Heh03] deals with this problem by treating sequential composition

as relational composition, thus hiding the intermediate state using an existential quanti-

fier. We expect that we can use this approach in PVS.

1 copy is not fully formalised on its domain; it is defined only on domains where the l-value is

expanded and the r-value reference.
2 An Eiffel specification includes contracts, but not implementations, of classes – i.e., no routine

bodies.



41

4 Discussion and Conclusions

The PVS theory defined above is accepted by the PVS system, and typechecks. Work

is continuing on using the theory to carry out examples of reasoning, particularly for

refinement. Current work is focusing on completing the aliasing example in [PO03] in

full detail in PVS. So far, use of PVS has helped us detect omissions – particularly in

terms of the types used in expressions – in our semi-formal axiomatisation of entity

groups: PVS forces us to be explicit about types, and this helped to reveal errors.

Additional work is considering alternative PVS formalisations of the refinement

calculus (particularly, using an explicit model of Eiffel memory, with entity groups

being a derived notion). We are also automating the generation of PVS theories from

Eiffel. A basic PVS theory, capturing entity groups, will be imported by any generated

theory; the generated theory will define records to capture the attributes and pre- and

postconditions associated with routines of classes.
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Connecting Effects and Uniqueness with
Adoption

John Tang Boyland

University of Wisconsin—Milwaukee

Abstract. In a previous paper, we discussed how the concepts of unique-
ness and effects are interdependent. In this paper, we show how “Adop-
tion and Focus,” a proposal for handling linear pointers in shared vari-
ables can be extended to connect the two concepts. Our innovations
include the ability to define adoption relations between individual fields
rather than whole objects, and the ability to “focus” on more than one
adoptee at a time. The resulting system uses recursive alias types, “per-
mission closures” and “conditional permissions.” Then we show how pre-
viously proposed effect and uniqueness annotations can be represented
in the type system.

1 Introduction

In a previous paper [1], we discussed how the concepts of uniqueness and effects
are interdependent. If one wishes to check uniqueness, it can be best done when
considering effects, because read effects on a unique variable cannot be permitted
while it is temporarily aliased. Checking effects on the other hand may require
uniqueness, because an effect on a unique object can be transferred to the object
that currently has the only unique reference. In retrospect, this interdependence
could be expected because the better-known problems of data-dependence de-
termination and aliasing are similarly related. Uniqueness involves an aliasing
property and effects can be used to determine data dependencies.

1.1 Background on Uniqueness

Unique references that may occur in shared structures can be modeled soundly
using “destructive reads” in which the stored pointer variable (often a field of
an object) is nullified atomically with the read of that variable. This solution
goes back at least to Hogg’s Islands [2] and has been variously used by Baker [3],
Minsky’s Eiffel∗ [4], Aldrich et al’s AliasJava [5] (in their proofs), and Clarke
and Wrigstad’s External Uniqueness [6].

However, destructive reads have several problems: (1) they make it difficult
to query information about a unique object without losing it; (2) they make it
impossible to have sound invariants about the non-nullness of unique variables;
(3) they are inappropriate for use in “const” methods, which are supposed to
treat their object as read only; (4) they require a language change. Thus several
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researchers have independently proposed the use of what we call “borrowing”
reads, which do not nullify the field. Unfortunately borrowing reads greatly im-
pact the benefits of uniqueness unless it can be shown that a unique field is not
read (or at least not considered unique) during the lifetime of the borrowing.
For example, AliasJava permits borrowing without checking for possible reads
during the lifetime of the borrow and thus can only guarantee that a “unique”
pointer stored in a field will not be also available in another field. In particular,
a class cannot prevent “outsiders” from modifying the contents of supposedly
unique sub-objects of instances of this class.

Similarly, Leino, Nelson and Stata [7, 8] proposed a pointer property, “virgin-
ity,” related to uniqueness that is required of all initialization of “pivot” fields
(fields that refer to wholly-owned subsidiary objects or “sub-objects”). The rules
have a similar weakness to that of AliasJava: they are (intentionally) not strong
enough to prevent a client of an object from having access to its sub-objects.

Leino and others’ recent work [9] and “strong” ownership type systems [10]
avoid these aliasing problems by not permitting clients to create objects that
will be internal to a container. In essence, the system forbids objects from being
transferred from one container to another. External uniqueness extends owner-
ship to cover transferable uniqueness, but does so through destructive reads.

In our earlier work on “alias burying” [11], we proposed using effects anno-
tations to prevent borrowing reads from weakening the semantics of uniqueness.
With alias burying, no destructive reads are needed. The paper suggested anno-
tating every method with the list of fields of this or any other object that is read
during the dynamic extent of the method call. Clearly, this not only exposes
too much of object’s internal structure, but is overly conservative since it does
not distinguish different objects. We intended to use our object-oriented effects
system [12] instead, but no one has been able to come up with a satisfactory
system to combine these two areas. This paper contributes such a type system.

1.2 Contribution

We can check that program accesses meet declared effects by using a permission
system, in which the context used to check program elements indicates which
parts of the state we are allowed to access. (“Fractional permissions” [13] can
be used to distinguish reads from writes, but this paper will not discuss this
(orthogonal) extension.) Effects are in terms of state in the program: variables,
and fields of objects on the heap. For encapsulation purposes, we aggregate fields
into “data groups” [12, 14]. This is modeled by having the permission to access
the field “nested” within the permission to access the data group.

In a permission system, there is only one permission for each state. Thus
permissions can also be used to model uniqueness: a unique pointer is one which
is packaged along with the permission to access the state pointed to. This con-
ception of uniqueness is weaker than the usual sense of uniqueness in which there
are no other pointers to the state in the store. However, in our system, any other
potential pointers to the same state come without permission to access it, and
thus even the limited sense of uniqueness provided by permissions is sufficient
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for analysis purposes. The problem is not the existence of aliasing pointers, but
rather the access of the state through these aliasing pointers.

Of course not all pointers are unique. A shared pointer is modeled by having
the permission to access the pointed-to state “nested” in a globally accessible
permission. Now, we want to make sure that it is impossible for two separate
parts of the code to grab the permissions to the same shared state. This could
be done using dynamic checks, but in our system we use the type system to
prevent the same permission from being removed twice without being replaced
in between.

Languages often permit a “null” pointer to be used in the place of a pointer to
actual state. Our system makes this detail explicit: the permissions associated
with a possibly-null pointer are conditional on the boolean formula that the
pointer is not null.

Thus the type system described in this paper has the following properties:

– It uses permissions to model both effects and uniqueness.
– It uses the concept of permission “nesting” (adoption) to model shared state
and aggregation of state in “data groups.”

– Conditional permissions make explicit the use of “null” or other terminating
pointers.

In the following section, we describe this type system, and then in Section 3 we
showed how one can take some of our earlier effects annotations together with
the uniqueness annotations of our work on Alias Burying and interpret them as
types in system proposed in this paper. Section 4 compares our system to closely
related work.

2 The System

We define our type system over a simple low-level imperative language. Section 3
then adapts the types to a Java-like language.

2.1 Operational Semantics

The source language has four kinds of values: the unit value, booleans, integers
and pointer values (that is, object references):

(value) v ::= () | true | false | n | o

Here o refers to an object reference, an absolute memory address. The only
absolute memory address that occurs in unevaluated programs is $0—the value
of null pointers.

In this simple language, the only kind of variable is the field of an object
(global variables are handled by treating them as fields of the null object). Array
elements could be handled with dependent types [15] in a similar manner.
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Each field f has a declared default value and type chosen from the following
limited set:

vf τf

() unit
false bool
0 int
$0 ptr($0)

Expressions include values, simple arithmetic (represented by addition), com-
parisons, allocation, field reads and writes, sequential composition, conditionals,
procedure calls and “nesting” (adoption):

s ::=
v | e+e | e=e | new{f,...,f} | e.f |
e.f:=e | s;s | if b then s else s | call p | nest e.f in e.f

A program consists of a mapping of procedure names to procedure expres-
sions. A memory consists of a binding of fields to their values (a function). We
also record “adoption” (the nesting relation).

(program) g ::= {p → e, . . .}
(location) loc ::= o.f

(memory) µ ::= {loc → v, . . .}
(adoption) a ::= {loc ≺ loc, . . .}

There is no requirement that adoption is a functional relation.
Figure 1 defines a small-step semantics for evaluating this simple language.

The two interesting parts are (1) the evaluation of new expressions in which an
address is found unused in the memory or adoption information, and (2) nesting
which adds an adoption relation fact. Adoption can never be undone.

2.2 Permission Types

The environment E = (∆;Π) in which code is checked has two parts: a type
context ∆ that lists address variables ρ; and a “set” of permissions Π that
indicates what state we are permitted to access and the type that the state will
have. We treat Π in a somewhat linear fashion, in that permissions cannot be
duplicated. However, making use of permissions does not consume them. (The
use of “. . . ” here means there are other forms for permissions.)

(type context) ∆ ::= · | ρ | ∆,∆

(permissions) Π ::= · | Π,Π | . . .

The most important kind of permission is a key k. Now, since any key may have
other keys nested in it, and some of those keys may be active, the permission
enumerates those nested keys that are currently “carved out.” As mentioned
in the introduction, unlike earlier proposals is which a key applies to a whole
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(µ; a; e1)→g (µ
′; a′; e′1)

(µ; a; e1+e2)→g (µ
′; a′; e′1+e2)

(µ; a; e2)→g (µ
′; a′; e′2)

(µ; a; v+e2)→g (µ
′; a′; v+e′2)

(µ; a;n1+n2)→g (µ; a;n1 + n2)
(µ; a; e1)→g (µ

′; a′; e′1)

(µ; a; e1=e2)→g (µ
′; a′; e′1=e2)

(µ; a; e2)→g (µ
′; a′; e′2)

(µ; a; v=e2)→g (µ
′; a′; v=e′2)

(µ; a; v1=v2)→g (µ; a; v1 = v2)

o /∈ Rng(µ) ∀f∈F o.f /∈ Dom(µ) ∪Dom(a) ∪ Rng(a)
(µ; a; new{f1,...,fn})→g (µ[o.fi → vfi | 1 ≤ i ≤ n]; a; o)

(µ; a; e)→g (µ
′; a′; e′)

(µ; a; e.f)→g (µ
′; a′; e′.f)

µ(o.f) = v

(µ; a; o.f)→g (µ; a; v)

(µ; a; e1)→g (µ
′; a′; e′1)

(µ; a; e1.f:=e2)→g (µ
′; a′; e′1.f:=e2)

(µ; a; e2)→g (µ
′; a′; e′2)

(µ; a; v1.f:=e2)→g (µ
′; a′; v1.f:=e

′
2)

v2 ∼ vf µ′ = µ[o.f → v2]

(µ; a; o.f:=v2)→g (µ
′; a; ())

(µ; a; e1)→g (µ
′; a′; e′1)

(µ; a; e1;e2)→g (µ
′; a′; e′1;e2)

(µ; a; ();e2)→g (µ; a; e2)

(µ; a; e1)→g (µ
′; a′; e′1)

(µ; a; if e1 then e2 else e3)→g (µ
′; a′; if e′1 then e2 else e3)

(µ; a; if true then e2 else e3)→g (µ; a; e2)

(µ; a; if false then e2 else e3)→g (µ; a; e3) (µ; a; call p)→g (µ; a; g p)

(µ; a; e1)→g (µ
′; a′; e′1)

(µ; a; nest e1.f1 in e2.f2)→g (µ
′; a′; nest e′1.f1 in e2.f2)

(µ; a; e2)→g (µ
′; a′; e′2)

(µ; a; nest v1.f1 in e2.f2)→g (µ
′; a′; nest v1.f1 in e′2.f2)

a′ = a ∪ {(o1.f1) ≺ (o2.f2)}
(µ; a; nest o1.f1 in o2.f2)→g (µ; a

′; ())

Fig. 1. Operational Semantics
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object, a key here applies to a field of an object. The permission to access a field
includes the type stored there. We have four atomic types:

(type) τ ::= unit | bool | int | ptr(l) | . . .

(object reference) l ::= o | ρ

(key) k ::= l.f

(permissions) Π ::= . . . | k : τ\ {k1 : τ1, . . . , kn : τn} | . . .

If there are no keys carved out of a key (the permission is of the form k : τ\ {},
the permission may be abbreviated as k : τ .

Two types τ and τ ′ are “storage compatible” (written τ ∼ τ ′) if space storing
a value of type τ can be reused to store a τ ′. Of course τ ∼ τ for all types τ ,
but we also assume all pointer types are interchangeable: ptr(l) ∼ ptr(l′).

Field of unit type do not store any information, but instead are used to
model “data groups” (we reuse the terminology of Leino and others [14, 9]).
Aggregation of fields into data groups is accomplished by nesting, for instance
ρ.x : int ≺ ρ.loc, where the “x” field of the object is part of the “loc” data group.

The type system described here uses a simple logic that can be represented
by boolean formulae over key equalities k = k′ and nesting information k : τ ≺
k′. In a slight abuse of notation, we conflate syntactic boolean operators (such
as ∧,∨,¬) with the underlying semantic boolean operations. The syntax also
provides a construct for named recursive formulae t over object references.

(formula) Γ ::= true | k = k | k : τ ≺ k | Γ ∧ Γ | ¬Γ | t(l1, . . . , ln)

(We write k �= k′ as shorthand for ¬(k = k′).)
Boolean formulae are used in two ways in permissions. First, a formula may

be paired with a permissions “set.” Second, we have conditional permissions in
which a set of permissions is guarded by a condition. In another slight abuse of
notation, we borrow the linear implication “ −◦ ” operator to remind the reader
that conditional permissions are consumed when applied:

(permissions) Π ::= . . . | (Π;Γ ) | Γ −◦Π

For example, suppose x is a global variable (represented by a field of the null
object) that may be null, but if it is not null, we have permission to access all of
the fields of the pointed-to object. This situation is represented by the following
set of permissions:

$0.x : ptr(ρ), ρ �= $0−◦ ρ.All

Here “All” is a data group in which all of the fields of the object are nested,
perhaps indirectly. Now, we often do not know what the actual pointer value of
a variable is and thus need to use some form of quantified types. For this reason
a variable may have existential type, for example x : ∃ρ.ptr(ρ), but this form
is not sufficient, because we need to be able to express permissions about the
existentially bound address variable. Thus we have forms of compound types, a
pairing of a set of permissions with a type, and an existential:

(type) τ ::= . . . | τ with Π | ∃∆.τ
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Thus, a variable with an unknown pointer value, but for whose object (if not
null) we have permission to access the fields, would be declared as follows:

$0.x : ∃ρ.ptr(ρ) with ρ �= $0−◦ ρ.All : unit

This indeed is how we express the concept of a unique pointer. While other places
in the system may have the same pointer value, no one else has the permission
to access the pointed-to state, since permissions are unique.

A procedure may be polymorphic over some location variables ∆. It accepts
a “set” of permissions and returns a (possibly new) “set” of permissions, us-
ing perhaps some new variables. A program type is a type for each procedure.
Substitutions map address variables to other variables or to absolute addresses.

(procedure type) α ::= ∀∆. (Π → ∃∆.Π)
(program type) ω ::= {p : α, . . .}
(substitution) σ ::= {ρ → l, . . .}

Parameters and results can be passed in global variables or in specially created
activation objects. Substitutions are used to transform the permissions into a
form accepted by a procedure and to convert the resulting permissions back.
Substitutions are typed by their domain and range:

Dom(σ) = ∆ Rng(σ) ⊆ ∆′ ∪ O

σ : ∆ → ∆′

Here O is the set of all absolute (object) addresses. Substitutions are lifted to
apply to permissions in the normal way, and in particular σ acts as the identity
function on address variables outside of its explicit domain.

The type rules corresponding to the syntax are given in Figure 2. Each ex-
pression produces a possibly new environment after being checked and thus our
relation is E �ω e : τ � E′ where ω is the program typing.

The If rules bear some explanation: as well as a default rule, we have a special
case rule for the comparing of pointers. The type system makes the equality or
inequality being tested available in the corresponding branches. At the end of an
if, we need to merge the two environments, which makes use of substitutions:

∆1,Π1 = σ1∆
′;σ1Π

′ ∆2,Π2 = σ2∆
′;σ2Π

′

∆ = ∆1 ∩ ∆2 ∆′ − ∆ fresh ρ ∈ ∆ ⇒ σiρ = ρ

(∆′;Π ′) = (∆1,Π1) ∨ (∆2,Π2)

The IfTrue and IfFalse rules are needed for type preservation.
The rule for nest expressions requires that the key being “adopted” be fully

available (without anything carved out) and not equal to any key currently
carved out of the “adopter.” This rule prevents a key from being twice adopted
by the same adopter, and also prevents self or cyclic adoption. These situations
do not cause consistency problems, but are probably bugs in the code.
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Unit
E �ω () : unit � E

Num
E �ω n : int � E

True
E �ω true : bool � E

False
E �ω false : bool � E

Address
E �ω o : ptr(o) � E

Plus
E �ω e1 : int � E′ �ω e2 : int � E′′

E �ω e1+e2 : int � E′′

Equal
E �ω e1 : τ � E′ �ω e2 : τ �′ E′′ τ ∼ τ ′

E �ω e1=e2 : bool � E′′

RField
E �ω e : ptr(l) � ∆′;Π ′ Π ′ = l.f : τ\ {. . .} , Π1

E �ω e.f : τ � ∆′;Π ′

New
ρ fresh

∆;Π �ω new{fi | 1 ≤ i ≤ n} : ptr(ρ) � ρ, ∆; ρ.fi : τfi | 1 ≤ i ≤ n, Π1

WField
E �ω e1 : ptr(l) � E′ �ω e2 : τ � ∆′′;Π ′′ Π ′′ = l.f : τ ′\ {. . .} , Π1 τ ∼ τ ′

E �ω e1.f:=e2 : unit � ∆′′; l.f : τ\ {. . .} , Π1

Seq
E �ω s : unit � E′ �ω s′ : τ � E′′

E �ω s;s′ : τ � E′′

If
∆, Π �ω e0 : bool � E′ E′ �ω e1 : unit � E1

E′ �ω e2 : unit � E2 E′′ = E1 ∨ E2

E �ω if e0 then e1 else e2 : unit � E′′

IfEqual
∆;Π �ω e : ptr(l) � E′

E′ �ω e′ : ptr(l′) � ∆;Π ∆; (Π; l.All = l′.All) �ω e1 : unit � E1

∆; (Π; l.All �= l′.All) �ω e2 : unit � E2 E′′ = E1 ∨ E2

E �ω if e=e′ then e1 else e2 : unit � E′′

IfTrue
E �ω e1 : unit � E′

E �ω if true then e1 else e2 : unit � E′

IfFalse
E �ω e2 : unit � E′

E �ω if false then e1 else e2 : unit � E′

Call
ω(p) = ∀∆1.Π1 → ∃∆2.σ2Π2 σ1 : ∆1 → ∆ ∆′ fresh σ2 : ∆

′ → ∆2

∆;σ1Π1, Π3 �ω call p : unit � ∆ ∪ ∆′;σ1Π2, Π3

Nest
E �ω e : ptr(l) � E′ �ω e′ : ptr(l′) � ∆′′;Π ′′ k = l.f k′ = l′.f ′

Π ′′ = (k : τ\ {} ; k �= k1 ∧ . . . ∧ k �= kn), k
′ : τ ′\ {k1 : τ1, . . . , kn : τn} , Π1

E �ω nest e.f in e′.f ′ : unit � ∆′′; (k′ : τ ′\ {k1 : τ1, . . . , kn : τn} ; k : τ ≺ k′), Π1

Proc
∆1;Π1 �ω s : unit � ∆′

1;σ Π2 ∆′
1 ∩ ∆2 = ∅ σ : ∆2 → ∆′

1

�ω s : ∀∆1.Π1 → ∃∆2.Π2

Fig. 2. Syntactic Type rules
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2.3 Consistency

Types can ensure that programs don’t go wrong, but only if the memory is in a
state matched by the types, or permissions in our case. Part of the “matching”
that must be done is to give the absolute addresses corresponding to each address
variable ρ:

(mapping) ψ ::= {ρ → o, . . .}
The consistency relation is written

µ; a;ψ � Π consistent

We have not worked out all the details of consistency at the point of writing,
and space constraints would preclude a full description in any case. The basic
concepts that need to be verified are that there never be more than one per-
mission for each key (field), and that the value stored in a field be of the type
indicated in the permission. The boolean formulae paired with the permissions
must also be matched against the actual memory and adoption facts.

Part of the information in any permission are the equality, inequality and
adoption facts in it. For instance, if we see that one key has two other keys
carved out of it (k : τ\ {k1 : τ1, k2 : τ2}), then those keys must be distinct and
furthermore must each be nested in k. We write Π |= Γ to mean that the boolean
formula Γ is implied by the set of permissions Π. The condition that lets us
determine the most information from a set of permissions is to find anything
that is consistent with every situation in which the permissions are consistent:

∀µ;a;ψ (µ; a;ψ � Π consistent) ⇒ (µ; a;ψ � (·;Γ ) consistent)
Π |= Γ

This definition is not constructive, but it is easy to define special cases such as

(·;Γ ) |= Γ (f �= f ′) ⇒ (· |= l.f �= l′.f ′)

k : τ\ {k1 : τ1, . . . , k2 : τ2, . . .} |= k1 �= k2 (Π1 |= Γ ) ⇒ ((Π1,Π2) |= Γ )

(Π |= Γ1) ∧ (Π |= Γ2) ⇒ (Π |= Γ1 ∧ Γ2)

Depending on how consistency is finally formalized, it may be possible to give a
fixed number of such structural rules that are complete for the characterization
of the |= relation.

We overload the operator to apply to pairs of permissions too:

∀µ;a;ψ (µ; a;ψ � Π1 consistent) ⇒ (µ; a;ψ � Π2 consistent)
Π1 |= Π2

and then define
Π1 |= Π2 Π2 |= Π1

Π1 ≡ Π2
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As before one can define any number of special cases:

·,Π ≡ Π Π1, (Π2,Π3) ≡ (Π1,Π2),Π3

(Π1;Γ1), (Π2;Γ2) ≡ (Π1,Π2;Γ ∧ Γ2)

k : τ\ {k1 : τ1, k2 : τ2, . . . kn : τn} ≡ k : τ\ {k2 : τ2, . . . , kn : τn, k1 : τ1}

(Π |= Γ ) ⇒ (Π ≡ (Π;Γ )) (Γ −◦Π;Γ ) ≡ (Π;Γ )

k′ : τ ′\ {k1 : τ1, . . . kn : τn} ; k : τ ≺ k′ ∧ k �= k1 ∧ . . . ∧ k �= kn ≡
k′ : τ\ {k : τ, k1 : τ1, . . . kn : τn} , k : τ

The last sample rule shows how one can carve out a key from another key, or
replace it.

One may substitute a smaller set of permissions before or after any typing:

Transform
Π |= Π1 ∆;Π1 �ω s ⇒ ∆′;Π ′

1 Π ′
1 |= Π ′

∆;Π �ω s ⇒ ∆′;Π ′

Dropped keys represent places where work is created for the garbage collector.

2.4 Summary

The novel parts of this type system (as compared to previous work) are:

– The permission keys are fields rather than whole objects, enabling fine-
grained protection;

– Multiple (distinct) permissions may be “carved out” of a single nesting lo-
cation at a time;

– Arbitrary permissions may be packed into existential types.

The work described here however is partial and ongoing. Further work that needs
to be addressed includes:

– Defining memory consistency.
– Proving that well-typed programs don’t go wrong.
– Proving that effects are respected.
– Coming up with a usable approximation (if not a complete characteriza-
tion) of the |= relation. In particular, we need a way to use this relation
algorithmically during type checking.

– Making the type rules algorithmic. Assuming we have a (probably conserva-
tive) way to apply the |= relation, and thus the Transform rule, we only
need to address the nondeterminism of the If rules (especially the rule for
E1 ∨ E2).

What this paper does provide is an interesting way to unify the concepts of
effects and uniqueness in a new type system (inspired by Fähndrich and DeLine’s
adoption and focus). How these concepts are realized is described next.
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3 Realizing Effects and Uniqueness Annotations

As is clear from what precedes this discussion, the types used in this proposal
are complex and verbose. One cannot expect programmers to want to use such
a system. In this section, we explain how commonly proposed, higher-level an-
notations can be expressed in the full type system. Of course, these annotations
do not give one the full expressive power of the complete type system, but the
full system can be provided in unusual situations.

One question that needs to be answered is why one should propose a type
system that is too complex to use and then hide it underneath a simpler type
system. Why not simply use the simpler type system and be done with it? The
problem is that no one has yet come up with a type system that successfully
unifies effects and uniqueness annotations. It appears that solving the problem
correctly requires more formal machinery than expected. A similar situation
applies to object-oriented languages: typing “self” for a language with imper-
ative state and overriding requires a complex combination of existential types,
bounded polymorphism and recursive types, even though these features are used
in stylized ways [17]. This analogy suggests that there may be a way to type-
check uses of the annotations described here without requiring a type checker
for the complete type system. The algorithm could be proved sound against the
complete type system.

The following annotations can be realized with our extension of adoption:

data groups A class may declare data groups. A field is tagged with its parent
data group; a data group may also have a parent. Unlike our earlier work [12]
(where data groups were called “regions”), a field may be nested in two data
groups, but the type system will require such a field to be always carved out
of all but one of its data groups at any point in the program.

reference annotations A field, parameter, receiver or return value is tagged
with one of the annotations: unique , shared or borrowed , where the latter
annotation is legal only for parameters and receivers. Ownership can also be
handled as a generalization of shared .

effects Any method may be annotated with effects. Since this paper does not
use fractional permissions, we do not distinguish between read and write
effects. The state accessed is expressed using one of the following forms:
this.f where f may be a data group; p.f where p is a formal parameter;
other which means anything accessible from $0.All. We are looking at
ways to extend the system to represent effects on state such as any.f which
represents all f fields (or data groups) of any object accessible from $0.All.

3.1 Class and Field Annotations

We represent class types by named, potentially recursive, fact-creating functions
with one parameter giving the location for the object. The facts include one
adoption fact for every field and data group. For simplicity, we assume the ex-
istence of a single root data group “All” in which all fields are nested (perhaps
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indirectly). The fact for a field includes its type which, for pointers, is an ex-
istential whose body is a macro-call that takes the location, the fact-creating
function for the type and whether the pointer is “good,” usually (ρ �= $0).1 The
macro function to use is named by the reference annotation and is expanded as
part of the realization process:

unique(ρ, t, c) = ptr(ρ) with c−◦ (ρ.All : unit; t(ρ))
shared(ρ, t, c) = ptr(ρ) with (·; c ⇒ (ρ.All : unit ≺ $0.All ∧ t(ρ))

borrowed(ρ, t, c) = ptr(ρ) with (·; c ⇒ t(ρ))

The “borrowed” annotation is legal only for method parameters (and receivers),
and indicates that the parameter does not come with permissions on its own;
any permissions are provided in the method effects.

For a first example, consider the following Java-like class and its fact-creating
function:

class Point {
group Loc;

int x in Loc;
int y in Loc;

}

Point(ρ) =
ρ.Loc : unit ≺ ρ.All ∧
ρ.x : int ≺ ρ.Loc ∧
ρ.y : int ≺ ρ.Loc)

Next, a rectangle class that has two unique points and a shared string name:

class Rectangle {

group Looks;

group Dims in Looks;

unique Point tl in Dims;

unique Point br in Dims;

shared String n in Looks;

}

Rectangle(ρ) =
ρ.Looks : unit ≺ ρ.All ∧
ρ.Dims : unit ≺ ρ.Looks ∧
ρ.tl : ∃ρ.unique(ρ, Point, ρ �= $0) ≺ ρ.Dims ∧
ρ.br : ∃ρ.unique(ρ, Point, ρ �= $0) ≺ ρ.Dims ∧
ρ.n : ∃ρ.shared(ρ, String, ρ �= $0) ≺ ρ.Looks

3.2 Parameters and Methods Effects

The parameters and return value are packed into an “argument” object pointed
to by a global ap. We also give general access to a number of global “tempo-
raries.” Permissions to access all these globals, the parameters and the return
value are passed to and returned from the procedure. When a procedure is called,
the return value is uninitialized (if a pointer, has a pointer type with an address
variable for which we have no information). At the end, the parameters are
uninitialized. The procedure type is polymorphic using a variable for the argu-
ment object, the receiver, each pointer parameter and the result (if a pointer
value). The permissions for each parameter are typed on procedure entry using
the same macros for the pointer annotations, except this time the macro-calls
1 If we added non-null annotations (as suggested by Fähndrich and DeLine [18]), the
condition can be strengthened to “true” for non-null pointers.
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are not wrapped in existentials. The return value is typed using the annotation
macro-call upon exit.

The effects of the method are realized by permissions that are passed to
the procedure and then returned. A data group of a receiver or parameter is
represented by a data group of the corresponding location variable. The state
other is represented by $0.All. If some of the effects’ state are known to be
shared (directly or indirectly adopted into $0.All), the permission will be carved
out in advance.

For a simple example, consider a method of Rectangle that changes the
name of a rectangle:

void setName(shared String n) borrowed accesses this.Look;

Its realized type is

∀ρf , ρt, ρs.



($0.ap : ptr(ρf ), temps, ρf .this : borrowed(ρt, Rectangle, true),

ρf .n : shared(ρs, String,¬(ρs = $0), ρt.Looks : unit) →
∃ρ′s.($0.ap : ptr(ρf ), temps, ρf .this : ptr(ρt),

ρf .n : ptr(ρ′s), ρt.Looks : unit)




3.3 Discussion

This realization links parameter annotations and effects more strongly than in
our previous work: it does not permit parameters to be aliased; it does not per-
mit shared state to be passed borrowed to a method that affects other. Intersec-
tion types “solve” this problem at the cost of a number of variants, exponential
in the number of parameters. On the other hand, the stricter definition is prob-
ably a good default; a parameter whose state could be accessed through another
parameter or through a global variable should be declared as such. The stricter
rule corresponds closely to the new ANSI C restrict qualifier as formalized by
Foster and others [19].

The realization described here does not fully handle inheritance and virtual
overriding because there is no way to express downcasts. Neither does it handle
the problem of partially constructed objects. We hope to use Fähndrich and
Leino’s “monotonic heap states” [16] to describe how the “facts” for an object
grow from the facts provided by the superclass to the additional ones provided
by the subclass.

4 Related Work

This work was conceived as an extension to the work of Manuel Fähndrich and
Robert DeLine called “adoption and focus” [20]. This type system permits a
linear pointer to be irrevocably “adopted” by another pointer. Then the pointer
can be duplicated (i.e. copied nonlinearly) with a “guarded type” g � τ where g
is the adopter. Should some piece of the code need to use the pointer and it has
access to the adopter, it can “focus” on the adoptee and gain the linear pointer
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while temporarily giving up the rights on the adopter. When there is no more
need to access the linear pointer (and its linearity and type have been restored),
the linear pointer can “disappear” back into the adopter which is then restored.
Our system extends/changes the ideas of adoption and focus in the following
ways:

1. Reads and writes can be distinguished using “fractional permissions” [13].
For reasons of brevity, this issue is not discussed in this paper.

2. Unlike adoption and focus, “carving out” permissions for a nested key (“fo-
cusing” in their terminology) does not make the nesting key (the “adopter”)
inaccessible. It only forbids the carving out of the same nested key again.

3. In our system, adoption (and protection in general) is performed at the level
of fields of an object rather than whole objects. This allows finer-grained
permissions.

Additionally, “adoption and focus” was described just as a type system, without
anything to prove correct. The system described here has made more progress
in the direction of defining what correctness means, without reaching the goal.
We intend to continue this progress.

Adoption and focus, as well as this work use Alias Types [21], a technique
to represent aliasing in the type system. Alias types can be used to precisely
describe the shape of recursive data structures [22]. Adoption allows alias types
to described uniqueness as well, and our extensions of adoption allow alias types
to describe effects.

Effects systems have been defined for functional languages in order to safely
deallocate “regions” of data that are no longer being accessed [23]. A region
encapsulates a (possibly heterogeneous) set of objects. This work was extended
by Walker and others [24] in a capability calculus that has one permission key
for each region. These insights were later used in the “adoption and focus” work.

Boyapati and others [25, 26] have incorporated uniqueness, effects and regions
in an ownership type system for Java-like languages. They use a permission
system over whole objects (not fields as in this work) to prevent data-races.
Uniqueness is supported in a few special situations, such as tree-like structures.
For the most part, however, the ownership type system prevents object transfer.
It appears that some kinds of transfer could be added to their system using
“external uniqueness” [6].

One of the attractive features of external uniqueness is that uniqueness is
defined for external pointers and does not prevent aliasing internal to the object.
We incorporated this idea into our system so that if a structure with internal
aliasing is described using recursive types, a unique reference could point to it.
Using our permission system for effects obviates the need for destructive reads.

5 Conclusions

In this paper, we describe how we can use the ideas of “adoption and focus” to
design a type system that takes into account effects and uniqueness in a unified
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manner. Conditional permissions permit one to express null pointers without
tagged unions. Field adoption allows us to express data groups. We show how
high-level annotations (method effects and pointer annotations) can be expressed
in this system. Although the work is not fully formalized, especially memory
consistency, and we doubt that complete algorithmic type inference is possible,
we expect that a practical algorithmic inference system can be defined that will
check stylized uses of the type system, such as that used in our realization of
annotations.
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Abstract. The paper defines the class of heap monotonic typestates.
The monotonicity of such typestates enables sound checking algorithms
without the need for non-aliasing regimes of pointers. The basic idea is
that data structures evolve over time in a manner that only makes their
representation invariants grow stronger, never weaker. This assumption
guarantees that existing object references with particular typestates re-
main valid in all program futures, while still allowing objects to attain
new stronger typestates. The system is powerful enough to establish
properties of circular data structures.

1 Introduction

Types are the main mechanism by which programmers specify properties about
data structures that are mechanically checked by today’s compilers. Types, how-
ever, are a very limited specification tool, in particular in imperative program-
ming languages, where objects evolve over time. As objects evolve, they acquire
more properties, and stronger invariants get established. But such new properties
cannot be captured in the form of types, since types in mainstream languages
capture only properties that hold uniformly from the birth to the demise of an
object.

This paper presents a statically checkable typestate system. Typestates [9]
specify extra properties of objects beyond the usual programming language
types. As the name implies, typestates capture aspects of the state of an ob-
ject. When an object evolves, its typestate may evolve as well. Typestates can
be used to restrict valid parameters, return values, or field values, and in doing
so provide extra guarantees on internal object invariants.

The main contribution of this paper is that it identifies a class of heap mono-
tonic typestates, along with a statically checkable condition on field updates.
Under that condition, it can be proven that all object states evolve monoton-
ically: statically observable object invariants only become stronger as objects
evolve. At first, the idea may seem restrictive, but it results in a surprisingly
liberal programming methodology: our static typestate discipline captures grad-
ual initialization of entire object graphs, and can even prove properties of cyclic
structures. A surprising result is that only typestate annotations are needed:
there is no need for non-aliasing annotations or assumptions, nor is there a need
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to declare read or write effects of methods. These properties put our approach at
a minimal distance from ordinary type checking and distinguish it from previous
related work on proving stronger program invariants [4, 3, 8, 1]. We believe this
system is practical, because it puts no restrictions on the shape of object graphs.
As a result, we expect our approach easily to combine with existing approaches
for structuring the heap or managing resources, such as ownership types [2] or
alias types [10]. Moreover, our typestate system is formulated in such a way that
it can take advantage of non-aliasing information, if present.

The rest of the paper is organized as follows: Section 2 introduces heap mono-
tonic typestates by means of an example. Section 3 formalizes typestates in the
presence of inheritance and gives sufficient field update conditions to maintain
monotonicity. Section 4 discusses further ramifications of monotonic typestate
and future extensions. The remaining sections discuss related work and conclude.

2 Motivating example

To illustrate evolving objects, the example in Fig. 1 contains code fragments
of a typical compiler front-end. The main data structure is an abstract syn-
tax tree (AST) consisting of AstNode objects. The parsing, name resolution,
type checking, and back-end phases are represented. Parsing produces an ab-
stact syntax tree. This tree is then modified by first doing name resolution
(ast.ResolveNames(...)), followed by doing type checking (ast.TypeCheck(...)). Af-
ter type checking, the AST is passed to the back-end (ast.Emit(...)) .

An AST cannot be passed to the back-end without first performing type
checking. Similarly, type checking cannot be performed without name resolution.
The state of the AST after parsing therefore differs from its states after name
resolution and after type checking. Mainstream programming languages do not
allow programmers to express such state properties, let alone statically check
them. Typestate annotations and typestate checking fill this gap.

We distinguish three states of the AST: ”Naked” after parsing, ”Bound” af-
ter name resolution, and ”Typed” after type checking. Figure 1 lists typestate
annotated signatures of the methods representing the various front-end phases.
Annotation [return:Post(”Naked”)] states that method Parse returns an AST sat-
isfying state ”Naked”. The methods performing name resolution, type checking,
and code emission are instance methods of AstNode. They have Pre and/or Post
annotations to express the typestate expected on entry, and the typestate guar-
anteed on exit. For instance, the annotation on method ResolveNames specifies
that on entry, the receiver (this object) must satisfy state ”Naked”; whereas on
exit, it will satisfy state ”Bound”. The annotation on Emit simply requires the
receiver to satisfy state ”Typed”.

So far, we have only seen typestates in their abstract form, that is, as adjec-
tives modifying a type. In that form, typestate annotations may constrain when
types are compatible. The other major purpose of typestates is to capture extra
data invariants. Figure 2 shows class fragments of subclasses of AstNode with
annotations expressing such invariants. In our example, the typestate ”Typed”
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void Main (...) {
AstNode ast= Parse(filename);
ast .ResolveNames(emptyEnvironment);
ast .TypeCheck(emptyTypeEnvironment);
ast .Emit (...);

}

[ return :Post(”Naked”)] AstNode Parse(string file );

abstract class AstNode {

[Pre(”Naked”),Post(”Bound”)]
abstract void ResolveNames(Env env);

[Pre(”Bound”),Post(”Typed”)]
abstract void TypeCheck(TypeEnv typeEnv);

[Pre(”Typed”)]
abstract void Emit (...);

...
}

Fig. 1. Front-end of a compiler

captures the fact that the type field of Expression objects has been initialized to a
non-null pointer to a Type object. This invariant is expressed by the annotation
[NotNull(WhenEnclosingState=”Typed”)] on field type of class Expression. Simi-
larly, the typestate ”Bound” captures the fact that the binding field of Identifier
objects in the AST has been initialized to a non-null pointer to the binding node.

These two annotations describe the relation between the typestate of an
object and the atomic properties of its fields (in this case non-nullity).

Furthermore, we may relate the typestate of an object to the typestates of
objects pointed to in its fields. For example, the UnaryExpr class needs to specify
the state of the operand sub-expression in the AST. This state is dependent
on the state of the unary expression node itself. In our example, the relation
is simple: if the unary expression object satisfies state ”Naked” (resp. ”Bound”,
”Typed”), then so does the sub-expression. The annotation [InState(”Naked”,
WhenEnclosingState=”Naked”)] expresses the first of these three dependencies.

The advantage of these data invariants should now be evident. Method Type-
Check can rely on the fact that the binding field of Identifier objects is non-null.
Similarly, the back-end can rely on the fact that the type field of expression
objects is non-null.

2.1 The aliasing problem

A technical reason that has kept typestate out of mainstream languages is the
problem of maintaining correct typestate information in the presence of aliasing.
To appreciate this problem, consider a method StripTypes:

// Set all type fields of expressions to null .
void StripTypes(AstNode ast);
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class Expression : AstNode {
[NotNull(WhenEnclosingState=”Typed”)]
Type type;
...

}

class Identifier : Expression {
string name;

[NotNull(WhenEnclosingState=”Bound”)]
AstNode binding;
...

}

class UnaryExpr : Expression {
Operator oper;

[NotNull(WhenEnclosingState=”Naked,Bound,Typed”)]
[InState(”Naked”, WhenEnclosingState=”Naked”)]
[InState(”Bound”, WhenEnclosingState=”Bound”)]
[InState(”Typed”, WhenEnclosingState=”Typed”)]
Expression operand;

...
}

Fig. 2. Typestate invariants of some front-end classes

This method sets all type fields of Expression objects back to null. The problem
with this method is that the typestate of abstract syntax trees is weaker on exit
than it is on entry. Thus, other pointers to nodes of the same abstract syntax tree
may need to have their typestate weakened. Suppose for example that after type
checking we build control-flow graphs (CFGs) that internally keep references to
AstNodes satisfying typestate ”Typed”.

ast .TypeCheck(emptyTypeEnvironment);
CFG cfg= BuildCFG(ast);
StripTypes(ast );
WorkOnCFG(cfg);

The above code sequence is problematic, since the AstNode references in the cfg
object are annotated to satisfy typestate ”Typed”, but after the call to StripTypes,
these references point to objects that do not satisfy the typestate ”Typed”. In
order to correctly track such non-local and non-monotonic typestate changes,
strict non-aliasing regimes must be followed. The earliest attempts at typestate
checking appear in a language called Nil that completely rules out aliasing in
pointer structures [9]. Vault is a more recent programming language that permits
typestate checking and strong aliasing control [3]. However, once an object’s
aliases are no longer statically known in Vault, its typestate needs to be frozen,
that is, it can no longer change, except temporarily [5].

Although some typestate protocols will always require aliasing control (for ex-
ample, open/close protocols), we identify in this paper a class of heap monotonic
typestates that do not require aliasing control. The idea behind heap monotonic
typestates is that, once a certain typestate is reached, no future changes to the
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object will ever invalidate that typestate. Monotonic typestate checking makes it
possible to capture object references in arbitrary typestates without the need to
invalidate such references on future object updates. In our proposal, the method
StripTypes cannot be typestate checked, since the update of the type field to null
violates the monotonicity of our typestates.

3 Typestate formalization

We start with a number of definitions. Let Σ be a set of identifiers used to
represent local variables and fields of objects. We use σ ∈ Σ+ to represent
access paths. Let V be the domain of values, including locations L used during
program execution. A heap H is a map L × Σ → V , mapping location-field
pairs to values. The local variables are accessed via a distinguished location
containing all locals �locals. For convenience, define H(σ) = H(�locals, σ) and
H(�, x.σ′) = H(H(�, x), σ′).

Definition 1 (Heap monotonic predicate). A predicate P on values and
heaps is heap monotonic, if P (v, H) ⇒ P (v, H ′) for every value v and heaps H
and H ′, where H ′ is obtained from H by updates allowed by the static program
semantics.

Examples of heap monotonic predicates in most programming languages are
notnull(v), null(v), dynamictype(v) ≤ T , v ≥ 5, etc.1 Let A be a fixed set of heap
monotonic predicates.

In a non-object-oriented setting, a typestate for an object o of type T is
simply a named predicate over the fields of o. We write AT for such a typestate
predicate, where A is the name of the state. In this paper, we are interested
in heap monotonic typestates. A typestate is by definition heap monotonic if it
only depends on heap monotonic predicates. If field updates are restricted to
preserve monotonicity (Sect. 3.4), then each heap monotonic typestate is itself
a heap monotonic predicate. Thus the typestate of an object can depend on the
typestates of objects stored in its fields.

3.1 Heap monotonic typestate in the presence of inheritance

In an object-oriented setting with single implementation inheritance, an object
can be viewed as a list of frames, one per class in the inheritance path from the
root class Object to its dynamic type.

We specify typestates of objects by giving a typestate per class frame. Thus,
an object with dynamic type AstNode has a typestate for the Object frame and
a separate typestate for the AstNode frame. A typestate AT only describes fields
declared in T , none in super or sub-classes of T .

We further need a technical device to abstract the typestate of sub-classes of
an object, since the dynamic type of an object is rarely known statically. We thus
1 These examples are trivially heap-monotonic, since they are independent of the heap.
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introduce typestate predicates of the form A≤T . The meaning of this predicate
is that AS holds for every subclass S of T . Formally, if supertype(Q) = T

A≤T ⇐⇒ AT ∧ A≤Q

Thus, the typestate annotations in our examples so far are interpreted as A≤Object.
Let MP be the set of heap monotonic predicates consisting of A and all type-

state predicates AT . The interpretation of a typestate AT is a map [[AT ]]: Σ →
2MP , mapping fields of T to the heap monotonic predicates that are true for the
value contained in the field, when the enclosing object frame T satisfies state A.
We interpret such sets of predicates as conjunctions.

Note that our typestates are not mutually exclusive. It is perfectly fine to
have an Expression object in typestates BoundExpression ∧ TypedExpression. In fact,
there is nothing in our typestate definitions that explicitly orders typestates.
Since states are monotonic, “transitioning” an object from AT “to” BT results
in an object with AT ∧ BT .

3.2 Language

We work with a small core object-oriented language consisting of classes, fields,
and methods. Without loss of generality, we assume that each field uniquely iden-
tifies its declaring class. We describe statements modifying or accessing the heap
and method calls, but omit other details. Typestate annotations are assumed to
be given in the form of typestate predicates AT discussed above, but we do not
provide formal syntax and interpretation for such annotations here. The syn-
tax used in the examples is one possible approach. We assume the language is
statically typed, similar to C# or Java, and focus only on typestates.

method T.m(x1, . . . , xn) returns z {ι}
instruction sequence ι ::= · | s; ι
instruction s ::= x := y | x.f := y | y := x.f | y := null | y := new T ()

z := y0.m(y1, . . . , yn) |
z := y0.T.m(y1, . . . , yn) | · · ·

Instructions of interest consist of variable copy, field assignment, field read, null
assignment, object construction, and virtual and direct method call.

3.3 Dynamic semantics

The semantics of the language is a standard small-step semantics of the form
(H, ι) → (H, ι), relating machine states consisting of a heap H and instruction
sequence ι. We omit the details for space reasons.

Let [[H ]] : Σ+ → 2MP be the largest predicate assignment for heap H con-
sistent with the rules in Fig. 3. We use the largest, rather than the inductively
defined set in order to allow more properties of circular heap structures. Rule
[H-atom] provides atomic heap-monotonic predicates. For example, for any loca-
tion � �= null, notnull(�, H) holds. Rule [H-ts] relates predicates of fields σ.f with
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H � σ : M

H(σ) = � ∧ p(�,H) p ∈ A
H � σ : {p} [H-atom]

∀f ∈ T.H � σ.f : [[AT ]](f)

H � σ : {AT } [H-ts]

H � σ : M1 ∧ H � σ : M2

H � σ : M1 ∪ M2
[H-and]

H(σ) = null

H � σ : {AT } [H-ts-null]

Fig. 3. Rules for deriving heap properties

the typestate of σ. Rule [H-ts-null] is a special case for null, which we consider
to have every typestate.

[[H ]] maps each access path σ to the observable heap monotonic predicates
that hold for the value accessed through σ. Note that [[H ]] is total, mapping
access paths not in H to the empty set.

3.4 Static semantics

In this section, we formalize parts of the static semantics. We give type rules for
the statements in our language. Of particular interest are the rules for interpret-
ing and proving certain typestates, as well as the field update rule. We end by
showing how to typestate check a small example.

Typestate checking cannot simply use a typestate environment (mapping
identifiers to typestates) akin to a type environment, because we want to prove
new typestates for a particular pointer stored at path σ, once sufficiently strong
properties of its fields σ.f are known. For this purpose, it is necessary to keep
associations (akin to must-aliasing) that remember that a particular variable y
holds the same value as x.f .

The static semantics thus uses two auxiliary structures, a heap abstraction
S: R × Σ → R and a predicate map E: R → 2MP , where R is a finite set of
symbolic pointers ρ. The heap abstraction S maps a symbolic pointer and a
field to the symbolic pointer contained in that field. The predicate map E maps
each symbolic pointer ρ to a set of predicates known to hold for ρ. Local variables
are looked up as fields of a distinguished pointer ρlocals. We use the short-hands
S(σ) = S(ρlocals, σ) and S(ρ, x.σ) = S(S(ρ, x), σ).

A symbolic pointer ρ abstracts an actual heap pointer in the following way.
Each symbolic pointer corresponds to exactly one heap pointer. Multiple distinct
symbolic pointers may correspond to the same heap pointer. For locals, the
information is conservative must-alias information, that is, if S(x) = S(y), then
at runtime, H(x) = H(y). The information for locals can be kept in synch
with the actual execution, because in our language, locals are only assigned
directly. For fields, the abstraction is more subtle. It doesn’t correspond to must-
aliasing exactly because we allow the abstraction to be outdated. For example, if
S(y) = S(x.f), then either H(y) = H(x.f) for the current heap H or there is a
past heap where the object referred to by x contains the current value of y in field
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f , that is, a past H ′ ≤ H , such that H ′(H(x), f) = H(y) This information is
crucial, since it states that at some point in the past (heap H’), the must-aliasing
information was correct. This allows us to deduce that if H(x.f) �= H(y), then
there was an assignment to field f between heap H ′ and the current heap.

We now proceed to the typestate rules for each statement kind and observe
how this static information is maintained and used. The static well-typestate
relation for statements has the form S, E � ι : S ′, E′, where S and E are the
static structures prior to the execution of statements ι, and S ′ and E′ are the
static structures after execution of ι.

Variable copy
S[(ρlocals, x) �→ S(y)], E � ι : S′, E′

S, E � x := y; ι : S′, E′

The rule states that the remainder of the instructions ι are checked under the
assumption S(x) = S(y).

Field access

S, E � x.f : M
ρ fresh S(x) = ρx

S[(ρlocals, y) �→ ρ][(ρx, f) �→ ρ], E[ρ �→ M ] � ι : S′, E′

S, E � y := x.f ; ι : S′, E′

The result of reading field f is recorded under a fresh symbolic pointer ρ cor-
responding to the current pointer in x.f . We use a fresh pointer here, since the
current static knowledge S(x.f) may be outdated. But after the statement, we
record the equality S(x.f) = S(y), since it is definitely true at this point in the
execution. The predicates M known to hold for x.f prior to the statement are
recorded in E for the fresh pointer ρ. The auxiliary judgment S, E � σ : M is
used to deduce predicates for particular access paths. The rules are shown in
Fig. 4.

For field accesses, the rules in Fig. 4 can prove properties in two ways: ei-
ther by rule [TS-elim], applying knowledge of the typestate of x to the field
x.f . Alternatively, by rule [Loc], where we use knowledge of the properties of
the symbolic pointer ρ = S(x.f) directly. It is not immediately obvious why
this second way is sound, since we know that x.f could be pointing to a new
object, not corresponding to ρ. Fortunately, our rule for field update (shown
later) enforces strong enough properties, that rule [Loc] can be proven sound. It
is however necessary to restrict the knowledge of E(ρ) to the set of predicates⋃Ox.f observable through path x.f . To see why, consider the following code
snippet:

y := x. f ;
y. EstablishStateA (); // establishes typestate A for y
// does x. f have typestate A?
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S, E � σ : M

E(S(x)) ⊇ M

S, E � x : M
[Var]

S(x.f) = ρ
E(ρ) ∩ ⋃Ox.f ⊇ M

S, E � x.f : M
[Loc]

S, E � σ : M1 S, E � σ : M2

S, E � σ : M1 ∪ M2
[Union]

S, E � σ : ∅ [Empty]

S, E � σ : {AT } [[AT ]](f) ⊇ M

S, E � σ.f : M
[TS-elim]

∀f ∈ T . S, E � σ.f : [[AT ]](f)

S, E � σ : {AT } [TS-intro]

Fig. 4. Rules for proving predicates of access paths

Oσ

Ox = {MP}
Oσ.f = {[[AT ]](f) | AT ∈

⋃
Oσ} f ∈ T

Fig. 5. Observable predicates for a given access path

We have to consider that x.f , after the call to EstablishStateA, may differ from
y. (We make no assumptions about what is or is not modified.) There are two
cases to consider. If

⋃Ox.f � AT , then there is some typestate BU of class
U declaring field f such that [[BU ]](f) � AT and we can conclude that x.f
satisfies typestate A, since—as we will see below—any update to x.f during
the call to EstablishStateA must have updated the field with an object satis-
fying state AT . Otherwise (

⋃Ox.f �� AT ), we cannot conclude x.f has type-
state A, since an update could have stored an object in x.f not satisfying
state A. As an example, consider field UnaryExpr.operand where Ox.operand =
{{notnull, Naked≤Object}, {notnull, Bound≤Object}, {notnull, Typed≤Object}}, therefore

⋃
Ox.operand = {notnull, Naked≤Object, Bound≤Object, Typed≤Object}

Field update
S, E � y : M M ⊇ Uf (x)
S(x) = ρx

S′ = S[(ρx, f) �→ S(y)]
S′, E � ι : S′′, E′′

S, E � x.f := y; ι : S′′, E′′

The field update rule is the most crucial piece in our approach. We must first
find an upper bound Uf (x) on the observable predicates of field x.f . This upper
bound must account for all predicates of field f that any other access path to x.f
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may already know or may be establishing. We will return below to our actual
definition of Uf (x).

The field update is safe, if the condition M ⊇ Uf (x) is satisfied. This con-
dition ensures that the update does not invalidate the typestate assumptions of
any other access path. The static heap approximation is updated to reflect that
at this point, S′(x.f) = S′(y).

Let us now define Uf (x) to be the set
⋃

{M | ∃σ.σ �= x ∧ H(σ) = H(x) ∧ (M ∈ Oσ.f ) ∧ ([[H(x.f)]] ∪ M consistent)}
Note that we formulate Uf (x) in terms of knowledge of the dynamic heap H that
in general won’t be statically known. In the absence of any aliasing information
on x or knowledge about the value x.f , the bound goes up to

⋃Oz.f . In this
case, field updates require that the written value satisfy all predicates that could
ever be observed of field f . This worst estimate allows each field to go only from
the null-initialized state (as established on entry to the constructor), to the fully
initialized state.

Another extreme case is when we know that x is the only pointer to the object
whose field is updated (depending on the programming language, for example
during or right after construction). In that case, Uf (x) = ∅, and any update is
valid (even a non-monotonic one).

Another possible case is when we know something about the current value
of x.f . In general, we need to include in Uf only predicate sets M that are
consistent with the current properties of the field [[H(x.f)]]. For example, if x.f
is null, we can compute Uf (x) to be the union of all observable predicates for f
that are consistent with null. Consider field operand of class UnaryExpr in Fig. 2.
If we know that x.f is null at the moment of the update, we can conclude that
no pointer to the unary expression object can assume it in any of the typestates
Naked,Bound,Typed, since they all include predicate notnull, which is inconsistent
with the current value of x.f .

Methods A virtual method signature consists of pre and post predicates for
each method parameter and result, including the receiver this. We refer to these
predicates by pre(m.x) and post(m.x), where m is the name of a declared method,
and x is the parameter name, this, or return. Annotations [Pre(A)] on x translate
to pre(m.x) = A≤Object. Annotations [Post(B)] on x translate into post(m.x) =
B≤Object.

A particular implementation of method m in a class T is referred to as T.m.
The signature of T.m differs with respect to the virtual method signature only
in the treatment of the receiver post condition. If the post condition for the
receiver in a declared virtual method is A≤Object, then the post-condition for the
receiver in a particular implementation method T.m is weaker, namely

post(T.m.this) =
∧

S≥T

AS

that is, the conjunction of all typestates AS for class frames S at or above T .
The frames of strict subclasses of T obtain no stronger properties.
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It should intuitively be clear why this is so. A method implementation T.m
can only directly affect the state of the object at or above class frame T . To
produce a deep post condition of the form A≤Object, a virtual dispatch is needed.

We now give the conditions for typestate checking of a method body. Assume
x0 = this.

S = [(ρlocals, xi) �→ ρi] i = 0..n, ρi fresh
E = [ρi �→ pre(T.m.xi)] i = 0..n
S, E � ι : S′, E′

S′, E′ � xi : post(T.m.xi) i = 0..n
S′, E′ � y : post(T.m.return)

� T.m(x1, . . . , xn) returns y {ι}
The first two lines describe the initial environment S, E in which the method
body is typed. We assume a distinct symbolic pointer ρi for each parameter, and
populate E with the respective preconditions. Note that we need not have any
knowledge about possible aliasing of the parameters. The third line checks the
body ι, resulting in the static structures S ′ and E′ describing the typestates at
exit of the method. Finally, the last two lines check the post-conditions of the
parameters, this, and the result.

We assume that each class T implements each virtual method of any parent
class. If no implementation is explicitly given, the implementation

{ return this .base.m(x1,...,xn); }
is assumed, where base is the immediate supertype of T . This requirement is
necessary to check the correctness of any specified typestate changes on the
receiver this.

Method calls We allow both virtual calls and non-virtual (direct) method calls.
The two differ only in whether the virtual method signature or a particular
implementation signature is used. We give the rule for virtual calls. Direct calls
look identical, but every occurrence of m is replaced with T.m. Assume x0 = this.

S, E � yi : pre(m.xi) i = 0..n
E′ = E[S(yi) �→ E(S(yi)) ∪ post(m.xi)] i = 0..n
S′ = S[(ρlocals, z) �→ ρ] ρ fresh
E′′ = E′[ρ �→ post(m.return)]
S′, E′′ � ι : S′′′, E′′′

S, E � z := y0.m(y1, . . . , yn); ι : S′′′, E′′′

The first line ensures that the arguments in the calling context satisfy the pre-
conditions of the virtual method parameters. The second line joins the post
typestate of each parameter to the current knowledge in the predicate map. The
third line adds a fresh symbolic pointer ρ for z to the store abstraction. The
fourth line adds the result typestate for ρ to the predicate map. The last line
ensures that the static environment right after the method call is sufficient to
prove typestate safety of the remaining instruction sequence ι.
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3.5 Example revisited

We now return to our motivating example and show the TypeCheck method for
unary expressions.

[Pre(”Bound”),Post(”Typed”)]
UnaryExpr.TypeCheck()
{

y := this .operand;
y.TypeCheck();
this .type := new Type(...);

}
The initial environment is as follows: S(this) = ρ0, E(ρ0) = {notnull, Bound≤Object}.
After the assignment to y, we also have S(y) = ρ1, S(ρ0, operand) = ρ1, E(ρ1) =
[[BoundUnaryExp]](operand) = {notnull, Bound≤Object}. Our static information satis-
fies the precondition to invoke TypeCheck on y. On return from the call, the en-
vironment is updated to E(ρ1) = {notnull, Bound≤Object, Typed≤Object}. After the
assignment to this.type, the environment is updated to S(ρ0, type) = ρ2, E(ρ2) =
{notnull}. Call this environment S ′, E′. At this point, we can prove the post con-
dition on the receiver: TypedObject ∧TypedAstNode ∧TypedExpression ∧TypedUnaryExpr .
The first two predicates in the conjunct are trivial, since their typestate map-
ping is empty. So for each field f of Object and AstNode, we can prove S ′, E′ �
this.f : ∅, and then conclude via rule [TS-intro] (twice) and [TS-union] that
S′, E′ � this : {TypedObject, TypedAstNode}. For TypedExpression, we need to prove
S′, E′ � this.type : {notnull}, which we do via rule [Loc]. Similarly, we prove
S′, E′ � this.operand : {notnull, Typed≤Object} via [Loc].

3.6 Soundness

The soundness of the system is subtle because it relies on the field update guar-
antees and the use of out of date field information. We have proven soundness of
the hard cases (field update and method call) via a standard subject reduction
approach [11].

4 Discussion

This section discusses some additional properties of heap monotonic typestates
and considers possible extensions.

4.1 DAGs and circular structures

Our typestate proposal works for arbitrary graph structures, not just trees or
DAGs. Establishing arbitary typestate relations among DAG nodes is done by
traversing the DAG as if it were a tree. To avoid the duplicate traversals, dynamic
typestate tests (see next subsection) can be used.
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Surprisingly, the static proof technique described here can prove typestate
properties of circular structures as well. Consider a general graph, where each
node satisfies typestate AN , if some internal field f is non-null, and all successor
nodes are in AN . The general way to establish that each node in an arbitrary
graph satisfies AN is to first build a corresponding DAG, where the missing back
pointers point to a dummy object for which it is trivial to establish typestate
AN . It is then possible to prove inductively that each node satisfies AN . After
that, do one more traversal, where all pointers going to the dummy node are
updated to point to their intended node. Since their intended target is already
in typestate AN , the update is okay.

Since the approach requires updating of back pointers, it can only be used
to establish the ultimate typestate of each graph node. It seems not possible to
gradually transition the entire circular graph to better typestates as in our AST
example.

4.2 Dynamic typestate tests

Our approach can prove properties of a DAG inductively, simply by traversing
it as a tree. However, shared subtrees have to be traversed multiple times. It
would be desirable to dynamically record knowledge of an established typestate
in a field, and allow a dynamic test of such a field to infer the entire typestate
of the object.

Let’s call such a field a typestate designator and mark these fields specially
with an annotation [TypeState]. Further assume, that such fields must be of type
string, and that we have the global invariant that for every object o, if o.f is a
typestate designator, and o.f is equal to “A”, then o satisfies A≤Object.

Writing to a typestate designator requires a compile-time known string “A”,
and a proof that the enclosing object satisfies A≤Object. Furthermore, in the true
branch of a conditional test of the form if (o.f == ”A”), the typestate of o can
be assumed to be A≤Object.

Using this device, DAG traversals can establish typestate properties without
visiting nodes more than once.

4.3 Relational atomic predicates

So far, all our heap monotonic atomic predicates are unary, that is, they involve
exactly one value of a single field. An obvious generalization is to allow relational
predicates, such as x≤y, where x and y are both fields of the same class frame.
Updates to such fields are slightly more tricky, since to maintain the relational
property, two updates may be required, and the property may not hold after
the first update. As long as one can statically prove that both updates occur
atomically, such extensions can be handled.

The requirement that both fields are of the same class frame is to maintain
modular soundness. Without this requirement, modifications to a field of class
T , may invalidate the invariant of a subclass S of T , but the code in class T has
no knowledge of such an invariant.
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4.4 Concurrency

Our typestate checking remains sound in the presence of concurrency. That static
rules indeed assume that after each instruction, every field could be updated by
another thread (provided the update satisfies our field update rule).

5 Related work

The extended static checker (ESC) project uses theorem proving to enforce
method-level specifications and object invariants [4]. The enforcement of ob-
ject invariants however is sound only under strict non-aliasing conditions. The
work on Vault [3] and Roles [8] soundly enforce object invariants and allow state
changes. However, both systems require non-aliasing assumptions. Earlier work
on alias types also allows incrementally establishing data structure invariants,
but only under non-aliasing assumptions [10].

The present system has the advantage that it is useful even without any
non-aliasing assumptions, but it can exploit non-aliasing assumptions to allow
non-monotonic typestate changes.

The work on type checking Java byte code for safety properties by Freund
and Mitchell considers only whether the constructor of a newly allocated object
is called before other methods [7]. It does not enforce field initializations or other
object invariants.

The motivation for the present work stems in part from our prior work on
guaranteeing initialization of object fields to non-null pointers [6], and also from
typestate-like code comments we found in a front-end written by Dave Hanson.

6 Conclusion

Initialization of objects often happens gradually over the lifetime of an object,
rather than during execution of the constructor alone. We believe that monotoni-
cally evolving typestate provides a good match for capturing such evolving object
invariants. It has the advantage over prior work that it requires no non-aliasing
guarantees, but can exploit them if they are present. The resulting programming
model seems flexible.
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Abstract. Encapsulation is a founding principle of object-oriented programming:

to this end, there have been a number of recent of proposals to increase program-

ming languages’ support for encapsulation. While many of these proposals are

similar in concept, it is often difficult to describe their effects in practice, or to

evaluate clearly how related proposals differ from each other. We are develop-

ing a general topological model of encapsulation for object-oriented languages,

based on a program’s object graph. Using this model, we can characterise a range

of confinement, ownership, and alias protection schemes in terms of their under-

lying encapsulation function. This analysis should help programmers understand

the encapsulation provided by programming languages, assist students to bet-

ter compare and contrast the features of different languages, and help language

designers to craft the encapsulation schemes of forthcoming programming lan-

guages.

1 Introduction

We are developing a simple topological model of encapsulation in object-oriented sys-

tems, programming languages, and more general computer systems. This model has

three parts — an access graph describing the topology of the system under consid-

eration; an encapsulation function describing how particular parts of the system are

encapsulated; and an encapsulation constraint that, when true, captures the fact that

the encapsulation function partitions the access graph so that so part of it is actually

encapsulated.

For this position paper, we take a statement of Dan Ingalls as the defining quality of

encapsulation1:

No component in a complex system should depend on the internal details
of any other component. [14]

As far as we are aware, there is as yet no agreed formalisation of encapsulation: our

model is intended to be a step in that direction.

1 Glossing over the fact that Ingalls was defining modularity rather than encapsulation.
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1.1 Access Graph

The first part of our model is an access graph. An access graph models the topology of

a system: nodes (N ) in the graph represent individual objects in the model, and edges

(E) between nodes represent accesses between objects.

Nodes and edges may (or may not) be labelled: node labels are typically given by

boolean predicates (as functions from N to
�

); or functions to (sets of) nodes, com-

ponents, or model-specific sets; edges may be labeled similarly (e.g. i, r, w). Our for-

mulation of encapsulation does not depend upon whether the graph is directed: in an

undirected graph we take an edge (a, b) to mean that a accesses b and b accesses a.

Some notation: we write S for all the objects in the system, that is, the set of all

nodes in the graph; {a}✄ to be the set of all other nodes that have edges beginning

from a and ✄{a} to be the set of all other nodes that have edges ending at a; {a}✄✄
and ✄✄{a} for their transitive closures (all other nodes which can be reached from a
and which can reach a respectively); a −→ b to mean that there is an edge from a to b;

paths(a, b) for the set of all paths (a set of sequences of nodes) from node a to node b;

a � b to mean that a is a dominator for b, that is, every path to b from some nominated

entry point leads through a. If edges are labelled, we may subscript graph operations

to restrict to matching edges (i.e. a✄✄i is all other nodes reachable from a along edges

labelled i).
Our access graph is unremarkable in its suburban monotony, being at heart a di-

rected graph: our whole model of encapsulation is similarly simple-minded. The reason

for this naı̈ve formulation is that the access graph is itself an abstraction: our model

of encapsulation will work over any directed graph model that meets these criteria. In

this position paper, we will consider only object graphs, with objects as nodes and their

variables (references between objects) as edges. We may build this graph informally

based on some kind of object identifiers, use Zeller’s Memory Graphs [19] or Hoare

and Jifeng’s trace model [12], or some other formulation of an object-oriented program

that also is based on a directed graph [10]. We can decorate the graph as necessary to

distinguish between static or dynamic object accesses, the classes, packages, modules,

block structure, or files to which objects belong. We expect the ubiquity of the access

graph will allow us to address some other kinds of encapsulation in object-oriented

systems and encapsulation in non-object-oriented (and non-informatic) systems.

1.2 Encapsulation Function

The second part of the model is the encapsulation function. The encapsulation function

partitions the system (S) by taking an identifier of an encapsulated component (C) to

a three-tuple of sets of access graph nodes that respectively describe the encapsulation

boundary (B), the inside (I), and the external references (R) of the component. We will

use e.g. B to represent Bc for some given c ∈ C.

C : id

S,B, I,R,O : � N
e : C → (B, I,O)
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The boundary of a component represents the interface that components presents to

the rest of system, while the inside is that part of the component which is encapsu-

lated, and may itself be a network of interconnected objects. The inside of a component

can only be accessed via the component’s interface, that is, by crossing its encapsula-

tion boundary. The external references of a component are nodes which the boundary

or inside accesses directly, but which are not contained within boundary or inside of

the component. Finally, the outside (O) of a component are all nodes which are nei-

ther inside the component nor on its boundary — including the component’s external

references.

The idea that encapsulation or confinement is fundamentally a partition of some

software space is not a new one: a range of recent encapsulation schemes have been

(formally) described in such terms [3, 4, 18]. Here, we argue that this is not accidental:

rather, encapsulation is essentially defined by such a partition.

O = S − (B ∪ I)
R ⊆ O

This is illustrated in figure 1 below. All the nodes in the graph S represent the whole

system: those nodes outside any subset boundary are in the outside O of the component

shown in the diagram.. The boundary B (the left subset) provide the interface to the en-

capsulated component: they can be accessed from anywhere — outside the component,

inside it, from other boundary nodes, or from the component’s external references. The

centre subset in the diagram represent the inside I of the component: nodes here may

only be accessed by each other or by the boundary nodes. The right-most subset are the

outside nodes referred to by the inside and boundary of the component — its external

references R.

I

B

R

O

Fig. 1. An encapsulated component
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Note that we make a distinction between components (C) and nodes (N ): compo-

nents are not nodes: rather a component encapsulates several nodes (via its encapsula-

tion function e) by identifying an encapsulation boundary, the nodes inside that bound-

ary, and any external references leaving that boundary. In an object graph, objects are

nodes, however components may be based upon a range of structures, including objects

but also packages, classes, and universes, as we will see below.

The argument to the encapsulation function — a component identifier — effectively

chooses a particular partition of the system. For that component, the function selects

those nodes that will be on the boundary, inside, external, and outside. The interpreta-

tion of the component identifier depends upon the particular scheme being modelled,

and is typically linked to the access graph proper via node labels. For example, for

package-based encapsulation (such as confined types, see section 2.6 below) the unit

of encapsulation is a package, so component identifiers model packages, and nodes

need a labelling function (say package : N → C) to identify the package to which

they belong. An encapsulation function for such a scheme takes an identifier (such as

“java.lang.util”) as its argument to select the package that is encapsulated: the

function itself will then choose objects based on their package (e.g. grouping objects

of classes in java.lang.util). By contrast, in object-based encapsulation schemes

such as islands or balloons, each node forms an encapsulated component, so we let

C = N .

1.3 Encapsulation Constraints

So far, we have an access graph as a (directed) graph; and an encapsulation function

which selects nodes from that graph. The third part of our model is the encapsulation
constraints that link the access graph and encapsulation function. These constraints

ensure that the encapsulation function does actually describe encapsulation: that inside

nodes are only accessed via the boundary, and that outside nodes are only accessed via

the external references.

More formally, the encapsulation constraints are as follows: first, a component’s

boundary, inside, and externals must be disjoint (this implies that the externals must be

outside the component).

B ∩ I = B ∩R = I ∩ R = { }

The second constraint is the most important one: the boundary must actually be a

boundary for the inside. To be a valid encapsuation the nodes inside an encapsulated

component can only be accessed via the component’s boundary: that is, any edges end-

ing at inside nodes can only come from other inside nodes or boundary nodes:

✄I ⊆ (B ∪ I)

Alternatively we could state that all paths from the outside of a component into the

inside must pass through the boundary.

∀o ∈ O : ∀i ∈ I : ∀p ∈ paths(o, i) : ∃b ∈ p s.t. b ∈ B
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where paths(i, o) is all paths (as a set of sequences of nodes) from i to o.

Finally we require that every outside node directly accessed by an inside node is

recorded in the component’s externals:

(B ∪ I)✄ ⊆ (B ∪ I ∪R)

Note that this sets a lower bound on the extent of the external references — a component

may include outside objects in its external references even if it does not refer to them.

This is useful because it allows us to set R = O to indicate that an object’s external

references are unconstrained (note that the outside (O) is all nodes in the system (S)

except the boundary and interface — O = S − (B ∪ I)). In any event, one can always

define an alternative encapsulation function with a tighter external reference set.

This formal definition is designed to capture the intent of Dan Ingalls’ statement

above:

No component in a complex system should depend on the internal details
of any other component. [14]

In our model, the “external aspects” of an encapsulated component lie on its bound-

ary, while the “internal details” are its inside. The encapsulation constraints ensure that

these internal details of a component are hidden from every external component in the

system.

1.4 Nested Encapsulation

These definitions imply that encapsulated components may be nested inside each other.

We say that c1 contains c2 (c1 ≤ c2) or c2 is inside c1 (c2 ≥ c1) if all c2’s boundary and

inside are part of the boundary and inside of c1 (see figure 2). That is ≤ is defined as:

c1 ≤ c2 iff Bc2 ⊆ (Bc1 ∪ Ic1) ∧ Ic2 ⊆ (Ic1)

One consequence of this definition is that the external references of the inner com-

ponent must be contained within the inside, boundary, or external references of the outer

component:

Rc2 ⊆ (Bc1 ∪ Ic1 ∪Rc1)

2 Encapsulation Schemes over Object Graphs

Having outlined our model of encapsulation, in this section we apply that model to

a range of encapsulation schemes over object graphs, beginning with simple implicit

models and progressing to more complex schemes. We describe each scheme by its

characteristic encapsulation function.

An object graph is part of a program’s operational state: the graph will evolve as

the program runs, as objects are created and deleted and as assignments change ref-

erences between nodes. This is the reason that we characterise encapsulation schemes
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R2

R1

B1

I1

B2

I2

Fig. 2. Nested Components

by encapsulation functions: these functions are implicitly parameterised by the object

graphs to which they are applied. Typically, an encapsulation scheme will mandate that

the encapsulation constraints hold at all times in all runs of all programs to which the

scheme applies. Different schemes will use a wide range of mechanisms to achieve this,

from dynamic checks at assignment or invocation, through static annotations, extended

type systems, abstract interpretation, theorem proving, or even providing no enforce-

ment at all and simply relying on programmers’ adherence to conventions. One key

advantage of our model of encapsulation functions (and access graphs) is that they can

abstract away considerations of mechanism and provide succinct characterisations of

the encapsulation policies supported by each scheme — in particular, the topology of

encapsulation that each scheme provides.

2.1 Islands: Full Encapsulation

Hogg’s Islands [13] was the first alias protection scheme advocated for an object-

oriented language. The key notion of an Island is that some classes in the program

are distinguished as bridge classes: instances of those classes are subject to a series of

syntactic restrictions, so that all objects reachable from the bridge — i.e. the objects

making up the island — are only reachable from the bridge (see figure 3).

In terms of an encapsulation function, an object o that has been identified as an

bridge (using the label bridge : N → � ) has itself as a boundary, all objects reachable

via that boundary as its inside, and no external references:

eisland(o) =




B = {o}
I = {o}✄✄
R = { }




where bridge(o)

Islands are one example of an alias protection scheme with a full encapsulation topol-

ogy: the encapsulation functions of such schemes are characterised by having empty
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Fig. 3. Full Encapsulation

external references. Almeida’s Balloon Types [2] also mandate full encapsulation, as

does Banerjee and Naumann’s original work on heap confinement [3].

Note that Island’s encapsulation function must also be interpreted to cover only

static references (from objects’ fields and global variables) but not dynamic references

(such as local variables or method arguments on the stack). Islands provides no protec-

tion for dynamic references.

2.2 Uniqueness

Islands also supports another common type of encapsulation, uniqueness. A classically

unique object has only one incoming reference (| ✄ u| = 1) and so a unique object is

always encapsulated by the sole object that refers to it. This condition produces a range

of encapsulation function.

Most generally, a unique object may refer to any other object in the system (see

figure 4):

eunique(u) =




B = ✄{u}
I = {u}
R = O




where | ✄ {u}| = 1

where we say that the external references are the outside (O) of the unique object to

mean that the references are unconstrained (not that the object necessarily refers to

every outside object!). Note also that this definitions works by placing the unique object

into the inside of the encapsulation: the encapsulation boundary is the (sole) object

which refers to this object.

Clarke and Wrigstrad have recently demonstrated that a weaker formulation of

uniqueness can provide all the benefits of full uniqueness but is significantly more flex-

ible. An externally unique object [7, 8] may have only one reference from outside, but

may have any number of other references from inside:
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unique
1

Fig. 4. A Unique Object

eexternal-unique(u) =




B = {v}
I = {u} ∪ {o|u � o}
R = O




where v = (✄{u} − I) and |v| = 1

1

Fig. 5. External Uniqueness

Again, the encapsulation boundary is the object that refers to the externally unique ob-

ject. Here, however, an unique object contains a number of other objects but any incom-

ing references from these objects do not count against the uniqueness of the externally

unique object — external uniqueness counts only those references from the boundary

in to the unique object, not references from the inside of the object.

2.3 Balloon Types

Alemida’s Balloon Types [2] provide full encapsulation, however, they are also con-

strained to be unique. Using a label (balloon : N → � ) for balloon objects, we can

model this with two nested encapsulations, a inner full encapsulation
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einner-balloon(b) =




B = {b}
I = {b}✄✄
R = { }




where balloon(b)

and an outer unique object:

eouter-balloon(b) =




B = ✄{b}
I = {b}
R = {b}✄✄




where balloon(b) ∧ | ✄ {b}| = 1

or as a single encapsulation function encompassing both the balloon object and the

contents of the balloon, and having as its boundary the (sharable) object holding the

single reference to balloon object proper:

eballoon(b) =




B = ✄{b}
I = {b} ∪ {b}✄✄
R = { }




where balloon(b) ∧ | ✄ {b}| = 1

These are then nested, so thateballoon ≤ einner-balloon andeballoon ≤ eouter-balloon.

inner

inner
balloon

B

balloon

I

Router

outer

outer

B

I inner

Rinner

Fig. 6. Balloon Types

2.4 Flexible Alias Protection

Flexible Alias Protection [16] was proposed to resolve problems with full static alias

protection schemes such as Islands and Balloons: these schemes were simultaneously

too lax, in that dynamic references could penetrate Islands and plain balloons, and too

strict, as no external references were permitted. Flexible Alias Protection divided the

objects within an “alias-protected container” into two main categories: representation
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objects which were private, and the arguments objects which could be shared. Flexi-

ble alias protection used “modes” annotating static types to track which objects were

representation and which arguments: we can model this here with a pair of labelling

functions (rep, arg : N → � N ). Unlike Islands, Flexible Alias Protection maintained

the same encapsulation on dynamic references as static references — representation

objects could never be accessed externally.

To a first approximation, the encapsulation function for Flexible Alias Protection is:

eflexible(o) =




B = {o}
I = rep(o)
R = arg(o)




with an object’s representation being its inside, and arguments its external references

(see figure 7 compare with 3). Flexible Alias Protection’s restrictions on the use of

modes (types of different mode are not assignment compatible; representation modes

cannot appear in a protected container’s interface, and so on) ensure that the labelling

actually resulted in an encapsulation.

Fig. 7. Flexible Encapsulation Topology

2.5 Ownership Types

Ownership Types [9] were first designed to formalise the topological restrictions of

Flexible Alias Protection, although they have since found many difference applica-

tions. The key idea behind ownership types is that a type system statically enforces

topological restrictions based on an ownership relation between objects: we can model

this relationship by labelling the basic object graph so that every node has an owner

(owner : N → N ) which is another node. We write i ownedby o for the transitive

closure of the owner function, and also o owns i for the inverse. The ownership relation

is constrained to form a convergent tree at some nominated root (owner(root) = root)
and the type system then enforces a containment invariant:
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s −→ t ⇒ s ownedby owner(t)

that is, the source of an edge must be owned by the owner of the target of an edge. This

containment invariant ensures that ownership partitions the graph into a series of nested

encapsulations based on each object owning its inside (see figure 8).

Fig. 8. Ownership Types

Using this ownership graph as the access graph, the most basic encapsulation func-

tion for ownership types have the form of:

esimple-ownership(o) =




B = {o}
I = {i|o owns i}
R = {r|o ownedby owner(r)}




The external reference expression for ownership types can be simplified if (the types

of) objects are explicitly parameterised with the ownership of the objects to which they

may refer (params : N− > � N ):

eparam-ownership(o) =




B = {o}
I = {i|o owns i}
R = {r|owner(r) ∈ params(o)}




where ∀p ∈ params(o) : o ownedby p

These ownership type systems are known as owners-as-dominators models, because

the containment invariant ensures that every object is dominated by their sole owner

(owner(o) � o). The encapsulation function shows how this forms an encapsulation,

furthermore, the tree of owners gives a matching tree of nested encapsulations:

o1 owns o2 ⇒ e(o1) ≤ e(o2)
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Because the owners-as-dominators versions of ownership types limits a compo-

nent’s boundary to be a single object, these simple ownership types restrict some pro-

gramming idioms. Recently, Boyapati and Liskov have extended ownership types to

allow multiple objects in a component’s boundary, where the extra objects are Java (or

BETA) style inner objects nested within the main object [6]. This changes the encapsu-

lation function as follows:

einner-ownership(o) =




B = {o} ∪ {b|outer(b) = o}
I = {i|o owns i}
R = {r|o ownedby owner(r)}




where outer : N → N gives the outer object within which a (non-static) inner class in-

stance is nested (see figure 9). Banerjee and Naumann’s later work on heap confinement

also supports this topology [4].

Fig. 9. Extended Ownership Types

2.6 Confined Types

There are a range of other type-based encapsulation schemes. Confined types [5, 11] are

a package-wide type discipline: some classes are marked as confined, and instances of

these classes can only be accessed by instances from the same package. Objects that are

not confined within the package provide the interface by which their confined types are

manipulated (figure 10). We model this by decorating every object with the package to

which their class belongs (package : N → C) and a bit to indicate whether or not that

class is confined2 (confined : N → � ):

2 We could add another layer of indirection here to treat classes explicitly, but this would need-

lessly complicate the model.
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econfined(p) =




B = {o|package(o) = p ∧ ¬confined(o)}
I = {o|package(o) = p ∧ confined(o)}
R = O




� � �� � �� � �� � �� � �
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Fig. 10. Confined Types

2.7 Universes

Universes [15] are an alternative to ownership types, based on read-only references

rather than ownership parameterisation. In particular, objects are encapsulated only

with respect to read-write references: read-only references are unencapsulated (see fig-

ure 11). A universe plays a similar role to an owner in ownership types (every object

belongs to a universe — universe : N → C), however as well as encapsulation based

on objects (called object universes), universes also supports wider encapsulation (called

type universes).

Considering only read-write references, then, every object has one object universe

(objectu : N → C, one-to-one) but may be associated with a set of type universes

(typeu : N → � C). An object that uses only its own object universe encapsulates all

the objects in that universe:

eobject-universe(u) =




B = {o|objectu(o) = u}
I = {i|universe(i) = u}
R = O




where u is the unique object universe of o

as shown in figure 11. Alternatively, we can consider the encapsulation afforded solely

by a type universe:
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Fig. 11. Universes

etype-universe(u) =




B = {o|typeu(o) � u}
I = {i|universe(i) = u}
R = O




where u is a type universe

such a component’s boundary contains all the objects which share that type universe.

Note that both these encapsulation functions do not restrict the outgoing references in

any way, and may apply to both read-only and read-write references.

Determining encapsulation based on objects (rather than based on universes) is

rather more difficult. There are two issues here. First, object universes must be transitive

(rather like ownership); because an object owns all the objects in its object universe, it

also effectively owns all objects in those objects’ object universes, and so on (again, we

can write “o owns i” mean i is (transitively) in o’s object universe). On the other hand,

any of these objects may use a type universe, meaning they may access any object tran-

sitively owned by that universe, but they must share these objects with other objects that

also use the same type universe.

The resulting encapsulation function has the advantage that is offers full encapsula-

tion, that is, in this case, that there are no outgoing read-write references.

euniverses(o) =




B = {o} ∪ {b|typeu(b) ∩ T �= { }}
I = {i|o owns i} ∪ {t|universe(t) ∈ T }
R = { }




where T is the set of all type universes transitively reachable from o

3 Conclusion

In this position paper we have outlined our generic model of encapsulation, and applied

that to a number of alias protection schemes over object graphs. In the future, we plan

to apply this model to more object-graph schemes [1, 17]; to model finer grained ac-

cess graphs for programming languages; and to encapsulation in non-object oriented

languages and in computer systems more generally.
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Lightweight Confinement for Featherweight Java

Tian Zhao Jens Palsberg† Jan Vitek†

University of Wisconsin, † Purdue University

Abstract. Confinement properties impose a structure on object graphs
which can be used to enforce encapsulation – which is essential to cer-
tain program optimizations, to modular reasoning, and in many cases
to software assurance. This paper formalizes the notion of confined type
in the context of Featherweight Java. A static type system that mirrors
the informal rules of [16] is proposed and proven sound. The definition
of confined types is extended to confined instantiation of generic classes.
This allows for confined collection types in Java and for classes that
can be confined post hoc. Confinement type rules are given for Generic
Featherweight Java, and proven sound.

1 Introduction

While object-oriented languages provide syntactic support for encapsulating
fields of object structures, this form of encapsulation is only skin deep. Data
hiding is only an illusion, one need only take a step back and look at entire
object graphs to realize it. The graph induced by the reference relationship be-
tween objects during program execution owes more to a much maligned Italian
national dish than to anything else. The problem is the lack of constraints on
patterns of references. While the access modifiers provided by the language can
prevent some part of the system from reading a variable, there is no syntax for
constraining the spread of the objects they denote.

The last five years (starting with [7]) have seen a renewed interest in the study
of ownership structures as well as related work on aliasing. The goal of most
of these works is ambitious: extend existing language with support for object
encapsulation. Some of the most promising results suggest that it may be possible
to capture these properties through advanced type systems. The work of Clarke
et al. was the first to propose a Java-like language with ownership types [6].
More recently, Boyapati et al. [2, 3] have extended these results and applied to
a subset of the Real-Time Specification for Java.

This work takes a slightly different view, and rather than going for the most
expressive notion of confinement, we look for the least disruptive one. The rea-
son for this apparently counterintuitive choice is that before settling on one
particular notion of confinement and writing a compiler for a new language, it
is necessary to get first hand experience with the benefits and costs of devel-
oping large software with these new constructs. Even more than type systems,
restrictions on references will impose constraints on programs. The risk is that
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they become too cumbersome for programmers without providing sufficient ben-
efit. In [16] Bokowski and Vitek proposed a lightweight notion of encapsulation
for Java called confined types. The idea is simple: use Java’s notion of software
module (packages) as an encapsulation boundary. A class is termed confined if
references to instances of the class may not leak out of the class’ defining pack-
age. In other words, a confined object can only be stored in fields of objects
defined in the same package and manipulated by code of classes belonging to its
package. What makes this approach lightweight is that very few annotations are
required (one annotation per confined class, and some extra annotation for in-
herited method) and that conformance to the confinement rules can be checked
modularly. In later work Grothoff, Palsberg and Vitek [10] designed a tool for
inferring confinement without any annotations, the result of a thorough analysis
of a large corpus of code (101,893 classes) is that confined classes occur naturally
in large systems1. Confinement has been shown to be applicable in practice as
evidenced by the work of Clarke et al. on Enterprise Java Beans [5].
A longer version of this paper including proofs, support for generics and a survey
of related work is available in technical report form.

2 Confined Types

In object-oriented programming languages such as Java or C#, confinement can
be achieved by a disciplined use of built-in static access control mechanisms
combined with some simple coding idioms. The goal of confinement, as stated
in [10], is to enforce the following informal soundness property:

An object of confined type is encapsulated in its defining module.

To this end object types are categorized into public types and confined types.
The idea is that modules are composed of two distinct software layers: an inter-
face composed of public classes and interfaces and a core consisting of confined
classes. What confinement adds to the visibility rules provided by the language is
the guarantee that subtyping can not be used to ’leak’ reference to core classes.
Furthermore confinement annotation make the programmer’s intent explicit and
allow for automated checking. In the Java current realization the unit of modu-
larity is the package.
Consider the following example. A class Bucket is used to implementation of a
hash table class, mine.HTable. A fragment of the code of both classes is displayed
in Figure 1. Hash table buckets are a fine example of internal data structures
which should not escape the context of the enclosing class. In Java, the first step
towards that goal is to declare class Bucket package scoped, thus ensuring that
its visibility is restricted to the package of the HTable class, in this case mine.
But what if one of HTable’s public methods, say get(), were to return a Bucket

instance or, just as bad, store a reference to a bucket in a public field? One can

1 All software and benchmarks referred to in this paper are freely available from
www.ovmj.org.
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view this as an escape problem: can references to instances of a package-scoped
class escape their enclosing package? If the answer to this question is no, then the
objects of such a class are said to be encapsulated. This form of encapsulation is
what confined types ensure. We emphasize that a stronger notion of confinement
could provide even tighter bounds on reference patterns, for instance ensure that
entries of one hash table are not mixed up with entries of another [6].
The pleasant characteristics of confinement is that it can be viewed as a pro-
gramming discipline, i.e. it is possible to list a small (and simple!) set of software
design rules that will result in a confined type. Moreover, these rules are local
to the confining package, which implies that confined types can be used when
appropriate and ignored when unnecessary.
In order to allow reuse of code by inheritance, we add a small number of rules
to enforce a second property which we call anonymity. The need for anonimity
arises as soon as we consider the behavior of the methods inherited by a confined
type. Some of these methods may have been written outside of the package, yet
they access a confined object through the distinguished this pointer. There
are two design choices either disallow inheritance or restrict it to a safe subset.
Anonymous method are well-behaved in the sense that they do not ’leak’ the
this pointer.
Confinement can be enforced (or inferred) by two sets of constraints. The first
set of constraints, confinement rules, apply to the enclosing package, the package
in which the confined class is defined. These rules track values of confined types
and ensure that they are neither exposed in public members, nor widened to non-
confined types. The second set of constraints, so-called anonymity rules, applies
to methods inherited by the confined classes, potentially including library code,

package mine;

public class HTable {

private Bucket[] buckets;

public Object get(Object key) { ...} }

class Bucket implements marker.ConfinedClass {

Bucket next;

Object key, val; }

package marker;

interface ConfinedClass {}

final public class AnonymousMethod extends Error {}

Fig. 1. Example. The class Bucket is confined in its enclosing package. Confined classes
are marked using a simple idiom based on marker types.
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and ensures that these methods do not leak a reference to the distinguished vari-
able this which may refer to an object of confined type. Enforcing confinement
implies tracking the spread of confined objects within a package and preventing
them from crossing package boundaries. A confinement breach occur if an in-
stance of a confined type escapes from its package. Since confinement is couched
in terms of object types, widening a value from a confined type to a non-confined
type presents a risk as it is not possible to ascertain what will happen with the
object after the cast, thus casts are a considered to be confinement violations. We
present the rules of [10] with some of implementation specific details omitted.

Anonymity Rules. Anonymity rules apply to inherited methods which may
reside in classes outside of the enclosing package. These rules prevent a method
from leaking the this reference. A method is anonymous if the following rules
hold.

A1 An anonymous method cannot widen this to a non-confined type.

A2 Methods invoked on this must be anonymous.

The first rule prevents an inherited method from storing or returning this unless
the static type of this also happens to be confined. Rule A1 detects a direct
anonymity violations, and A2 tracks transitive violations.

Confinement Rules. These rules apply to all classes of a package containing
confined types.

C1 All methods invoked on a confined type must be anonymous.

C2 A confined type cannot be public.

C3 A confined type cannot appear in the type of a public (or protected) field or the
return type of a public (or protected) method of a non-confined type.

C4 Subtypes of a confined type must be confined.

C5 A confined type cannot be widened to a non-confined type.

Rule C1 ensures that no inherited method invoked on a confined type will leak
the this pointer. Rule C2 states that public classes can not be confined. Rule
C3 prevents exposure of confined types in the public interface of the package as
client code could break confinement by casting them to non-confined types. Rule
C4 prevents non-confined classes (or interfaces) from extending confined types.
Finally, rule C5 prevents values of confined type from being cast to non-confined
types.



92

Lightweight Confinement for Featherweight Java 5

Modular enforcement. Confinement annotations can trivially be checked
as part of the source level type checking or by bytecode verification. One of
the key design requirements for Confined Types was that code that did not
use them should not have to be checked and should not be required to use a
modified compiler. Confined Types meet this requirement as the rules outlined
above place no constraints on clients of a confined package (rule C3 is crucial
in this respect). Likewise confined type inference can be performed on a per-
package basis. Inference of anonymous methods is somewhat trickier as it requires
analyzing parent classes.

3 Confined Featherweight Java

Featherweight Java, or FJ, is core object calculus that was developed by Igarashi,
Pierce and Wadler [13] for modeling Java’s type system. The calculus is minimal
in that it has only five forms of expression: object creation, method invocation,
field access, casting and variable access. It is in this spartan setting that Igarashi
et al. studied a number aspects of Java, notably generics and inner classes.
Featherweight Java is a good vehicle for semantic investigations due to its econ-
omy of principles. Thus to stay true to its designer’s spirit, Confined Feather-

weight Java, or ConfinedFJ, has been modified as little as possible. In particular,
we have resisted to the temptation to add assignment. The syntax appears on
Figure 2, the only departures from FJ are the addition of package names in class
declarations and of an access modifier on classes. + means the class is public and
- means that the class is confined – in Java this also correspond to the default
access modifier. We follow the Smalltalk-80 convention and assume that fields
are package scoped by default.
Consider the following ConfinedFJ program in which a public class Table, in my
package, contains a linked list of Bucket objects. The Bucket class also belongs
to my package but is declared confined. Yet, the program is invalid as the body of
the get method of Table returns its instance of Bucket. This is a direct violation
of the widening rule.

+ class my.Table extends Object {

Bucket buck;

Table(Bucket buck) {
super(); this.buck = buck; }

Object get() { return this.buck; } }

- class my.Bucket extends Object {

Bucket() { super(); } }

The breach can be exhibited by constructing a class, aptly named Breach, in
the outside package.

+ class outside.Breach extends Object {

Object something;
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Breach(Object something) {

super(); this.something = something; } }

Finally, in the context of these definitions, the expression:

new Breach( new Table( new Bucket() ).get() );

evaluates to

new Breach( new Bucket() );

While the original expression is a valid object structure, the result isn’t. In
the original, Breach refers to Table which, in turn, refers to Bucket enforces
the desired isolation property. Namely, the confined type is only referenced by
another class of the same package. In the resulting expression the confined bucket
is directly held by the Breach object.
In another prototypical breach of confinement consider the following situation
in which the confined class Self extends a Broken class which resides outside.
Assume further that the table inherits its parent’s code for the reveal method.

- class my.Self extends outside.Broken {

Self() { super(); } }

+ class my.Ifc extends Object {

Ifc() { super(); }

Object get() {
return new Self().reveal(); } }

Inspection of this code does not reveal any breach of confinement. But if we
widen the scope of our analysis a little and look at the Broken class, then we
may see:

+ class outside.Broken extends Object {

Broken() { super(); }

Object reveal() { return this; } }

The invoking reveal on an instance of Self will return a reference to the
object itself (suitably widened to Object).
We now proceed to introduce the syntax and semantics of ConfinedFJ, before
presenting a type system which will declare both of the above programs to be
ill-typed.

3.1 Syntax

The syntax is shown in Figure 2. We use metavariables L to range over class
declarations, A, B, C, D, E to range over classes, K, M to range over constructors
and methods, and f and x to range over fields and parameters to methods. We
use over-bar to represent a finite array, for instance, f represents f1, f2, . . . , fn.
We use P, Q to range over package names and we use ρC to refer to the package
that the class C is defined in. We assume a class table CT which stores the
definitions of all classes and CT (C) is the definition of class C.
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Syntax:

◦ ::= + | -

L ::= ◦ class P.C � D { C f; K M }

K ::= C(C f) { super(f); this.f = f; }

M ::= C m(C x) { return e; }

e ::= x | this | e.f | e.m(e) | (C) e | new C(e)

v ::= new C(v)

Subtyping:

C <: C

C <: D D <: E

C <: E

CT (C) = ◦ class P.C � D { . . . }

C <: D

Computation:

fields(C0) = (C f)

new C0(v).fi → vi
(R-Field)

C <: D

(D) new C(v) → new C(v)
(R-Cast)

mbody(m, C0) = (x, e)

new C0(u).m(v) → [ v/x, new C0(u)/this]e
(R-Invk)

We use e, d to range over expressions and u, v, w to range over fully-evaluated

objects of the form new C(v). An expression e can be either a variable x, the
this pseudo variable, a field access e.f, a method invocation e.m(e), a cast
(C)e, an object new C(e).

The subtyping relation C <: D denotes that class C is a subtype of class D,
irrespective of access mode and or package, if class C transitively extends D.

The definitions and auxiliary functions used in our semantics and typing rules
are listed in Figures 2 and 3. The predicate visible(C, D) holds if the type C is
visible in the package of D. That is, if C and D are not in the same package, then
C must be declared public for it to be visible from D. This definition models the
Java’s class access modifiers so that only public classes can be referred to from
other packages.

The partial order � on types is such that C � D holds iff C is a subtype of D,
and either C is public or D is confined. This definition will be used in the typing
rules to prevent reference widening, where the reference to an object of confined
type should not be widened to public types.
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Other definitions:
CT (C) = - class P.C � D { . . . }

conf (C)

CT (C) = + class P.C � D { . . . }

public(C)

public(C) ∨ ρC = ρD

visible(C, D)

C <: D public(C) ∨ conf (D)

C 
 D

Congruence:

e → e′

new C(. . . e . . .) → new C(. . . e′ . . .)

e → e′

(C) e → (C) e′
e → e′

e.f → e′.f

e → e′

e.m(e) → e′.m(e)

e → e′

e0.m(. . . e . . .) → e0.m(. . . e′ . . .)

Fig. 2. Confined FJ

The anon predicate holds for a method m in class C, if the pseudo variable this

is used solely for field selection and method invocation of methods that are
anonymous themselves.

The other definitions are utilities mostly straight out of the FJ paper. fields

returns the list of all fields of a class including inherited ones. mdef returns the
name of defining class for a given method. mtype returns the type signature of a
method. mbody returns the body of the method in a given class. The predicate
override holds if a method is valid redefinition of an inherited method.

3.2 Reduction

The dynamic semantics of our language is given by a reduction relation of the
form e → e′. As usual, →∗ denotes the reflexive and transitive closure of → .
The congruence rules are explicitly specified though not very surprising. There
are three reductions rules. (R-Field) evaluates a field access expression. (R-

Cast) evaluates a cast expression, and (R-Invk) evaluates a method invocation
expression.

ConfinedFJ has a by-value semantics which requires that arguments be fully
evaluated before performing method invocations or field access. Notice that the
left hand sides of the reduction rules (R-Field), (R-Cast), and (R-Invk) con-
tain expressions of the form new C(v). While this is superficially closer to a real
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Field look-up:

fields(Object) = ()

fields(D) = (D g)

CT (C) = ◦ class P.C � D { C f; K M }

fields(C) = (D g, C f)

Method definition lookup:

CT (C) = ◦ class P.C � D { C f; K M }

B m(B x) { return e; } ∈ M

mdef (m, C) = C

CT (C) = ◦ class P.C � D { C f; K M }

method m is not defined in M

mdef (m, C) = mdef (m, D)

Method type lookup:

mdef (m, C) = D CT (D) = ◦ class P.D � E { C f; K M }
B m(B x) { return e; } ∈ M

mtype(m, C) = B → B

Method body look-up:

mdef (m, C) = D CT (D) = ◦ class P.D � E { C f; K M }

B m(B x) { return e; } ∈ M

mbody(m, C) = (x, e)

language such as Java, the reason for this choice is that it deals with values
greatly simplifies the proof of the confinement property.

3.3 Typing

Typing rules are given in Figure 4, and they check for reference widening of types.
In the typing rules, the condition of the form C � D requires that C be a subtype
of D and if C is a confined type, then D must be confined as well. The typing
rules for expressions are similar to those in FJ except that reference widening
is not allowed. In particular, Rule T-New prevents instantiating an object with
fields of public types by arguments of confined types. Rule T-Invk prevents
passing arguments of confined types to a method with parameters of public
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Valid method overriding:

mtype(m, C0) = D → D ⇒ (C = D ∧ C = D)

override(m, C0, C → C)

Anonymous method:

mdef (m, C) = D mbody(m, C) = (x, e) anon(e, D)

anon(m, C)

anon(e, C)

anon((D) e, C)

anon(e, C)

anon(new D(e), C) anon(x, C)

anon(this.f, C)

anon(e, C)

anon(e.f, C)

anon(m, C) anon(e, C)

anon(this.m(e), C)

anon(e, C) anon(e, C)

anon(e.m(e), C)

Fig. 3. Auxiliary Definitions

types. Moreover, if the called method is defined in a class of public type while
the receiver expression of the call is of confined type, then the method must be
anonymous in order to prevent implicit reference widening of the variable this.
Rule T-Cast prevents casting an expression of confined type to public type.

Expression typing:

Γ � x : Γ (x) (T-Var)

Γ � e : C0 fields(C0) = (C f)

Γ � e.fi : Ci
(T-Field)

Γ � e : C0 Γ � e : C
mtype(m, C0) = D → C

C 
 D mdef (m, C0) = D0
C0 
 D0 ∨ anon(m, D0)

Γ � e.m(e) : C
(T-Invk)

fields(C) = (D f)
Γ � e : C C 
 D

Γ � new C(e) : C
(T-New)

Γ � e : C′ public(C′) ∨ conf (C)

Γ � (C) e : C
(T-Cast)
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Method typing:

x : C, this : C0 � e : D D 
 C

override(m, D0, C → C)
x : C, this : C0 � visible(e, C0)

C m(C x) { return e; } OK IN C0 � D0

(T-Method)

Class typing:

visible((C, D), C) public(D) ∨ conf (C)
fields(D) = (D g) M OK IN C � D
K = C(D g, C f) {super(g); this.f = f; }

◦ class P.C � D { C f; K M } OK
(T-Class)

The definition of anonymous method is given in Figure 3. A method defined in
class D is anonymous if the return expression e of the method is anonymous in
D. That is, in e, the variable this can only be used for accessing fields and for
invoking anonymous methods defined or inherited in D.

In order to type check a package modularly, we only want to check for reference
widening for the types that are confined within the package. To verify condition
C � D, we seems to lose the ability to type check modularly. However, because
in method typing rule, we require that every subexpression of a method body
must have a type visible in the class where the method is defined, the type C

in the condition C � D is always visible inside the package where the condition
is checked. Also, in typing rule for class, we require the subtype of a confined
type to be confined in the same package. Thus, to verify C � D, we only need
to check that C <: D and if C is a confined type in the current package, then D

must be confined type in the same package as well.

Figure 4 contains typing rules for expressions, methods, and classes, and also
rules for checking visibility of expressions. Expression typing rules are similar
to those in FJ with some additional constraints. For a method call of the form
e.m(e), Rule (T-Invk) prevents explicit reference widening when the actual pa-
rameter e is passed to the method m; also if e is of confined type and m is defined
in a public class, then m must be anonymous in order to prevent implicit reference
widening. For a new expression of the form new C(e), Rule (T-New) prevents ex-
plicit reference widening when e is passed to the constructor of C. Lastly, Rule
(T-Cast) prevents an expression of confined type from being casted to public
type.

In the typing rule for method, every subexpression of a method body must have
a type visible in the class where the method is defined. The consequences of this
requirement are that a method m that returns value of confined type can not be
invoked outside the package where m is defined; a field of confined type in a object
of type C can not be accessed outside the package where C is defined; a confined
type C can not be used in cast or object instantiation outside the package where
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Expression visibility:

Γ � x : C visible(C, C0)

Γ � visible(x, C0)
(V-Var)

Γ � visible(e, C0)
Γ � e.fi : C visible(C, C0)

Γ � visible(e.fi, C0)
(V-Field)

Γ � e.m(e) : C visible(C, C0)
Γ � visible(e, C0) Γ � visible(e, C0)

Γ � visible(e.m(e), C0)
(V-Invk)

visible(C, C0) Γ � visible(e, C0)

Γ � visible(new C(e), C0)
(V-New)

visible(C, C0) Γ � visible(e, C0)

Γ � visible((C) e, C0)
(V-Cast)

Fig. 4. Typing Rules

C is defined. These consequences correspond to the confinement rule restrictions
in [16] that the access modifiers of methods and fields of confined types can not
be protected or public and the access modifiers of confined classes can not be
public.
We assume that all classes are maintained in a class table CT and CT is well-
typed if all classes in CT are well-typed. For the rest of the paper, we assume
that CT is well-typed.

3.4 Properties

In this section, we describe the properties of confined objects. Suppose we have
an object o of confined type C defined in package P. The typing rules guarantee
that

1. only objects of types defined in P can hold references to o, and
2. only methods defined in P or anonymous methods inherited by C can access

the fields and methods of o.

We prove the above properties in Theorem 2 and 3. In Theorem 2, we prove
that in a well-typed object expression new C0(e), e can only be reduced to objects
visible in the package of C0. In Theorem 3, we show that for a well-typed method
call expression new C0(u).m(v), where m is defined in class D0, all accessible objects
during the evaluation of the method call are visible in the package of D0 except
that if m is anonymous, then new C0(u) is accessible for field select and invocation
of anonymous methods in C0.
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We also prove the usual subject reduction lemma and state the progress lemma.
For the subject reduction lemma, we show that an expression of public type can
not be reduced to an expression of confined type. In Theorem 1, we prove that
a well-type expression will not get stuck and an expression of public type will
not be reduced to an object of confined type.

Lemma 1. Subject Reduction: If ∅ � e : C and e → e′ then ∅ � e′ : C′ for

some C′ � C.

Proof. See appendix.

Lemma 2. Progress: If ∅ � e : C and e contains subexpression e0 where

e0 = new C0(v).fi

| (C) new C′(v), C′ <: C,

| new C0(u).m(v),

then there exists e′ �= e such that e → e′.

In normal termination, an expression reduces to a fully-evaluated object of the
form new C(v). An irreducible expression of the form (C) new C′(v), where C′ is
not a subclass of C, represents a failed cast, An irreducible expression is stuck if
it contains subexpressions of the form new C0(v).fi or new C0(u).m(v).

Theorem 1. If ∅ � e : C and e →∗ e′, then e′ is not stuck, and ∃C′ such that

∅ � e′ : C′, where C′ � C.

Proof. Immediate from Lemma 1 and 2.

Theorem 2. If ∅ � new C0(e) : C0, e ∈ e, and e →∗ new C(v), then visible(C, C0).

Proof. From Rule (T-New) and ∅ � new C0(e) : C0, if the object expressions e

have type C and fields(C0) = (D f), then we must have C � D. From Rule (T-
Class), D must be types visible in the package of C0. Therefore, C must be visible
in the package of C0 because otherwise C � D would not hold. Since e ∈ e, there
exists i such that ∅ � e : Ci. From Theorem 1 and e →∗ new C(v), we have
C � Ci. Thus, C must be visible in the package of C0.

Theorem 3. Suppose that

∅ � new C0(u).m(v) : D, mbody(m, C0) = (x, e0),

mdef (m, C0) = D0, and d0 = [ v/x,
new C0(u)/this]e0.

for every subexpression d of d0,

1. either m is anonymous and d = new C0(u) is used as the receiver of a method

call or field select in d0,

2. or d →∗ new C(u′) implies visible(C, D0).

Proof. See appendix.
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4 Related work

Reference semantics permeate object-oriented programming languages, and the
issue of controlling aliasing has been the focus of numerous papers in the recent
years [12, 11, 8, 1, 15, 9, 14, 7]. In [15], flexible alias protection is presented as a
means to control potential aliasing amongst components of an aggregate object.
Clarke, Potter, and Noble [7] have formalized representation containment by
means of ownership types. Boyland, Noble and Retert [4] introduced capabilities
as a uniform system to describe restrictions imposed on references. Recent work
by Boyapati et al. [2, 3] has applied ownership types to scoped memory in the
Real-time Specification for Java.

5 Conclusion

This paper has formalized the notion of confined type [16] in the context of an
minimal object calculus modeled after Featherweight Java. A static type system
that mirrors the informal rules confinement was proposed and proven sound.
The confinement invariant was shown to hold for well-typed programs.
In the second part of the paper, definition of confined types was extended to
confined instantiation of generic classes. This allows for confined collection types
in Java and for classes that can be confined post hoc. Confinement type rules are
given for Generic Featherweight Java, and proven sound. A generic confinement
invariant is established and proven for well-typed programs.
Acknowledgments. The authors thank James Noble for frequent inspira-
tion and encouragements, Dave Clarke for one fewer reduction rule, Christian
Grothoff for his boundless energy in generating experimental data, John Boyland
for explaining borrowing, and to Phil Wadler providing us with the initial impe-
tus. Finally we thank the anonymous referees of IWACO for valuable comments
on a version of this work.
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Abstract. Capabilities may be used within programming languages to define and enforce
security policies: a user must hold a reference to an object or method to be able to use
its features. We define a system for statically tracking capability flow via types. This work
is related to Bokowski and Vitek’s Confined Types, and Skalka and Smith’s pop system.
These previous systems concentrated on constraining capability flow at an object level, and
enforcement at object or package points. We here propose a general system for confining the
flow of capabilities in a program. We define a toy functional language, fcap, which includes
a general mechanism for declaring and enforcing secure boundaries for capability flow, and
we show how these boundaries may be statically enforced through types. We also sketch how
Confined Types and pop may be encoded in fcap.

1 Introduction

The notion of capabilities was first introduced by Dennis and Van Horn in 1966 [3]. They define a
capability as a location of an object (a pointer) and a specific set of actions that can be performed
on this object.

In this paper, we take a capability-based view of security; in particular, we treat each function
as a capability. Thus, in the context of this paper, each function is a capability, and possession of
a capability really just means possession of a function. Programming languages such as J-Kernel
[7], and the E language [6] show how capabilities alone may be used to create powerful security
architectures within programming languages.

Previous work on confinement of object references [12, 10, 2] also is takes a capability-based view
of security: an object reference is a capability to an object. These systems additionally use types
to statically enforce object reference confinement. Our approach is similar to these systems; but,
we allow the programmer to place capability escape checks at arbitrary points in a program. This
gives the programmer the ability to define code boundaries of their choosing, and does not limit
code boundaries to objects or packages. We show our system can encode the core ideas of the above
confinement systems via simple translations.

We create a language where each function has a corresponding capability tag which will allow us
to explicitly monitor and restrict the flow of the function. The eventual possessor of the function has
complete access to it since it represents a pure capability. We use functions instead of objects here
because the calculi are simpler; in general a reference to any value can be considered a capability,
and we restrict ourselves here to functions only for simplicity of the presentation.

We define a language fcap, for this purpose, defining each function with a corresponding capability
tag. For example, λc1x.e defines the function λx.e with corresponding capability tag c1.

The capability tags may then be used to explicitly delimit the extent of function value flow at
runtime, via a runtime check. These checks also are enforced statically by the type system. Thus, if
a capability erronously escapes, an appropriate check will catch this and will lead to a type error,
eliminating the need for runtime monitoring of capability flow.

We use a translation approach in the style of [8] to translate fcap to an ML-subset language,
fml. This allows us to rely upon the properties and proofs of ML, such as soundness results, without
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having to recreate the proofs from scratch for fcap. fml contains variants, and they are the key to
implementing the tracking of capability flow. This also shows how our approach here is dual to the
encoding of pop in [10], where records and not variants are used to track capability flow.

We begin in section 2 by defining the source language, fcap, which contains function capabilities.
Section 3 defines the target language, fml, and section 4 gives the translation of fcap programs into
fml. The Type Translation and type system for fml and fcap are given in section 5. In Section 6, we
discuss related work, giving simplified encodings of [12, 10]. We conclude in Section 7.

2 The Source Language fcap

We begin by defining our explicit capability language, fcap. The grammar for fcap is given in Figure
1. fcap is a λ-calculus with records, and functions are given capability tags. The set C is a countably
infinite set of atomic capability tags {c1, c2, . . . }, and all functions are tagged with a capability from
C. Thus, we write functions as λc1x.e. Our syntax only provides for tagging functions, but records
or other data could also be tagged and in fact it is trivial to encode this in fcap: let x = e inλcy.x
for y �= x labels arbitrary e with tag c.

The check expression, check(e, [c1, . . . , cn]), dynamically checks if e is tagged with a capability tag
from [c1, . . . , cn], a list of capability tags. dc(e, [c1, . . . , cn]) performs a deeper check of e, verifying
that no nested data or return values are tagged with tags not in [c1, . . . , cn]. We will shortly elaborate
on this.

c ∈ C capabilities
v ::= k (integer constant) | b (boolean constant) | () (unit) | λcx.e values
e ::= v | if e then e else e | e e | let x = e in e | e; e | e+ e expressions

{m1 = e1; . . . ;mn = en} | e.m | check(e, [c1, . . . , cn]) | dc(e, [c1, . . . , cn])

Fig. 1. Grammar for fcap

The key operational semantics rules for fcap, in big step form, are given in Figure 2; the rules
not listed are standard. The rules (check) and (deepcheck) are discussed in section 2.1.

2.1 Capability Checking

The checking rules of fcap serve to limit the flow of certain capabilities, creating barriers that only
allow certain capabilities to pass through, disallowing all others. We define two different forms of
check, check and dc (deepcheck).

check expressions Assuming e is a function tagged with c, the program may only proceed if c is
listed in [c1, . . . , cn]. If e is not a function, the check always succeeds. This means check statements
can be used to ensure no unwanted capabilities will be allowed to pass through this check point.
Checks that fail will cause the program execution to get stuck; the goal of our type system will be
to ensure typed programs never get stuck in this manner.

deep check expressions The deep check, dc, provides a more complete monitoring of capability
flow, detecting if any value could ever directly escape in the future. We say a function, f , escapes a
surrounding function, g, if after applying g, the function f can be used. For instance, the function
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e1 → λcx.e, e2 → v′, e[v′/x]→ v

e1 e2 → v
(appl)

e1 → λclx.e

check(e1, [c1, . . . , cl, . . . , cn])→ λclx.e
(check-fun)

e1 → v, v �= λclx.e

check(e1, [c1, . . . , cm, . . . , cn])→ v
(check-val)

e1 → λclx.e2
dc(e1, [c1, . . . , cl, . . . , cn])→ λclx.dc(e2, [c1, . . . , cl, . . . , cn])

(deepcheck-fun)

e→ {m1 = e1; . . . ;mn = en}
dc(e, [c1, . . . ])→ {m1 = dc(e1, [c1, . . . ]); . . . ;mn = dc(en[, c1, . . . ])} (deepcheck-rec)

e1 → v, v �= λclx.e

dc(e1, [c1, . . . , cn])→ v
(deepcheck-val)

Fig. 2. Key Operational Semantics Rules for fcap

λcxx.λcyy.e, when applied will return the inner function, λcyy.e. Thus, the capability tagged with
cy escapes from the original function.

A dc statement recursively checks inside functions and records to verify that only explicitly
allowed capababilties may escape. Thus, in the previous example, if cy was not listed in [c1, . . . , cn],
a dc on λcxx.λcyy.e would fail. Notice a regular check on this expression would succeed, so long as
cx was in [c1, . . . , cn]. The deep check is performed lazily, so the example dc(λcxx.λcyy.e, [cx]) would
not itself get stuck, but any attempt to apply the result of this deep check would get stuck, e.g.
dc(λcxx.λcyy.e, [cx])(). One other observation from this example is the deep check must be used as
a filter: the result returned from the dc must be the value that is allowed to escape, because it may
contain a recursive dc to check future values; see the (deepcheck-fun) rule.

While we can use dc to capture any capability actually observed to be escaping, capabilities can
indirectly escape and this is a much more difficult problem. Indirectly escaping capabilities are those
in which all or some of the functionality of the capability escapes through some function, but the
capability itself does not escape. For example, the function λcxx.(λcyy.e) x is essentially the function
λcyy.e put in a wrapper by cx. Therefore, the functionality of cy indirectly leaks from the original
function, even though cy is never directly accessible and so a deep check which disallows cy would
not fail. We do not address indirectly escaping capabilities in this work, but our system could be
generalized to track some of them. In general, the more indirect the information tracked, the less
precise are the static guarantees that are possible. Information flow [13, 8] tracks all indirect data
flow, but to enforce properties statically many well-behaved programs in fact have to be rejected,
questioning the logic of the approach.

3 Target Language fml

The target language, fml, in the style of the pmlB language from [11], is a subset of ML that includes
pairs, records, match statements, recursive functions, and variants. The grammar for fml is given in
Figure 3. The set V is a countably infinite set of variants {c1, c2, . . . }. The grammar rules for fml
are standard. We make a distinction between match-statements with regular variants, c, and those
carrying an argument, c of e. However, in order to simplify the language, we use c of () to represent
a variant c, which carries no argument. The operational semantics rules for fml are standard and so
are not presented here.
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c ∈ V variants
v ::= k (integer constant) | b (boolean constant) | () (unit) | λx.e | c of e values
e ::= v | if e then e else e | e e | let x = e in e | e; e | e+ e | (e, e) | expressions

fst(e, e) | snd(e, e) | {m1 = e1; . . . ;mn = en} | e.m | let rec f x in e |
match e with (c of x→ e | c of x→ e | . . . )

Fig. 3. Target Grammar

4 Source-to-Target Translation

Meaning of fcap programs is defined by translation to fml programs. The fcap-to-fml translation is
given in Figure 4. Each value is translated to a variant of that value, ie. Int of x. This in effect
labels each value with run-time type information and allows check and dc to operate on all types of
expressions.

Functions in fcap are translated to pairs consisting of the function definition, and an associated
capability tag. This is then wrapped into the Fun variant. Application is then translated to an
expression which takes off the Fun wrapper, then applies the fst of the pair (this being the function
definition) to the argument. Application ignores the tag, it is only used by the checks.

For records to be successfully encoded to implement dc, each unique record must be assigned its
own specific variant. So, before doing the actual translation of an expression, a first pass is done
to pick out all the records in the program, and assign a unique variant, Reci to the ith occuring
record definition in the program. This is necessary for the recursive call in the dc translation, which
deepchecks every field of the record.

The check expression is an identity operation except for the case the argument is a function, in
which case it verifies its tag is one of those in [c1, . . . , cn], via a match. If the tag is not one of those
in this list, the match statement will get stuck, indicating a security violation. Such programs will
not typecheck, giving a static guarantee the ill-tagged function will not escape.

The deepcheck translation is related to check but is a recursive function. Functions and records
are recursively analyzed by a call to dm, which recursively deepchecks within the Function or Record.
Since the recursive call to dm for functions is inside a λ, it will be lazily performed if/when this
function is later used. The dc expression thus behaves as a filter, in that the output of dc must be
the value that escapes, and computation may later get stuck due to delayed discovery of an enclosing
function that improperly leaks a capability.

[8] uses a somewhat similar methodology to this paper in the use of an encoding which places
explicit tags on data; the propagation of tags in our aproach differs significantly because information
flow takes a very conservative approach with respect to the possibility for indirect data flow. And,
there is no dynamic check in information flow typing.

We now assert the soundness of our translation into fml with respect to the original fcap opera-
tional semantics.

Definition 4.1 (β-conversion). v1 =β v2 is the least congruence satisfying the β-conversion rule:
λx.e1 e2 ≡ e1[e2/x].

Theorem 4.2. If e → v, then � e � → v′, where v′ =β � v �. If e goes wrong, then � e � goes wrong.

5 Type Translation

We now define the types and type systems for fcap and fml, and a translation from fcap types to
fml types. We show that type soundness of fcap can easily be established given the type soundness
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�x � = x
� k � = Int of k
� b � = Bool of b

� () � = Unit of ()
�λcx.e � = Fun of (λx.� e �, c of ())

�if e1 then e2 else e3� = match � e1 � with
Bool of b→ if b then � e2 � else � e3 �

� let x = e1 in e2� = let x = � e1 � in � e2 �
� e1; e2 � = � e1 �; � e2 �

� e1 + e2 � = match� e1 � with Int of k1 →
match� e2 � with Int of k2 → Int of k1 + k2

� e1 e2 � = match(� e1 �) with Fun of x→ fst(x) � e2 �

� {m = e} � = Reci of {m = � e �}
for {m = � e �} the ith record in the program.

� e.m � = match � e � with
Reci of r → r.m

�check (e1, [c1, . . . , cn])� = match(� e1 �) with
Fun of x→ match snd(x) with
c1 of ()→ Fun of x | . . . | cn of ()→ Fun of x

| Reci of r → Reci of r
| Int of x→ Int of x
| Bool of x→ Bool of x
| Unit of x→ Unit of x)

�dc (e1, [c1, . . . , cn])� = (let rec dm z =
match z with
Fun of x→
(match snd(x) with c1 of ()→ () | . . . | cn of ()→ ());
Fun of (λy.(dm(fst(x) y)), snd(x))

| Rec1 of r →
Rec1 of {m1 = dm(r.m1); . . . ;mn = dm(r.mn)}

| . . .
| Recm of r →

Recm of {p1 = dm(r.p1); . . . ; pn = dm(r.pn)}
| Int of x→ Int of x
| Bool of x→ Bool of x
| Unit of x→ Unit of x) � e1 �

Fig. 4. Source to Target Translation

of fml. An expressive type system here will allow more checks to be statically determined as valid,
so we use expressive type constraint systems in our presentation [1, 5, 9].

Types for fcap The types for fcap are given as follows:

τ ∈ Type ::= τv | t | [c1, . . . , cn] | τ
τ−→ τ | {m1 : τ ; . . . ; m2 : τ}

τv ∈ ValueType ::= int | bool | unit
t ∈ TypeVar
τ1 <: τ2, τ <: ifFun([c1| . . . |cn]) ∈ Constraint
C ∈ ConstraintSet ⊆ 2Constraint

c ∈ C
Types int , bool , and unit are primitive types. [c1, . . . , cn] is a capability type indicating a possible

set of capability labels. τ τ−→ τ is a function type, which is annotated with a capability type indicating
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the set of capability tags the function could have. {m1 : τ ; . . . ; m2 : τ} is a standard record type.
τ <: ifFun([c1, . . . , cn]) is a specal constraint which requires τ , if it is a function, to have capability
tag in [c1, . . . , cn]. For τ not a function, this constraint will have no effect on the type. This can be
seen in the (Check) closure rule in Figure 9.

Types for fml

τ ∈ Type ::= τv | t | [c1 of τ | . . . |cn of τ ] | τ → τ | τ × τ | {m1 : τ ; . . . ; m2 : τ}
τv ∈ ValueType ::= int | bool | unit
t ∈ TypeVar
τ1 <: τ2 ∈ Constraint
C ∈ ConstraintSet ⊆ 2Constraint

c ∈ V
τ × τ are pair types, τ → τ are function types, and [c1 of τ | . . . |cn of τ ] are variant types.

5.1 The Type Translation

� int � = Int of int
� bool � = Bool of bool
� unit � = unit

� [c1, . . . , cn] � = [c1 of unit | . . . |cn of unit ]

� τ1
τ3−→ τ2 � = Fun of ((� τ1 � → � τ2 �)× � τ3 �)

� {m1 : τ1; . . . ;mn : τn} � = Reci of {m1 : � τ1 �; . . . ;mn : � τn �}
for {m1 : τ1; . . . ;mn : τn} the ith record in the program.

� τ <: ifFun([c1, . . . , cn]) � = � τ � <: [Fun of (t′ × [c1 of ()| . . . |cn of ()])|
Int of ti|Bool of tb|Unit of tu| Rec1 of t1| . . . |Recn of tn]

� τ1 <: τ2 � = � τ1 � <: � τ2 �
for τ2 �= ifFun([c1, . . . , cn]).

Fig. 5. Type Translation

The type translation is given in Figure 5. Capability types in fcap are traslated directly to variants
in fml. Function types in fcap are translated to a pair consisting of the translated function, and the
capability tag translated to a variant.

5.2 Type System for fml

Key type rules for fml are given in Figure 6. These and the missing type rules are standard type
constraint rules, see e.g. [5]. The closure, Closure(C), of the constraint set C is defined in Figure
7. Standard inconsistencies within the constraint set will cause a type error; ie. Int <: Bool is
inconsistent. For variants, [c1| . . . |cm|cl] <: [c1| . . . |cm| . . . |cn] is inconsistent because cl is a variant
not in the right-hand list. (i.e., the left list has a variant the right does not.) The algorithm for type
inference is as follows: Using the type rules given in Figure 6, produce the obvious, unique proof

t e : τ\C. Let C ′ = Closure(C), with Closure(C) given above. Check C ′ for inconsistencies, if any
give a type error. If there are no errors, the inferred type for e is τ\C ′.
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Γ, x : t �t e : τ \ C
Γ �t λx.e : t → τ \ C (Function)

Γ �t e : τ \ C, Γ �t e′ : τ ′ \ C′

Γ �t e e′ : t \ C ∪ C′ ∪ {τ <: τ ′ → t} (Appl)
Γ �t e : τ \C

Γ �t c of e : [c of τ ] \ C (Inject)
Γ �t e : τ\C, Γ, x1 : t1 �t e′1 : τ

′
1\C1, . . . Γ, xn : tn �t e′n : τ

′
n\Cn

Γ �t match e with c1 of x1 → e′1| . . . |cn of xn → e′n : t
′ \ (Match-of)

C ∪ C1 ∪ · · · ∪ Cn ∪ {τ <: [c1 of t1| . . . |cn of tn]} ∪ {τ ′1 <: t′, . . . τ ′n <: t′}

Fig. 6. Key Type Rules for fml

(Trans)
τv <: t, t <: τ

τv <: τ
(Func)

τ1 → τ ′1 <: τ2 → τ ′2
τ2 <: τ1, τ

′
1 <: τ

′
2

(Pair)
τ1 × τ2 <: τ3 × τ4
τ1 <: τ3, τ2 <: τ4

(Rec)
{m1 : τ1, . . . ,mn : τn, . . . ,ml : τl} <: {m1 : τ

′
1, . . . ,mn : τ

′
n}

τ1 <: τ
′
1, . . . , τn <: τ

′
n

(Variant)
[c1 of τ1| . . . |ci of τi| . . . |cn of τn] <: [c1 of τ1| . . . |ci of τj | . . . |cm of τm]

τi <: τj

Fig. 7. Closure rules for fml

5.3 Derived Type System for fcap.

We give the key type rules for fcap in figure 8, based on the type rules for fml, and the fcap-to-fml
translation. The standard type rules have been omitted for brevity. We introduce a new constraint
construct, ifFun, in order to check the capabilities of functions, while allowing other types through
the check statement.

We do not present a type rule for deep-check, so the type system given in figure 8 applies to
fcap programs with simple checks only. We omit this rule for brevity and simplicity of the fcap type
system. Such a rule can be given, however, it will make the entire fcap type system more complex.
Typing a deep-check statement may be implicitly done by translating an fcap program to fml, then
using the fml type system to type the program. For example, the fcap program dc(λcxx.λcyy.e, [cx]),
when translated to fml will produce a type error, since cy escapes the outer function, and only cx

is allowed by the deep-check. dc(λcxx.λcyy.e, [cx, cy]) however, will type check, since both cx and cy

are allowed to escape. Even though this translation is complicated, it can easily be done as a black
box for the programmer.

Computing the closure, Closure(C) of the constraint set, C is given in Figure 9. (Check) uses
the ifFun construct to create a new constraint, which ensures a capability (τ3 here) is contained in
the list [c1, . . . , cn].

As in the fml type system, standard inconsistencies within the constraint set will cause a type
error; ie. Int <: Bool is inconsistent. For capabilities, [c1, . . . , cm, cl] <: [c1, . . . , cm, . . . , cn] is incon-
sistent, where cl is a capability not in the right-hand list. The algorithm for type inference is the
same as in fml, using the fcap type rules and closure.
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Γ, x : t �s e : τ \ C
Γ �s λcx.e : t

[c]−→ τ\ C
(Function)

Γ �s e : τ \ C, Γ �s e′ : τ ′ \ C′

Γ �s e e′ : t \ C ∪ C′ ∪ {τ <: τ ′ t′′−→ t}
(Appl)

Γ �s e : τ \ C
Γ �s check(e, [c1, . . . , cn]) : t \ C ∪ {τ <: ifFun([c1, . . . , cn]), τ <: t} (Check)

Fig. 8. Key Type Rules for fcap

(Trans)
τv <: t, t <: τ

τv <: τ
(Func)

τ1 → τ ′1 <: τ2 → τ ′2
τ2 <: τ1, τ

′
1 <: τ

′
2

(Check)
τ1

τ3−→ τ2 <: ifFun([c1, . . . , cn])

τ3 <: [c1, . . . , cn]

(Rec)
{m1 : τ1, . . . ,mn : τn, . . . ,ml : τl} <: {m1 : τ

′
1, . . . ,mn : τ

′
n}

τ1 <: τ
′
1, . . . , τn <: τ

′
n

Fig. 9. Closure rules for fcap

Soundness of the fcap type system The fcap type system can be shown to be sound by showing
its rules to be the derived rules obtained by translating fcap programs to fml and typing them in
the fml type system. Thus, the fcap type system is sound provided the fml type system is.

There are some slight format differences in the two type systems—some type simplifications need
to be performed after translation. Thus we first define a simplification algorithm for a constraint
set, C, based on the garbage collection schemes from [4, 9]

We call the simplified constraint set S(C), a function defined by the following simplification rules.
t <: τ, τ ′ <: t becomes τ ′ <: τ
t <: τ, τ ′ <: t × τ ′′ becomes τ ′ <: τ × τ ′′

t <: τ, τ ′ <: [c of t] becomes τ ′ <: [c of τ ]
t <: τ, τ ′ <: τ ′′ → t becomes τ ′ <: τ ′′ → τ
These rules apply for any t, τ, τ ′, τ ′′, c in the constraint set C, as long as t does not occur in any

other constraints in C. Thus, the set S(C) is a simplified set C ′.

Lemma 5.1 (Type Soundness of fcap). If 
s e : τ\C is derivable, then so is 
t � e � : � τ �\C ′,
where S(�C �) = S(C ′).

5.4 Examples

We now give some examples of fcap programs containing check statements.
Suppose we have the following program:

let obj =
(let f1 = λc1x1.e1 in
let f2 = λc2x2.check(e2, []) in
let f3 = λc3x3.check(if x3 = 0 then f1 else f2, [c2]) in

{m2 = f2;m3 = f3}) in
obj.m3 10
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Within obj, we allow the use of f1, however, we do not want f1 to escape the definition of obj.
Thus, we place check’s on the return values for those functions available outside the definition of
obj, namely f2 and f3. Here, the check of the return value for f3 will cause a type error, as f1 may
be returned. Since f1 is the function with the tag c1, the constraint [c1] <: [c2] will be in the closure
of the constraint set for this program. This inconsistent constraint will cause a type error.

We can fix this program as follows:
let obj =

(let f1 = λc1x1.e1 in
let f2 = λc2x2.check(e2, []) in
let f3 = λc3x3.check(f2, [c2]) in
{m2 = f2;m3 = f3}) in

obj.m3 10
Here, f3 does not leak f1, and this program will now type check.

6 Related Work

Our system is similar to other static object confinement security mechanisms, e.g. [12, 10]. Since our
system has a very basic form of tagging and checking, it can be used to encode the core concepts of
these existing systems.

6.1 Confined Types

[12] uses confined types to restrict the flow of object references between packages in Java. Our
checks also may be used to restrict flow, and the checks can be used anywhere at the discretion of
the programmer, not just at package boundaries. While our system does not specifically use objects
and packages, we sketch how confined types of [12] can be modeled by our approach in Figure 10.

co ::= λccd.{m1 = λx1.e1; . . . ;mn = λxn.en} Confined Objects
uo ::= λcud.{m1 = λx1.check(e1, [cu, c1, . . . , ck]); . . . ; Unconfined Objects

mn = λxn.check(en, [cu, c1, . . . , ck])}
p ::= let confined = {f1 = co1, . . . , fn = con} in Packages

{u1 = uo1, . . . , un = uon}

Fig. 10. Confined Types encoding

Packages are viewed as let-statements, with the first part of the let-statement containing the
confined objects, and the second part containing the unconfined objects. The different objects within
the package are grouped in records.

An object with methods m1 . . .mn is simply encoded as a record: {m1 = λx1.e1; . . . ;mn =
λxn.en}. This encoding simplifies out many features such as self-reference, instances, classes, etc,
and is only intended to show how the basic concepts relate.

We use a dummy λ-expression to mark each object with a capability tag, cc or cu, which labels
the object as confined or unconfined; d is a dummy variable. To ensure no confined objects escape,
we place check statements at all return points in the unconfined objects. [c1, . . . , ck] are capabilities
which are allowed to escape from a package. cc cannot be one of these capablities. This check will
ensure only unconfined objects and allowed capabilities will escape the package. Confined objects
cannot leave the package, as each confined object is marked with the cc capability, which is disallowed
in the check-statement for unconfined objects.
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We informally justify how check expressions will indeed keep confined objects from escaping a
package. For any unconfined object, a method cannot directly return a confined object. In order for
a confined object to successfully escape from the package, it must at some point be returned by a
method of an unconfined object. Since every unconfined object is constrained to not allow confined
objects to be returned, by induction on the depth of the type no unconfined object can return a
confined object.

Examples We now give a few examples of our encoding of Confined Types in fcap.

1. let package =
(let confined = {f1 = λccd.{m1 = λcprivx.e}} in
{d1 = λcud.{m1 = check(λcoky.confined.f1(0).m1(y), [cok, cu])}}

in package.d1(0).m1(arg)
Here, we show how a package is used, and an unconfined object in the package uses a confined
object. This is allowed, as long as no capabilities from the confined object are leaked.

2. let package =
(let confined = {c1 = λccd.{m1 = λcprivx.e}} in
{d1 = λcud.{m1 = check(confined.c1, [cu, cok])}})

in package.d1.m1(arg)
This example shows a package, which leaks a confined object, and thus will fail at the check
point.

3. let package =
(let confined = {f1 = λccd.{m1 = λcprivx.e}} in
{d1 = λcud.{m1 = check(confined.f1(d).m1, [cu, cok])}})

in package.d1.m1(arg)
This package leaks a method of a confined object, which is also not allowed.

6.2 Use-Based Object Confinement

The pop system [10] confines objects in a different manner, by performing access checks when objects
are used, rather than when they are communicated. Since our system allows check statements to
be placed anywhere in a program, we can model a use-based approach. Figure 11 gives a simplified
grammar for pop, which includes the core of the language (it excludes state and other features).

m,x,∈ ID, ι ⊆ ID identifiers
d ∈ D, D ⊆ D domains
ϕ ∈ D → 2ID interfaces

o ::= [mi(x) = ei
0<i≤n] · d · ϕ object definitions

v ::= x | o values
e ::= v | e.m(e) | let x = v in e expressions

Fig. 11. Grammar for pop

Objects in pop are defined as a list of methods, [mi(x) = ei
0<i≤n], together with a domain,

d, and a user interface, ϕ. ϕ defines an interface for the object, which lists the methods that can
be used in each domain, ie. ϕ = {d �→ {read,write}, ∂ �→ {read}}. ∂ is the domain label, which
matches any domain. Thus, in this instance, read,write may be used in domain d, and read may
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be used in any domain. The interface then defines the security policy for which object methods can
be used in certain domains.

We encode this use-based confinement system using the translation shown in Figure 12. The
use of objects in pop is different from our approach, with security checks depending on domains.
However, we can still model this by passing the current domain, dom to each method when it
is called. The encoding of pop thus requires a global translation and is less satisfactory than the
encoding of confined types.

� δ, e � = let d = (λdum.0, δ) in � e �
�x � = x

� e1.m(e2) � = ((� e1 �.m) d) � e2 �
� [m1(x) = e1, . . . ,mn(x) = en] · dl · ϕ � = let d = (λdum.0, dl) in

{m1 = � [m1(x) = e1] · dl · ϕ �, . . . ,
mn = � [mn(x) = en] · dl · ϕ �, }

� [mi(x) = ei] · dl · ϕ �
ϕ = {dj �→ {[. . . ]}, . . . , ∂ �→ {[mi, . . . ]}} = (λdom.(λx.� ei �, cw), cw)

� [mi(x) = ei] · dl · ϕ �
ϕ = {dj �→ {[mi, . . . ]}, . . . , {dk �→ {[mi, . . . ]}} =

(λdom.(check(dom, [dj , . . . , dk]);
(λx.� ei �, cw), cw)

Fig. 12. pop to fcap translation

Objects are encoded as records, with each field, mi, corresponding to the object method, mi(x).
We encode interfaces in our system via check statements. For every object method, mi, we find
all domains, dj in ϕ, in which mi is in the set of methods dj maps to, ie. dj �→ {mi, . . . }. Thus,
the check for a method, mi is check(dom, [dj ]), where dom is the current domain, and [dj ] is the
list of authorized domains for mi. Each field in the record of the translation is a λ-expression,
which takes the current domain as input, and performs the check on this domain. Thus, methods
will be of the form mi = (λdom.(check(dom, [dj , dk]); (λx.� ei �, cw), cw). If a method is included
in ∂, it is allowed in any domain, and thus no check is needed, so the translation is simply mi =
(λdom.(λx.� ei �, cw), cw). Note, cw is an unused capability.

7 Conclusion

In summary, we have defined the language, fcap, which considers functions as capabilities and allows
the containment of capabilities at certain check-points. This language gives the programmer much
flexibility in the amount of security desired in a program, allowing checks to occur at any point (or
not occur at any point). These checks are done statically, during type-checking, which is clearly a
beneficial feature, ensuring that a code-segment is secure before it even begins to execute.

Capabilities in fcap are pure capability-based. We do not allow revocation of capabilities; thus,
once a capability is obtained by a module or block of code, it cannot be taken away. Narrowing, or
restricting access of a capability is also not explicitly possible in fcap, however this can be encoded
by splitting the capability into two separate capabilities. For example, a capability may be split into
one which grants read access and one which grants write access to a resource.

We have given a translation from fcap to fml, an ML-like language, and type-systems for fml and
fcap. We have also proved the correctness of the translation. Both the translation and type-system
have been implemented, confirming the accuracy of the system.

We have shown the generality and expressiveness of our system by encoding two different object
confinement systems within our own.
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