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Abstract. This paper presents a new rule for reasoning about method
calls in object-oriented programs. It concerns an optimized adaptation
of Hoare’s rule of adaptation to the object-oriented paradigm. The new
rule contributes in various ways to the modularity of the specification.
We also argue that our rule of adaptation is the missing link between
Hoare logics and proof outlines for object-oriented programs.

1 Introduction

It is often argued that encapsulation is one of the strong features of the object-
oriented paradigm. Encapsulation is obtained by forbidding direct access to the
internal state of other objects. Thus one can only query or alter the state of an
object by invoking a method. Therefore method calls are the main computational
mechanism in object-oriented programs.

Different calls to a particular method may occur in completely different con-
texts. Preferably, a method has one fixed pre/post specification that acts as a
contract between the designer of the method and its clients. This contract should
enable a client to predict the behavior of a call to this method. Essential for this
scenario is that the reasoning rule for method calls is able to adapt the method
specification to the required specification of the call. This can be achieved for
procedural languages with global variables by means of the rule of adaptation.
This rule was introduced by Hoare [1], and improved by Olderog [2].

The above mentioned rules suffice in a context where only simple global
variables occur. However, the set of variables of modern object-oriented programs
is more complex since each existing object has its own internal state. Moreover,
the state can be extended during the execution of a method by object creation. A
rule of adaptation for object-oriented programs has to take such state extensions
into account.

The main contribution of this paper is a rule of adaptation for object-oriented
programs. The rule enables in various ways a modular specification of object-
oriented programs. For example, it results in an important separation of concerns
for local variables in proof outlines of object-oriented programs.

The rule that we present in this paper integrates frame conditions and in-
formation about the objects that a method creates in a natural way in the



programming logic. These optimizations of the rule also contribute to the mod-
ularity of the specification. By integrating frame conditions we ensure that the
specification of the call only needs to specify its effect on the fields that are ac-
tually modified in the implementation of the method. Thus one does not have to
revise the specification whenever a field is added to a class. In a similar way the
rule ensures that the specification only has to reflect the creation of new objects
of a class if the implementation actually allocates new object of that such.

Our adaptation rule has been integrated in a tool that computes the verifica-
tion conditions of proof outlines for a sequential subset of Java. The verification
conditions are passed to a theorem prover. The tool is a successor of the tool
described in [3]. The adaptation rule is particularly suitable for proof outline
logics since it describes the verification condition that results from the specifica-
tion of a call and the corresponding method. Thus it enables a shift from Hoare
logics (where Hoare triples are embedded and manipulated in a theorem prover)
to proof outlines for object-oriented languages.

This paper is organized as follows. In Sect. 2 we discuss related work on
proof methods for object-oriented programming. Section 3 introduces a small
sequential subset of Java that is used to illustrate the context of the adaptation
rule. In Sect. 4 we describe the assertion language for object-oriented programs
to which the new rule is tailored. Section 5 defines the static effect of a method.
This information will be used to optimize the rule of adaptation in Sect. 6.
The following section contains an example. In Sect. 8 we prove that the new rule
preserves the relative completeness result in [4]. The paper ends with conclusions
and some remarks about future work.

2 Related Work

The past decade has seen a large interest in proof methods for object-oriented
programming. Several Hoare logics for sequential object-oriented languages have
been proposed [5–9].

Kleymann [10] has proposed a new rule of consequence for sequential pro-
grams. It enables one to adapt the values of logical variables in specifications. The
outline of the rule resembles the outline of the rule that we propose. However,
it solves none of the typical object-oriented problems like the state extensions
that are due to object creation.

One particular advantage of the adaptation rule we present in this paper is
its treatment of local variables. The values of the local variables of the caller are
not changed during a method invocation. A common technique that is used to
reflect this fact is to allow the use of a substitution rule (see, e.g., [5, 8, 9]). Such
a rule replaces a logical variable by a local variable in both the precondition and
the postcondition of a method call:

{P} call {Q}
{P [u/z]} call {Q[u/z]} .
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In this paper we use the convention that u always denotes a local variable. In
the above rule z is a logical variable. Applying this rule is the only way to prove,
for example, that the value of a local variable of a caller does not change.

Example 1. Let m(){ skip } be the declaration of method m with body skip.
Obviously, the Hoare triple {u = 1} m(); {u = 1} is valid. To prove this we must
first derive {z = 1} skip {z = 1}. A rule for reasoning about method calls then
typically lets us infer {z = 1} m(); {z = 1}. An application of the substitution
rule with [u/z] then yields the desired specification. Observe that the introduc-
tion of the logical variable z is necessary because the local variable u is out of
scope in the body of the method.

The above example reveals an important drawback of this technique. It turns
out that to prove a property of the local variables of the caller one has to express
this property in the proof outline of the procedure in terms of logical variables.
This clearly violates the modularity of the method specification. Our rule of
adaptation provides a means to prove such facts by expressing it in the proof
outline of the caller only.

3 Object-Oriented Programs

The rule of adaptation that we propose in this paper is suited for reasoning
about method calls in object-oriented programs. An adaptation rule has to take
into account all changes to the program state that can result from execution
of a method. For this reason it cannot be stated independent of the rest of the
programming language. Therefore we outline in this section a sequential subset of
Java to which our adaptation rule will be tailored. The chosen subset illustrates
the main issues in object-oriented languages. At the same time it leaves out some
features that would merely complicate the definitions.

3.1 The Syntax

The syntax of the programming language is summarized in Fig. 1. A program
π consists of a set of classes. The declaration of a class specifies the fields (or
instance variables) of the class (denoted by the sequence x̄), and a set of methods.
A clause extends c′ indicates that the class is an extension of another class c′.
In that case, the class is said to be a subclass of class c′. We assume that a class
extends the root class Object if the clause is omitted. A class inherits all fields
and methods of its superclass. We impose no restrictions concerning the fields
or methods that a class declares in relation to the fields and methods that it
inherits. That is, we allow both field shadowing and method overriding.

A method m specifies a sequence of formal parameters u1, . . . , un, a sequence
of additional local variables v̄, a statement S and the return value e. For brevity,
we leave the return type of the method implicit. The formal parameters and
the sequence v̄ make up the local variables of the method. The scope of a local
variable is the method to which is belongs. We use u as a typical element of the
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op ∈ Oper an arbitrary operator on elements of a primitive type
y ∈ Loc ::= u | e.x

e ∈ Expr ::= null | this | y | (c)e | e instanceof c | op(e1, . . . , en)
S ∈ Stat ::= y = e ; | S S | u = new c() ; | u = e0.m(e1, . . . , en) ;

| if (e) { S } else { S } | while (e) { S }
meth ∈ Meth ::= m(u1, . . . , un) { v̄ S return e }
class ∈ Class ::= class c (ε | extends c) { x̄ meth∗}

π ∈ Prog ::= class∗

Fig. 1. The syntax of the programming language

set of local variables of a method. It denotes either a formal parameter or an
additional local variable from v̄.

Assignments are divided in two kinds. Assignments to local variables have
the form u = e, where e denotes an expression that has no side effects. Thus this
kind of assignments has no permanent effect on the program state (the values
of local variables are discarded when the method terminates). Assignments to
instance variables have the form e.x = e′. Execution of such a statement results
in the assignment of the value of e′ to field x of object e.

A statement u = new c() involves the creation of a new object of class c. A
reference to this new object is assigned to the local variable u. Method invoca-
tions are denoted by e0.m(e1, . . . , en). Here e0 is the object of which method m is
invoked. The expressions e1, . . . , en are the actual parameters of the invocation.

The expressions listed are a minimal subset that suffices for our present
purposes. The instanceof operator is used to handle dynamic binding. An
expression e instanceof c is true if e denotes an instance of (some subclass of)
class c. Casts of the form (c)e can be used to cope with field shadowing [9]. They
change the type of the expression to c.

Finally some words on types. We only consider two primitive types in this
paper: int and boolean. Variables in the program may also have a reference
type. In that case the type of the variable is one of the classes declared in the
program. We will tacitly assume that all programs are well-typed. We refer to
the type of an expression e by [|e|]. The variable t ranges over the set of types.

3.2 Structural Operational Semantics

In this subsection we present a simple structural operational semantics for the
statements in the languages. The formal semantics of method calls is, however,
reserved for the next section. The semantics should be helpful for a proper un-
derstanding of the rest of this paper. Moreover, it is an essential requirement for
the soundness proof of the adaptation rule.

We start our description with some auxiliary definitions for a program π. The
program π determines among others the subclass relation. By c ¹ c′ we denote
that c is a subclass of c′. This relation is reflexive and transitive. We assume

5



that FC(c) denotes the direct superclass of a class c. It is undefined if c has no
superclass. We say that c′ is a proper subclass of c if c′ ¹ c and c′ 6= c.

Let Var denote a set of variables. We assume that at least all local variables
that are used in π and the special-purpose variable this are elements of Var. Let
IVarc denote the set of instance variables declared in class c. Due to inheritance
an object can have several fields with the same identifier. An expression e.x
always corresponds to the first declaration of a instance variable x as found by
an upward search that starts in class [|e|]. The upward search is formalized by
the function origin, which is declared as follows.

origin(c, x) =
{

c if x ∈ IVarc

origin(FC(C), x) otherwise

We represent objects as follows. Each object has its own identity and belongs
to a certain class. Let C be the set of classes declared in π. For each class c ∈ C
we introduce the infinite set Oc = {c} × N of objects of class c (here N denotes
the set of natural numbers).

The domain of a variable of type t is denoted by dom(t). The domains
dom(boolean) and dom(int) are the set of boolean and integer values, respec-
tively. Due to subtyping a variable of some reference type c can also refer to an
object of some subclass of c. Let subs(c) be the set of all subclasses of class c.
Then dom(c) is the set (

⋃
c′∈subs(c) Oc′) ∪ {ν}. Here ν is the value of null.

A state (σ, τ) of a program π consists of a heap σ and an environment τ . An
environment τ ∈ T assigns values to the local variables. Formally, T is the set∏

z∈Var dom([|z|]). Note that by
∏

a∈A(P (a)) we mean a (generalized) cartesian
product. An element of this set is a function that assigns to every element a ∈ A
an element of the set P (a).

A heap consists of the existing objects. Each object in turn has its own
internal state (the values of its instance variables). The internal state of an
object o ∈ Oc is a total function that maps the instance variables of class c
and its superclass to their values. Let supers(c) be the set {c′ ∈ C|c ¹ c′}. The
internal state of an instance of class c is an element of the set internal(c), which
is the set ∏

c′∈supers(c)

∏

x∈IVarc′

dom([|x|]) .

A heap σ is a partial function that maps each existing object to its internal
state. We will assume that σ is an element of the set Σ, where

Σ =
∏

c∈C

(
N ⇀ internal(c)

)
.

In the sequel, we will write σ(o) for some object o = (c, n) as shorthand for
σ(c)(n). In this way, σ(o) denotes the internal state of an object. Note that σ(c)
is not defined for objects that do not exist in a particular heap σ. Thus σ specifies
the set of existing objects. We will only consider states that are consistent. A
heap is consistent if all instance variable of existing objects refer to existing
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objects or ν. Similarly, an environment is consistent with a heap if all variables
refer to existing objects or ν.

The state of a program is then simply a pair (σ, τ) that consists of a consistent
heap σ, and an environment τ that is consistent with the heap σ.

Expressions are evaluated relative to a program π, and a state (σ, τ). The
result of the evaluation of an expression e is denoted by E(e)(σ, τ). We leave the
program π implicit. The definition of E(e)(σ, τ) can be found in Figure 3.2.

E(null)(σ, τ) = ν
E(this)(σ, τ) = τ(this)

E(u)(σ, τ) = τ(u)

E(e.x)(σ, τ) =

{⊥ if E(e)(σ, τ) ∈ {ν,⊥}
σ(E(e)(σ, τ))(origin([|e|], x))(x) otherwise

E( (c)e )(σ, τ) =

{⊥ if E(e)(σ, τ) = (c′, n) and c′ 6¹ c
E(e)(σ, τ) otherwise

E(e instanceof c)(σ, τ) =




⊥ if E(e)(σ, τ) = ⊥
false if E(e)(σ, τ) = ν
c′ ¹ c if E(e)(σ, τ) = (c′, n)

E(op(e1, . . . , en))(σ, τ) =

{⊥ if E(ei)(σ, τ) = ⊥
ōp(E(e1)(σ, τ), . . . , E(en)(σ, τ)) otherwise,

where ōp denotes the fixed interpretation of op.

Fig. 2. Semantics of Expressions

The presented language is not very large. So it should be possible to give a
succinct formal semantics to the statements. We will try not to become overly
formal about simple things. Therefore we start with a list of properties that we
will merely assume (without presenting a formal system to derive them).

Programs should be unambiguous and acyclic. The first conditions means
that classes, fields and methods should be unique. More precisely, we require that
no two classes have the same identifier, and that fields and methods are unique
in their defining class. In particular, we do not allow overloading of methods.
A class can only declare a method that it also inherits if the new method has
the same argument types and return type as the overridden method. This latter
requirement is not essential but simplifies the semantics. A program is acyclic
if the subclass hierarchy is acyclic. Finally, we assume that the program is well-
typed.

By 〈S, (σ, τ)〉 → (σ′, τ ′) we denote that a computation of S that starts in a
state (σ, τ) ends in a state (σ′, τ ′).

We will discuss some interesting cases in detail. We start with an assignment
to a local variable. Such an assignment only succeeds if the value of the expression
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e is defined.
E(e)(σ, τ) 6= ⊥

τ ′ = τ [u 7→ E(e)(σ, τ)]
〈u = e ; , (σ, τ)〉 → (σ, τ ′)

(L)

Successful termination of an assignment e.x = e′ requires that the values
of both expressions are defined. Moreover, e should denote an object. The rule
assumes that field x is defined in class c′. Then the new heap σ′ is obtained from
σ by assigning the value of e′ to field x of class c′ of this object. The local state
remains unchanged.

E(e)(σ, τ) = (c, n)
E(e′)(σ, τ) 6= ⊥

origin([|e|], x) = c′

σ′ = σ[(c)(n)(c′)(x) 7→ E(e′)(σ, τ)]
〈e.x = e′ ; , (σ, τ)〉 → (σ′, τ)

(I)

An assignment u = new c() involves the creation of a new object (an object
that does not exists in the heap σ). All instance variables of the new objects are
initialized with their default values. The default value of a variable depends on
its type. We assume that def(t) denotes the default value of a type t. We have
def(c) = ν for every reference type c.

σ(c)(n) is undefined
∀c′ ∈ supers(c)∀x ∈ IVarc′(f(c′)(x) = def([|x|]))

σ′ = σ[(c)(n) 7→ f ]
τ ′ = τ [u 7→ (c, n)]

〈u = new c() ; , (σ, τ)〉 → (σ′, τ ′)
(C)

The other cases are straightforward. They are listed in Figure 3.2

3.3 Method calls

Our rule of adaptation is designed for reasoning about method calls in object-
oriented languages. In this section we discuss the structural operational seman-
tics of such method calls.

Recall that a call to method m of object e0 is of the form u = e0.m(e1, . . . , en).
We assume that all methods are public. This implies that we have to deal with
dynamic binding if a method is overridden in a subclass. However, we will first
describe the case of a method that is not overridden. This implies that we can
simply lookup the implementation of method m in class [|e0|] (we ignore method
overloading). Let this implementation be

m(u1, . . . , un){ v̄ S return e } .

The call starts with the context switch in which the value of e0 is assigned to
this and the values of the actual parameters ē = e1, . . . , en are assigned to the
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〈S1, (σ, τ)〉 → (σ′′, τ ′′)
〈S2, (σ

′′, τ ′′)〉 → (σ′, τ ′)

〈S1 S2, (σ, τ)〉 → (σ′, τ ′)
(S)

E(e)(σ, τ) = true
〈S1, (σ, τ)〉 → (σ′, τ ′)

〈if (e) { S1 } else { S2 } , (σ, τ)〉 → (σ′, τ ′)
(IF1)

E(e)(σ, τ) = false
〈S2, (σ, τ)〉 → (σ′, τ ′)

〈if (e) { S1 } else { S2 } , (σ, τ)〉 → (σ′, τ ′)
(IF2)

E(e)(σ, τ) = true
〈S, (σ, τ)〉 → (σ′′, τ ′′)

〈while (e) { S }, (σ′′, τ ′′)〉 → (σ′, τ ′)

〈while (e) { S }, (σ, τ)〉 → (σ′, τ ′)
(W1)

E(e)(σ, τ) = false

〈while (e) { S }, (σ, τ)〉 → (σ, τ)
(W2)

Fig. 3. Structural operational semantics: additional rules

formal parameters ū = u1, . . . , un. The additional local variables v̄ initially have
their default value. After execution of the body the value of e is assigned to u.
This corresponds to the following rule.

〈S, (σ, τi)〉 → (σ′, τ ′i)
τi = τ [this, ū, v̄ 7→ E(e0)(σ, τ), E(ē)(σ, τ), def([|v̄|])]

τ ′ = τ [u 7→ E(e)(σ′, τ ′i)]
〈u = e0.m(e1, . . . , en), (σ, τ)〉 → (σ′, τ ′)

Observe that the environment τ ′ only differs from τ in the value that is assigned
to u. All other local variables are not changed by the method call. By contrast,
the fields of the objects in σ may have different values in σ′. Moreover, the heap
σ′ possibly contains objects that did not exist in σ.

Evaluation of calls to public methods requires an evaluation of e0 to decide to
which implementation the call is bound. Let E(e0)(σ, τ) = (c, n). Then this call is
bound to the implementation of method m that is found in class c or otherwise
the first implementation of this method in a superclass of c. We denote this
method implementation by exec impl(c,m). In all other aspects the evaluation
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of the call is similar to the rule above.

E(e0)(σ, τ) = (c, n)
exec impl(c,m) = m(u1, . . . , un){ v̄ S return e }

〈S, (σ, τi)〉 → (σ′, τ ′i)
τi = τ [this, ū, v̄ 7→ E(e0)(σ, τ), E(ē)(σ, τ), def([|v̄|])]

τ ′ = τ [u 7→ E(e)(σ′, τ ′i)]
〈u = e0.m(e1, . . . , en), (σ, τ)〉 → (σ′, τ ′)

(D)

4 The Assertion Language

The proof rule that we propose is tailored to a specific assertion language called
AsO (Assertion language for Object structures). We will describe the syntax and
semantics of AsO in this section. Moreover, we will explain some of the design
decisions behind the language.

Any Hoare logic is tailored to a specific assertion language in which the as-
sertions are expressed. The assertion language decides the abstraction level of
the logic. An important design decision behind AsO is to keep its abstraction
level as close as possible to the programming language. In other words, we re-
frain as much as possible from introducing constructs that do not occur in the
programming language. This makes it easier for programmers to annotate their
programs.

The set of expressions in AsO is obtained by extending the set of program
expressions with the following clauses.

l ∈ LExpr ::= . . . | z | l1 = l2 | if l1 then l2 else l3 fi | l[l′] | l.length

The variable z denotes a logical variable. A logical variable is simply a place-
holder for an arbitrary value. Logical variables are usually used to refer to the old
value of a variable in the postcondition of a method. Conditional expressions like
if l1 then l2 else l3 fi are usually also present in the programming language.
We list them here explicitly because they are needed for reasoning about aliases
[9]. The same remark applies to expressions of the form l1 = l2.

The only real addition are the two operations on finite sequences. Logical
variables can have type t∗ for some type t of the programming language. This
means that its value is a finite sequence of elements from the domain of t. Finite
sequences can be used to specify properties of object structures. For example,
it enables us to express that there exists a sequence of objects in which each
objects has a pointer to its successor in the sequence. In fact, finite sequences
are also essential for our adaptation rule as will become clear in the rest of this
paper. We write l[l′] to select the element at position l′ in the sequence l. The
length of a sequence l is denoted by l.length.

Formulas in AsO are built from expressions in the usual way.

P, Q ∈ Ass ::= l1 = l2 | ¬P |P ∧Q | ∃z : t(P )
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A formula ∃z : c(P ) means that P holds for an existing object of (a subclass
of) class c or null. A formula ∃z : c∗(P ) indicates that P holds for a sequence
of such objects. We sometimes omit the type in ∃z : t(P ) if it is clear from the
context.

The standard abbreviations like p∨ q for ¬(¬p ∧ ¬q) and ∀z(P ) for ¬∃z¬(P )
are valid. We also use two other useful abbreviations. A formula z ∈ z′ will
stand for ∃i(0 ≤ i < z′.length ∧ z = z′[i]), and z ⊆ z′ abbreviates the formula
∀i(0 ≤ i < z.length → z[i] ∈ z′).

Note that the validity of assertions may also be affected by the creation of
new objects. We can, for example, express in the assertion language that there
exist no objects of some class c by means of the formula ∀z : c(z = null). This
formula clearly does not hold in the state that results from executing u = new c().

Assertion languages for object-oriented programs inevitably contain expres-
sions like l.x and (c)l that are normally undefined if, for example, l is null.
However, as an assertion their value should be defined. We solved this problem
by giving such expression the same value as null. By only allowing the non-
strict equality operator as a basic formula, we nevertheless ensure that formulas
are two-valued. If we omit this operator (in examples) the value is implicitly
compared to true. An alternative solution that is employed in JML [11] is to
return an arbitrary element of the underlying domain.

4.1 Semantics

The evaluation of expressions of AsO is very similar to that of expressions of
the programming language. Therefore we focus in this section on the elements
of AsO that are not present in the programming language.

As described above, the most essential addition are the finite sequences. The
domain of logical variables of some type t∗ is straightforward. Formally, dom(t∗)
is the set

{(n, f) | n ∈ N and f ∈
∏n−1

i=0
dom(t)} .

That is, we see finite sequences as a pair of a natural number that denotes the
length of the sequences and a function that assigns to each valid index an element
of the component type t of the sequence.

Logical expressions are evaluated relative to a program π, and a state (σ, τ).
An assertion ∃z : c(P ) expresses that P holds for an existing instance of (a
subclass of) c or null. Thus the quantification domain of a variable depends not
only on the type of the variable but also on the heap. Let qdom(t, σ) denote the
quantification domain of a variable of type t in heap σ. We define qdom(c, σ) =
{o ∈ dom(c) | σ(o) is defined } ∪ {⊥}. A formula ∃z : c∗(P ) states the existence
of a sequence of existing objects. Therefore, we define

qdom(c∗, σ) = {α ∈ dom(c∗)|∀n ∈ N.α[n] ∈ qdom(c, σ)} .

Finally, we have qdom(t, σ) = dom(t) for t ∈ {int, boolean, int∗, boolean∗}.
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L(z)(σ, τ) = τ(z)

L(l1 = l2)(σ, τ) =

{
true if L(l1)(σ, τ) = L(l2)(σ, τ)
false otherwise

L(if l1 then l2 else l3 fi)(σ, τ) =




⊥ if L(ll)(σ, τ) ∈ {⊥, ν}
L(l2)(σ, τ) if L(l1)(σ, τ) = true
L(l3)(σ, τ) if L(l1)(σ, τ) = false

L(l[l′])(σ, τ) =





⊥ if L(l′)(σ, τ) = ⊥
f(i) if σ(L(l)(σ, τ)) = (n, f)

and L(l′)(σ, τ) = i, 0 ≤ i < n
⊥ otherwise

L(l.length)(σ, τ) = n, where σ(L(l)(σ, τ)) = (n, f)

A(l1 = l2)(σ, τ) =

{
true if L(l1)(σ, τ) = L(l2)(σ, τ)
false otherwise

A(¬P )(σ, τ) =

{
true if A(P )(σ, τ, ω) = false
false otherwise

A(P ∧Q)(σ, τ) =





true if A(P )(σ, τ) = true
and A(Q)(σ, τ) = true

false otherwise

A(∃z : t(P ))(σ, τ) =





true if A(P )(σ, τ [z 7→ α]) = true
for some α ∈ qdom(t, σ)

false otherwise

Fig. 4. Semantics of AsO

The result of the evaluation of an expression l is denoted by L(l)(σ, τ). We
leave the program π implicit. Similarly, the value of an assertion P is denoted
by A(P )(σ, τ). The definition of L and A can be found in Figure 4.

The statement σ, τ |= P means that A(P)(σ, τ) yields true. |= P indicates
that σ, τ |= P for every state (σ, τ).

5 The Static Effect of a Method

The rule of adaptation that we present in the next section integrates frame
conditions in a natural way in the verification conditions of method calls. Frame
conditions specify what variables are altered by a method. Thus they implicitly
contain information about which variables remain unchanged by a method. We
approximate the set of variables that is assigned by a method in the sense that
we do not attempt to solve the aliasing problem in frame conditions. We only
analyze which fields are (possibly) assigned. To which object the field belongs
can be specified in the method specification. The same decision is reported [12]
to result in an efficient checker of frame conditions.

Similarly, one can statically collect information about which objects are (pos-
sibly) created by a class. This information can in turn by used to guarantee that
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a method creates no objects of a particular class. The creation of objects can
also affect the validity of assertions as explained in Sect. 4. Surprisingly, a spec-
ification language for Java such as JML [11] seems to have no clause that allows
the designer of a method to express such properties. The adaptation rule in
this paper reveals that such information is equally important as the well-known
frame conditions.

By the static effect of a method we mean a pair that consists of the set of
classes of which objects are possibly created by the method, and the set of fields
that are possibly assigned by the method. A field is described by a pair that
consists of the class in which the field is declared and its identifier. We denote
effects by ψ or by its pair of constituents (cs, fs). In the rest of this section we
give a formal definition of the effect of a method.

The effect of a method implementation meth is given by sef(meth)(ms). The
second parameter is the set of methods that have already been considered. This
parameter prevents a circular definition in case of recursive methods. The ef-
fect of a method implementation in some class c is the effect of its body. Let
meth ≡ m(u1, . . . , un){ v̄ S return e }. Then

sef(meth)(ms) =
{

sef(S)(ms ∪ {(c,m)}) if (c,m) 6∈ ms
(∅, ∅) otherwise .

The following cases list the effects of basic statements.

sef(u = e)(ms) = (∅, ∅)
sef(e.x = e′)(ms) = (∅, {(origin([|e|], x), x)})

sef(S1 S2)(ms) = sef(S1)(ms) ∪ sef(S2)(ms)
sef(u = new c())(ms) = ({c}, ∅)

sef(if (e) { S1 } else { S2 })(ms) = sef(S1)(ms) ∪ sef(S2)(ms)
sef(while (e) { S })(ms) = sef(S)(ms)

The union of two effects is defined as follows:

(cs1, fs1) ∪ (cs2, fs2) = (cs1 ∪ cs2, fs1 ∪ fs2) .

Finally, we will define sef(u = e0.m(e1, . . . , en))(ms). Due to dynamic bind-
ing we cannot (in general) statically decide which implementation will be bound
to this call. Therefore we consider all possibilities. We denote the set of classes
that provide an implementation for this call by impls([|e0|],m). More precisely,
impls(c,m) denotes the set of classes that contains

– class c if it provides an implementation of method m or otherwise the set
from which c inherits the implementation of method m;

– All subclasses of class c that provide an implementation of method m.

Let impl(c, m) denote the implementation of method m in class c. The definition
of the final clause is then as follows.

sef(u = e0.m(e1, . . . , en))(ms) =
⋃

c∈impls([|e0|],m)
(sef(impl(c,m))(ms))

13



As explained above, we use the effect of a method implementation to guar-
antee that is does not alter a certain field. In other words, if a field does not
occur in the set of fields in the effect, then this field is not assigned to during
the call in any object. The following lemmas links these claims to the semantics
of statements.

Lemma 1. Let 〈S, (σ, τ)〉 → (σ′, τ ′). Let sef(S)(∅) = (cs, fs). Let x be in ar-
bitrary field of some class c such that (c, x) 6∈ fs. Let o be an arbitrary ob-
ject of (some subclass of) class c such that σ(o) is defined. Then σ(o)(c)(x) =
σ′(o)(c)(x).

Proof. By induction on the length of the derivation.

Lemma 2. Let 〈S), (σ, τ)〉 → (σ′, τ ′). Let sef(S)(∅) = (cs, fs). Let c be a class
such that

∧
c′∈cs(c

′ 6¹ c). Then qdom(c, σ) = qdom(c, σ′).

Proof. By induction on the length of the derivation.

6 A Rule of Adaptation for OO

The Starting Point The rule of adaptation that we propose in this paper was
inspired by the profound analysis by Olderog of several earlier rules of adaptation
[2]. Olderog showed that the precondition of Hoare’s original proposal was not
the weakest possible precondition that fits in the adaptation rule. He described a
way to actually derive a weaker precondition. His analysis also leads in a similar
way to a rule of adaptation that is based on the strongest possible postcondition.
This particular rule appears also in [13]. It has the following form.

{P ′}S{Q′}
P [ȳ/x̄] ∧ ∀z̄(P ′[ȳ/x̄] → Q′) → Q

{P}S{Q} (1)

Here ȳ denotes a sequence of fresh logical variables (not occurring free in P ,
P ′, Q or Q′). The sequence x̄ contains all program variables that occur in the
statement S, and z̄ is a list of the logical variables that occur free in P ′ or Q′.

The logical variables in ȳ are placeholders of the values of the program vari-
ables x̄ in the initial state. The antecedent of the verification condition of this
rule says that P holds in the initial state. Typically, this implies that P ′ also
holds in the old state for particular values of its logical variables. For those val-
ues of the logical variables we then infer that Q′ holds in the final state. And Q′

must in turn imply Q.
One particular advantage of this adaptation rule is that it considers the old

values of the variables (in the state preceding the call) instead of the new values
after the call. This is important because of the state extensions in object-oriented
programs. In the precondition variant we are forced to reason about objects
that do not (yet) exist. But our assertion language only describes properties of
existing objects. A postcondition variant of the adaptation rule only requires us
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to consider the objects that existed in the initial state from the perspective of
the final state. That boils down to reasoning about subsets of the objects that
exist in the state after the call.

Recall from Sect. 3.3 that the environment does not changes during a method
call. This means that the local variables of the caller are not changed during a
call. Therefore we do not have to distinguish between the old values of local
variables of the caller and their new values. We only have to consider changes
to the heap σ. More in particular, we have to deal with heap modifications and
heap extensions.

Modelling the Old Heap To design an object-oriented variant of the above
adaptation rule we have to analyze which parts of the state are modified by
a method call. Recall from Sect. 3.3 that the environment of the caller (and
hence every local variable of the caller) does not change during a method call.
Therefore we do not have to distinguish between the old values of local variables
of the caller and their new values. The heap however may change in two ways.
We have to deal with both heap modifications and heap extensions.

Observe that the above rule introduces a sequence of logical variables ȳ that
represent the old values of the program variables. A first challenge for an object-
oriented version of the rule of adaptation is to introduce logical variables that
model the old heap. The heap comprises the existing objects and the values of
their instance variables. We can model the old heap by means of a fresh logical
variable µ of type Object∗. We will assume that this sequence contains the objects
that existed in the old heap.

The internal state of an object consists of the values of its instance variables.
For each instance variable x of some type t defined in some class c we introduce a
fresh logical variable µ(xc) of type t∗. The idea is that if an object o is stored at
position i in the sequence µ then the value of o.x is µ(xc)[i]. This straightforward
model of the old heap presupposes that we have some way of finding the index
of an object in the old heap. For this purpose we introduce a function f that
yields the index in the old heap of every object.

This model of the old heap is based on the following assumptions.

– ∀i(0 ≤ i < µ.length → f(µ(i)) = i),
which states that the index function yields the index of each object in µ; It
also implies that each object occurs at most once in the old heap;

– µ(xc) v µ,
for every field x declared in some class c such that [|x|] ∈ C. This formula
boils down to consistency of the old heap.

We denote the conjunction of these two assumptions by heap1. This formula
should be available in the theorem prover as an axiom for the verification con-
ditions.

Bounded Quantification An important concept in our rule of adaptation is
that of bounded quantification. Methods can not only modify the heap but also
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extend it by creating new objects. Thus a property that holds for all objects in
the state before the call may not hold for all objects after the call. Therefore we
sometimes have to restrict quantification to the objects that existed before the
call. However, we only restrict quantification if the static effect of the method
indicates that a object of this class might be created by the method.

Let µ be the sequence that models the objects in the old heap. Let the effect
of the method that is called be ψ. Let ψ = (cs, fs). Then we define the bounded
variant ∃zψ

µ : t(P ) of an expression ∃z : t(P ) as follows.

∃zψ
µ : t(P ) ≡ ∃z : t(P ) for t ∈ {int(∗), boolean(∗)}

∃zψ
µ : c(P ) ≡

{∃z : c(z ∈ µ ∧ P ) if
∨

c′∈cs(c
′ ¹ c)

∃z : c(P ) otherwise

∃zψ
µ : c∗(P ) ≡

{∃z : c∗(z ⊆ µ ∧ P ) if
∨

c′∈cs(c
′ ¹ c)

∃z : c∗(P ) otherwise

Note that quantification becomes bounded if the effect lists a subclass of the
class that we consider. This is the right condition because the quantification
domain of a class also contains the objects of subclasses.

The following lemma says that an object that exists in the final state of a
call and moreovers occur in the sequence µ already existed in the initial state.

Lemma 3. Let 〈S, (σ, τ)〉 → (σ′, τ ′). Let µ be a logical variable of sequence type
Object∗. Then

A(z ∈ µ)(σ, τ [z 7→ α]) = true and α ∈ qdom(c, σ)
if and only if

A(z ∈ µ)(σ′, τ ′[z 7→ α]) = true and α ∈ qdom(c, σ′) .

Proof. By induction on the length of the derivation.

Restricting Assertions to the Old Heap Another challenge is to find a
counterpart of the substitution [ȳ/x̄]. This substitution must do two things.
It has to replace references to instance variables by the corresponding logical
variables. And it must restrict quantification to the objects that existed in the
old heap as argued above. We introduce the substitution ¼ψ for this purpose.
Note that this substitution takes the effect ψ of the method that is called into
account. All cases of the substitution ¼ψ are listed in Fig. 6.

The most interesting case of this substitution is (l.x) ¼ψ. It replaces l.x by
its value in the old heap as described above. Let ψ = (cs, fs). Assume that
origin([|l|], x) = c (field x is defined in class c). Then we define this case as
follows.

(l.x)¼ψ≡
{

µ(xc)[f(l ¼ψ)] if (c, x) ∈ fs
(l ¼ψ).x otherwise

We only substitute the instance variable if the effect indicates that the method
possibly changes its value.
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null¼ψ ≡ null

this¼ψ ≡ this

z ¼ψ ≡ z

(l.x)¼ψ ≡
{

µ(xc)[f(l ¼ψ)] if (c, x) ∈ fs
(l ¼ψ).x otherwise

(l[l′])¼ψ ≡ (l ¼ψ)[l′ ¼ψ]
(l.length)¼ψ ≡ (l ¼ψ).length

((c)l)¼ψ ≡ (c)(l ¼ψ)
(l1 = l2)¼ψ ≡ (l1 ¼ψ) = (l2 ¼ψ)

(l instanceof c)¼ψ ≡ (l ¼ψ) instanceof c
op(l1, . . . , ln)¼ψ ≡ op(l1 ¼ψ, . . . , ln ¼ψ)

(if l1 then l2 else l3 fi)¼ψ ≡ if l1 ¼ψ then l2 ¼ψ else l3 ¼ψ fi

(l1 = l2)¼ψ ≡ (l1 ¼ψ) = (l2 ¼ψ)
(¬P )¼ψ ≡ ¬(P ¼ψ)

(P ∧Q)¼ψ ≡ (P ¼ψ) ∧ (Q¼ψ)

(∃z : t(P ))¼ψ ≡ ∃zψ
µ : t(P ¼ψ))

Fig. 5. The substitution ¼ψ

Another interesting case is (∃z : t(P ))¼ψ, which is defined as follows.

(∃z : t(P ))¼ψ≡ ∃zψ
µ̄ : t(P ¼ψ))

Thus the substitution ¼ψ restricts quantification to the objects that existed in
the state before the call. The quantification is not bounded if the effect of the
method guarantees that no objects of a class will be created.

The Adaptation Rule We can now state our rule of adaptation. We start
with a simplified version of the rule for calls that have but one implementation.
This is, for example, the case if a method is private, or if it is not overridden in
some subclass. Let the statement u = e0.m(e1, . . . , en) involve a call to such a
method. Let

meth ≡ m(u1, . . . , un){ v̄ S return e }
be the implementation of method m that is bound to the call. Let the effect ψ
be sef(meth)(∅) = (cs, fs). Then we have the following rule of adaptation (2) for
such calls.

{P ′} v̄ S {Q′[e/result]}
heap2 ∧ P ¼ψ ∧∀z̄ψ

µ̄ (P ′[e0, ē/this, ū]¼ψ→ ∃v̄′(Q′)) → Q[result/u]
{P} u = e0.m(e1, . . . , en) {Q} (2)

Observe that the rule has the same outline as the former rule except for the
predicate heap2. This assumption supplies additional information concerning the
old heap. It consists of the following parts:
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–
∧

u∈U u ∈ µ, where U is the set of all local variables that occur either in P ,
Q or ei, for i ∈ {0 . . . n}, and

–
∧n

i=0 ei ¼ψ∈ µ.

The first clause states that the local variables of the caller reference objects in
the old heap; the second clause says the same about the actual parameters of
the call. Local variables and parameters of a primitive type must be omitted.

The list z̄ again contains all logical variables that occur free in P ′ or Q′

(except the special-purpose logical variable result). The sequence v̄′ is a sequence
of all local variables that occur free in Q′ including this. We quantify over these
local variables of the callee to prevent confusion with local variables of the caller
in P or Q. The precondition of the method P ′ may only mention the formal
parameters and this. All other local variables are out of scope in P ′.

The simultaneous substitution [e0, ē/this, ū] models the context switch. It
replaces this by e0, and the formal parameters ū = u1, . . . , un by the actual
parameters ē = e1, . . . , en. To prevent problems with field shadowing these sub-
stitutions should preserve the types of the expressions by introducing casts if
necessary (see [9] for further details).

The special-purpose logical variable result denotes the result value. It is only
allowed in postconditions of methods. The substitution [e/result] models a virtual
assignment of the result value to result. Similarly, the substitution [result/u]
models an assignment of this value to u.

Observe that the second premiss of the rule is the verification condition
of a call with annotation {P} u = e0.m(e1, . . . , en) {Q} in an object-oriented
program where the corresponding implementation of method m has precondition
P ′ and postcondition Q′. To be able to express the verification condition we
extended the assertion language by allowing the function symbol f in assertions.
However, these symbols will only occur in the verification conditions. The proof
outlines retain their desired abstraction level.

The rule looks rather complex because it has to account for all possible
contexts. In concrete contexts the resulting verification condition is often simpler.
We give an example in Sect. 7.

Next, we analyze reasoning about method invocations that are dynamically
bound to an implementation. In such cases we have to consider all implemen-
tations of method m that might possibly be bound to the call. Suppose again
that we consider a call u = e0.m(e1, . . . , en). Recall that impls([|e0|],m) denotes
the set of classes that provide an implementation for this call. This set tells us
how many implementations we must consider.

A second consideration concerns the set of classes that inherit the particular
implementation in some class c ∈ impls([|e0|],m). A class inherits the implemen-
tation in class c if it is a subclass of class c and it is not a subclass of some class
that overrides the implementation in class c. We denote the set of classes that
override the implementation of method m in class c by overrides(c)(m). We have
c′ ∈ overrides(c)(m) if

– c′ is a proper subclass of c that provides an implementation of method m,
and
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– there does not exist another proper subclass c′′ of c such that c′ is a proper
subclass of c′′ and c′′ also provides an implementation of method m.

With this definition we can formulate in what circumstances the implementation
of m in class c is bound to a method call e0.m(e1, . . . , en). That occurs when e0

is an instance of a subclass of c and it is not an instance of a class that overrides
this implementation. These conditions are stated in the assertion language by
the following formula: e0 instanceof c ∧∧

c′∈overrides(c)(m) ¬(e0 instanceof c′).
We denote this formula by boundto(e0, c, m).

Let impls([|e0|], m) = {c1, . . . , ck}. Let m(ui
1, . . . , u

i
n){ v̄i Si return ei } be

the implementation of method m in class ci, for i = 1, . . . , k with effect ψi. We
assume that the implementation of method m in class ci has precondition P ′i and
postcondition Q′i. Let Bi denote {P ′i} v̄i Si {Q′

i[ei/result]}. That is, Bi describes
the specification of the implementation in class ci. The verification condition Vi

for the implementation in class ci is the implication

heap2 ∧ P ¼ψi
∧boundto(e0, ci,m)¼ψi

∧
∀z̄ψi

µ̄ (P ′i [e0, ē/this, ū]¼ψi
→ ∃v̄′(Q′

i)) → Q[result/u] . (Vi)

Note that we have strengthened the antecedent with the clause that implies that
the receiver is an object of a class that inherits the implementation of class ci.

The rule of adaptation for dynamically-bound method calls (RoA) then sim-
ply checks if all specifications of implementations that might possibly be bound
to the call can be adapted to the specification of the call. The rule results in one
verification condition for each implementation.

B1, . . . , Bk V1, . . . , Vk

{P} u = e0.m(e1, . . . , en) {Q} (RoA)

Lemma 4. Let P be an arbitrary assertion. Let µ be a logical variable of type
Object∗. Let µ(xc) be a logical variable of type [|x|]∗, for every instance variable x
declared in some class c. All the introduced logical variables should be fresh (not
occurring in P ) and distinct.

Let 〈S, (σ, τ ′)〉 → (σ′, τ ′′). Let ψ = sef(S)(∅) = (cs, fs). Let τ be an environ-
ment such that σ′, τ |= heap1. Let σ′, τ |= heap2 (for all variables and fields in
P ). Let

σ, τ |= ∀o : Object(o ∈ µ) (3)

if cs 6= ∅. Finally, assume that

σ, τ |= ∀o : c(o.x = µ(xc)[f(o)]) (4)

for every instance variable x declared in some class c such that (c, x) ∈ fs. Then

σ, τ |= P if and only if σ′, τ |= P ¼ψ and [|P |] = [|P ¼ψ |] .

Proof. By structural induction on P . We first consider the most interesting case
of an expression l.x and prove

L(l.x)(σ, τ) = L(l.x¼ψ)(σ′, τ) .
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By the induction hypothesis we have L(l)(σ, τ) = L(l ¼ψ)(σ′, τ) and [|l|] = [|l ¼ψ |].
Let origin([|l|], x) = c. Let us first consider the case where (c, x) ∈ fs. We calculate
this case as follows.

L(l.x¼ψ)(σ′, τ) { def. ¼ψ }
= L(µ(xc)[f(l ¼ψ)])(σ′, τ) { def. L, where τ(µ(xc)) = (n, g) }
= if 0 ≤ f(L(l ¼ψ)(σ′, τ)) < n

then g(f(L(l ¼ψ)(σ′, τ))) else ⊥ { ind.hyp. }
= if 0 ≤ f(L(l)(σ, τ)) < n

then g(f(L(l)(σ, τ))) else ⊥ { def. L }
= L(µ(xc)[f(l)])(σ, τ) { (4) and def. L }
= L(l.x)(σ, τ)

The final step of the proof above also uses the assumption σ, τ |= heap1 (the first
clause of heap1 implies that f(⊥) denotes an index that is out of bounds for µ).

Secondly, we prove the case where (c, x) 6∈ fs. This case follows directly from
Lemma 1.

L(l.x¼ψ)(σ′, τ) { def. ¼ψ }
= L((l ¼ψ).x])(σ′, τ) { def. L }
= if L(l ¼ψ)(σ′, τ) ∈ {ν,⊥} then ⊥

else σ′(L(l ¼ψ)(σ′, τ))(origin([|l ¼ψ |], x))(x) { ind. hyp. }
= if L(l)(σ, τ) ∈ {ν,⊥} then ⊥

else σ′(L(l)(σ, τ))(origin([|l|], x))(x) { Lemma 1 }
= if L(l)(σ, τ) ∈ {ν,⊥} then ⊥

else σ(L(l)(σ, τ))(origin([|l|], x))(x) { def. L }
= L(l.x)(σ, τ)

Another interesting case is the assertion ∃z : c(P ). We must show that

A(∃z : c(P ))(σ, τ) = A(∃z : c(P )¼ψ)(σ′, τ) .

Let us first consider the case where
∨

c′∈cs(c
′ ¹ c).

A(∃z : c(P )¼ψ)(σ′, τ) { def. ¼ψ }
= A(∃zψ

µ̄ : t(P ¼ψ))(σ′, τ) { def. bnd. quantif. }
= A(∃z : c(z ∈ µ ∧ (P ¼ψ)))(σ′, τ) { def. A }
= A(z ∈ µ)(σ′, τ [z 7→ α]) = true and
A(P ¼ψ)(σ′, τ [z 7→ α]) = true and α ∈ qdom(c, σ′) { def τ ′ }

= A(z ∈ µ)(σ′, τ ′[z 7→ α]) = true and
A(P ¼ψ)(σ′, τ [z 7→ α]) = true and α ∈ qdom(c, σ′) { Lemma 3 }

= A(z ∈ µ)(σ, τ [z 7→ α]) = true and
A(P ¼ψ)(σ′, τ [z 7→ α]) = true and α ∈ qdom(c, σ) { ind. hyp. }

= A(z ∈ µ)(σ, τ [z 7→ α]) = true and
A(P )(σ, τ [z 7→ α]) = true and α ∈ qdom(c, σ) { (3) }

= A(P )(σ, τ [z 7→ α]) = true and α ∈ qdom(c, σ) { def. A }
= A(∃z : c(P ))(σ, τ)
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The second and last cast occurs when
∨

c′∈cs(c
′ ¹ c) does not hold. This case

basically follows from Lemma 2.

A(∃z : c(P )¼ψ)(σ′, τ) { def. ¼ψ }
= A(∃zψ

µ̄ : t(P ¼ψ))(σ′, τ) { def. bnd. quantif. }
= A(∃z : c(P ¼ψ))(σ′, τ) { def. A }
= A(P ¼ψ)(σ′, τ [z 7→ α]) = true and α ∈ qdom(c, σ′) { ind. hyp. }
= A(P )(σ, τ [z 7→ α]) = true and α ∈ qdom(c, σ′) { Lemma 2 }
= A(P )(σ, τ [z 7→ α]) = true and α ∈ qdom(c, σ) { def. A }
= A(∃z : c(P ))(σ, τ)

ut

With this lemma we can prove that the adaptation rule (RoA) is sound.

Theorem 1. Rule (RoA) is sound.

Proof. Let 〈u = e0.m(e1, . . . , en), (σ, τ)〉 → (σ′, τ ′) and let σ, τ |= P . The former
computation must be derived by rule D from a computation of the body

〈S, (σ, τi)〉 → (σ′, τ ′i) , (5)

given the following assumptions.

– E(e0)(σ, τ) = (c, n)
– exec impl(c,m) = m(u1, . . . , un){ v̄ S return e }
– τi = τ [this, ū, v̄ 7→ E(e0)(σ, τ), E(ē)(σ, τ), def([|v̄|])]
– τ ′ = τ [u 7→ E(e)(σ′, τ ′i)]

We must prove that σ′, τ ′ |= Q.
Let v̄ be an arbitrary sequence without repetitions that contains ν and all

objects that exist in σ. Let v̄xc be a sequence of the same length as v̄ such
that v̄xc [i] = σ(v̄[i])(c)(x), for every valid index i where v̄[i] is an instance of
(a subclass of) class c. Let f denote a function such that for every o ∈ v̄ we
have v̄[f(o)] = o. Let τ1 be the environment that is obtained from τ by assigning
v̄ to µ, and v̄xc to µ(xc), for every field x declared in some class c. Let τ2 =
τ1[result 7→ L(e)(σ′, τ ′i)].

Recall that impls([|e0|],m) denotes the set of classes that provide an implemen-
tation that may be bound to this call. Let ci be the class in which exec impl(c,m)
with effect ψi is declared. The corresponding verification condition is

heap2 ∧ P ¼ψi ∧boundto(e0, ci,m)¼ψi ∧
∀z̄ψi

µ̄ (P ′i [e0, ē/this, ū]¼ψi→ ∃v̄′(Q′i)) → Q[result/u] . (6)

Since this verification condition is assumed to hold in all states it holds in
particular in the state (σ′, τ2). We will prove that (σ′, τ2) satisfies the antecedent
of (6) to obtain σ′, τ2 |= Q[result/u].

21



By the construction of τ2 it follows that σ′, τ2 |= heap1. It is also not difficult
to see why σ′, τ2 |= heap2 holds. The local variables of the caller refer to objects
that exist in σ. By the construction of τ2 they all occur in µ. The same can be
said about the logical variables in P . The validity of the last clause of heap2

follows from the construction of τ2 and Lemma 1.
Since none of the variables in µ̄ occurs in P we can conclude from σ, τ |= P

that σ, τ1 |= P also holds. We then use Lemma 4 to obtain σ′, τ1 |= P ¼ψ. Then
σ′, τ2 |= P ¼ψ also holds because result does not occur in P ¼ψ.

Because the call is bound to the implementation exec impl(c,m) it must be
the case that σ, τ |= boundto(e0, ci,m). By a similar line of reasoning as above
this leads to σ′, τ2 |= boundto(e0, ci, m)¼ψi

.
Let ᾱ be an arbitrary sequence of values for the variables in z̄ such that each

value exists in σ′. If the quantification is bounded we assume that α ∈ µ[|z|].
Finally, assume that

σ′, τ2[z̄ 7→ ᾱ] |= P ′[e0, ē/this, ū]¼ψ . (7)

Since result does not occur in P ′[e0, ē/this, ū]¼ψ this also implies that (7) holds
if we replace τ2 by τ1. By Lemma 4 (observe that µ̄ ∩ z̄ = ∅) we then in-
fer σ, τ1[z̄ 7→ ᾱ] |= P ′[e0, ē/this, ū]. The variables in µ̄ do not occur in the for-
mula P ′[e0, ē/this, ū]. Therefore σ, τ [z̄ 7→ ᾱ] |= P ′[e0, ē/this, ū]. The validity of
σ, τi[z̄ 7→ ᾱ] |=P ′ then follows from the construction of τi.

By the computation in (5) and the specification of the method implementa-
tion we conclude σ′, τ ′i [z̄ 7→ ᾱ] |= Q′[e/result]. This is equivalent to

σ′, τ ′i [result 7→ L(e)(σ′, τ ′i)][z̄ 7→ ᾱ] |= Q′ ,

which in turn implies

σ′, τ ′i [result 7→ L(e)(σ′, τ ′i)][z̄ 7→ ᾱ] |= ∃v̄′(Q′) .

The latter formula contains no free occurrences of local variables. All its logical
variables (except result) occur in z̄. Therefore σ′, τ2[z̄ 7→ ᾱ] |= ∃v̄′(Q′) holds also,
which was the final part of the antecedent of the verification condition.

We now have proved that σ′, τ2 |= Q[result/u]. By the construction of τ2

this is equal to σ′, τ1[result 7→ L(e)(σ′, τ ′i)] |= Q[result/u]. The variables in µ̄ do
not occur in Q so σ′, τ [result 7→ L(e)(σ′, τ ′i)] |= Q[result/u] also holds. By the
construction of τ ′ and the observation that result does not occur in Q this implies
σ′, τ ′ |= Q. ut

7 An Example

The rule as given above is certainly more complex that most other well-known
Hoare rules. It can be conveniently used in proof outlines however if the veri-
fication condition is computed automatically. We will give a small example of
a program and the resulting verification condition in this section. The example
mainly illustrates the elegant way in which the rule handles local variables.
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Table 1. An example proof outline

class c {

int x;

// precondition u == U && this == O

// postcondition O.x==U

public void set(int u) {

this.x=u;

}

// precondition u == U && this.x==X

// postcondition this.x==U && \result==(X==U)

public boolean testAndSet(int u) {

boolean b = (this.x==u);

/*{ u==U && b ==(X==U) }*/

this.set(u);

return b; }

}

The example program is listed in Table 7. The code defines a simple Java
class with two methods. Each method is preceded by a precondition and a post-
condition. The capital letters denote logical variables. In the annotation we use
the usual Java operators == and && for equality and conjunction, respectively.

It may seem strange that we also introduce a logical variable O in the precon-
dition of the set method to refer to the old value of this in its postcondition.
This is done because the verification condition puts an existential quantifier
around occurrences of this in the postcondition of the method to prevent con-
fusion with occurrences of this in the specification of the caller. A possible re-
finement of the rule could make these steps superfluous by automatically adding
the clause this = z to the precondition of the method and replacing this in
the postcondition by z (where z is a fresh logical variable).

The call this.set(u) is preceded by an intermediate assertion that is the
precondition of the call. The postcondition of this call is obtained by substituting
result in the postcondition of the method by b. We assume that the methods are
not overridden in subclasses. Therefore this call has the following verification
condition.

u = U ∧ b = (X = U) ∧ this instanceof c

∧ ∀O : c(∀U : int(u = U ∧ this = O → O.x = U))
→ this.x = U ∧ b = (X = U)

The static effect of the set-method is (∅, {(c, x)}). That is, it creates no new
objects and only modifies field x in class c. That explains why quantification
in this verification condition is not bounded. The predicate heap2 is not needed
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to prove this particular verification condition and is therefore left out. It is not
difficult to see that the above verification condition is valid if one chooses this
for O. Our experience is that contemporary theorem provers can prove simple
verification conditions like the one above completely automatically.

Observe that the clause b = (X = U) in the precondition of the call can be
used to prove the same clause in the postcondition. The specification of the set
method is totally unrelated to the local variables of the caller.

8 Most General Formulas

In this section we investigate the strength of the rule of adaptation. The adap-
tation rule complements the (relatively) complete Hoare logic that is proposed
in [9]. We prove that that logic is complete in [4].

It is a well-known fact that the rule of adaptation can replace the substi-
tution rule, the invariance rule, and the elimination rule without compromising
completeness [2]. In this section we prove that this is also the case for the rule
presented here. This means that we will re-examine Lemma 4 of [4]. This Lemma
states that we can prove any valid specification of a call if the corresponding im-
plementation is specified with its Most General Formula (MGF). We must show
that we can construct a similar proof with the adaptation rule without using the
rules that it replaces.

For this purpose, we define an object-oriented counterpart of the well-known
Most General Formula (MGF) of a method implementation in an object-oriented
program. A MGF reflects the semantics of a statement. The final result of this
chapter will be a theorem that states that we can derive any valid correctness
formula concerning a method call in one step by means of our rule of adaptation
if the corresponding method implementation is annotated similar to the MGF
(which is a valid specification for any method implementation).

Our definition of the MGF will be the counterpart of the MGF in the context
of simple procedural languages [14]. In such languages the MGF of a statement
S is the Hoare triple

{x̄ = ȳ}S{sp(x̄ = ȳ, S)} .

In this formula, x̄ is a list of all program variables and ȳ is a corresponding
list of logical variables. By sp(P, S) we denote the strongest postcondition of a
precondition P and a statement S.

The object-oriented MGF is based on a counterpart of the assertion x̄ = ȳ.
This formula ‘freezes’ the initial values of the program variables in corresponding
logical variables. We can do the same for object-oriented programs by applying
the technique that is used for the adaptation rule. However, this time we should
also store the initial values of the formal parameters and this.

Let θ be a fresh logical variable of type Object∗. This variable will store all
objects that exist in the initial state. Let θ(xc) be a fresh logical variable of
type [|x|]∗ for every instance variable x defined in some class c. Storing the initial
values of the formal parameters in logical variables is straightforward. We simply
introduce a logical variable θ(u) of type [|u|] for each formal parameter u, and
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similar for this. We will assume that θ̄ is a list that contains all the logical
variables defined in this paragraph.

This encoding of the heap can be captured logically by a finite conjunction
of the following assertions:

– ∀z : Object(z ∈ θ)
which states that the sequence θ contains all existing objects.

– ∀i(0 ≤ i < θ.length ∧ θ[i] instanceof c → ((c)θ[i]).x = θ(xc)[i])
which states that for each position in θ that contains an instance of (a
subclass of) class c the value of the instance variable x of that object can be
found in the sequence θ(xc) at the same position.

– this = θ(this)
which states that the value of this is stored in θ(this).

– ui = θ(ui)
which states that the value of the formal parameter ui is stored in θ(ui).

We only have to freeze the values of fields that occur in the write effects of a
statement. Therefore we will only include the second clause for fields that occur
in the write effects of a method. We denote the resulting conjunction by initψ.

The MGF of an arbitrary implementation m(u1, . . . , un){v̄ S return e} with
static effect ψ is the Hoare triple {init} v̄ S {sp(initψ, v̄ S) ∧ result = e}. We
use the following semantical definition of the strongest postcondition sp(P, v̄ S):

{(σ, τ) ∃σ′, τ ′ such that τ ′′ = τ [v̄ 7→ def([|v̄|])] and
〈S, (σ′, τ ′′)〉 → (σ, τ) and σ′, τ ′′ |= P}

It is not difficult to see that in this way

{init} v̄ S {(sp(initψ, v̄ S) ∧ result = e)[e/result]}

always holds.
The following theorem states that we can derive any valid correctness formula

concerning a call to a method in one step by means of our rule of adaptation if
the corresponding method implementations are all annotated with their MGF.

Theorem 2. Let {P} u = e0.m(e1, . . . , en) {Q} be a valid specification of the
call. Let impls([|e0|],m) ={c1, . . . , ck}. Let i ∈ {1 . . . k}. Let the implementation
of method m in class ci be mi(ui

1, . . . , u
i
n){v̄i Si return ei} with effect ψi. Let

init denote the formula defined above such that no variable in θ̄ occurs in P or
Q. Then

heap1 ∧ heap2 ∧ P ¼ψi ∧boundto(e0, ci,m)¼ψi ∧
∀z̄ψi

µ (initψi [e0, ē/this, ūi]¼ψi→ ∃v̄′(sp(initψi , v̄i Si)∧result = e) → Q[result/u].

Proof. Note that we must prove the verification condition for an arbitrary i that
corresponds to a fixed implementation. Therefore we will drop all the subscript
and superscript i′s in the following proof.
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The outline of the proof is as follows. We will consider a state (σ, τ) that satis-
fies the antecedent of the implementation. Then we will modify the environment
τ to obtain an environment τ ′ such that

σ, τ ′ |= initψ[e0, ē/this, ū]¼ψ .

This implies that σ, τ ′ |= ∃v̄(sp(initψ, v̄ S) ∧ result = e)) also holds. This will
enables us to construct a computation of the method implementation that starts
in the state (σ0, τ

′[this, ū 7→ L(e0)(σ0, τ
′),L(ē)(σ0, τ

′)]). Next we show that we
can extend this computation of the implementation to a computation of the call
starting in the state (σ0, τ

′). We will prove that this state (σ0, τ
′) satisfies P .

Therefore we can conclude that Q holds in the final state of the latter compu-
tation. This will imply that σ, τ |= Q[result/u] holds.

Let σ, τ be such that

σ, τ |= heap1 ∧ heap2 ∧ P ¼ψ ∧boundto(e0, c,m)¼ψ ∧
∀z̄ψ

µ (initψ[e0, ē/this, ū]¼ψ→ ∃v̄′(sp(initψ, v̄ S) ∧ result = e) . (8)

Let ψ = (cs, fs) be the effect of exec impl(ci, m). Let τ ′ be the environment
that results from τ by assigning τ(µ) to θ if cs 6= ∅. Otherwise τ ′(θ) is a sequence
that contains all objects that exist in σ. The value of τ ′(θ(xc)) = τ(µ(xc)) for
each (c, x) ∈ fs. Furthermore τ ′ should assign the value of L(e0 ¼ψ)(σ, τ) to
θ(this), and L(ei ¼ψ)(σ, τ) to θ(ui), for i ∈ {1 . . . n}. Finally, τ ′ should assign
def(u) to every local variable u that does not occur in P or ei, for i ∈ {0 . . . n}.
To all other variables τ ′ assigns the same values as τ . Observe that for τ ′ we
also have

σ, τ ′ |= heap1 ∧ heap2 ∧ P ¼ψ ∧boundto(e0, c, m)¼ψ

because the freeze variables do not occur in that formula. Moreover, we know
that

σ, τ ′ |= ∀z̄ψ
µ (initψ[e0, ē/this, ū]¼ψ→ ∃v̄′(sp(initψ, v̄ S) ∧ result = e)) (9)

also holds because the freeze variables do not occur free in the formula. We now
wish to drop the outermost quantifiers by instantiating the universally quantified
variables from this formula with elements of the old heap µ. This requires us to
prove that each value that is assigned to a freeze variable by τ ′ is a subsequence
of τ ′(µ) if cs 6= ∅, which implies that quantification over θ is bounded.

Note that τ ′(θ) v τ ′(µ) if cs 6= ∅ because τ ′(θ) = τ ′(µ) in that case. For
each (c, x) ∈ fs we have τ ′(θ(xc) = τ ′(µ(xc), whereas the latter is a subsequence
of the old heap according to σ, τ ′ |= heap1. Finally, σ, τ |= heap2 implies that
θ(this) and θ(u) also reference objects in the old heap.

The above analysis shows that each logical variable of a class type z̄ references
an object in τ ′. Therefore we may drop the outermost quantifiers in (9), which
yields the following implication.

σ, τ ′ |= initψ[e0, ē/this, ū]¼ψ→ ∃v̄′(sp(initψ, v̄; S) ∧ result = e) . (10)

26



Let’s now focus at the antecedent initψ[e0, ē/this, ū] ¼ψ. If we compute the
result of ∀z : Object(z ∈ θ)[e0, ē/this, ū]¼ψ we obtain ∀z : Object(z ∈ µ → z ∈ θ)
if cs 6= ∅, and ∀z : Object(z ∈ θ) otherwise. Both formulas clearly hold in the
state (σ, τ ′) due to the construction of τ ′.

Another interesting part is the result of [e0, ē/this, ū]¼ψ on

∀i(0 ≤ i < θ.length ∧ θ[i] instanceof c → ((c)θ[i]).x = θ(xc)[i]) .

The following computation shows the outcome.

∀i(0≤ i< θ.length ∧ θ[i] instanceof c → ((c)θ[i]).x = θ(xc)[i])[e0, ē/this, ū]¼ψ

≡ ∀i(0 ≤ i < θ.length ∧ θ[i] instanceof c → ((c)θ[i]).x = θ(xc)[i])¼ψ

≡ ∀i(0 ≤ i < θ.length ∧ θ[i] instanceof c → µ(xc)[f((c)θ[i])] = θ(xc)[i]) ,

This formula is valid in (σ, τ ′) by the construction of τ ′ and σ, τ ′ |= heap1.
The rest of initψ yields the following parts.

ui = θ(ui)[e0, ē/this, ū]¼ψ ≡ ei ¼ψ= θ(ui)
this = θ(this)[e0, ē/this, ū]¼ψ ≡ e0 ¼ψ= θ(this)

These clauses are valid in (σ, τ ′) because σ, τ ′ |= heap2. Therefore we conclude
σ, τ ′ |= initψ[e0, ē/this, ū]¼ψ. From (10) and the previous formula we may infer
σ, τ ′ |= ∃v̄′(sp(initψ, v̄ S) ∧result = e). This formula guarantees the existence of
a sequence of values ᾱ such that

σ, τ ′[v̄′ 7→ ᾱ] |= sp(initψ, v̄ S) ∧ result = e.

By the definition of the strongest postcondition sp this implies that there exists
a state (σ0, τ0) such that

〈S, (σ0, τ
′
0)〉→ (σ, τ ′[v̄′ 7→ ᾱ]) , (11)

where τ ′0 = τ0[v̄ 7→ def([|v̄|])] and σ0, τ
′
0 |= initψ.

It is easy to prove that τ ′0 assigns the same values to the logical variables
as τ ′[v̄′ 7→ ᾱ]. Because v̄′ is a sequence of local variables we also know that
τ ′0 assigns the same values to the logical variables as τ ′. By σ, τ ′ |= heap2 we
know that every local variable of a reference type that occurs in P , Q or ei, for
i ∈ {0 . . . n} refers to a value that occurs in µ. All other local variables have
their default value in τ ′. Therefore τ ′ is consistent with σ0.

From σ, τ ′ |= heap1 ∧ heap2 it follows that σ0, τ
′ |= heap1 ∧ heap2. We also

have σ0, τ
′ |= ∀z : Object(z ∈ µ) if cs 6= ∅ by σ0, τ

′
0 |= initψ and the construction

of τ ′. From σ0, τ
′ |= heap1 and σ0, τ

′ |= initψ we can prove that

σ0, τ
′ |= ∀o : c(o.x = µ(xc)[fc(o)])

holds for every instance variable x declared in some class c such that (c, x) ∈ fs.
Therefore all conditions of Lemma 4 are met.
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We want to extend the computation in (11) to a computation of the method
call. Observe that

τ ′0(this) = τ ′0(θ(this)) = τ ′(θ(this)) = L(e0 ¼ψ)(σ, τ)
= L(e0 ¼ψ)(σ, τ ′) = L(e0)(σ0, τ

′) .

The last step follows from an application of Lemma 4. In a similar way we obtain
τi(ui) = L(ei)(σ0, τ

′), for every i ∈ {1 . . . n}.
By the SOS-rule for method calls we then infer from the computation in (11)

that

〈u = e0.m(e1, . . . , en), (σ0, τ
′)〉 → (σ, τ ′′) . (12)

where τ ′′ = τ ′[u 7→ L(e)(σ, τ ′[v̄′ 7→ ᾱ])].
We have observed that σ, τ ′ |= P ¼ψ. By Lemma 4 this implies σ0, τ

′ |= P . By
the run in (12) and the validity of the premiss of the rule we obtain σ, τ ′′ |= Q.
We repeat that σ, τ ′[v̄′ 7→ ᾱ] |= result = e. But then σ, τ ′ |= Q[result/u]. Then
σ, τ |= Q[result/u] holds by the construction of τ ′. ut

9 Conclusions

The main result of this paper is a (to the best of our knowledge) first rule of
adaptation for the object-oriented paradigm. The rule not only enables us to
adapt the values of logical variables but also results in an important separation
of concerns for local variables in proof outlines for object-oriented programs.
This improves the modularity of the specification. The rule uses a static ap-
proximation of the effect of a method to further improve the modularity of the
specification.

The adaptation rule complements our earlier work on a (relatively) complete
Hoare logic [9] for object-oriented programs. It is a well-known fact that the
rule of adaptation can replace the substitution rule, the invariance rule, and the
elimination rule without compromising completeness [2]. In the full version we
show that this is also the case for the rule presented here.

Proof outlines are not only a compact representation of correctness proofs
but are also useful for documentation purposes. The rule of adaptation describes
the verification condition that results from the specification of a call and the
corresponding method. That is precisely what is needed in a proof outline logic.
Thus the rule enables a shift from Hoare logics to proof outlines for OO. It is
unclear if and how the rules that it replaces can be used in proof outlines.

Future work includes an investigation of the sharpness [15, 16] of the proof
rule. The present rule also seems a good starting point for an investigation of
the benefits of more advanced type systems for alias control in object-oriented
languages (cf. [17, 18]) in the context of method calls.
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