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Abstract

In this note we show that a planar graph with angular resolution at least 7/2 can
be drawn with all angles an integer multiple of 7/2, that is, in a rectilinear manner.
Moreover, we show that for d # 4, d > 2, having an angular resolution of 27/d does
not imply that the graph can be drawn with all angles an integer multiple of 27/d.
We argue that the exceptional situation for d = 4 is due to the absence of triangles
in the rectangular grid.
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1 Introduction

In this note, we consider straight line drawings of plane graphs. In such a drawing, each
vertex is represented by a point, and an edge is represented by the straight line segment
between its endpoints. We want this straight line drawing to be planar, i.e., line segments
may not intersect.

Part (a) of Figure 1 shows a drawing in which all angles formed by edges joining at a
node are at least m/2; consequently, the drawing (and the graph) are said to have angular
resolution w/2. Part (b) shows that the same plane graph can be drawn with all angles an
integer multiple of /2, and thus, with all edges parallel to one of the axes; such a drawing
is said to be rectilinear. The main result of this note is that all plane graphs that admit a
drawing of type (a) also admit a drawing of type (b).

Also, the more general question is answered: if a plane graph G has angular resolution
at least 27/d, does it also have a planar straight line drawing with all angles an integer
multiple of 27 /d? We show that, apart from the trivial cases d = 1 and d = 2, 4 is the only
value of d for which the answer is positive. Indeed, part (a) of Figure 2 shows a triangle
with angular resolution /5. However, because the three angles of the outer triangle sum
up to 7, and are subdivided into 5 subangles in total, the angles are fixed in any drawing
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(a) Angular resolution 7/2 (b) Rectilinear drawing

Figure 1: GRAPH WITH A.R. 7/2 AND A RECTILINEAR DRAWING

of angular resolution 7 /5 of the triangle. For the triangle this implies that its shape is fized
and by connecting several of these “rigid triangles” together, a drawing can be forced to
contain an angle that is not a multiple of 7/5.

This is the organization of the paper. Section 2 contains definitions and presents the
flow model for the angles in a drawing. Section 3 proves our main result. Section 4 contains
the negative result for all angles other than 7/2. Section 5 lists conclusions.

2 Preliminaries

Let G = (V, E) be a graph. A graph is planar if it can be drawn (in the plane) without
crossing edges. An embedding of a planar graph G = (V, E) is a clockwise sequence of the
incident edges for each vertex v € V, such that G has a drawing where for each v, the
clockwise order of its edges is as given. A plane graph is a planar graph given together with
an embedding. In a drawing of a plane graph, we require that the embedding is respected.
The faces of a plane graph G are defined as usual.

(a) Rigid triangle (b) Enforcing a bad angle

Figure 2: RIGID TRIANGLE AND IMPOSSIBLE GRAPH FOR d = 10




2.1 Classification of Drawings and Plane Graphs

Given a drawing, its angular resolution is the minimum angle made by line segments at a
vertex. The angular resolution of a plane graph is the maximum angular resolution of any
drawings.

A drawing is called rectilinear if all angles are a multiple of 7/2 radians; a rectilinear
drawing can be rotated to have all line segments parallel to either the z- or the y-axis. A
plane graph is called rectilinear if it has a rectilinear drawing.

2.2 Angles and Angle Sums

A vertex of degree § has § angles: one between each two successive incident edges. Each
angle belongs to one face. If v is a vertex, and f a face, then we let d(v, f) denote the
number of angles incident to v that belong to face f. Note that only when G is not
biconnected, and v is a cutvertex, then there will be a face f for which d(v, f) > 2. For
every face f, we let a(f) denote the number of arcs that belong to f, i.e., a(f) equals
the number of times an edge is traversed when we go around the border of f once. In a
biconnected graph, a(f) also equals the number of edges at the border of f and it equals
the number of vertices on the border of f; when G is not biconnected, then we sometimes
count some edges or vertices twice.

2.3 The Flow Model for Angles

The embedding contained in a plane graph defines the position of the nodes in a qualitative
manner, but to convert the embedding to a drawing, in addition two more things need be
specified: the angles between the edges at each node, and the length of all edges.

Tamassia [Tam87] has shown that the angle values in a drawing satisfy the constraints
of a suitably chosen multi-source multi-sink flow network. In any drawing, the angles
around a node sum up to 27 and if an internal face is drawn as an a-gon its angles sum up
to m(a — 2). (The angles of the outer face with a edges sum up to 7(a + 2).)

Definition of flow networks and flows. A (multi-source multi-sink) flow network is
a directed graph H = (N, A), given together with functions d: N — R, £: A — Ry, and
¢: A — Roy;. Here d(v) is the demand at vertex v, ¢(a) (lower bound for a) denotes the
minimum flow across arc a, and c(a) (capacity of a) is the maximum flow across a.

A flow in a multi-source multi-sink flow network is a function ¥ : A — Ry, satisfying

1. the arc constraints: for all a € A, l(a) < ¥(a) < c(a).

2. the demand constraints: forallv € N, 37, e a ¥((w,0)) =32, uyea ¥((v,w0)) = d(v),
i.e., the net flow into node v equals its demand.

Flow v is an integer flow if for each a € A, ¥(a) € N.
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Figure 3: THE FLOW MODEL FOR THE GRAPH IN FIGURE 1(A)

Angle constraints modeled as flow. In the sequel we shall express angles in terms of
the angle unit w/2 radians, thus an orthogonal angle has size 1 and a straight angle has
size 2. The reason is that we want angles that are a multiple of 7/2 radians to correspond
to integer values in flows.

Tamassia’s [Tam87] flow model for angle computations considers angles in a drawing
to be flow transported from nodes to faces of the graph. That is, the nodes of H are the
vertices and faces of (G, and there is an arc in H from any vertex to each of the faces it is
adjacent to. Let F' be the set of faces of G; then H = (N, A) where N =V U F and

A={(v,f):veV, feF, vison the boundary of f}.

We now define the demands, minimum flows, and capacities. Because the angles around a
node of G sum to 4 units, a vertex node has demand d(v) = —4, i.e., it produces 4 flow.
Because the angles around an internal face of G with a points sum to 2a — 4 units, a face
node f has demand d(f) = 2a(f) — 4. If f is the exterior face, then d(f) = 2a(f) + 4.
Because in a drawing with angular resolution 7/2 radians, each angle measures at least
1 unit (and vertex v contributes d(v, f) times to face f), arc (v, f) has flow lower bound
d(v, f). Because no angle can ever be larger than 4 units, arc (v, f) has capacity 4.

Relations between flows and drawings. The following two results are known.

Theorem 2.1 [f plane graph G has a drawing with angular resolution 1 unit (w/2 radians),
then the associated flow network H admits a flow.

Theorem 2.2 (Tamassia [Tam87]) If the flow network H associated to plane graph G
admits an integer flow, then G has a rectilinear drawing.



3 Angular Resolution 7/2 Implies Rectilinear

Our main result is obtained by combining Theorems 2.1 and 2.2 with a result from standard
flow theory.

Theorem 3.1 If a graph has angular resolution w/2, then it is rectilinear.

Proof. Assume G has angular resolution 7/2 radians. By definition it has a drawing with
angular resolution 1 unit, hence by Theorem 2.1 the associated flow network admits a flow.
It is known from flow theory (see, e.g., [Sch03, Chapter 10, 11]) that if a flow network with
integer constraints admits a flow, then it admits an integer flow. By Theorem 2.2, G has
a rectilinear drawing. A

We invite the reader to verify that the flow in Figure 3 can be modified into an integer flow
by replacing the 15 values to 1 and 2 alternatingly and that the drawing in Figure 1(b)
corresponds to the resulting integer flow.

4 Generalisation to Other Angles

This section answers the question for what values of d it is the case that any plane graph
with angular resolution 27/d radians has a drawing in which all angles are integer multiples
of 27 /d.

The cases d = 1 and d = 2 are somewhat trivial. Any drawing in which all angles are
at least 27 (or 7, respectively) radians, only contain angles that are a multiple of 27 (or
7, respectively) radians. These drawings allow only one (or two, respectively) edges to
join at a node. The classes of drawable graphs are collections of isolated edges (or paths,
respectively).

The case of odd d is somewhat degenerate as, while drawings are supposed to be built
up of straight lines, a straight angle at a vertex is not allowed. Let C} denote the cycle
with £k vertices and k edges.

Proposition 4.1 Let d > 3 odd; then Coqy1 has angular resolution giﬁ—liﬂ > 21 /d, but has
no drawing with all angles an integer multiple of 27/d.

Proof. The total of all inside angles of any drawing of Coy, ;1 (necessarily as a face with
2d + 1 points) equals (2d — 1) - 7.

So, if we draw Ch4,1 as a regular (2d + 1)-gon, then all inside angles have the same
size (2d — 1)w/(2d + 1) > 27 /d, and all outside angles are larger than 7, hence the angular
resolution of Cyyyq is at least 27 /d.

But Cy441 does not have a drawing with all angles an integer multiple of 27 /d, as
(2d — 1) - w is not an integer multiple of 27 /d. A
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Figure 4: RIGID TRIANGLES AND THE CRANE Cy ¢

In the remainder of this section d = 2d’ is even and larger than 4. Measuring angles in
units of 7/d’ radians, we observe that the angles of any triangle add to exactly d' units.
By dissecting the angles into d’ parts, each of which must be at least one unit in a drawing
with angular resolution 27 /d radians, we in fact fiz the shape of the triangle in any such
drawing, and we call these gadgets rigid triangles.

To simplify the construction, we take these basic elements to be isosceles. The graph
Ty has a top node ¢t and base nodes b; and by, forming a cycle. For even d’, t has a
third neighbor ¢, inserted between by and b; in the planar embedding. Each base node
has L%J neighbors, also located inside the triangle; see Figure 4. The graph Ty has an
angular resolution 27/d radians, and in every drawing with that resolution, each segment
of each angle measures exactly 7/d' radians, that is, the proportions of T, are fixed in
every drawing. The ratio between base length and height of the rigid triangle in such a
drawing, by can be computed as by = m

The crane graph Cy ;; contains 1 + 2k E|— 4ldcopies of Ty joined together. A central
triangle is extended with a leg consisting of k pairs of triangles on one side, and an arm
consisting of [ quartets of triangles on the other side. In any drawing where all internal
angles of the triangles satisfy the constraint for angular resolution 7/d’, the angle « at the
bottom of the drawing satisfies tan a = kald'. By choosing k and [, any angle between 7/d’
and 7/2 radians can be approximated arbitrarily closely, contradicting the possibility to
draw any crane with all angles a multiple of 7/d’ radians.

Theorem 4.2 For each d' > 2, 3 > w/d', € > 0, there ezists a graph G = Cy j; such that
1. G has angular resolution 7/d" radians;

2. each drawing of G with angular resolution w/d' contains an angle a such that |a— | <
€.



Figure 5: ORTHOGONAL AND NON-ORTHOGONAL MOVEMENTS

5 Conclusions

To convert a plane graph into a drawing, two things need be done, namely, computing
all angles between edges, and computing the edge lengths. The angle values must satisfy
vertex constraints (the angles around a vertex have sum 27) and face constraints (the
angles around f have sum 7 (f(a) — 2)), which can be expressed in a flow model.

Our note compares two types of drawings, namely (1) those where all angles are at least
27 /d (angular resolution) and (2) those where all angles are an integer multiple of 27 /d.
The flow model introduced by Tamassia [Tam87] implies that if angles can be assigned
satisfying (1), then it is also possible to assign all angles satisfying (2). However, only in
the special case d = 4 it is also possible to assign edge lengths in such a way that a drawing
results.

When drawing graphs in a rectilinear way, the drawing is built up from rectangular
elements and in such drawings it is possible to shift parts of the drawing without disrupting
angles in other parts; see Figure 5. Indeed, a rectangle can be stretched in one direction
while preserving the orthogonality of its angles. In a drawing containing triangles, this is
not possible, because stretching a triangle in one direction changes its angles. We therefore
conclude that the special position of d = 4 in the studied problem is due to the absence of
triangles in a rectilinear grid.

A plane graph G with for each angle its size specified is called an angle graph. It is not
only so that it is sometimes not possible to draw an angle graph in a planar way, as follows
from Section 4, but determining for an angle graph whether one can assign edge lengths
such that it gets a planar drawing, is NP-hard. This was shown by Garg [Gar95, Gar96],
and holds even if all angles are a multiple of 7/12, or when G is triconnected and angles
are a multiple of 7/36. Garg also gives a polynomial time algorithm to test planarity of
series parallel angle graphs. The testing for planarity for other special cases of angle graphs
(e.g., k-outerplanar graphs) remains an interesting open problem.

The observations in this note can be extended to the situation where the embedding is
free; that is, only a (planar) graph is given and the question is, what type of drawings does
it admit. For the positive result (for d = 4), if the graph has some drawing with angular



resolution 7/2, it can be drawn rectilinearily with the same embedding. Our triangles Ty
loose their rigidity if the embedding is free, because one can draw the internal nodes on the
outside and then modify the triangle shape. By connecting the internal nodes in a cycle
this can be prevented; in fact the triangles are modified to enforce the same embedding.
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