On Algorithms for (P5,Gem)-Free Graphs

Hans L. Bodlaender
Andreas Brandsidt
Dieter Kratsch

Michael Rao

Jeremy Spinrad

institute of information and computing sciences,
utrecht university

technical report UU-CS-2003-038

WWW.cS.uu.nl

On Algorithms for (?;,Gem)-Free Graphs

Hans L. Bodlaendér Andreas Brand&dt® Dieter Kratsch'
Michaél Rao* Jeremy Spinrad*

Abstract

A graph is (P;,gem)-free, when it does not contdi (an induced path with five vertices)
or a gem (a graph formed by making an universal vertex adjacent to each of the four vertices
of the induced patl®;) as an induced subgraph.

We present(n?) time recognition algorithms for chordal gem-free and fBx,(em)-
free graphs. Using a characterization &% gem)-free graphs by their prime graphs with
respect to modular decomposition and their modular decomposition trees [6], we give linear
time algorithms for the following NP-complete problems di,gem)-free graphs: Min-
imum Coloring, Maximum Weight Stable Set, Maximum Weight Clique, and Minimum
Clique Cover.

1 Introduction

Graph decompositions play an important role in graph theory. The central role of decompositions
in the recent proof of one of the major open conjectures in Graph Theory, the so-called Strong
Perfect Graph Conjecture of C. Berge, is an exciting example [9]. Furthermore various decompo-
sitions of graphs such as decomposition by clique cutsets, tree-decomposition and clique-width
are often used to design efficient graph algorithms. There are even beautiful general results stat-
ing that a variety of NP-complete graph problems can be solved in linear time for graphs of
bounded treewidth and bounded clique-width, respectively [1, 13].

*Institute for Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the
Netherlands. (emaihansb@cs.uu.nl)

tThe research of Hans Bodlaender was partly supported by EC contract IST-1999-14186: Project ALCOM-FT
(Algorithms and Complexity - Future Technologies).

fFachbereich Informatik, Universit'Rostock, A.-Einstein-Str. 21, 18051 Rostock, Germany. (e-mail:
ab@informatik.uni-rostock.de)

$The research of Andreas Branaidtwas supported by LORIA, Nancy.

Tuniversig€ de Metz, Laboratoire d’Informatique &bfique et Appligee, 57045 Metz Cedex 01, France. (e-

mail: (kratsch|rao)@sciences.univ-metz.fr)
IDepartment of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN 37235,
U.S.A. (e-mail:spin@vuse.vanderbilt.edu)

**The research of Jeremy Spinrad was supported by the University of Metz.

Despite the fact that modular decomposition is a well-known decomposition in graph theory
having algorithmic uses that seem to be simple and obvious, there is relatively little research con-
cerning non-trivial uses of modular decomposition such as designing polynomial time algorithms
for NP-complete problems on special graph classes.

An important exception are the many linear and polynomial time algorithms for cographs [10,
11]. Cographs, or equivalently,-free graphs are known to have a cotree representation. This
representation allows for various problems that are NP-complete for arbitrary graphs a linear time
algorithm when restricted to cographs. Among these, there are the problems Maximum (Weight)
Stable Set, Maximum (Weight) Clique, Minimum Coloring and Minimum Clique Cover [10, 11].

The original motivation to study the structure é%(gem)-free graphs in [6] had been to con-
struct a faster, possibly linear time algorithm for the Maximum Stable Set proble® ae)-
free graphs. In [6] the authors established a characterization oP{lge(m)-free graphs by their
prime induced subgraphs called the Structure TheoremHAggém)-free graphs. We show in
this paper that the Structure Theorem is a powerful tool to design efficient algorithms for NP-
complete problems on§,gem)-free graphs. All our algorithms use the modular decomposition
tree of the input graph and the structure of the prilRgdem)-free graphs. We are convinced
that efficient algorithms for other NP-complete graph problems (e.g. domination problems) on
(Ps,gem)-free graphs can also be obtained by this approach.

It is remarkable that there are only few papers establishing efficient algorithms for NP-
complete graph problems using modular decomposition and that most of them consider a sin-
gle problem, namely Maximum (Weight) Stable Set. For work dealing with other problems we
refer to [4, 5, 19]. Concerning the limits of modular decomposition it is known, for example,
that Achromatic Number, List Coloring, and ;-Coloring with pre-assigned colors remain NP-
complete on cographs [2, 3, 22]. This implies that these three problems are NP-complete on
(Ps,gem)-free graphs.

There is also a strong relation between modular decomposition and the clique-width of
graphs. For example, if all prime graphs of a graph class have bounded size then this class
has bounded clique-width. Problems definable in a certain logic, so-called LINEMSOL(
definable problems, such as Maximum (Weight) Stable Set, Maximum (Weight) Clique and
Minimum (Weight) Dominating Set, can be solved in linear time on any graph class of bounded
clique-width, assuming &-expression describing the graph is part of the input [13]. Many other
NP-complete problems which are not LInEMSGL()-definable can be solved in polynomial
time on graph classes of bounded clique-width [16, 23]; see also [32].

Brandsé#dt et al. have shown that the clique-width &f (gem)-free graphs is at most five [7].
However their approach does not provide a linear time algorithm to compute a suitable
expression, thus it does not imply linear time algorithms for LInEMS&LJ-definable prob-
lems on P5,gem)-free graphs. Finding a linear time algorithm that computes a 5-expression for
a given (P5,gem)-free graph remains an interesting open problem.

Our paper is organized as follows: Section 2 gives several preliminaries: basic notions (Sec-
tion 2.1), modular decomposition (Section 2.2), cographs (Section 2.3), and a review of the

LA proof, similarly to the one in [3] shows that ;-Coloring is NP-complete for graphs with at most one prime
induced subgraph, the,, and hence for®;,gem)-free graphs.

general approach for obtaining efficient algorithms for NP-complete graph problems using mod-
ular decomposition (Section 2.4). Section 3 describes the structure,gb(m)-free graphs and
provides the Structure theorem. Section 4 present® @) algorithm to recognize chordal
cogem-free graphs and an(n?) algorithm to recognize®s,gem)-free graphs. In Section 5

we present a linear time algorithm to compute a maximum weight stable s&%,me(n)-free
graphs. In Section 6 a linear time algorithm to compute a maximum weight cliqug;are()-

free graphs is given. In Section 7 we present a linear time algorithm to compute a minimum
coloring of (P5,gem)-free graphs. In Section 8 we present a linear time algorithm to compute a
minimum clique cover of P5,gem)-free graphs. Summarizing, we establish efficient and practi-
cal algorithms to solve four basic NP-complete graph problem$’agém)-free graphs.

2 Preliminaries

2.1 Basic notions

Let G = (V, E) be a finite undirected graph, and |&t| = n and|E| = m. Let N(v) := {u :
u € V,u # v,{u,v} € E} denote theopen neighborhoodf v and N[v] := N(v) U {v} the
closed neighborhoodf v. Thecomplement graplt’ = (V, E) of G is defined byE = {uv :
u,v € V,u#vand{u,v} ¢ E}. ForU C V, let G[U] denote the subgraph 6f induced byU.
A graphd is connectedf for each pairu, v of vertices ofG there is a path joining andv. A
graph isco-connectedf its complement’ is connected. Aconnected) componeat a graphG
is a maximal connected subgraph@f If for U C V/, a vertex not inJ is adjacent to exactly
vertices inU then it is calledk-vertexfor U.

Fork > 1, let P, denote a path witl vertices and: — 1 edges, and fok > 3, let C}, denote
a cycle withk vertices andc edges. Aholeis aC), for k > 5. Let F denote a set of graphs. A
graphG is F-freeif none of its induced subgraphs is.fa

A vertex setU C V is acliquein G if the vertices inU are pairwise adjacent. A vertex set
U C V is astable(independentset inG if U is a clique inG. w(G) denotes the maximum
cardinality of a clique inG anda(G) := w(G) denotes the maximum cardinality of a stable set
in G. For a graph with vertex weight functionv : V' — N, the weight of a vertex séf C V/
is defined to bev(U) := >_, ., w(u). o, (G) denotes the maximum weight of a stable setof
andw, (G) denotes the maximum weight of a clique®f We assume that arithmetic operations
on vertex weights can be performed in constant time. A stable set and a clique, respectively,
of maximum cardinality (weight) is said to benaaximum (weight) stable sahd amaximum

(weight) clique respectively.

Afunction f : V — Nis a(proper) coloringof the graph = (V. E), if {u,v} € E implies
f(u) # f(v). Thechromatic numbeof GG, denotedy(G), is the smallesk such that the graph
G has ak-coloringf : V — {1,2,...,k}. A clique coverof a graphG = (V, F) is a partition
of its vertex sel/ into cliquesC}, Cs, ..., C;. k(G) denotes the minimum number of cliques in

any clique cover ofy. It is well-known thaty (G) = x(G) for all graphs.
Finally we shall consider the following weighted versions of coloring and clique cover. Let

G = (V, E) be a graph with vertex weight functian : V' — N. A weightedk-coloring of
(G,w) assigns to each vertexof G w(v) different colors, i.e., integers dfl, 2, ..., k}, such
that {x,y} € F implies that no color assigned tois equal to a color assigned {0 x.,(G)
denotes the smallestsuch that the grap&y with weight functionw has a weighted-coloring.
Note that each weighteld-coloring of (G, w) corresponds to a multisét, Ss, . . ., S, of stable
sets ofGG whereS;,i € {1,2,...,k}, is the set of all vertices af to which colori is assigned.

A weighted clique covesf (G, w) is a multiset of cliqueg’,, Cs, . .., C; of G such that each
vertexv of G is contained in at least(v) of these cliques. The minimum number of cliques in
a weighted clique cover di, w) is denoted by, (G). Note thaty,, (G) = k., (G).

2.2 Modular decomposition

Modular decomposition is a fundamental decomposition technique that can be applied to graphs,
partially ordered sets, hypergraphs and other structures. It has been described and used under
different names and it has been rediscovered various times. Gallai introduced and studied mod-
ular decomposition in his seminal 1967 paper [18] where it is used to decompose comparability
graphs. A translation into English is now available: [25].

A vertex setM C V is amodulein G if for all verticesz € V' \ M, z is either adjacent
to all vertices inM, or non-adjacent to all vertices il. Thetrivial modulesof G are(), V'
and the singletons. Aomogeneous sét G is a nontrivial module inG. A graph containing
no homogeneous set is callpdme Note that the smallest nontrivial prime graph is ihe A
homogeneous sétl is maximalif no other homogeneous set properly contains

Modular decomposition of graphs is based on the following decomposition theorem.

Theorem 1 ([18]). LetG = (V, E)) be a graph with at least two vertices. Then exactly one of the
following conditions holds:

(i) G is not connected, and it can be decomposed into its connected components;
(i) G is not connected, an@ can be decomposed into the connected components of

(i) G is connected and co-connected. There is séme V' and a unique partitionP of V/
such that
@ U] >3,
(b) G[U]is a maximal prime induced subgraph@f and
(c) for every classS of the partitionP, S is a module of7 and|S N U| = 1.
There does not seem to be an agreement how to describe modular decomposition. We take

the freedom to describe it in the way we find most convenient for presenting our algorithmic
results in Sections 5 to 8.

Following Theorem 1 there are three decomposition operations.
0-Operation: If G is disconnected then decompose it into its connected compadends, . . ., G,.

1-Operation: If G is disconnected then decompasento G, Gs, ... G5, whereG1, G, . .. G,

4

are the connected componentghf

2-Operation: If G = (V, E) is connected and co-connected then its maximal homogeneous sets
are pairwise disjoint and they form the partitiéhof V. The graphG* = G[U] is called the
characteristic graplof G and it is obtained fronds by contracting every maximal homogeneous
set of G to a single vertex.

Note that the characteristic graph of a connected and co-connected(@rghmime.

The decomposition theorem and the above mentioned operations lead to the uniquely deter-
minedmodular decomposition tre€ of G. The leaves of the modular decomposition tree are
the vertices of~. The interior nodes df” are labeled 0, 1 or 2 according to the operation corre-
sponding to the node. Thus we call them 0-node (parallel node), 1-node (series node) and 2-node
(prime node). Any interior node of 7" corresponds to the subgraph®@finduced by the set of
all leaves in the subtree @f rooted atr, denoted by (z).

0-node. The children of a 0-node correspond to the components obtained by a 0-operation
applied to the disconnected gra@tiz).

1-node. The children of a 1-node correspond to the components obtained by a 1-operation
applied to the non co-connected gragfr).

2-node. The children of &-nodex correspond to the subgraphs induced by the maximal homo-
geneous sets of the connected and co-connected gfaphand to single vertices which are not
contained in any homogeneous set. Additionally, the characteristic graghcofis assigned to

the 2-noder.

The modular decomposition tree is of basic importance for many algorithmic applications,
and in [26, 14, 15], linear time algorithms are given for determining the modular decomposition
tree of an input graph. See Figure 1 for an example of a modular decomposition tree.

We recall the generic approach to solve an NP-complete graph problem using modular de-
composition below in Section 2.4.

2.3 Cographs

A graph is acographif in its modular decomposition tree, all internal nodes are 0-nodes or
1-nodes. Cographs are exactly tRefree graphs, and their modular decomposition trees are
called cotrees The cotree representation allows to solve various NP-hard problems in linear
time when restricted to cographs, among them the problems Maximum (Weight) Stable Set,
Maximum (Weight) Clique, Minimum Coloring and Minimum Clique Cover [10, 11]. In [12],
a linear time recognition algorithm for cographs is presented. This algorithm outputs a cotree if
the input graph is indeed a cograph, otherwise it outputs & his recognition algorithm is also
part of the linear time modular decomposition algorithms in [26, 14].

See [10, 11, 12] for more information on cographs and [8] for a survey on this and many
other graph classes.

Ny LN

Figure 1. A modular decomposition tree.

2.4 Solving NP-Complete Graph Problems Using Modular Decomposition

Often, algorithms exploiting the modular decomposition have the following structurdl bet
an NP-complete graph problem to be solved on some graph &laasch as Maximum Stable
Set on P5,gem)-free graphs.

First the algorithm computes the modular decompositionTred the input graphz using
one of the linear time algorithms. Then in a bottom up fashion the algorithm computes for each
nodex of 7' the optimal value(s) for the subgrapt{z) of G induced by the set of all leaves of
the subtree of ' rooted atr. Thus the computation starts assigning the optimal value to the leaves
(note that these represent induced subgraphs with one vertex). Then the algorithm computes the
optimal value of an interior node by using the optimal values of all children oidepending on
the type of the node. Finally the optimal value of the root is the optimal valliefof the input
graphG. Note that various more complicated variants of this scenario can be useful.

Thus to specify such a modular decomposition based algorithm we only have to describe

how to obtain the value for the leaves, and which formula to evaluate or which subproblem to
solve on 0-nodes, 1-nodes and 2-nodes, using the values of all children as input. It is well-
known how to do this for 0-nodes and 1-nodes for the NP-complete graph problems Maximum
Weight Stable Set, Maximum Weight Clique, Minimum Coloring and Minimum Clique Cover
from the corresponding cograph algorithm [10, 11]. On the other hand to find out and solve the
algorithmic problem for the 2-nodes, called theode subproblem, for solving probldmusing
modular decomposition can be quite challenging.

In this paper we shall study the problems Maximum (Weight) Stable Set, Maximum (Weight)
Clique, Minimum Coloring and Minimum Clique Cover that have been studied in many other pa-
pers (see e.g. [19, 21]). The most frequently studied NP-complete graph problem using modular
decomposition is the Maximum (Weight) Stable Set problem. The use of modular decomposition
has also been studied for the graph problems Maxcut [4], Treewidth and Min Fill-in [5]. More
information on 2-node subproblems can be found in [28]. We study the four basic NP-complete
graph problems onH;,gem)-free graphs in Sections 5 to 8.

As said, the problenil is NP-complete; thus to guarantee polynomial running time of a
modular decomposition based algorithm we have to restrict the possible input graphs to some
suitable graph clags; in particular, this should pose some restriction on the possible character-
istic graphs assigned to the 2-nodesg lis hereditary then the possible labels of 2-nodes of a
modular decomposition tree of a graghe G are exactly the prime graphs ¢h Consequently
if we have a structural description of all the prime graphg ¢fien what remains is to show that
the 2-node subproblem oF can be solved sufficiently fast on all prime graphgjin

Polynomial time algorithms obtained by using modular decomposition are often practical in
the following sense. They have neither huge hidden constants nor large exponents as is quite
common for algorithms on graphs of bounded treewidth and graphs of bounded clique-width,
when the treewidth or clique-width is not sufficiently small.

3 The Structure Theorem for (Ps,gem)-Free Graphs

To state the Structure Theorem afs(gem)-free graphs we need to define three classes of
(Ps,gem)-free graphs which contain all primg(gem)-free graphs.

Definition 2. A graphG = (V, E) is calledmatched cobipartité its vertex sefl” is partitionable
into two cliquesC, Cy with |Cy| = |Cy| or || = |Cs| — 1 such that the edges betweé€inand
(', form a matching and at most one vertex(ifn and at most one vertex if; are not covered
by the matching.

We denote the class of all matched cobipartite graphddms 1

Definition 3. A graphd is calledspecifidf it is the complement of a prime induced subgraph of
one of the three graphs in Figure 2.
We denote the class of all specific graphsciass 2

To establish the definition of class 3 we do need some more notions. A graploral
if it contains no induced cycle§, k£ > 4. See e.g. [21, 8] for properties of chordal graphs.

Figure 2:

A graph iscochordalif its complement graph is chordal. A vertexis simplicial in G if its
neighborhoodV (v) in G is a clique. A vertex is cosimplicialin G if it is simplicial in G, i.e.,
its non-neighbourhood (v) = V' \ N[v] is a stable set it. It is well-known that every chordal
graph has a simplicial vertex and that such a vertex can be found in linear time.

We also need the following notion of substituting’a into a vertex. For a grapty and a
vertexv in G, let the result of the extension operatiert(G, v) denote the graphy’ resulting
from G by replacingv with a Cs (v, ve, v3,v4, v5) Of Nnew vertices such that, v, andv; have
the same neighborhood @ asv andwv,, v3 have only theirC;s neighbors, i.e., have degree 2
in G'. For avertex sel/ C V of G, let ext(G, U) denote the result of applying repeatedly the
extension operation to all vertices bf. Note that the resulting graph does not depend on the
order of replacind/ vertices.

Based on the operatiant(G, v), we define the graph class@és & > 0, k& being the number
of C5’s contained in a grapt¥ € Cy.

Definition 4. Fork > 0, letCy, be the class of prime graphg = ext(G, Q) resulting from a (not
necessarily prime) cochordal gem-free graphy extending a cliqué) of exactlyk cosimplicial
vertices ofG. Thus,(, is the class of prime cochordal gem-free graphs. We dengte C;, by
class 3

It is shown in [6] that each graph in class 3 has neitfigr= 2K, nor Cys as an induced
subgraph. All graphs in class 3 are either cochordal or they cont@in €lass 3 is the crucial
class for the problems to be considered in this paper. Therefore we list some useful properties of
the graphs in this class (see [6]). We shall often rely on the partition property of the following
lemma.

Lemma 5. LetG = (V, E) be a graph otlass 3 ThenG is a cochordal gem-free graph, or for
everyCs C = (vy, v9, v3, vy, v5) Of G, the vertex set’” has a partition into{ vy, vo, v3, v4, v5 }, the
stable setd of 0-vertices forC' and the seB of 3-vertices forC' such that all vertices o have
the same neighbors i, sayv,, v4, v5, andG[B] is a cograph.

Lemma 6. Let G = (V, E) be a connected graph of class 3 such that¢ C; and G is not

cochordal. Then it has &', and for eachCs C' = (vq, v2, v3, v4,v5) Of G there are two non-
adjacent vertices, say, andvs, of degree two and all other vertices 6f have degree larger
than two with the possible exceptionia¥ertices forC. Furthermore the’'s’s of G are pairwise

vertex-disjoint.

Now we are ready to state the structure theorem fygem)-free graphs.
Theorem 7 ([6]). A connected and co-connected grag@lis (Ps,gem)-free if and only if
(1) allhomogeneous sets Gfare P,-free, and
(2) for the characteristic grapld:* of G, one of the following conditions holds:

(2.1) G*is a matched cobipartite graph;
(2.2) G*is a specific graph;
(2.3) thereis ak > 0 such thatG* is in Cy.

The theorem does not provide a list of all primi@ gem)-free graphs. Nevertheless it pro-
vides a characterization of all prime graphs that dtggem)-free that will turn out to be very
useful for the design of algorithms using modular decomposition.

Remark.If a graph is disconnected then it iB(gem)-free if and only if each of its components
is (P5,gem)-free. If the complement of a graph is disconnected then fsig€m)-free if and
only if itis a cograph.

4 Recognition

A natural recognition algorithm for connected and co-connectggyém)-free graphs runs a
linear time modular decomposition algorithm on the input graph and then verifies the conditions
of the structure theorem (Theorem 7).

Let us discuss some easy cases first. If the input graph is disconnected then we run the
algorithm on each component. If the input graph has a disconnected complementary graph then
we accept if it is a cograph and otherwise we reject.

Now assume that the input graph is connected and co-connected. If its modular decomposi-
tion treeT" has either more than one 2-node or if the only 2-node is not the root of the tree then
we reject the input graph. If the connected and co-connected input grppbsed all subsequent
tests then its modular decomposition tree has the right structure. All what remains to check is
that the characteristic graght, which is the graph assigned to the rootlgfbelongs to one of
the classes 1 to 3.

In the following subsections we consider how to check whether a characteristic graph belongs
to one of these three classes.

4.1 Matched cobipartite and specific graphs

It is not hard to see that the classes 1 and 2 can be recognized in linear time.

(1) Is G matched cobipartite?

(1.1) If the graph has at mos$ vertices or less than? /4 edges then reject.

(1.2) If not, partition the vertex set into two cliques by applying the linear time recognition

9

algorithm for bipartite graphs t6' [21].

(1.3) Verify that|C,| = |Cy| or |Cy] = |Cy| — 1, and that the edges betweéh and C;, form
a matching and at most one vertex(h and at most one vertex ii; are not covered by the
matching.

Clearly this algorithm can be implemented to run in linear time since any grapassing
the test (1.1) haQ(n?) edges. The correctness is based on the uniqueness of the partition in (1.2)
(which is due to the co-connectedness)f

(2) Is G a specific graph?
This can be checked in tim@(1) since all specific graphs have at most nine vertices.

4.2 Chordal cogem-free graphs

The interesting class concerning recognition is the class of cochordal gem-free graphs. We shall
present arD(n?) time recognition algorithm for chordal cogem-free graphs, and thus obtain an
O(n?) time recognition algorithm for cochordal gem-free graphs.

First, our recognition algorithm uses a linear time recognition algorithm for chordal graphs
(see e.g. [21]) and rejects the input if it is not chordal.

In the remainder, we assume that the input gr&ph (V, E) is chordal. The algorithm pro-
ceeds by computing the following partition of the vertex sefzdb be used to classify possible
cogems and to decide wheth&has a cogem.

Take some simplicial vertex of the chordal grapldz, i.e., N[v] is a clique. Note that every
chordal graph has a simplicial vertex and that a simplicial vertex in a chordal graph can be found
in linear time [30]. Partition the vertex setinto X = N[v] andY = V — N[v]. Clearly X is
a clique. IfG[Y] is not a cograph which can be checked in linear time then réjesince it has
a cogem (induced by the vertexand aP, of G[Y]). ¢From now on we assume tl@fY| is a
cograph and thaf' is the cotree of7[Y’| obtained by the cograph recognition algorithm of [12].

We divide possible cogems 6f into four types where, z; € X andy,y; € Y.

type 1: one vertex ofX is an endvertex of th&;,:

x —y1 — yo — y3 and all of its four vertices nonadjacentiio
type 2: one vertex ofX is a midvertex of theP,:

y1 — x — y — y3 and all of its four vertices nonadjacentiip
type 3: one edge of+[X] is a wing of theP:

r1 — T2 — y1 — Yo and all of its four vertices nonadjacentyo
type 4: one edge of7[X] is the center of the,:

1y — x1 — oo — yo and all of its four vertices nonadjacentiio

We call a cogem atandard cogenwith respect td N[v],Y) ifits P, isv — x — y; — y2 and
all these four vertices are nonadjacenyjoClearly this is a particular type 3 cogem.

Lemma 8. G has a type 1, type 2 or type 3 cogem with respe¢iM@], Y) if and only if it has
a standard cogem with respect(tt[v],Y").

10

Proof. With the above notation we get:

If £ —y1 — yo — y3| ys IS @ type 1 cogem them— x — y; — y»| y4 is & standard cogem.

If y1 —x — yo — y3| y4 IS a type 2 cogem them— x — y, — y3| y4 is & standard cogem.

If 21 — 29 —y1 — y2| y3 is @atype 3 cogem but not a standard cogem, thercs — y; — yo| y3
is a standard cogem. O

Thus our algorithm may restrict its search to standard cogems and type 4 cogémstin
will also rely on the fact thad7[Y'] is a chordal cograph, and this- andCy-free. Hence=[Y] is
a trivially perfect graph [20]; each of its connected induced subgraphs has a dominating vertex,
i.e., a vertex adjacent to all other vertices of this connected induced subgraph [21, 33, 34].

Now we design an algorithm to find a cogem in a chordal graph. In stage one the algorithm
recursively searches for a standard cogem and removes some verficdsatfcannot be in any
cogem until the remaining graph cannot contain a standard cogem. Then in a second stage the
algorithm searches for a type 4 cogem. Consequently the current graph during the execution of
the first stage of the algorithm is always an induced subgraghwith vertex setV|v] UY’ and
Y'CY.

Remark.The lazy strategy postponing the search for a type 4 cogem until it has to be done only
once (in stage two) allows us to obtain running tiée:?); A direct approach leads to &(nm)
time algorithm.

Definition 9. Let (N[v], Y’) be a partition of the vertex set 6f{N[v] U Y], whereY’ C Y and
Nv] is a clique. LetY;,Ys,...,Y; be the components of the trivially perfect gra@fy”’] and
let X’ = N(v). We call a vertexe € X’ fully adjacentto Y; if Y; C N(z). We call a vertex
x € X’ non-adjacento Y; if Y; N N(x) = (. We call vertexs € X semi-adjacento Y] if
0#Y,NN(x)# Y.

One of the key principles of our algorithm is that during stage one it searches only for easy-
to-find standard cogems and nothing else.
Easy-to-find cogem:
Suppose there is a vertexe X’ such thatr is semi-adjacent to a componeyitand not fully
adjacent to some other componéfit i # j. ThenG has a standard cogem— = — y; — y»| ¥
wherey € Y, y1,y2 € Y.
(Note that there is an edge betwe¥iiz) NY; andY; \ N(x) since(G[Y;] is connected. Each of
these edges can be taken as the €dgey- } of the above mentioned standard cogem.)

If the algorithm finds an easy-to-find cogem in the current gr@phi[v] U Y”] then it rejects
the input grapltG. If there is no easy-to-find cogem [N[v] U Y] then every vertex € X’
being semi-adjacent to some componen&gY”| is fully adjacent to all other components. In
addition there might be verticese X’ such that for every componef of G[Y’], x is either
fully adjacent or non-adjacent 9.

This motivates the following preprocessing step of our algorithm. In stage zero compute for
every vertext € X' and every 1-node of the cotreel’ of G[Y'| whetherz is fully adjacent,

11

semi-adjacent or not adjacent to the connected subgragdfinduced by the set of vertices
assigned to the leaves of the subtre@'e@boted at. This is all information we need in stage one,
since any componenf ever treated in stage one, with the exception of singletons, is obtained by
the recursive removal of all dominating vertices from some larger component, which corresponds
to taking a 1-node and obtaining a grandchild 1-node by the removal of all dominating vertices.
The preprocessing can be done in timg:) per vertexe € X’ where the computation is done

in a bottom up fashion on the cotrde Thus the overall running time of the preprocessing is
O(n?).

During stage one the algorithm will compute and maintain for every vertex X’ the
number of components @¥F[Y”’] to which z is fully adjacent, semi-adjacent and not adjacent,
denoted by fullx), sem{z), and notxz). Then the current grapf[N[z] U Y’] has an easy-to-
find cogem if and only if there is a vertexe X’ such that sentiz) > 2, or semjz) = 1 and
not(z) > 0.

Now stage one of the algorithm starts with the chordal gr@@md the partitiol N[v],Y)
for some simplicial vertex of G. During each step of stage one the algorithm either finds a
cogem ofGG, and thus rejects the input, or it removes some verticés éfom the current graph.

Suppose the algorithm does not find an easy-to-find cogem while treating the(gjrsph U
Y’] in stage one. Then every vertexc X' fulfills semi(z) = 0, or sem{z) = 1 and notz) = 0.
Consequently, it —x —y; — 2| y3 is a (not easy-to-find) standard cogentdfV [v]UY”] then the
verticesy,, y», y3 belong to the same component@ft”’]. Additionally, if y; —z1 —zo—ys| ysisa
type 4 cogem of7[N [v]UY”] then either the verticaes, v, y3; also belong to the same component
of G[Y'], or to each component ¢f Y] both verticesr; andz, are either not adjacent or fully
adjacent andy, v, y3 belong to three different components GfY’]. In the latter case the
algorithm will not destroy the type 4 cogem@fN[v] UY’] when deleting vertices df’ as long
as it never removes all vertices of a component:@f’] (and thus our algorithm never removes
the last vertex of a component)

Finally we have to describe how to choose ¥ievertices to be removed at the end of a step
in stage oneG[Y] and thus eacli"[Y”] is a trivially perfect graph. Therefore each component
of G[Y’] contains a dominating vertex. Clearly such a vertex cannot be in a standard cogem
or in a type 4 cogem withy,, 15, y3 in one component. Consequently, the algorithm removes
all dominating vertices of eacf¥[Y”’] component, but it will never remove the last vertex of a
component.

Analysing the running time of stage one we obtain: the algorithm removes a vertex in each
round, thus there are at mastrounds in stage one. In each round, for each vertex X’
there is direct access to the values of the variables full(x), semi(x) and not(x) corresponding
to (N[v],Y’). Using this it can be decided in tint®(1) whether there is an easy-to-find cogem
containinge. Using the cotree of a trivially perfect graph itis easy to find the dominating vertices
of each component, to remove them and to updaté(x), semi(z) andnot(x) for all z € X’
in overall timeO(n) per round. Therefore the running time of stage on@(is?).

Suppose the algorithm does not find an easy-to-find cogem in stage one. Then it terminates
stage one when all components®fY”’| consist of a single vertex. Thus stage two only has to

12

verify whether the grapltz; := G[N(v) U Y'] obtained at the end of stage one has a type 4
cogem. Note that:, is a split graph sincé/(v) is a clique and’’ is an independent set.

The chordal distance-hereditary graphs, called ptolemaic graphs, are precisely the chordal
gem-free graphs (see [8]). Consequently, if the complement,aé distance-hereditary then
there is no (type 4) cogem id;, and thusG is a chordal cogem-free graph. Otherwise if the
complement ofGG, is not distance-hereditary, then since the complemertt ,ofs chordal, it
contains a gem. Thu§ contains a cogem and the algorithm rejects it. Finally, stage two can
be implemented to run in tim@(n?) by using a linear time recognition algorithm for distance-
hereditary graphs.

Theorem 10. There is anO(n?) algorithm to recognize chordal cogem-free graphs.

Corollary 11. There is an0O(n?) algorithm to recognize cochordal gem-free graphs.

43 Class3

First the algorithm checks whether the input grapls prime using a linear time modular de-
composition algorithm.

The main part of the following algorithm destroys ali’s of the graph by deleting one of
the degree two vertices of eacly, and thus the remaining graph should®@gfree. Then the
algorithm verifies whether the remaining graph#,gem)-free, i.e., cochordal and gem-free.

(O) If G is cochordal then accept if it is gem-free and reject if it contains a getd.=f C5 then
accept. Continue itz is neither cochordal nor thés.

(1) Determine the set of all vertices of degtze

(2) Try to extend each pair of non adjacent dedgreertices with a common neighbour ta’g
(by checking whether their non common neighbours are adjacent).

(3) For eaclCs C = (z1, xo, x3, x4, v5) determined in (2)

(3.1) determine the set of all 0-vertices ofC', and

(3.2) determineB = V' \ (AU C) and verify thatV (z;) = B for all verticesz; of degree larger
than two inC'.

(4) Reject the graphy if the condition of (3.2) is not satisfied for some of thgls determined in
(2). Otherwise construct the graph by removing precisely one of the two degree two vertices
of eachC’; determined in (2) from the grapHh.

(5) Check whether the remaining graghis cochordal, and if so whether it is also gem-free. If
yes then accepf. Otherwise reject.

Theorem 12. There is anO(n?) algorithm to recognize class 3 graphs.

Proof. First let us show that the algorithm is correct. Clearly the input graph is in class 3 ifitis
accepted in (0). If the grapfi is in class 3, but it has not been accepted in (0), then it will be
accepted in (5) since the grapt obtained fromG by destroying alC;’s via the removal of one
vertex must be cochordal gem-free. (Note that the only complement of a chordless cycle that a
graph of class 3 may contain as induced subgraplUis)a

13

Combining some results of [6] one can easily obtain that, if a graph is geiiie, Cs,gem)-
free thenitis in class 3 or it is a specific graph. Studying in more detail the corresponding proof
in [6], one can obtain that there is precisely one prif&,, Cs,gem)-free graph not belonging
to class 3, and that our algorithm will reject this specific graph.

Suppose our algorithm fails on the input graph Thus the prime input grapty does
not belong to class 3, and thus it hag,, Cs or a gem as induced subgraph. &t C =
(21, 29, w3, 24, 25) be aCs of G determined in (2). Lek; andz; be its vertices of degree two
and letC satisfy the condition in (3.2). Then, andz; cannot be vertices of & since their
degree is two. Furthermore none of them is a vertex of a ge@ isince their neighbours are
non adjacent. However they may be vertices afg. If x; isin a2k, then there is K5 in
G induced by{x1, 25, a1, as} with ay, as € A, and thus{zs, 24, a1, as} also induces 8K, in G.
HenceG has &K, containingz; if and only if G has & K5, containingzs. Furthermore if such
a 2K, exists thend is not a stable set. Finally notice thatif B] is not a cograph the@' has a
gem consisting of any vertex ¢, vy, v5} and aPy in G[B].

Therefore the grap&’ constructed in (4) has ¥, C; and gem as induced subgraph if and
only if the input graphi’ has n2K,, Cs and gem as induced subgraph. Thus since we consider
an inputG not belonging to class 3 the gragh has a2K,, C; or a gem as induced subgraph.
SinceG is accepted it does not fail the test in (5). Heigas cochordal gem-free, and thus it has
neither2K,, nor Cs nor a gem as induced subgraph. Tligs not prime(2K,, Cs,gem)-free,
contradicting our choice af.

By Corollary 11, (0) and (5) can be implemented to run in tith@?). There are)(n) pairs
of vertices of degree two with common neighbour and they can be extended;tafgpossible,
intime O(1). (3.1) and (3.2) can be executed in overall tithg: + m) for all C5’s determined in
(2) by passing through the adjacency lists of all vertices occurring’lntaat has to be checked.
Thus the overall running time i9(n?). OJ

4.4 (P;,gem)-free graphs

The recognition algorithm forK;,gem)-free graphs starts with a linear time algorithm to compute

the modular decomposition tree of the input graph. If the tree contairsnmame, and thus

the graph is a cograph, then the algorithm accepts the input. Otherwise the algorithm has to
check that each connected component of the input graph is either a cograph or has a modular
decomposition tree where only the root i2-aode. All this can be done in linear time by
inspection of the modular decomposition tree of the input graph. Finally the algorithm checks
whether the characteristic graph of each connected component belongs to one of the three classes
of the structure theorem using the algorithms described above.

Theorem 13. There is anO(n?) recognition algorithm for P5,gem)-free graphs.

Itis an interesting open question whether there is a linear time algorithm to recogiger()-
free graphs.

14

5 Maximum Weight Stable Set

The Maximum Weight Stable Set problem is the following: Given a gra@ps (V, F) and a
vertex weight functionv : V' — N, find the maximum weight of a stable setdhdenoted
by «.,(G). (Note that nonnegative weights are naturally coming up in2tnede problem of
Maximum Stable Set.)

As discussed in the previous section, all we have to specify are the (initial) values of the
leaves of the modular decomposition tréeof the input graphz and the subproblems to be
solved for the interior nodes af.

Subproblems

For each node of the modular decomposition tr&éof GG (in the above described bottom up
fashion) computev,,(G(z)) as follows:

If = is aleaf of T" andv the vertex assigned tothena,,(G(x)) := w(v);
If xis a0-nodeof T"andx, xo, . . . z, its children

thena,,(G(z)) = Y, au(G(z:));

If zisal-nodeof T"andz, x», ...z, its children

thena,, (G(z)) := max. ay(G(x3));

then assign to the vertex sgt of G* the weight functionw* : V* — N such thatw*(v;) :=
o, (G(x;)) where the childr; of z is assigned to the vertex of G*. Finally computex,,(G(x))
as the maximum weight of a stable set in the prime gi@plwvith vertex weight functionv*.

Therefore the subproblem to be solved at a 2-node, called the 2-node subproblem, is the
Maximum Weight Stable Set problem where the input is a prime g@ptvith vertex weight
functionw™.

Let us make a short detour to discuss the relation between the original problem and the 2-
node subproblem. For the Maximum Weight Stable Set problem the subproblem to be solved at
a 2-node is also the Maximum Weight Stable Set problem. Thus the original problem and the
2-node subproblem are identical. This might actually be the reason that many papers on the use
of modular decomposition for NP-complete problems study the Maximum (Weight) Stable Set
problem.

Nevertheless there are only few of the well-known NP-complete graph problems for which
the 2-node subproblem is identical to the original problem, and there are problems for which
the 2-node subproblem seems to be much more complicated than the original one, such as the
problems Hamiltonian Circuit and Bandwidth. It is likely that evaluating the difference between
original and 2-node problem is important for knowing whether modular decomposition works
well with a certain problenil or not; see [27] for an early paper on this subject.

Finally we have to show how the algorithm computes the maximum weight of a stable set in
a prime (P;,gem)-free graph. Based on Theorem 7 there are three classes of prime graphs. Given
a characteristic grapfi™, the algorithm recognizes in linear time the class to witichbelongs

15

using the linear time recognition algorithms for the classes 1 and 2 of Subsection 4.1. Now let us
consider the Maximum Weight Stable Set problem for the three classé3,gé()-free prime
graphs.

Class 1: Matched cobipartite graphs

The graphG* = G[V*] is cobipartite and prime. Thu¥™*| > 4, G* is not complete and each
maximal stable set ai* has cardinality two.

Let C1, C, be a partition of the vertex sét* of G* into two cliques computed by the linear
time recognition algorithm for class 1. Lef, a; be two vertices of highest weight @}, and let
b1, by be two vertices of highest weight . Since each vertex has at most one neighbour in the
other cliqgue we conclude that

e (G*) = max{w*(a;) + w*(b;) : 4,5 € {1,2},{a;,b;} € E'}.

Thusa,,- (G*) can be computed in linear time.

Class 2: Specific graphs

Since specific graphs have at méstertices the maximum weight of a stable set in a specific
graph can be computed (n(1) time.

Class 3

Finally we study the Maximum Weight Stable Set problem on class 3.
First we reconsider the recognition of class 3 graphs. Given a class 3@rapin algorithms
will need allC5’s, and thus they also know the smalléstuch thatz € Cy.

Theorem 14. There is a linear time algorithm to compute all (pairwise vertex-disjaiity for
graphs of class 3.

Proof. First, compute the set of all degree two vertices:ofThen for each pair of verticesand
v of degree two with a common neighbour, check whetki@r] U N[v] induces &5 of G.

All C5's of G can be found in this way. Since any vertex of degree two has a common
neighbour with at most one other vertex of degree two by the definition of classG;'slhre
pairwise vertex-disjoint.

This also implies that the running time of the algorithm is linear. O

Theorem 15. The Maximum Weight Stable Set can be solved in linear time for all graphs of
class 3.

Proof. First compute in linear time all vertices of degree two and(gls of G* using Theo-
rem 14. IfG* = (V*, E*) is cochordal thert' is a maximum weight stable set 6f* if and
only if S is a maximum weight clique of the chordal graph with weight functionw*. A
perfect elimination ordering;, v, . .. , v, of G* can be computed in tim@(|V*| + | E*|) when

16

the graphG* = (V*, E*) is given [26]. Now each maximal stable sg¢tof G* is a maximal
clique of the chordal grapf™ and thusS = Niz=[v;] = Ng=[vi] N {vs, viy1, ..., v, } for some
i € {1,2,...,n}. Thusw*(S) = W' =37 ni () w*(u), whereW* = 377 w*(v;). Thus
ww (G*) = ay,«(G*) can be computed in linear time.

If G* is aC’; then the maximum weight of a stable set can be computed in@iie Other-
wise, for everyCs C' = (vq, v2, v3, U4, v5) there are two nonadjacent vertiegsandv; of degree
two and three vertices,, vy, v5 Of degree at least three. L&tbe a stable set @i*. If S contains
a vertex of degree greater than two of‘athen there is only on€’s, sayC', of G* containing
all these degree greater than two vertice$' oHence any maximal stable set of this type con-
tains the stable set of all 0-vertices forC' and two nonadjacent vertices 6f There are)(n)
maximal stable sets of this type and all their weights can be computed in overafbtimesince
w*(S) = w*(A) + w*(z) + w*(y) wherez andy are two nonadjacent vertices of’g.

If X C V* contains no vertex of degree greater than two 6tan G* then X is a maximal
stable set of the grapfi’ obtained fromG* by removing all vertices of degree greater than two
within a C5 of G*. Clearly G’ is cochordal and thus,-(G’) can be computed in linear time as
shown above. O

Corollary 16. There is a linear time algorithm solving the maximum weight stable set problem
on cochordal graphs.

We note that the modular decomposition tree of a connedtgdém)-graph contains at most
one 2-node. Summarizing we obtain the following main result of this section.

Theorem 17. There is a linear time algorithm to compute the maximum weight of a stable set of
a (Ps,gem)-free grapld- with vertex weight function.

It is not difficult to modify the algorithm such that it computes a maximum weight stable set
of (Ps,gem)-free graphs within the same time bound.

6 Maximum Weight Clique

The Maximum Weight Clique problem is the following: Given a gr&pk- (V, E) and a vertex
weight functionw : V' — N, find the maximum weight of a clique ifd, denotedo,,(G).

The following simpleO(nm) time algorithm computes a maximum weight clique for gem-
free graphs: For every vertex determine a maximum weight clique of the cogrdgh|v], and
then maximize over all these values.

We present a linear time algorithm to solve the Maximum Weight Clique problemioggm)-
free graphs. The approach is similar to the one in the previous section.

Subproblems

For each node of the modular decomposition tr@eof G computew,,(G(x)) as follows:
If = is aleaf of T"andv the vertex assigned tothenw,,(G(z)) := w(v);

17

If zisa0-nodeof T"andz, x», ...z, its children
thenw,,(G(z)) := max w (G(24));

77777

thenw, (G(z)) 1= S0, wu(G(x:));

If x is a2-nodeof T', G* the characteristic graph assigned:tandz, . . . x,. the children ofx
then assign to the vertex sgt of G* the weight functionw* : V* — N such thatw*(v;) =
wyw(G(z;)) where the childr; of x is assigned to the vertex of G*. Finally computev,,(G(z))
as the maximum weight of a clique in the prime graphwith vertex weight functionv*.

Class 1: Matched cobipartite graphs

The graphG* = G[V*] is cobipartite and prime. Thu¥*| > 4, G* is not complete and each
maximal clique ofG* has cardinality at least two.

Let C;, C5 be a partition of the vertex sét* of G* into two cliques. Then each maximal
clique of G* is eitherC’, C; or an edge of7*.

Hencew,,-(G*) can be computed in linear time.

Class 2: Specific graphs

Since specific graphs have at mdstertices the maximum weight of a clique in a specific graph
can be computed by an(1) time algorithm.

Class 3

First we consider the Maximum Weight Clique problem on cochordal graphs.

Lemma 18. The Maximum Weight Clique problem can be solved by a linear time algorithm for
cochordal graphs.

Proof. Using the linear time algorithm of Frank [17] to compute the maximum weight of a stable
set of a chordal grapty, we obtain arO(n?) algorithm to compute the maximum weight of a
clique in a cochordal grapfi sincew,,(G) = a,,(G). We shall modify Frank’s algorithm such
that it can be used to computeg,(G) of a cochordal graph in linear time.

This is Frank’s algorithm: First it computes a perfect elimination ordetings, ..., v,
of the chordal input graplir = (V, E) wherew(v;) is the nonnegative integer weight of
(1 <i<n).
Then a maximum weight clique @f is constructed as follows. Initially, letw(v;) = w(v;),
forall 1 <i < n. For each from 1 ton, if c.w(v;) > 0 then colour; red, and subtraetw(v;)
from c_w(v;) forallv; € {v;}U(N(v;)N{vis1, ..., v,}). When all vertices have been processed,
set] = () and, for each from n down tol, if v; is red and not adjacent to any vertexiaten
I = I'U{v;}. When all vertices have been processed, the algorithm terminates and outputs the
maximum weight stable sétof (G, w).

18

Our goal is to simulate Frank’s algorithm appliedd@ofor a cochordal input graptyy =
(V, E)) such that the running time is linear in the size of the cochordal géaphirst our algo-
rithm computes a perfect elimination orderingvs, . .., v, of G in linear time (see [26]). Let
w(v;) be the nonnegative integer weightsup{l < i < n).

The maximum weight of a clique @ is constructed as follows. Initially, 168" = 0 and
s(v;) = 0foralli (1 <i < n). Foreach from1ton, if w(v;)—W'+s(v;) > 0then coloun; red,
setW’ = w(v;)+ s(v;) and addo(v;) — W' +s(v;) to s(v;) forall v; € (N (v;) N{vit1, ..., vn}).

When all vertices have been processed,/$et () and, for each from n down tol1, if v;
is red and adjacent to all vertices &fthen X' = K U {v;}. Finally the algorithm outputs the
maximum weight cliques of (G, w).

Clearly our algorithm runs in linear time. Its correctness follows from the fact that when
treating the vertex;, the differencéV’ — s(v;) is precisely the value the original Frank algorithm
applied to the complement 6f would have subtracted fromw(v;) up to the point when it treats
v;. Thus our algorithm simulates Frank’s algorithm@nand thus it is correct. O

Theorem 19. The Maximum Weight Clique can be solved in linear time for all graphs of class 3.

Proof. First compute in linear time all vertices of degree two and’gl§ of G* using the algo-
rithm of Theorem 14.

If G* is cochordal then by Lemma 18 there is a linear time algorithm to compute the max-
imum weight of a clique of*. If G* is a5 then the maximum weight of a clique can be
computed in time)(1).

Otherwise, let: be a vertex of degree two of(@. Then there are two maximal cliques@f
containingu, and each of them corresponds to an edge incident fthe maximum weight of
all these cliques can be computed in timén). All other maximal cliques of7* are maximal
cliques of the cochordal graph obtained by removing all degree two vertic@sofrom G*.

We have already shown that their maximum weight can be found in linear time. O

Summarizing we obtain the following main result of this section.

Theorem 20. There is a linear time algorithm to compute the maximum weight of a clique of a
(P5s,gem)-free grapld; with vertex weight functiomn.

7 Minimum Coloring

The Minimum Coloring problem is the following: Given a graph= (V, E) determine the
smallest number of colors in a coloring 6f denoted byy(G). A weighted version arises as
2-node subproblem: Given a graphi and a vertex weight function* : V — N, find the
smallestt for which (G*, w*) has a weighted-coloring, i.e., computg.,-(G*).

Minimum Coloring is not LINEMSOL(; ;) definable. Nevertheless there is a polynomial
time algorithm for graphs of bounded clique-width [23]. However this algorithm is only of
theoretical interest. For graphs of clique-width at most five (and currently five is the best upper
bound known for the maximum clique-width aP{,gem)-free graphs [7]), the exponendf the
running timeO(n") of this algorithm is larger tha2000.

19

We present a linear time algorithm to solve the Minimum Coloring problenmPygém)-free
graphs.

Subproblems

For each node of the modular decomposition tr@eof G computey(G(z)) as follows:

If = is aleaf of T thenx(G(z)) := 1,
If zis a0-nodeof T"andx, xo, . . . z,. its children
theny(G(x)) := max x(G(z:));

77777

If zisal-nodeof T'andz, xo, ...z, its children

theny(G(x)) := 21, x(G(2:));

If x is a2-nodeof T', G* the characteristic graph assigned:tandz, . . . x,. the children ofr
then assign to the vertex sgt of G* the weight functionw* : V* — N such thatw*(v;) =
X(G(x;)). Finally computey(G(x)) := xw+(G").

As already mentioned, all our problems are linear time solvable for cographs, and thus we
only have to study the complexity of the computation on all 2-nodes (and there is precisely one of
them). The 2-node problem is a weighted coloring problem where the sum of the vertex weights
of the graph* is always at most the number of vertices of the givEBndem)-free grapld-.

We shall rely on the following lemma.

Lemma 21. Let G be a perfect graph and be a vertex weight function ¢f. Theny,,(G) =
wy(G) andk, (G) = a,(G).

Proof. Let G’ be the graph obtained frod by substituting each vertexof G by a clique of
cardinalityw(v). It is not hard to see that any weighted coloring(6f, w) corresponds to a
coloring of G’ and vice versa. Thug,(G) = x(G’). Furthermore it is not hard to show that
ww(G) = w(G).

Let G be perfect. Then its complement is perfect by &sx’s Perfect Graph Theorem [24].
G’ is obtained from the perfect gragh by vertex multiplication, and thus it is perfect [24].
Finally G’ as the complement of the perfect gra@his perfect by the Perfect Graph Theorem.
Since(’ is perfect we have (G') = w(G’) and thusy,, (G) = w,(G).

Similarly, sinceG” is perfect we obtaity,,(G) = w,(G). Hencex,, (G) = a,(G). O

Now let us assume thaY¥ is the sum of the weights of the given prime gra@h as we
already mentionedy < |V(G)].

Class 1: Matched cobipartite graphs

The graphG* is cobipartite and thus perfect. By Lemma 21, (G*) = w,+(G*). The Maxi-
mum Weight Clique problem for matched cobipartite graphs has been considered in the previous
section. We established a linear time algorithm to compyt€éG*) = x..~(G").

20

Class 2: Specific graphs

We will show below that we can solve the weighted coloring problem(ih) time for a graph of
sizeO(1); this assumes that we can do computations with numbers expressing weighitis in
time per operation. Clearly, this implies that- (G*) can be computed i0(1) time for each
specific graphG™.

Consider the grapty* of sizeO(1), with weightsw*. We formulate the problem to compute
X+ (G*) as an integer linear programming problem, and then argue that this ILP can be solved
in constant time.

Let Z be the collection of all maximal independent sets:6f We build an integer linear
programming with for eaclh € 7 a variabler;, as follows.

minimize " x; (1)
IeT
such that
Z xr > w(v) forallv eV (2)
IeTlhel
xr€{0,1,2,...} forallleZ (3)

With 7 we denote a vector containing for eatk 7 a valuexr;.

Let z be the optimal value of this ILR: equals the minimum number of colors needed for
(G*,w*). If we have a coloring of G*, w*) with a minimum number of colors, then assign to
each color one maximal independent get 7, such that all vertices that received this color
belong tol. (For each color, the vertices that have received that color form an independg&nt set
we assign a maximal independent that contdires a subset to the color.) Let be the number
of colors assigned td. Clearly, z; is a non-negative integer. For eache V, asv hasw(v)
colors, we have _, ;.,., 1 > w(v). >, v equals the total number of colors. Conversely,
suppose we have an optimal solutiopn of the ILP. For eachi € Z, we can take a set af;
unique colors, and use these colors to color the vertices.iAs I is independent, this gives a
proper coloring, and a5, ..., 1 > w(v), each vertex has sufficiently many colors available.
So, this gives a coloring diG*, w*) with z colors.

The relaxation of the ILP is the linear program, obtained by dropping the integer condition

(3):

minimize " x; (4)
IeT
such that
> zy>ww) forallveV (5)
vel,I€T

Let 2’ be an optimal solution of this relaxation, with valde=), _, z/.
Note that the linear program has a constant number of variables (namely, the number of
maximal independent sets 6f) and a constant number of constraints (at most one per vertex of

21

G™), and hence can be solved in constant time. (E.g., one can just enumerate all corners of the
polyhedron spanned by program, and take the optimal one.) Note that we can write the linear
program in the formmax{cz | Az < b}, such that each element df is either 0 or 1. LetA

be the maximum value of a subdeterminant of this matrixlt follows that A is bounded by

a constant. Write. = |Z|. We remark that a computer experiment that we have carried out
revealed that\ < 3 whenG* is a specific graph.

We now can use a result of Cook, Gerards, Schrijver, and Tardos, see Theorem 17.2 from
[31]. This theorem tells us that the ILP has an optimal solufiénsuch that for eacli € Z,
|z} — 27| < nA.

Thus, the following is an algorithm that finds the optimal solution to the ILP (and hence the
number of colors needed fo6G*, w*)) in constant time. First, find an optimal solutighof the
relaxation. Then, enumerate all integer vectdtsvith for all I € Z, |z}, — /| < nA. For each
suchz”, check if it fulfils conditions (2), and select the solution vector that fulfils the conditions
with the minimum value. By Theorem 17.2 from [31], this is an optimal solution of the ILP. This
method takes constant time, asand A are bounded by constants, and thus ‘only’ a constant
number of vectors have to be checked, and each is of constant size.

A straightforward implementation of this procedure would not be practical, as more than
(nA)™ vectors are checked, withthe number of maximal independent sets in one of the specific
graphs. In a practical setting, one could first solve the linear program, and use that value as
starting point in a branch and bound procedure.

As we have arO(1) algorithm for weighted coloring on graphs of size bounded by a con-
stant, it follows that Minimum Coloring can be solved in linear time for graphs whose modular
decomposition has a constant upper bound on the size of the characteristic graphs. This improves
upon a remark by McDiarmid and Reed [29] who noticed that weighted coloring can be solved
in polynomial time on constant sized graphs.

Class 3

Let G* be a graph of class 3 with weight functiari. First compute in linear time all vertices of
degree two and all’s’s of G* using the algorithm of Theorem 14.

If G* is Cs-free, and thu&s* € Cy andG* cochordal)y, (G*) = w,~(G*) can be computed
by the linear time algorithm for the maximum weight clique problem presented in the previous
section.

OtherwiseG* € C, andk > 1. If G* = (5 then with the technique applied to specific graphs
X+ (G*) can be computed by an(1) algorithm.

Finally letC' = (vy, v9, v3,v4,v5) be aCs of G* and letv; andvz be the vertices of degree
two of C. By Lemma 5, the setl of 0-vertices forC'is a stable setB = V* \ (CU A) =
N(vg) \ C = N(v3) \ C = N(vs) \ C, andG*[B] is a cograph. Therefore there are precisely
four maximal stable sets @i containing at least one of the three vertiegsv,, v5, namely
{v1,v4} U A, {va,v4} U A, {ve,v5} U Aand{vs,vs} U A. All other maximal stable sets @f*
are supersets of the maximal stable{set v3} of C'. More precisely{v;, v3} U A" is a maximal
stable set of7* if and only if A’ is a maximal stable set @* — C. (Note that{v;,v3} U Ais a

22

stable set of+*.)

Lemma 22. Letk > 1, G* € Cy (possiblyG* = C5). LetC' = (vy, vq, v3,v4,v5) be aCs in G*
such that vertices; andv; have degree two. Let* be the vertex weight function 6f*. Then
there is a minimum weight coloring* of (G*, w*) with preciselymax(w*(vy), w*(vy) +w*(vs))
stable sets containing at least one of the verticesefuv,, vs}.

Proof. Let S be any minimum weight coloring ofG*, w*). Let C = (v, vq,v3, v4,v5) be a
C5 in G* such that, ifG* # Cj5, v; andos are its vertices of degree two. Siné&gv,) \ C =
N(v3)\C =0andN(vy)\ C = N(v3)\ C = N(vs) \ C = B we may assume that every stable
set ofS contains either none or two vertices©f

Therefore we study weighted colorings ofCg C' = (vq, v, v3, v4,v5) Of G* with vertex
weightsw*, where all stable sets are non-edge€’aénd call them partial weight colorings of
C'. Note that any weighted coloring 6f = (vy, v, v3, v4, v5) Must contain at least*(v) stable
sets containing,, and it must contaim*(v,) + w*(v;) stable sets containing or vs.

Let S’ be a weighted coloring ai* containing the smallest possible number of stable Sets
with SN{vq, vy, v5} # 0. Letq be the number of stable setof S’ satisfyingSN{vy, vy, vs} # 0
and suppose that, contrary to the statement of the lemmanax(w*(vs), w* (vy)+w*(vs)). Let
c(v) be the number of stable sets$¥fcontaining the vertex. Theng > w*(v4) +w*(vs) implies
c(vg) > w*(vy) Or c(vs) > w*(vs). Without loss of generality we may assum{e,) > w*(vy).
Hence there is a stable s&t € S’ containingv,. Consequently eithe$” C {wvg,v4} U A Or
S" C {v1,v4} U A. In both cases we replace the stable$atf the weighted coloring’ of G*
by {v1,v3} U A. By the replacement we decrement by one the number of stable sets containing
vy and possibly the number of stable sets containipng hus we obtain a new weighted coloring
S” of G* with ¢ — 1 stable sets with S N {vs, vy, v5} # (). This contradicts the choice of

Consequently = max(w*(vy), w*(vy) + w*(vs)). O

Corollary 23. LetG be aC; with vertices(vy, vs, v3, 14, v5), @andw be the vertex weight function
of G. Then there exist a minimum weighted coloringzoivith preciselymax(w(vs), w(vy) +
w(vs)) stable sets containing at least one of the verticeggfuy, vs }.

To extend any partial weight coloring of(a to G* only two parameters are important
e the number of copies dfv;, v3} of the partial weight coloring, denoted byand

e the number of non-edges of tidg different from{v;, v3} of the partial weight coloring,
denoted by.

For each of thes stable setdv;, v3} of the Cs, each{v;,v3} U A" where A’ is some maximal
stable set of7* — C'is a maximal stable set ¢f*. For each of the non-edges of theC’; being
different from{wv,, v3}, S U A is the unique extension to a maximal stable setof

By Lemma 22, for eacl; of G* there is a minimum weight coloring af* with t =
max(w*(ve), w*(vy) + w*(vs)) Stable sets containing at least one verteX ®f, vy, v5}. Tak-
ing such a minimum weight coloring we can clearly remove vertigesndv; from stable sets
containing both until we obtain the smallest possible valueiofa partial weight coloring of”

23

with ¢ = max(w*(ve), w*(vs) + w*(vs)). By Corollary 23, there exist a partial weight coloring
with x,«(G[C]) stable sets, such thatax(w*(vq), w*(vs) + w*(vs)) Stable sets contain at least
one of the vertices ofuvy, v4, v5}, and thuss = x,,« (G[C]) —t can be computed in constant time.

Now we are ready to present our coloring algorithm that computes a minimum weight col-
oring of (G*, w*) for a graphG* of Cy, k > 1. It removes at most times the precomputed;
from the current graph until the remaining graph has’gand is therefore a cochordal graph.
Then an optimal weight coloring for the resulting cochordal graph can be computed by the linear
time algorithm for the maximum weight clique problem presented in Section 6.

In each round, i.e., when removing(g C' = (v, v9, v3,v4, v5) from the current grapld’
with current weight functiony’, the algorithm proceeds as follows: It computes in constant
time an optimal partial weight coloring @ such that = max(w’(v2),w’(vs) + w'(vs)) and
s as small as possible. Then the algorithm removes all vertices d@f{faend obtains the graph
G" = G'—C. Thenitremoves all vertices of with weight at most and decrements the weight
of all other vertices inA by ¢, where A is the set of0-vertices forC' in G’. Recursively the
algorithm solves the minimum weight coloring problem on the obtained gt&pivith weight
functionw”. Finally the minimum number of stable sets in a weighted coloring®fw’) is
obtained using the formula

X' (G') = t + max(s, x., (G")).

Thus the algorithm removes at ma@st n times aC's. Each minimum partial weight coloring
of the C; can be computed in constant time. For the final cochordal graph the minimum weight
coloring can be solved in linear time. Thus the overall running time of the algorithm to compute
a minimum weight coloring of a graph of class 3 is linear.

Summarizing we obtain

Theorem 24.There is a linear time algorithm to solve the minimum coloring problenfyrgém)-
free graphs.

8 Minimum Clique Cover

The Minimum Clique Cover problem is the following: Given a gragh= (V, E') determine
the smallest number of cliques 6f in a collection of cliques of+ covering its vertex set’.
This number is denoted by(G). Our algorithm to solve the minimum clique cover problem on
(Ps,gem)-free graphs is similar to the algorithm of the previous section.

The 2-node subproblem is a weighted version of Minimum Clique Cover: Given a gfaph
and a vertex weight functiom* : V' — N, find the smallest number of cliques in a weighted
clique cover of(G*, w*), i.e., computes,,-(G*).

Minimum Clique Cover is not LINEMSOL{ ;) definable. We shall present a linear time
algorithm to solve the Minimum Clique Cover problem an gem)-free graphs.

24

Subproblems

For each node of the modular decomposition trééof G computex(G(x)) as follows:

If z is aleaf of T thenx(G(x)) := 1;

If zisa0-nodeof T"andz, x», ...z, its children

thens(G(z)) = 21_, #(G(x:));

If zisal-nodeof T andx, xo, ...z, its children

thenx(G(x)) := _max K(G(z;));

then assign to the vertex sgt of G* the weight functionw* : V* — N such thatw*(v;) :=
k(G (x;)). Thenk(G(x)) := Ky (G*).

It is not hard to see that the overall computation on leaves, 0-nodes and 1-nodes can be done
in linear time. The 2-node problem is a weighted clique cover problem for which the sum of the
vertex weights of the grapfi* is at most the number of vertices of the (corresponding component
of the) given 5,gem)-free graply. Let N denote the sum of the weights of the prime gré&gih
assigned to a 2-node.

Class 1: Matched cobipartite graphs

The graph* is cobipartite and thus perfect. By Lemma 21, (G*) = a,,-(G*). Alinear time
algorithm to compute the maximum weight of a stable set in a matched cobipartite graph has
been presented in Section 5. Using it we obtain a linear time algorithm to compui@*) =

Qg (G*)

Class 2: Specific graphs

In Section 7, we have seen that we can compyté=~) in O(1) time for graphsG* of size
bounded by a constant. As,(G*) = x.(G*), we also can compute,(G*) is O(1) time for
each graph whose size is bounded by a constant, so in particular also for specific graphs.

Class 3

Let G* be a graph of class 3 with weight functiari. First compute in linear time all vertices of
degree two and all’s’s of G* using the algorithm of Theorem 14.

If G* is Cs-free, and thusy € Cy, thenG* is cochordal ands,-(G*) = «,~(G*) can
be computed using the linear time algorithm for the maximum weight stable set problem on
cochordal graphs (see Section 5).

OtherwiseG* € C,, andk > 1. If G* is a5 then with the technique applied to specific
graphsx,,«(G*) can be computed by an(1) algorithm.

Finally let C' = (v, vq, v3,v4,v5) be aCs of G* and letv; andwvs be its vertices of degree
two. The setd of 0-vertices forC' is a stable set3 = V*\ (CUA) = N(v)\C = N(v3)\C =
N(vs) \ C, andG*[B] is a cograph. Therefore all but one of the five maximal cliques dfe.,

25

the five edges of’, are maximal cliques of/*. The other maximal cliques a&* containing

vertices ofC' are all of the typguvy, v5} U B’ and{v,} U B’ whereB'’ is a maximal clique of the
cographG*[B]. Finally there are maximal cliquds} U A’ of G*, whereA’ is a maximal clique
of G*[N(a)] anda € A.

Lemma 25. Letk > 1, G* € Cy. LetC = (vy, v, v3, v4, v5) be aC;s of G* such that vertices,
andwvs have degree two. Let* be the vertex weight function 6f*. Then there is a minimum
weight clique cover ofr* with preciselyw*(v;) + w*(v3) cliques containing eithew, or vs.

Proof. Consider a minimum weight clique covir of G*. Clearly any clique containing, or
vs 1S a subset of’.

SupposeC contains more thaw* (v,) + w*(v3) cliques containing; or v3. Then we obtain
a minimum weight clique covek’ with preciselyw*(v;) + w*(v3) cligues containing; and
vs by applying the following replacement operations. kgt) be the number of cliques df
containingv. Then replace(v;) — w*(v;) of those cliquess by K \ {v;}. Similarly replace
c(vs) — w*(vs) cliqgues of K containingus.]

Corollary 26. LetG be aC; with vertices(vy, vs, v3, 14, v5), @andw be the vertex weight function
of G. Then there exist a minimum weight clique covetzafith preciselyw(v;) + w(vs) clique
containing eithemw, or vs.

Thus we study the weighted clique covers of'aC with vertex weight functiono*. We
call any such weighted clique cover of thg a partial weight clique cover @f'. To extend any
partial weight clique cover af’ to G* only two parameters are important

e the number of cliques of the partial weight clique covebtontaining eithew; or vs,
denoted by, and

e the number of clique$v,, vs}, {vs}, {vs} and{uvy} of the partial weight clique cover of
C, denoted by.

To extend a partial weight clique cover of the C' = (v, v9, v3, v4, v5) t0 @ MiNimum weight
clique cover ofz* we have to extend thecliques{vy, vs }, {v4}, {vs} or {v, } of theC; by adding
to each of these cliques a cliqueB’ of G*[B]. Furthermore we may assume that each vertex
a € A appears inv*(a) cliques ofC. (Note that none of the latter cliques contains a vertex of
)

The algorithm to compute a minimum weight clique cove(@f, w*) for a graphG* of Cx,
k > 1, removesk times the precomputeds; from the current graph until the remaining graph
has noC; and is therefore a cochordal graph. Give@'aC to be removed an optimal partial
weight clique cover of” with s = w*(v;) + w*(v3) has as few as possible cliques,, vs}, {v4},
{vs} and{v.}. By corollary 26t = k,-(G[C]) — s, can be computed in constant time.

The algorithm solves the minimum weight clique cover problem recursivelyGLée the
current graph with weight function’. Then the algorithm computes the smallest possible value
of ¢ in a partial weight cover of’ with weight functionw’ ands = w’(v;) + w'(v3). Recursively

26

the algorithm computes,,» (G’ — C), wherew” (v) = w’(v) for all vertices ofG’ — C'. Then the
minimum number of cliques in a clique cover(@¥’, ') is obtained by the formula

w (G —s+Zw)+ max(t, k(G — C) — Zw

acA a€A

where A is the set ofo-vertices forC' in G'. Note that) _, w'(a) cliques of the minimum
weight clique cover oy’ — C contain a vertex ofA and cannot be extended by adding a vertex
of C. Thus onlys,»(G" — C) = >, w'(a) cliques can be extended to cliqueséfby adding
{U4,U5}, {U4}, {U5} or {Ug}.

Thus our recursive algorithm removks< n times aC; and computes a minimum weight
clique cover for a cochordal graph. The minimum weight of a clique cover of the remaining
cochordal graph can be computed in linear time. Consequently the overall running time for the
minimum weight clique cover problem on graphs of class 3 is linear.

Summarizing we obtain

Theorem 27. There is a linear time algorithm to solve the minimum clique cover problem on
(Ps,gem)-free graphs.

Acknowledgement

Part of the research was done while A. Braadstind J. Spinrad were visiting the University of
Metz. Thanks are due to Alexander Schrijver for pointing towards Theorem 17.2 from his book
[31].

References

[1] S. ARNBORG, J. LAGERGREN D. SEESE Easy problems for tree-decomposable graphs,
J. Algorithmsl12 (1991), 308-340

[2] H. BODLAENDER, Achromatic number is NP-complete for cographs and interval graphs,
Inform. Process. LetB1 (1989) 135-138

[3] H.L. BODLAENDER, H.J. BROERSMA F.V. FOMIN, A.V. PYATKIN, G.J. WOEGINGER
Radio labeling with pre-assigned frequenciPspceedings of the 10th European Sympo-
sium on Algorithms (ESA2002)_.NCS 2461 (2002) 211-222

[4] H.L. BODLAENDER, K. JANSEN, On the complexity of the maximum cut problefdord.
J. Comput7 (2000) 14-31

[5] H.L. BODLAENDER, U. RoTIcs, Computing the treewidth and the minimum fill-in with
the modular decompositioRroceedings of the 8th Scandinavian Workshop on Algorithm
Theory (SWAT'2002)LNCS 1851 (2002) 388-397

27

[6] A. BRANDSTADT, D. KRATSCH, On the structure of#5,gem)-free graphsManuscript
2002; to appear iiscrete Applied Math.

[7] A. BRANDSTADT, H.-O. LE, R. MoscaA, Chordal co-gem-free graphs have bounded
clique width,Manuscrip2002; to appear iiscrete Applied Math.

[8] A. BRANDSTADT, V.B. LE, J. S’ INRAD, Graph Classes: A Surve$/AM Monographs
on Discrete Math. Appl., Vo3, SIAM, Philadelphia (1999)

[9] M. CHUDNOVSKY, N. ROBERTSON P.D.SYMOUR, R.THOMAS, The Strong Perfect
Graph TheoremManuscrip2002

[10] D.G. CoRNEIL, H. LERCHS L. STEWART-BURLINGHAM, Complement reducible
graphsDiscrete Applied Math3 (1981) 163-174

[11] D.G. CoRNEIL, Y. PERL, L.K. STEWART, Cographs: recognition, applications, and algo-
rithms,Congressus Numet3 (1984) 249-258

[12] D.G. CoRNEIL, Y. PERL, L.K. STEWART, A linear recognition algorithm for cographs,
SIAM J. Computingl4 (1985) 926-934

[13] B. COURCELLE, J.A. MAKOWSKY, U. ROTICS, Linear time solvable optimization prob-
lems on graphs of bounded clique-widifheory of Computing Systen33 (2000) 125-150

[14] A. COURNIER, M. HABIB, A new linear algorithm for modular decompositiofrees in
Algebra and Programming - CAAP '9UNCS 787 (1994) 68-84

[15] E. DAHLHAUS, J. QUSTEDT, R.M. MCCONNELL, Efficient and practical algorithms for
sequential modular decompositiah,Algorithms41 (2001) 360-387

[16] W. ESPELAGE, F. GURSKI, E. WANKE, How to solve NP-hard graph problems on clique-
width bounded graphs in polynomial timBroceedings of the 27th Workshop on Graph-
Theoretic Concepts in Computer Science (WG 200RICS 2204 (2001) 117-128

[17] A. FRANK, Some polynomial algorithms for certain graphs and hypergraptogeedings
of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1BVBP26,
Congressus Numerantiudo. XV, Utilitas Math., Winnipeg, Man. (1976)

[18] T. GALLAI, Transitiv orientierbare Graphedcta Mathematica Academiae Scientiarum
Hungaricad 8 (1967) 25-66

[19] V. GIAKOUMAKIS, |. Rusu, Weighted parameters i, P5)-free graphsDiscrete Appl.
Math.80 (1997) 255-261

[20] M.C. GoLumslic, Trivially perfect graphsDiscrete Math24 (1978) 105-107

[21] M.C. GoLumBic, Algorithmic Graph Theory and Perfect Grap#gademic Press, New
York (1980)

28

[22] K. JANSEN, P. SSHEFFLER Generalized coloring for tree-like graphBjscrete Appl.
Math.75 (1997) 135-155

[23] D. KOBLER, U. RoTIcs, Edge dominating set and colorings on graphs with fixed clique-
width, Discrete Appl. Math126 (2003) 197-221

[24] L. LovAsz, Normal hypergraphs and the perfect graph conjecisgrete Math2 (1972)
253-267

[25] F. MAFFRAY, M. PREISSMANN, A translation of Gallai's paper: 'Transiv orientierbare
Graphen’, inPerfect graphsl).L. Ramirez Alfonsin, B.A. Reed, (eds.), Wiley (2001) 25-66

[26] R.M. MCCONNELL, J. SPINRAD, Modular decomposition and transitive orientati@ns-
crete Math201 (1999) 189-241

[27] R.H MOHRING, F.J. RRDERMACHER, Substitution Decomposition for Discrete Structures
and Connections with Combinatorial Optimization, Algebraic and Combinatorial Methods
in Operations Research, 257-355, 1984

[28] M. Rao, Décomposition modulaire de graphes et peobés NP-complets, Rapport de
DEA, Universig de Metz (2002)

[29] C. McDIARMID, B. A. REED, Channel assignment and weighted coloriNgtworks36
(2000) 114-117

[30] D. RosE, R. TARJAN, G. LUEKER, Algorithmic aspects of vertex elimination on graphs,
SIAM J. Computing (1976) 266-283

[31] A. SCHRIJVER Theory of Linear and Integer Programmirdgphn Wiley & Sons, Chich-
ester (1986)

[32] E. WANKE, k-NLC graphs and polynomial algorithmBiscrete Appl. Math54 (1994)
251-266

[33] E.S. WoLK, The comparability graph of a treBroc. Amer. Math. Sod.3 (1962) 789-795

[34] E.S. WOLK, A note on “The comparability graph of a tree”roc. Amer. Math. Socl6
(1965) 17-20

29

