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Abstract

A graph is (P5,gem)-free, when it does not containP5 (an induced path with five vertices)
or a gem (a graph formed by making an universal vertex adjacent to each of the four vertices
of the induced pathP4) as an induced subgraph.

We presentO(n2) time recognition algorithms for chordal gem-free and for (P5,gem)-
free graphs. Using a characterization of (P5,gem)-free graphs by their prime graphs with
respect to modular decomposition and their modular decomposition trees [6], we give linear
time algorithms for the following NP-complete problems on (P5,gem)-free graphs: Min-
imum Coloring, Maximum Weight Stable Set, Maximum Weight Clique, and Minimum
Clique Cover.

1 Introduction

Graph decompositions play an important role in graph theory. The central role of decompositions
in the recent proof of one of the major open conjectures in Graph Theory, the so-called Strong
Perfect Graph Conjecture of C. Berge, is an exciting example [9]. Furthermore various decompo-
sitions of graphs such as decomposition by clique cutsets, tree-decomposition and clique-width
are often used to design efficient graph algorithms. There are even beautiful general results stat-
ing that a variety of NP-complete graph problems can be solved in linear time for graphs of
bounded treewidth and bounded clique-width, respectively [1, 13].
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Despite the fact that modular decomposition is a well-known decomposition in graph theory
having algorithmic uses that seem to be simple and obvious, there is relatively little research con-
cerning non-trivial uses of modular decomposition such as designing polynomial time algorithms
for NP-complete problems on special graph classes.

An important exception are the many linear and polynomial time algorithms for cographs [10,
11]. Cographs, or equivalently,P4-free graphs are known to have a cotree representation. This
representation allows for various problems that are NP-complete for arbitrary graphs a linear time
algorithm when restricted to cographs. Among these, there are the problems Maximum (Weight)
Stable Set, Maximum (Weight) Clique, Minimum Coloring and Minimum Clique Cover [10, 11].

The original motivation to study the structure of (P5,gem)-free graphs in [6] had been to con-
struct a faster, possibly linear time algorithm for the Maximum Stable Set problem on (P5,gem)-
free graphs. In [6] the authors established a characterization of the (P5,gem)-free graphs by their
prime induced subgraphs called the Structure Theorem for (P5,gem)-free graphs. We show in
this paper that the Structure Theorem is a powerful tool to design efficient algorithms for NP-
complete problems on (P5,gem)-free graphs. All our algorithms use the modular decomposition
tree of the input graph and the structure of the prime (P5,gem)-free graphs. We are convinced
that efficient algorithms for other NP-complete graph problems (e.g. domination problems) on
(P5,gem)-free graphs can also be obtained by this approach.

It is remarkable that there are only few papers establishing efficient algorithms for NP-
complete graph problems using modular decomposition and that most of them consider a sin-
gle problem, namely Maximum (Weight) Stable Set. For work dealing with other problems we
refer to [4, 5, 19]. Concerning the limits of modular decomposition it is known, for example,
that Achromatic Number, List Coloring, andλ2,1-Coloring with pre-assigned colors remain NP-
complete on cographs [2, 3, 22]. This implies that these three problems are NP-complete on
(P5,gem)-free graphs.1

There is also a strong relation between modular decomposition and the clique-width of
graphs. For example, if all prime graphs of a graph class have bounded size then this class
has bounded clique-width. Problems definable in a certain logic, so-called LinEMSOL(τ1,L)-
definable problems, such as Maximum (Weight) Stable Set, Maximum (Weight) Clique and
Minimum (Weight) Dominating Set, can be solved in linear time on any graph class of bounded
clique-width, assuming ak-expression describing the graph is part of the input [13]. Many other
NP-complete problems which are not LinEMSOL(τ1,L)-definable can be solved in polynomial
time on graph classes of bounded clique-width [16, 23]; see also [32].

Brandstädt et al. have shown that the clique-width of (P5,gem)-free graphs is at most five [7].
However their approach does not provide a linear time algorithm to compute a suitablek-
expression, thus it does not imply linear time algorithms for LinEMSOL(τ1,L)-definable prob-
lems on (P5,gem)-free graphs. Finding a linear time algorithm that computes a 5-expression for
a given (P5,gem)-free graph remains an interesting open problem.

Our paper is organized as follows: Section 2 gives several preliminaries: basic notions (Sec-
tion 2.1), modular decomposition (Section 2.2), cographs (Section 2.3), and a review of the

1A proof, similarly to the one in [3] shows thatλ2,1-Coloring is NP-complete for graphs with at most one prime
induced subgraph, theP4, and hence for (P5,gem)-free graphs.
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general approach for obtaining efficient algorithms for NP-complete graph problems using mod-
ular decomposition (Section 2.4). Section 3 describes the structure of (P5,gem)-free graphs and
provides the Structure theorem. Section 4 presents anO(n2) algorithm to recognize chordal
cogem-free graphs and anO(n2) algorithm to recognize (P5,gem)-free graphs. In Section 5
we present a linear time algorithm to compute a maximum weight stable set in (P5,gem)-free
graphs. In Section 6 a linear time algorithm to compute a maximum weight clique on (P5,gem)-
free graphs is given. In Section 7 we present a linear time algorithm to compute a minimum
coloring of (P5,gem)-free graphs. In Section 8 we present a linear time algorithm to compute a
minimum clique cover of (P5,gem)-free graphs. Summarizing, we establish efficient and practi-
cal algorithms to solve four basic NP-complete graph problems on (P5,gem)-free graphs.

2 Preliminaries

2.1 Basic notions

Let G = (V, E) be a finite undirected graph, and let|V | = n and|E| = m. Let N(v) := {u :
u ∈ V, u 6= v, {u, v} ∈ E} denote theopen neighborhoodof v andN [v] := N(v) ∪ {v} the
closed neighborhoodof v. Thecomplement graphG = (V, E) of G is defined byE = {uv :
u, v ∈ V, u 6= v and{u, v} /∈ E}. ForU ⊆ V , let G[U ] denote the subgraph ofG induced byU .
A graphG is connectedif for each pairu, v of vertices ofG there is a path joiningu andv. A
graph isco-connectedif its complementG is connected. A(connected) componentof a graphG
is a maximal connected subgraph ofG. If for U ⊂ V , a vertex not inU is adjacent to exactlyk
vertices inU then it is calledk-vertexfor U .

Fork ≥ 1, let Pk denote a path withk vertices andk − 1 edges, and fork ≥ 3, let Ck denote
a cycle withk vertices andk edges. Ahole is aCk for k ≥ 5. Let F denote a set of graphs. A
graphG isF -free if none of its induced subgraphs is inF .

A vertex setU ⊆ V is aclique in G if the vertices inU are pairwise adjacent. A vertex set
U ⊆ V is a stable(independent) set inG if U is a clique inG. ω(G) denotes the maximum
cardinality of a clique inG andα(G) := ω(G) denotes the maximum cardinality of a stable set
in G. For a graphG with vertex weight functionw : V → N, the weight of a vertex setU ⊆ V
is defined to bew(U) :=

∑
u∈U w(u). αw(G) denotes the maximum weight of a stable set ofG

andωw(G) denotes the maximum weight of a clique ofG. We assume that arithmetic operations
on vertex weights can be performed in constant time. A stable set and a clique, respectively,
of maximum cardinality (weight) is said to be amaximum (weight) stable setand amaximum
(weight) clique, respectively.

A functionf : V → N is a(proper) coloringof the graphG = (V, E), if {u, v} ∈ E implies
f(u) 6= f(v). Thechromatic numberof G, denotedχ(G), is the smallestk such that the graph
G has ak-coloringf : V → {1, 2, . . . , k}. A clique coverof a graphG = (V, E) is a partition
of its vertex setV into cliquesC1, C2, . . . , Ct. κ(G) denotes the minimum number of cliques in
any clique cover ofG. It is well-known thatχ(G) = κ(G) for all graphs.

Finally we shall consider the following weighted versions of coloring and clique cover. Let
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G = (V, E) be a graph with vertex weight functionw : V → N. A weightedk-coloring of
(G, w) assigns to each vertexv of G w(v) different colors, i.e., integers of{1, 2, . . . , k}, such
that {x, y} ∈ E implies that no color assigned tox is equal to a color assigned toy. χw(G)
denotes the smallestk such that the graphG with weight functionw has a weightedk-coloring.
Note that each weightedk-coloring of(G, w) corresponds to a multisetS1, S2, . . . , Sk of stable
sets ofG whereSi, i ∈ {1, 2, . . . , k}, is the set of all vertices ofG to which colori is assigned.

A weighted clique coverof (G, w) is a multiset of cliquesC1, C2, . . . , Ct of G such that each
vertexv of G is contained in at leastw(v) of these cliques. The minimum number of cliques in
a weighted clique cover of(G, w) is denoted byκw(G). Note thatχw(G) = κw(G).

2.2 Modular decomposition

Modular decomposition is a fundamental decomposition technique that can be applied to graphs,
partially ordered sets, hypergraphs and other structures. It has been described and used under
different names and it has been rediscovered various times. Gallai introduced and studied mod-
ular decomposition in his seminal 1967 paper [18] where it is used to decompose comparability
graphs. A translation into English is now available: [25].

A vertex setM ⊆ V is a modulein G if for all verticesx ∈ V \ M , x is either adjacent
to all vertices inM , or non-adjacent to all vertices inM . The trivial modulesof G are∅, V
and the singletons. Ahomogeneous setin G is a nontrivial module inG. A graph containing
no homogeneous set is calledprime. Note that the smallest nontrivial prime graph is theP4. A
homogeneous setM is maximalif no other homogeneous set properly containsM .

Modular decomposition of graphs is based on the following decomposition theorem.

Theorem 1 ([18]). LetG = (V, E) be a graph with at least two vertices. Then exactly one of the
following conditions holds:

(i) G is not connected, and it can be decomposed into its connected components;

(ii) G is not connected, andG can be decomposed into the connected components ofG;

(iii) G is connected and co-connected. There is someU ⊆ V and a unique partitionP of V
such that

(a) |U | > 3,

(b) G[U ] is a maximal prime induced subgraph ofG, and

(c) for every classS of the partitionP , S is a module ofG and|S ∩ U | = 1.

There does not seem to be an agreement how to describe modular decomposition. We take
the freedom to describe it in the way we find most convenient for presenting our algorithmic
results in Sections 5 to 8.

Following Theorem 1 there are three decomposition operations.

0-Operation: If G is disconnected then decompose it into its connected componentsG1, G2, . . . , Gr.
1-Operation: If G is disconnected then decomposeG into G1, G2, . . . Gs, whereG1, G2, . . . Gs
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are the connected components ofG.
2-Operation: If G = (V, E) is connected and co-connected then its maximal homogeneous sets
are pairwise disjoint and they form the partitionP of V . The graphG∗ = G[U ] is called the
characteristic graphof G and it is obtained fromG by contracting every maximal homogeneous
set ofG to a single vertex.

Note that the characteristic graph of a connected and co-connected graphG is prime.

The decomposition theorem and the above mentioned operations lead to the uniquely deter-
minedmodular decomposition treeT of G. The leaves of the modular decomposition tree are
the vertices ofG. The interior nodes ofT are labeled 0, 1 or 2 according to the operation corre-
sponding to the node. Thus we call them 0-node (parallel node), 1-node (series node) and 2-node
(prime node). Any interior nodex of T corresponds to the subgraph ofG induced by the set of
all leaves in the subtree ofT rooted atx, denoted byG(x).

0-node. The children of a 0-nodex correspond to the components obtained by a 0-operation
applied to the disconnected graphG(x).
1-node. The children of a 1-nodex correspond to the components obtained by a 1-operation
applied to the non co-connected graphG(x).
2-node.The children of a2-nodex correspond to the subgraphs induced by the maximal homo-
geneous sets of the connected and co-connected graphG(x) and to single vertices which are not
contained in any homogeneous set. Additionally, the characteristic graph ofG(x) is assigned to
the 2-nodex.

The modular decomposition tree is of basic importance for many algorithmic applications,
and in [26, 14, 15], linear time algorithms are given for determining the modular decomposition
tree of an input graph. See Figure 1 for an example of a modular decomposition tree.

We recall the generic approach to solve an NP-complete graph problem using modular de-
composition below in Section 2.4.

2.3 Cographs

A graph is acograph if in its modular decomposition tree, all internal nodes are 0-nodes or
1-nodes. Cographs are exactly theP4-free graphs, and their modular decomposition trees are
calledcotrees. The cotree representation allows to solve various NP-hard problems in linear
time when restricted to cographs, among them the problems Maximum (Weight) Stable Set,
Maximum (Weight) Clique, Minimum Coloring and Minimum Clique Cover [10, 11]. In [12],
a linear time recognition algorithm for cographs is presented. This algorithm outputs a cotree if
the input graph is indeed a cograph, otherwise it outputs aP4. This recognition algorithm is also
part of the linear time modular decomposition algorithms in [26, 14].

See [10, 11, 12] for more information on cographs and [8] for a survey on this and many
other graph classes.

5



c d ea b

0

11 14

9 12 10 13

a b c d

1 0

2 2

1 4 5

2 3 8

6 7

1 0

1

a
b

cd

e
a b c d

Figure 1: A modular decomposition tree.

2.4 Solving NP-Complete Graph Problems Using Modular Decomposition

Often, algorithms exploiting the modular decomposition have the following structure. LetΠ be
an NP-complete graph problem to be solved on some graph classG, such as Maximum Stable
Set on (P5,gem)-free graphs.

First the algorithm computes the modular decomposition treeT of the input graphG using
one of the linear time algorithms. Then in a bottom up fashion the algorithm computes for each
nodex of T the optimal value(s) for the subgraphG(x) of G induced by the set of all leaves of
the subtree ofT rooted atx. Thus the computation starts assigning the optimal value to the leaves
(note that these represent induced subgraphs with one vertex). Then the algorithm computes the
optimal value of an interior nodex by using the optimal values of all children ofx depending on
the type of the node. Finally the optimal value of the root is the optimal value ofΠ for the input
graphG. Note that various more complicated variants of this scenario can be useful.

Thus to specify such a modular decomposition based algorithm we only have to describe
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how to obtain the value for the leaves, and which formula to evaluate or which subproblem to
solve on 0-nodes, 1-nodes and 2-nodes, using the values of all children as input. It is well-
known how to do this for 0-nodes and 1-nodes for the NP-complete graph problems Maximum
Weight Stable Set, Maximum Weight Clique, Minimum Coloring and Minimum Clique Cover
from the corresponding cograph algorithm [10, 11]. On the other hand to find out and solve the
algorithmic problem for the 2-nodes, called the2-node subproblem, for solving problemΠ using
modular decomposition can be quite challenging.

In this paper we shall study the problems Maximum (Weight) Stable Set, Maximum (Weight)
Clique, Minimum Coloring and Minimum Clique Cover that have been studied in many other pa-
pers (see e.g. [19, 21]). The most frequently studied NP-complete graph problem using modular
decomposition is the Maximum (Weight) Stable Set problem. The use of modular decomposition
has also been studied for the graph problems Maxcut [4], Treewidth and Min Fill-in [5]. More
information on 2-node subproblems can be found in [28]. We study the four basic NP-complete
graph problems on (P5,gem)-free graphs in Sections 5 to 8.

As said, the problemΠ is NP-complete; thus to guarantee polynomial running time of a
modular decomposition based algorithm we have to restrict the possible input graphs to some
suitable graph classG; in particular, this should pose some restriction on the possible character-
istic graphs assigned to the 2-nodes. IfG is hereditary then the possible labels of 2-nodes of a
modular decomposition tree of a graphG ∈ G are exactly the prime graphs inG. Consequently
if we have a structural description of all the prime graphs ofG then what remains is to show that
the 2-node subproblem ofΠ can be solved sufficiently fast on all prime graphs inG.

Polynomial time algorithms obtained by using modular decomposition are often practical in
the following sense. They have neither huge hidden constants nor large exponents as is quite
common for algorithms on graphs of bounded treewidth and graphs of bounded clique-width,
when the treewidth or clique-width is not sufficiently small.

3 The Structure Theorem for (P5,gem)-Free Graphs

To state the Structure Theorem of (P5,gem)-free graphs we need to define three classes of
(P5,gem)-free graphs which contain all prime (P5,gem)-free graphs.

Definition 2. A graphG = (V, E) is calledmatched cobipartiteif its vertex setV is partitionable
into two cliquesC1, C2 with |C1| = |C2| or |C1| = |C2| − 1 such that the edges betweenC1 and
C2 form a matching and at most one vertex inC1 and at most one vertex inC2 are not covered
by the matching.
We denote the class of all matched cobipartite graphs byclass 1.

Definition 3. A graphG is calledspecificif it is the complement of a prime induced subgraph of
one of the three graphs in Figure 2.
We denote the class of all specific graphs byclass 2.

To establish the definition of class 3 we do need some more notions. A graph ischordal
if it contains no induced cyclesCk, k ≥ 4. See e.g. [21, 8] for properties of chordal graphs.
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Figure 2:

A graph iscochordalif its complement graph is chordal. A vertexv is simplicial in G if its
neighborhoodN(v) in G is a clique. A vertexv is cosimplicialin G if it is simplicial in G, i.e.,
its non-neighbourhoodN(v) = V \N [v] is a stable set inG. It is well-known that every chordal
graph has a simplicial vertex and that such a vertex can be found in linear time.

We also need the following notion of substituting aC5 into a vertex. For a graphG and a
vertexv in G, let the result of the extension operationext(G, v) denote the graphG′ resulting
from G by replacingv with a C5 (v1, v2, v3, v4, v5) of new vertices such thatv2, v4 andv5 have
the same neighborhood inG asv andv1, v3 have only theirC5 neighbors, i.e., have degree 2
in G′. For a vertex setU ⊆ V of G, let ext(G, U) denote the result of applying repeatedly the
extension operation to all vertices ofU . Note that the resulting graph does not depend on the
order of replacingU vertices.

Based on the operationext(G, v), we define the graph classesCk, k ≥ 0, k being the number
of C5’s contained in a graphG ∈ Ck.

Definition 4. Fork ≥ 0, letCk be the class of prime graphsG′ = ext(G, Q) resulting from a (not
necessarily prime) cochordal gem-free graphG by extending a cliqueQ of exactlyk cosimplicial
vertices ofG. Thus,C0 is the class of prime cochordal gem-free graphs. We denote

⋃∞
k=0 Ck by

class 3.

It is shown in [6] that each graph in class 3 has neitherC4 = 2K2 nor C6 as an induced
subgraph. All graphs in class 3 are either cochordal or they contain aC5. Class 3 is the crucial
class for the problems to be considered in this paper. Therefore we list some useful properties of
the graphs in this class (see [6]). We shall often rely on the partition property of the following
lemma.

Lemma 5. LetG = (V, E) be a graph ofclass 3. ThenG is a cochordal gem-free graph, or for
everyC5 C = (v1, v2, v3, v4, v5) of G, the vertex setV has a partition into{v1, v2, v3, v4, v5}, the
stable setA of 0-vertices forC and the setB of 3-vertices forC such that all vertices ofB have
the same neighbors inC, sayv2, v4, v5, andG[B] is a cograph.

Lemma 6. Let G = (V, E) be a connected graph of class 3 such thatG 6= C5 and G is not
cochordal. Then it has aC5, and for eachC5 C = (v1, v2, v3, v4, v5) of G there are two non-
adjacent vertices, sayv1 and v3, of degree two and all other vertices ofG have degree larger
than two with the possible exception of0-vertices forC. Furthermore theC5’s of G are pairwise
vertex-disjoint.
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Now we are ready to state the structure theorem for (P5,gem)-free graphs.

Theorem 7 ([6]). A connected and co-connected graphG is (P5,gem)-free if and only if

(1) all homogeneous sets ofG areP4-free, and

(2) for the characteristic graphG∗ of G, one of the following conditions holds:

(2.1) G∗ is a matched cobipartite graph;

(2.2) G∗ is a specific graph;

(2.3) there is ak ≥ 0 such thatG∗ is in Ck.

The theorem does not provide a list of all prime (P5,gem)-free graphs. Nevertheless it pro-
vides a characterization of all prime graphs that are (P5,gem)-free that will turn out to be very
useful for the design of algorithms using modular decomposition.

Remark.If a graph is disconnected then it is (P5,gem)-free if and only if each of its components
is (P5,gem)-free. If the complement of a graph is disconnected then it is (P5,gem)-free if and
only if it is a cograph.

4 Recognition

A natural recognition algorithm for connected and co-connected (P5,gem)-free graphs runs a
linear time modular decomposition algorithm on the input graph and then verifies the conditions
of the structure theorem (Theorem 7).

Let us discuss some easy cases first. If the input graph is disconnected then we run the
algorithm on each component. If the input graph has a disconnected complementary graph then
we accept if it is a cograph and otherwise we reject.

Now assume that the input graph is connected and co-connected. If its modular decomposi-
tion treeT has either more than one 2-node or if the only 2-node is not the root of the tree then
we reject the input graph. If the connected and co-connected input graphG passed all subsequent
tests then its modular decomposition tree has the right structure. All what remains to check is
that the characteristic graphG∗, which is the graph assigned to the root ofT , belongs to one of
the classes 1 to 3.

In the following subsections we consider how to check whether a characteristic graph belongs
to one of these three classes.

4.1 Matched cobipartite and specific graphs

It is not hard to see that the classes 1 and 2 can be recognized in linear time.

(1) Is G matched cobipartite?

(1.1) If the graphG has at most3 vertices or less thann2/4 edges then rejectG.
(1.2) If not, partition the vertex set into two cliques by applying the linear time recognition
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algorithm for bipartite graphs toG [21].
(1.3) Verify that|C1| = |C2| or |C1| = |C2| − 1, and that the edges betweenC1 andC2 form
a matching and at most one vertex inC1 and at most one vertex inC2 are not covered by the
matching.

Clearly this algorithm can be implemented to run in linear time since any graphG passing
the test (1.1) hasΩ(n2) edges. The correctness is based on the uniqueness of the partition in (1.2)
(which is due to the co-connectedness ofG).

(2) Is G a specific graph?

This can be checked in timeO(1) since all specific graphs have at most nine vertices.

4.2 Chordal cogem-free graphs

The interesting class concerning recognition is the class of cochordal gem-free graphs. We shall
present anO(n2) time recognition algorithm for chordal cogem-free graphs, and thus obtain an
O(n2) time recognition algorithm for cochordal gem-free graphs.

First, our recognition algorithm uses a linear time recognition algorithm for chordal graphs
(see e.g. [21]) and rejects the input if it is not chordal.

In the remainder, we assume that the input graphG = (V, E) is chordal. The algorithm pro-
ceeds by computing the following partition of the vertex set ofG to be used to classify possible
cogems and to decide whetherG has a cogem.

Take some simplicial vertexv of the chordal graphG, i.e.,N [v] is a clique. Note that every
chordal graph has a simplicial vertex and that a simplicial vertex in a chordal graph can be found
in linear time [30]. Partition the vertex setV into X = N [v] andY = V − N [v]. ClearlyX is
a clique. IfG[Y ] is not a cograph which can be checked in linear time then rejectG since it has
a cogem (induced by the vertexv and aP4 of G[Y ]). ¿From now on we assume thatG[Y ] is a
cograph and thatT is the cotree ofG[Y ] obtained by the cograph recognition algorithm of [12].

We divide possible cogems ofG into four types wherex, xi ∈ X andy, yj ∈ Y .

type 1: one vertex ofX is an endvertex of theP4:
x − y1 − y2 − y3 and all of its four vertices nonadjacent toy4

type 2: one vertex ofX is a midvertex of theP4:
y1 − x − y2 − y3 and all of its four vertices nonadjacent toy4

type 3: one edge ofG[X] is a wing of theP4:
x1 − x2 − y1 − y2 and all of its four vertices nonadjacent toy3

type 4: one edge ofG[X] is the center of theP4:
y1 − x1 − x2 − y2 and all of its four vertices nonadjacent toy3

We call a cogem astandard cogemwith respect to(N [v], Y ) if its P4 is v − x − y1 − y2 and
all these four vertices are nonadjacent toy3. Clearly this is a particular type 3 cogem.

Lemma 8. G has a type 1, type 2 or type 3 cogem with respect to(N [v], Y ) if and only if it has
a standard cogem with respect to(N [v], Y ).
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Proof. With the above notation we get:
If x − y1 − y2 − y3| y4 is a type 1 cogem thenv − x − y1 − y2| y4 is a standard cogem.
If y1 − x − y2 − y3| y4 is a type 2 cogem thenv − x − y2 − y3| y4 is a standard cogem.
If x1 −x2 − y1 − y2| y3 is a type 3 cogem but not a standard cogem, thenv−x2 − y1 − y2| y3

is a standard cogem.

Thus our algorithm may restrict its search to standard cogems and type 4 cogems inG. It
will also rely on the fact thatG[Y ] is a chordal cograph, and thusP4- andC4-free. HenceG[Y ] is
a trivially perfect graph [20]; each of its connected induced subgraphs has a dominating vertex,
i.e., a vertex adjacent to all other vertices of this connected induced subgraph [21, 33, 34].

Now we design an algorithm to find a cogem in a chordal graph. In stage one the algorithm
recursively searches for a standard cogem and removes some vertices ofY that cannot be in any
cogem until the remaining graph cannot contain a standard cogem. Then in a second stage the
algorithm searches for a type 4 cogem. Consequently the current graph during the execution of
the first stage of the algorithm is always an induced subgraph ofG with vertex setN [v]∪ Y ′ and
Y ′ ⊆ Y .

Remark.The lazy strategy postponing the search for a type 4 cogem until it has to be done only
once (in stage two) allows us to obtain running timeO(n2); A direct approach leads to anO(nm)
time algorithm.

Definition 9. Let (N [v], Y ′) be a partition of the vertex set ofG[N [v] ∪ Y ′], whereY ′ ⊆ Y and
N [v] is a clique. LetY1, Y2, . . . , Yt be the components of the trivially perfect graphG[Y ′] and
let X ′ = N(v). We call a vertexx ∈ X ′ fully adjacentto Yi if Yi ⊆ N(x). We call a vertex
x ∈ X ′ non-adjacentto Yi if Yi ∩ N(x) = ∅. We call vertexx ∈ X semi-adjacentto Yi if
∅ 6= Yi ∩ N(x) 6= Yi.

One of the key principles of our algorithm is that during stage one it searches only for easy-
to-find standard cogems and nothing else.

Easy-to-find cogem:
Suppose there is a vertexx ∈ X ′ such thatx is semi-adjacent to a componentYi and not fully
adjacent to some other componentYj, i 6= j. ThenG has a standard cogemv − x − y1 − y2| y
wherey ∈ Yj, y1, y2 ∈ Yi.
(Note that there is an edge betweenN(x) ∩ Yi andYi \ N(x) sinceG[Yi] is connected. Each of
these edges can be taken as the edge{y1, y2} of the above mentioned standard cogem.)

If the algorithm finds an easy-to-find cogem in the current graphG[N [v] ∪ Y ′] then it rejects
the input graphG. If there is no easy-to-find cogem inG[N [v] ∪ Y ′] then every vertexx ∈ X ′

being semi-adjacent to some component ofG[Y ′] is fully adjacent to all other components. In
addition there might be verticesx ∈ X ′ such that for every componentYi of G[Y ′], x is either
fully adjacent or non-adjacent toYi.

This motivates the following preprocessing step of our algorithm. In stage zero compute for
every vertexx ∈ X ′ and every 1-nodet of the cotreeT of G[Y ] whetherx is fully adjacent,
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semi-adjacent or not adjacent to the connected subgraph ofG[Y ] induced by the set of vertices
assigned to the leaves of the subtree ofT rooted att. This is all information we need in stage one,
since any componentYi ever treated in stage one, with the exception of singletons, is obtained by
the recursive removal of all dominating vertices from some larger component, which corresponds
to taking a 1-node and obtaining a grandchild 1-node by the removal of all dominating vertices.
The preprocessing can be done in timeO(n) per vertexx ∈ X ′ where the computation is done
in a bottom up fashion on the cotreeT . Thus the overall running time of the preprocessing is
O(n2).

During stage one the algorithm will compute and maintain for every vertexx ∈ X ′ the
number of components ofG[Y ′] to which x is fully adjacent, semi-adjacent and not adjacent,
denoted by full(x), semi(x), and not(x). Then the current graphG[N [x] ∪ Y ′] has an easy-to-
find cogem if and only if there is a vertexx ∈ X ′ such that semi(x) ≥ 2, or semi(x) = 1 and
not(x) > 0.

Now stage one of the algorithm starts with the chordal graphG and the partition(N [v], Y )
for some simplicial vertexv of G. During each step of stage one the algorithm either finds a
cogem ofG, and thus rejects the input, or it removes some vertices ofY ′ from the current graph.

Suppose the algorithm does not find an easy-to-find cogem while treating the graphG[N [v]∪
Y ′] in stage one. Then every vertexx ∈ X ′ fulfills semi(x) = 0, or semi(x) = 1 and not(x) = 0.
Consequently, ifv−x−y1−y2| y3 is a (not easy-to-find) standard cogem ofG[N [v]∪Y ′] then the
verticesy1, y2, y3 belong to the same component ofG[Y ′]. Additionally, if y1−x1−x2−y2| y3 is a
type 4 cogem ofG[N [v]∪Y ′] then either the verticesy1, y2, y3 also belong to the same component
of G[Y ′], or to each component ofG[Y ′] both verticesx1 andx2 are either not adjacent or fully
adjacent andy1, y2, y3 belong to three different components ofG[Y ′]. In the latter case the
algorithm will not destroy the type 4 cogem ofG[N [v]∪Y ′] when deleting vertices ofY ′ as long
as it never removes all vertices of a component ofG[Y ′] (and thus our algorithm never removes
the last vertex of a component)

Finally we have to describe how to choose theY ′-vertices to be removed at the end of a step
in stage one.G[Y ] and thus eachG[Y ′] is a trivially perfect graph. Therefore each component
of G[Y ′] contains a dominating vertex. Clearly such a vertex cannot be in a standard cogem
or in a type 4 cogem withy1, y2, y3 in one component. Consequently, the algorithm removes
all dominating vertices of eachG[Y ′] component, but it will never remove the last vertex of a
component.

Analysing the running time of stage one we obtain: the algorithm removes a vertex in each
round, thus there are at mostn rounds in stage one. In each round, for each vertexx ∈ X ′

there is direct access to the values of the variables full(x), semi(x) and not(x) corresponding
to (N [v], Y ′). Using this it can be decided in timeO(1) whether there is an easy-to-find cogem
containingx. Using the cotree of a trivially perfect graph it is easy to find the dominating vertices
of each component, to remove them and to updatefull(x), semi(x) andnot(x) for all x ∈ X ′

in overall timeO(n) per round. Therefore the running time of stage one isO(n2).

Suppose the algorithm does not find an easy-to-find cogem in stage one. Then it terminates
stage one when all components ofG[Y ′] consist of a single vertex. Thus stage two only has to
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verify whether the graphGs := G[N(v) ∪ Y ′] obtained at the end of stage one has a type 4
cogem. Note thatGs is a split graph sinceN(v) is a clique andY ′ is an independent set.

The chordal distance-hereditary graphs, called ptolemaic graphs, are precisely the chordal
gem-free graphs (see [8]). Consequently, if the complement ofGs is distance-hereditary then
there is no (type 4) cogem inGs, and thusG is a chordal cogem-free graph. Otherwise if the
complement ofGs is not distance-hereditary, then since the complement ofGs is chordal, it
contains a gem. ThusG contains a cogem and the algorithm rejects it. Finally, stage two can
be implemented to run in timeO(n2) by using a linear time recognition algorithm for distance-
hereditary graphs.

Theorem 10. There is anO(n2) algorithm to recognize chordal cogem-free graphs.

Corollary 11. There is anO(n2) algorithm to recognize cochordal gem-free graphs.

4.3 Class 3

First the algorithm checks whether the input graphG is prime using a linear time modular de-
composition algorithm.

The main part of the following algorithm destroys allC5’s of the graph by deleting one of
the degree two vertices of eachC5, and thus the remaining graph should beC5-free. Then the
algorithm verifies whether the remaining graph is (P5,gem)-free, i.e., cochordal and gem-free.

(0) If G is cochordal then accept if it is gem-free and reject if it contains a gem. IfG = C5 then
accept. Continue ifG is neither cochordal nor theC5.
(1) Determine the set of all vertices of degree2.
(2) Try to extend each pair of non adjacent degree2 vertices with a common neighbour to aC5

(by checking whether their non common neighbours are adjacent).
(3) For eachC5 C = (x1, x2, x3, x4, x5) determined in (2)
(3.1) determine the setA of all 0-vertices ofC, and
(3.2) determineB = V \ (A ∪ C) and verify thatN(xi) = B for all verticesxi of degree larger
than two inC.
(4) Reject the graphG if the condition of (3.2) is not satisfied for some of theC5’s determined in
(2). Otherwise construct the graphG′ by removing precisely one of the two degree two vertices
of eachC5 determined in (2) from the graphG.
(5) Check whether the remaining graphG′ is cochordal, and if so whether it is also gem-free. If
yes then acceptG. Otherwise rejectG.

Theorem 12. There is anO(n2) algorithm to recognize class 3 graphs.

Proof. First let us show that the algorithm is correct. Clearly the input graph is in class 3 if it is
accepted in (0). If the graphG is in class 3, but it has not been accepted in (0), then it will be
accepted in (5) since the graphG′ obtained fromG by destroying allC5’s via the removal of one
vertex must be cochordal gem-free. (Note that the only complement of a chordless cycle that a
graph of class 3 may contain as induced subgraph is aC5.)
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Combining some results of [6] one can easily obtain that, if a graph is prime(2K2, C6,gem)-
free then it is in class 3 or it is a specific graph. Studying in more detail the corresponding proof
in [6], one can obtain that there is precisely one prime(2K2, C6,gem)-free graph not belonging
to class 3, and that our algorithm will reject this specific graph.

Suppose our algorithm fails on the input graphG. Thus the prime input graphG does
not belong to class 3, and thus it has a2K2, C6 or a gem as induced subgraph. LetC5 C =
(x1, x2, x3, x4, x5) be aC5 of G determined in (2). Letx1 andx3 be its vertices of degree two
and letC satisfy the condition in (3.2). Thenx1 andx3 cannot be vertices of aC6 since their
degree is two. Furthermore none of them is a vertex of a gem inG, since their neighbours are
non adjacent. However they may be vertices of a2K2. If x1 is in a2K2 then there is a2K2 in
G induced by{x1, x5, a1, a2} with a1, a2 ∈ A, and thus{x3, x4, a1, a2} also induces a2K2 in G.
HenceG has a2K2 containingx1 if and only if G has a2K2 containingx3. Furthermore if such
a 2K2 exists thenA is not a stable set. Finally notice that ifG[B] is not a cograph thenG has a
gem consisting of any vertex of{v2, v4, v5} and aP4 in G[B].

Therefore the graphG′ constructed in (4) has no2K2, C6 and gem as induced subgraph if and
only if the input graphG has no2K2, C6 and gem as induced subgraph. Thus since we consider
an inputG not belonging to class 3 the graphG′ has a2K2, C6 or a gem as induced subgraph.
SinceG is accepted it does not fail the test in (5). HenceG′ is cochordal gem-free, and thus it has
neither2K2, nor C6 nor a gem as induced subgraph. ThusG is not prime(2K2, C6,gem)-free,
contradicting our choice ofG.

By Corollary 11, (0) and (5) can be implemented to run in timeO(n2). There areO(n) pairs
of vertices of degree two with common neighbour and they can be extended to aC5, if possible,
in timeO(1). (3.1) and (3.2) can be executed in overall timeO(n+m) for all C5’s determined in
(2) by passing through the adjacency lists of all vertices occurring in aC5 that has to be checked.
Thus the overall running time isO(n2).

4.4 (P5,gem)-free graphs

The recognition algorithm for (P5,gem)-free graphs starts with a linear time algorithm to compute
the modular decomposition tree of the input graph. If the tree contains no2-node, and thus
the graph is a cograph, then the algorithm accepts the input. Otherwise the algorithm has to
check that each connected component of the input graph is either a cograph or has a modular
decomposition tree where only the root is a2-node. All this can be done in linear time by
inspection of the modular decomposition tree of the input graph. Finally the algorithm checks
whether the characteristic graph of each connected component belongs to one of the three classes
of the structure theorem using the algorithms described above.

Theorem 13. There is anO(n2) recognition algorithm for (P5,gem)-free graphs.

It is an interesting open question whether there is a linear time algorithm to recognize (P5,gem)-
free graphs.
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5 Maximum Weight Stable Set

The Maximum Weight Stable Set problem is the following: Given a graphG = (V, E) and a
vertex weight functionw : V → N, find the maximum weight of a stable set inG denoted
by αw(G). (Note that nonnegative weights are naturally coming up in the2-node problem of
Maximum Stable Set.)

As discussed in the previous section, all we have to specify are the (initial) values of the
leaves of the modular decomposition treeT of the input graphG and the subproblems to be
solved for the interior nodes ofT .

Subproblems

For each nodex of the modular decomposition treeT of G (in the above described bottom up
fashion) computeαw(G(x)) as follows:

If x is a leaf of T andv the vertex assigned tox thenαw(G(x)) := w(v);
If x is a0-nodeof T andx1, x2, . . . xr its children
thenαw(G(x)) :=

∑r
i=1 αw(G(xi));

If x is a1-nodeof T andx1, x2, . . . xr its children
thenαw(G(x)) := max

i=1,...,r
αw(G(xi));

If x is a2-nodeof T , G∗ the characteristic graph assigned tox andx1, . . . xr the children ofx
then assign to the vertex setV ∗ of G∗ the weight functionw∗ : V ∗ → N such thatw∗(vi) :=
αw(G(xi)) where the childxi of x is assigned to the vertexvi of G∗. Finally computeαw(G(x))
as the maximum weight of a stable set in the prime graphG∗ with vertex weight functionw∗.

Therefore the subproblem to be solved at a 2-node, called the 2-node subproblem, is the
Maximum Weight Stable Set problem where the input is a prime graphG∗ with vertex weight
functionw∗.

Let us make a short detour to discuss the relation between the original problem and the 2-
node subproblem. For the Maximum Weight Stable Set problem the subproblem to be solved at
a 2-node is also the Maximum Weight Stable Set problem. Thus the original problem and the
2-node subproblem are identical. This might actually be the reason that many papers on the use
of modular decomposition for NP-complete problems study the Maximum (Weight) Stable Set
problem.

Nevertheless there are only few of the well-known NP-complete graph problems for which
the 2-node subproblem is identical to the original problem, and there are problems for which
the 2-node subproblem seems to be much more complicated than the original one, such as the
problems Hamiltonian Circuit and Bandwidth. It is likely that evaluating the difference between
original and 2-node problem is important for knowing whether modular decomposition works
well with a certain problemΠ or not; see [27] for an early paper on this subject.

Finally we have to show how the algorithm computes the maximum weight of a stable set in
a prime (P5,gem)-free graph. Based on Theorem 7 there are three classes of prime graphs. Given
a characteristic graphG∗, the algorithm recognizes in linear time the class to whichG∗ belongs
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using the linear time recognition algorithms for the classes 1 and 2 of Subsection 4.1. Now let us
consider the Maximum Weight Stable Set problem for the three classes of (P5,gem)-free prime
graphs.

Class 1: Matched cobipartite graphs

The graphG∗ = G[V ∗] is cobipartite and prime. Thus|V ∗| ≥ 4, G∗ is not complete and each
maximal stable set ofG∗ has cardinality two.

Let C1, C2 be a partition of the vertex setV ∗ of G∗ into two cliques computed by the linear
time recognition algorithm for class 1. Leta1, a2 be two vertices of highest weight inC1 and let
b1, b2 be two vertices of highest weight inC2. Since each vertex has at most one neighbour in the
other clique we conclude that

αw∗(G∗) = max{w∗(ai) + w∗(bj) : i, j ∈ {1, 2}, {ai, bj} 6∈ E}.
Thusαw∗(G∗) can be computed in linear time.

Class 2: Specific graphs

Since specific graphs have at most9 vertices the maximum weight of a stable set in a specific
graph can be computed inO(1) time.

Class 3

Finally we study the Maximum Weight Stable Set problem on class 3.
First we reconsider the recognition of class 3 graphs. Given a class 3 graphG, our algorithms

will need allC5’s, and thus they also know the smallestk such thatG ∈ Ck.

Theorem 14. There is a linear time algorithm to compute all (pairwise vertex-disjoint)C5’s for
graphs of class 3.

Proof. First, compute the set of all degree two vertices ofG. Then for each pair of verticesu and
v of degree two with a common neighbour, check whetherN [u] ∪ N [v] induces aC5 of G.

All C5’s of G can be found in this way. Since any vertex of degree two has a common
neighbour with at most one other vertex of degree two by the definition of class 3, allC5’s are
pairwise vertex-disjoint.

This also implies that the running time of the algorithm is linear.

Theorem 15. The Maximum Weight Stable Set can be solved in linear time for all graphs of
class 3.

Proof. First compute in linear time all vertices of degree two and allC5’s of G∗ using Theo-
rem 14. IfG∗ = (V ∗, E∗) is cochordal thenS is a maximum weight stable set ofG∗ if and
only if S is a maximum weight clique of the chordal graphG∗ with weight functionw∗. A
perfect elimination orderingv1, v2, . . . , vn of G∗ can be computed in timeO(|V ∗| + |E∗|) when
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the graphG∗ = (V ∗, E∗) is given [26]. Now each maximal stable setS of G∗ is a maximal
clique of the chordal graphG∗ and thusS = N i

G∗ [vi] = NG∗ [vi] ∩ {vi, vi+1, . . . , vn} for some
i ∈ {1, 2, . . . , n}. Thusw∗(S) = W i − ∑

u∈N i
G∗ (vi)

w∗(u), whereW i =
∑n

j=i w
∗(vj). Thus

ωw∗(G∗) = αw∗(G∗) can be computed in linear time.
If G∗ is aC5 then the maximum weight of a stable set can be computed in timeO(1). Other-

wise, for everyC5 C = (v1, v2, v3, v4, v5) there are two nonadjacent verticesv1 andv3 of degree
two and three verticesv2, v4, v5 of degree at least three. LetS be a stable set ofG∗. If S contains
a vertex of degree greater than two of aC5 then there is only oneC5, sayC, of G∗ containing
all these degree greater than two vertices ofS. Hence any maximal stable set of this type con-
tains the stable setA of all 0-vertices forC and two nonadjacent vertices ofC. There areO(n)
maximal stable sets of this type and all their weights can be computed in overall timeO(n) since
w∗(S) = w∗(A) + w∗(x) + w∗(y) wherex andy are two nonadjacent vertices of aC5.

If X ⊆ V ∗ contains no vertex of degree greater than two of aC5 in G∗ thenX is a maximal
stable set of the graphG′ obtained fromG∗ by removing all vertices of degree greater than two
within a C5 of G∗. ClearlyG′ is cochordal and thusαw∗(G′) can be computed in linear time as
shown above.

Corollary 16. There is a linear time algorithm solving the maximum weight stable set problem
on cochordal graphs.

We note that the modular decomposition tree of a connected (P5,gem)-graph contains at most
one 2-node. Summarizing we obtain the following main result of this section.

Theorem 17.There is a linear time algorithm to compute the maximum weight of a stable set of
a (P5,gem)-free graphG with vertex weight functionw.

It is not difficult to modify the algorithm such that it computes a maximum weight stable set
of (P5,gem)-free graphs within the same time bound.

6 Maximum Weight Clique

The Maximum Weight Clique problem is the following: Given a graphG = (V, E) and a vertex
weight functionw : V → N, find the maximum weight of a clique inG, denotedωw(G).

The following simpleO(nm) time algorithm computes a maximum weight clique for gem-
free graphs: For every vertexv, determine a maximum weight clique of the cographNG[v], and
then maximize over all these values.

We present a linear time algorithm to solve the Maximum Weight Clique problem on (P5,gem)-
free graphs. The approach is similar to the one in the previous section.

Subproblems

For each nodex of the modular decomposition treeT of G computeωw(G(x)) as follows:

If x is a leaf of T andv the vertex assigned tox thenωw(G(x)) := w(v);
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If x is a0-nodeof T andx1, x2, . . . xr its children
thenωw(G(x)) := max

i=1,...,r
ωw(G(xi));

If x is a1-nodeof T andx1, x2, . . . xr its children
thenωw(G(x)) :=

∑r
i=1 ωw(G(xi));

If x is a2-nodeof T , G∗ the characteristic graph assigned tox andx1, . . . xr the children ofx
then assign to the vertex setV ∗ of G∗ the weight functionw∗ : V ∗ → N such thatw∗(vi) :=
ωw(G(xi)) where the childxi of x is assigned to the vertexvi of G∗. Finally computeωw(G(x))
as the maximum weight of a clique in the prime graphG∗ with vertex weight functionw∗.

Class 1: Matched cobipartite graphs

The graphG∗ = G[V ∗] is cobipartite and prime. Thus|V ∗| ≥ 4, G∗ is not complete and each
maximal clique ofG∗ has cardinality at least two.

Let C1, C2 be a partition of the vertex setV ∗ of G∗ into two cliques. Then each maximal
clique ofG∗ is eitherC1, C2 or an edge ofG∗.

Henceωw∗(G∗) can be computed in linear time.

Class 2: Specific graphs

Since specific graphs have at most9 vertices the maximum weight of a clique in a specific graph
can be computed by anO(1) time algorithm.

Class 3

First we consider the Maximum Weight Clique problem on cochordal graphs.

Lemma 18. The Maximum Weight Clique problem can be solved by a linear time algorithm for
cochordal graphs.

Proof. Using the linear time algorithm of Frank [17] to compute the maximum weight of a stable
set of a chordal graphG, we obtain anO(n2) algorithm to compute the maximum weight of a
clique in a cochordal graphG sinceωw(G) = αw(G). We shall modify Frank’s algorithm such
that it can be used to computeωw(G) of a cochordal graph in linear time.

This is Frank’s algorithm: First it computes a perfect elimination orderingv1, v2, . . . , vn

of the chordal input graphG = (V, E) wherew(vi) is the nonnegative integer weight ofvi

(1 ≤ i ≤ n).
Then a maximum weight clique ofG is constructed as follows. Initially, letc w(vi) = w(vi),

for all 1 ≤ i ≤ n. For eachi from 1 to n, if c w(vi) > 0 then colourvi red, and subtractc w(vi)
from c w(vj) for all vj ∈ {vi}∪(N(vi)∩{vi+1, . . . , vn}). When all vertices have been processed,
setI = ∅ and, for eachi from n down to1, if vi is red and not adjacent to any vertex ofI then
I = I ∪ {vi}. When all vertices have been processed, the algorithm terminates and outputs the
maximum weight stable setI of (G, w).
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Our goal is to simulate Frank’s algorithm applied toG for a cochordal input graphG =
(V, E) such that the running time is linear in the size of the cochordal graphG. First our algo-
rithm computes a perfect elimination orderingv1, v2, . . . , vn of G in linear time (see [26]). Let
w(vi) be the nonnegative integer weights ofvi (1 ≤ i ≤ n).

The maximum weight of a clique ofG is constructed as follows. Initially, letW ′ = 0 and
s(vi) = 0 for all i (1 ≤ i ≤ n). For eachi from1 ton, if w(vi)−W ′+s(vi) > 0 then colourvi red,
setW ′ = w(vi)+s(vi) and addw(vi)−W ′+s(vi) to s(vj) for all vj ∈ (N(vi)∩{vi+1, . . . , vn}).

When all vertices have been processed, setK = ∅ and, for eachi from n down to1, if vi

is red and adjacent to all vertices ofK thenK = K ∪ {vi}. Finally the algorithm outputs the
maximum weight cliqueK of (G, w).

Clearly our algorithm runs in linear time. Its correctness follows from the fact that when
treating the vertexvi, the differenceW ′−s(vi) is precisely the value the original Frank algorithm
applied to the complement ofG would have subtracted fromc w(vi) up to the point when it treats
vi. Thus our algorithm simulates Frank’s algorithm onG, and thus it is correct.

Theorem 19.The Maximum Weight Clique can be solved in linear time for all graphs of class 3.

Proof. First compute in linear time all vertices of degree two and allC5’s of G∗ using the algo-
rithm of Theorem 14.

If G∗ is cochordal then by Lemma 18 there is a linear time algorithm to compute the max-
imum weight of a clique ofG∗. If G∗ is a C5 then the maximum weight of a clique can be
computed in timeO(1).

Otherwise, letu be a vertex of degree two of aC5. Then there are two maximal cliques ofG
containingu, and each of them corresponds to an edge incident tou. The maximum weight of
all these cliques can be computed in timeO(m). All other maximal cliques ofG∗ are maximal
cliques of the cochordal graph obtained by removing all degree two vertices ofC5’s from G∗.
We have already shown that their maximum weight can be found in linear time.

Summarizing we obtain the following main result of this section.

Theorem 20. There is a linear time algorithm to compute the maximum weight of a clique of a
(P5,gem)-free graphG with vertex weight functionw.

7 Minimum Coloring

The Minimum Coloring problem is the following: Given a graphG = (V, E) determine the
smallest number of colors in a coloring ofG, denoted byχ(G). A weighted version arises as
2-node subproblem: Given a graphG∗ and a vertex weight functionw∗ : V → N, find the
smallestk for which (G∗, w∗) has a weightedk-coloring, i.e., computeχw∗(G∗).

Minimum Coloring is not LinEMSOL(τ1,L) definable. Nevertheless there is a polynomial
time algorithm for graphs of bounded clique-width [23]. However this algorithm is only of
theoretical interest. For graphs of clique-width at most five (and currently five is the best upper
bound known for the maximum clique-width of (P5,gem)-free graphs [7]), the exponentr of the
running timeO(nr) of this algorithm is larger than2000.
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We present a linear time algorithm to solve the Minimum Coloring problem on (P5,gem)-free
graphs.

Subproblems

For each nodex of the modular decomposition treeT of G computeχ(G(x)) as follows:

If x is a leaf of T thenχ(G(x)) := 1;
If x is a0-nodeof T andx1, x2, . . . xr its children
thenχ(G(x)) := max

i=1,...,r
χ(G(xi));

If x is a1-nodeof T andx1, x2, . . . xr its children
thenχ(G(x)) :=

∑r
i=1 χ(G(xi));

If x is a2-nodeof T , G∗ the characteristic graph assigned tox andx1, . . . xr the children ofx
then assign to the vertex setV ∗ of G∗ the weight functionw∗ : V ∗ → N such thatw∗(vi) :=
χ(G(xi)). Finally computeχ(G(x)) := χw∗(G∗).

As already mentioned, all our problems are linear time solvable for cographs, and thus we
only have to study the complexity of the computation on all 2-nodes (and there is precisely one of
them). The 2-node problem is a weighted coloring problem where the sum of the vertex weights
of the graphG∗ is always at most the number of vertices of the given (P5,gem)-free graphG.

We shall rely on the following lemma.

Lemma 21. Let G be a perfect graph andw be a vertex weight function ofG. Thenχw(G) =
ωw(G) andκw(G) = αw(G).

Proof. Let G′ be the graph obtained fromG by substituting each vertexv of G by a clique of
cardinalityw(v). It is not hard to see that any weighted coloring of(G, w) corresponds to a
coloring ofG′ and vice versa. Thusχw(G) = χ(G′). Furthermore it is not hard to show that
ωw(G) = ω(G′).

Let G be perfect. Then its complement is perfect by Lov´asz’s Perfect Graph Theorem [24].
G′ is obtained from the perfect graphG by vertex multiplication, and thus it is perfect [24].
Finally G′ as the complement of the perfect graphG′ is perfect by the Perfect Graph Theorem.
SinceG′ is perfect we haveχ(G′) = ω(G′) and thusχw(G) = ωw(G).

Similarly, sinceG′ is perfect we obtainχw(G) = ωw(G). Henceκw(G) = αw(G).

Now let us assume thatN is the sum of the weights of the given prime graphG∗; as we
already mentioned,N ≤ |V (G)|.

Class 1: Matched cobipartite graphs

The graphG∗ is cobipartite and thus perfect. By Lemma 21,χw∗(G∗) = ωw∗(G∗). The Maxi-
mum Weight Clique problem for matched cobipartite graphs has been considered in the previous
section. We established a linear time algorithm to computeωw∗(G∗) = χw∗(G∗).
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Class 2: Specific graphs

We will show below that we can solve the weighted coloring problem inO(1) time for a graph of
sizeO(1); this assumes that we can do computations with numbers expressing weights inO(1)
time per operation. Clearly, this implies thatχw∗(G∗) can be computed inO(1) time for each
specific graphG∗.

Consider the graphG∗ of sizeO(1), with weightsw∗. We formulate the problem to compute
χw∗(G∗) as an integer linear programming problem, and then argue that this ILP can be solved
in constant time.

Let I be the collection of all maximal independent sets ofG∗. We build an integer linear
programming with for eachI ∈ I a variablexI , as follows.

minimize
∑

I∈I
xI (1)

such that∑

I∈I:i∈I

xI ≥ w(v) for all v ∈ V (2)

xI ∈ {0, 1, 2, . . .} for all I ∈ I (3)

With ~x we denote a vector containing for eachI ∈ I a valuexI .
Let z be the optimal value of this ILP.z equals the minimum number of colors needed for

(G∗, w∗). If we have a coloring of(G∗, w∗) with a minimum number of colors, then assign to
each color one maximal independent setI ∈ I, such that all vertices that received this color
belong toI. (For each color, the vertices that have received that color form an independent setI ′;
we assign a maximal independent that containsI ′ as a subset to the color.) LetxI be the number
of colors assigned toI. Clearly,xI is a non-negative integer. For eachv ∈ V , asv hasw(v)
colors, we have

∑
I∈I:i∈I xI ≥ w(v).

∑
I∈I xI equals the total number of colors. Conversely,

suppose we have an optimal solutionxI of the ILP. For eachI ∈ I, we can take a set ofxI

unique colors, and use these colors to color the vertices inxI . As I is independent, this gives a
proper coloring, and as

∑
I∈I:v∈I xI ≥ w(v), each vertex has sufficiently many colors available.

So, this gives a coloring of(G∗, w∗) with z colors.
The relaxation of the ILP is the linear program, obtained by dropping the integer condition

(3):

minimize
∑

I∈I
xI (4)

such that∑

v∈I,I∈I
xI ≥ w(v) for all v ∈ V (5)

Let ~x′ be an optimal solution of this relaxation, with valuez′ =
∑

I∈I x′
I .

Note that the linear program has a constant number of variables (namely, the number of
maximal independent sets ofG∗) and a constant number of constraints (at most one per vertex of
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G∗), and hence can be solved in constant time. (E.g., one can just enumerate all corners of the
polyhedron spanned by program, and take the optimal one.) Note that we can write the linear
program in the formmax{cx | Ax ≤ b}, such that each element ofA is either 0 or 1. Let∆
be the maximum value of a subdeterminant of this matrixA. It follows that∆ is bounded by
a constant. Writen = |I|. We remark that a computer experiment that we have carried out
revealed that∆ ≤ 3 whenG∗ is a specific graph.

We now can use a result of Cook, Gerards, Schrijver, and Tardos, see Theorem 17.2 from
[31]. This theorem tells us that the ILP has an optimal solution~x′′, such that for eachI ∈ I,
|x′

I − x′′
I | ≤ n∆.

Thus, the following is an algorithm that finds the optimal solution to the ILP (and hence the
number of colors needed for(G∗, w∗)) in constant time. First, find an optimal solution~x′ of the
relaxation. Then, enumerate all integer vectors~x′′ with for all I ∈ I, |x′

I − x′′
I | ≤ n∆. For each

such~x′′, check if it fulfils conditions (2), and select the solution vector that fulfils the conditions
with the minimum value. By Theorem 17.2 from [31], this is an optimal solution of the ILP. This
method takes constant time, asn and∆ are bounded by constants, and thus ‘only’ a constant
number of vectors have to be checked, and each is of constant size.

A straightforward implementation of this procedure would not be practical, as more than
(n∆)n vectors are checked, withn the number of maximal independent sets in one of the specific
graphs. In a practical setting, one could first solve the linear program, and use that value as
starting point in a branch and bound procedure.

As we have anO(1) algorithm for weighted coloring on graphs of size bounded by a con-
stant, it follows that Minimum Coloring can be solved in linear time for graphs whose modular
decomposition has a constant upper bound on the size of the characteristic graphs. This improves
upon a remark by McDiarmid and Reed [29] who noticed that weighted coloring can be solved
in polynomial time on constant sized graphs.

Class 3

Let G∗ be a graph of class 3 with weight functionw∗. First compute in linear time all vertices of
degree two and allC5’s of G∗ using the algorithm of Theorem 14.

If G∗ is C5-free, and thusG∗ ∈ C0 andG∗ cochordal,χw∗(G∗) = ωw∗(G∗) can be computed
by the linear time algorithm for the maximum weight clique problem presented in the previous
section.

OtherwiseG∗ ∈ Ck andk ≥ 1. If G∗ = C5 then with the technique applied to specific graphs
χw∗(G∗) can be computed by anO(1) algorithm.

Finally let C = (v1, v2, v3, v4, v5) be aC5 of G∗ and letv1 andv3 be the vertices of degree
two of C. By Lemma 5, the setA of 0-vertices forC is a stable set,B = V ∗ \ (C ∪ A) =
N(v2) \ C = N(v3) \ C = N(v5) \ C, andG∗[B] is a cograph. Therefore there are precisely
four maximal stable sets ofG∗ containing at least one of the three verticesv2, v4, v5, namely
{v1, v4} ∪ A, {v2, v4} ∪ A, {v2, v5} ∪ A and{v3, v5} ∪ A. All other maximal stable sets ofG∗

are supersets of the maximal stable set{v1, v3} of C. More precisely,{v1, v3} ∪A′ is a maximal
stable set ofG∗ if and only if A′ is a maximal stable set ofG∗ − C. (Note that{v1, v3} ∪ A is a
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stable set ofG∗.)

Lemma 22. Let k ≥ 1, G∗ ∈ Ck (possiblyG∗ = C5). LetC = (v1, v2, v3, v4, v5) be aC5 in G∗

such that verticesv1 andv3 have degree two. Letw∗ be the vertex weight function ofG∗. Then
there is a minimum weight coloringS∗ of (G∗, w∗) with preciselymax(w∗(v2), w

∗(v4)+w∗(v5))
stable sets containing at least one of the vertices of{v2, v4, v5}.

Proof. Let S be any minimum weight coloring of(G∗, w∗). Let C = (v1, v2, v3, v4, v5) be a
C5 in G∗ such that, ifG∗ 6= C5, v1 andv3 are its vertices of degree two. SinceN(v1) \ C =
N(v3) \C = ∅ andN(v2) \C = N(v3) \C = N(v5) \C = B we may assume that every stable
set ofS contains either none or two vertices ofC.

Therefore we study weighted colorings of aC5 C = (v1, v2, v3, v4, v5) of G∗ with vertex
weightsw∗, where all stable sets are non-edges ofC and call them partial weight colorings of
C. Note that any weighted coloring ofC = (v1, v2, v3, v4, v5) must contain at leastw∗(v2) stable
sets containingv2, and it must containw∗(v4) + w∗(v5) stable sets containingv4 or v5.

Let S ′ be a weighted coloring ofG∗ containing the smallest possible number of stable setsS
with S∩{v2, v4, v5} 6= ∅. Letq be the number of stable setsS of S ′ satisfyingS∩{v2, v4, v5} 6= ∅
and suppose that, contrary to the statement of the lemma,q > max(w∗(v2), w

∗(v4)+w∗(v5)). Let
c(v) be the number of stable sets ofS ′ containing the vertexv. Thenq > w∗(v4)+w∗(v5) implies
c(v4) > w∗(v4) or c(v5) > w∗(v5). Without loss of generality we may assumec(v4) > w∗(v4).
Hence there is a stable setS ′ ∈ S ′ containingv4. Consequently eitherS ′ ⊆ {v2, v4} ∪ A or
S ′ ⊆ {v1, v4} ∪ A. In both cases we replace the stable setS ′ of the weighted coloringS ′ of G∗

by {v1, v3} ∪ A. By the replacement we decrement by one the number of stable sets containing
v4 and possibly the number of stable sets containingv2. Thus we obtain a new weighted coloring
S ′′ of G∗ with q − 1 stable setsS with S ∩ {v2, v4, v5} 6= ∅. This contradicts the choice ofq.

Consequentlyq = max(w∗(v2), w
∗(v4) + w∗(v5)).

Corollary 23. LetG be aC5 with vertices(v1, v2, v3, v4, v5), andw be the vertex weight function
of G. Then there exist a minimum weighted coloring ofG with preciselymax(w(v2), w(v4) +
w(v5)) stable sets containing at least one of the vertices of{v2, v4, v5}.

To extend any partial weight coloring of aC5 to G∗ only two parameters are important

• the number of copies of{v1, v3} of the partial weight coloring, denoted bys, and

• the number of non-edges of theC5 different from{v1, v3} of the partial weight coloring,
denoted byt.

For each of thes stable sets{v1, v3} of theC5, each{v1, v3} ∪ A′ whereA′ is some maximal
stable set ofG∗−C is a maximal stable set ofG∗. For each of thet non-edgesS of theC5 being
different from{v1, v3}, S ∪ A is the unique extension to a maximal stable set ofG∗.

By Lemma 22, for eachC5 of G∗ there is a minimum weight coloring ofG∗ with t =
max(w∗(v2), w

∗(v4) + w∗(v5)) stable sets containing at least one vertex of{v2, v4, v5}. Tak-
ing such a minimum weight coloring we can clearly remove verticesv1 andv3 from stable sets
containing both until we obtain the smallest possible value ofs in a partial weight coloring ofC
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with t = max(w∗(v2), w
∗(v4) + w∗(v5)). By Corollary 23, there exist a partial weight coloring

with χw∗(G[C]) stable sets, such thatmax(w∗(v2), w
∗(v4) + w∗(v5)) stable sets contain at least

one of the vertices of{v2, v4, v5}, and thuss = χw∗(G[C])− t can be computed in constant time.

Now we are ready to present our coloring algorithm that computes a minimum weight col-
oring of (G∗, w∗) for a graphG∗ of Ck, k ≥ 1. It removes at mostk times the precomputedC5

from the current graph until the remaining graph has noC5 and is therefore a cochordal graph.
Then an optimal weight coloring for the resulting cochordal graph can be computed by the linear
time algorithm for the maximum weight clique problem presented in Section 6.

In each round, i.e., when removing aC5 C = (v1, v2, v3, v4, v5) from the current graphG′

with current weight functionw′, the algorithm proceeds as follows: It computes in constant
time an optimal partial weight coloring ofC such thatt = max(w′(v2), w

′(v4) + w′(v5)) and
s as small as possible. Then the algorithm removes all vertices of theC5 and obtains the graph
G′′ = G′−C. Then it removes all vertices ofA with weight at mostt and decrements the weight
of all other vertices inA by t, whereA is the set of0-vertices forC in G′. Recursively the
algorithm solves the minimum weight coloring problem on the obtained graphG′′ with weight
function w′′. Finally the minimum number of stable sets in a weighted coloring of(G′, w′) is
obtained using the formula

χw′(G′) = t + max(s, χw′′(G′′)).

Thus the algorithm removes at mostk ≤ n times aC5. Each minimum partial weight coloring
of theC5 can be computed in constant time. For the final cochordal graph the minimum weight
coloring can be solved in linear time. Thus the overall running time of the algorithm to compute
a minimum weight coloring of a graph of class 3 is linear.

Summarizing we obtain

Theorem 24.There is a linear time algorithm to solve the minimum coloring problem on (P5,gem)-
free graphs.

8 Minimum Clique Cover

The Minimum Clique Cover problem is the following: Given a graphG = (V, E) determine
the smallest number of cliques ofG in a collection of cliques ofG covering its vertex setV .
This number is denoted byκ(G). Our algorithm to solve the minimum clique cover problem on
(P5,gem)-free graphs is similar to the algorithm of the previous section.

The 2-node subproblem is a weighted version of Minimum Clique Cover: Given a graphG∗

and a vertex weight functionw∗ : V → N, find the smallest number of cliques in a weighted
clique cover of(G∗, w∗), i.e., computeκw∗(G∗).

Minimum Clique Cover is not LinEMSOL(τ1,L) definable. We shall present a linear time
algorithm to solve the Minimum Clique Cover problem on (P5,gem)-free graphs.
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Subproblems

For each nodex of the modular decomposition treeT of G computeκ(G(x)) as follows:

If x is a leaf of T thenκ(G(x)) := 1;
If x is a0-nodeof T andx1, x2, . . . xr its children
thenκ(G(x)) :=

∑r
i=1 κ(G(xi));

If x is a1-nodeof T andx1, x2, . . . xr its children
thenκ(G(x)) := max

i=1,2,...,r
κ(G(xi));

If x is a2-nodeof T , G∗ the characteristic graph assigned tox andx1, . . . xr the children ofx
then assign to the vertex setV ∗ of G∗ the weight functionw∗ : V ∗ → N such thatw∗(vi) :=
κ(G(xi)). Thenκ(G(x)) := κw∗(G∗).

It is not hard to see that the overall computation on leaves, 0-nodes and 1-nodes can be done
in linear time. The 2-node problem is a weighted clique cover problem for which the sum of the
vertex weights of the graphG∗ is at most the number of vertices of the (corresponding component
of the) given (P5,gem)-free graphG. LetN denote the sum of the weights of the prime graphG∗

assigned to a 2-node.

Class 1: Matched cobipartite graphs

The graphG∗ is cobipartite and thus perfect. By Lemma 21,κw∗(G∗) = αw∗(G∗). A linear time
algorithm to compute the maximum weight of a stable set in a matched cobipartite graph has
been presented in Section 5. Using it we obtain a linear time algorithm to computeκw∗(G∗) =
αw∗(G∗).

Class 2: Specific graphs

In Section 7, we have seen that we can computeχw(G∗) in O(1) time for graphsG∗ of size
bounded by a constant. Asκw(G∗) = χw(G∗), we also can computeκw(G∗) is O(1) time for
each graph whose size is bounded by a constant, so in particular also for specific graphs.

Class 3

Let G∗ be a graph of class 3 with weight functionw∗. First compute in linear time all vertices of
degree two and allC5’s of G∗ using the algorithm of Theorem 14.

If G∗ is C5-free, and thusG ∈ C0, thenG∗ is cochordal andκw∗(G∗) = αw∗(G∗) can
be computed using the linear time algorithm for the maximum weight stable set problem on
cochordal graphs (see Section 5).

OtherwiseG∗ ∈ Ck andk ≥ 1. If G∗ is a C5 then with the technique applied to specific
graphsκw∗(G∗) can be computed by anO(1) algorithm.

Finally let C = (v1, v2, v3, v4, v5) be aC5 of G∗ and letv1 andv3 be its vertices of degree
two. The setA of 0-vertices forC is a stable set,B = V ∗ \ (C ∪A) = N(v2)\C = N(v3)\C =
N(v5) \ C, andG∗[B] is a cograph. Therefore all but one of the five maximal cliques ofC, i.e.,
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the five edges ofC, are maximal cliques ofG∗. The other maximal cliques ofG∗ containing
vertices ofC are all of the type{v4, v5} ∪B′ and{v2} ∪B′ whereB′ is a maximal clique of the
cographG∗[B]. Finally there are maximal cliques{a} ∪A′ of G∗, whereA′ is a maximal clique
of G∗[N(a)] anda ∈ A.

Lemma 25. Let k ≥ 1, G∗ ∈ Ck. LetC = (v1, v2, v3, v4, v5) be aC5 of G∗ such that verticesv1

andv3 have degree two. Letw∗ be the vertex weight function ofG∗. Then there is a minimum
weight clique cover ofG∗ with preciselyw∗(v1) + w∗(v3) cliques containing eitherv1 or v3.

Proof. Consider a minimum weight clique coverK of G∗. Clearly any clique containingv1 or
v3 is a subset ofC.

SupposeK contains more thanw∗(v1) + w∗(v3) cliques containingv1 or v3. Then we obtain
a minimum weight clique coverK′ with preciselyw∗(v1) + w∗(v3) cliques containingv1 and
v3 by applying the following replacement operations. Letc(v) be the number of cliques ofK
containingv. Then replacec(v1) − w∗(v1) of those cliquesK by K \ {v1}. Similarly replace
c(v3) − w∗(v3) cliques ofK containingv3.

Corollary 26. LetG be aC5 with vertices(v1, v2, v3, v4, v5), andw be the vertex weight function
of G. Then there exist a minimum weight clique cover ofG with preciselyw(v1) + w(v3) clique
containing eitherv1 or v3.

Thus we study the weighted clique covers of aC5 C with vertex weight functionw∗. We
call any such weighted clique cover of theC5 a partial weight clique cover ofC. To extend any
partial weight clique cover ofC to G∗ only two parameters are important

• the number of cliques of the partial weight clique cover ofC containing eitherv1 or v3,
denoted bys, and

• the number of cliques{v4, v5}, {v4}, {v5} and{v2} of the partial weight clique cover of
C, denoted byt.

To extend a partial weight clique cover of theC5 C = (v1, v2, v3, v4, v5) to a minimum weight
clique cover ofG∗ we have to extend thet cliques{v4, v5}, {v4}, {v5} or{v2} of theC5 by adding
to each of theset cliques a cliqueB′ of G∗[B]. Furthermore we may assume that each vertex
a ∈ A appears inw∗(a) cliques ofK. (Note that none of the latter cliques contains a vertex of
C.)

The algorithm to compute a minimum weight clique cover of(G∗, w∗) for a graphG∗ of Ck,
k ≥ 1, removesk times the precomputedC5 from the current graph until the remaining graph
has noC5 and is therefore a cochordal graph. Given aC5 C to be removed an optimal partial
weight clique cover ofC with s = w∗(v1)+w∗(v3) has as few as possible cliques{v4, v5}, {v4},
{v5} and{v2}. By corollary 26,t = κw∗(G[C]) − s, can be computed in constant time.

The algorithm solves the minimum weight clique cover problem recursively. LetG′ be the
current graph with weight functionw′. Then the algorithm computes the smallest possible value
of t in a partial weight cover ofC with weight functionw′ ands = w′(v1) + w′(v3). Recursively
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the algorithm computesκw′′(G′ −C), wherew′′(v) = w′(v) for all vertices ofG′ −C. Then the
minimum number of cliques in a clique cover of(G′, w′) is obtained by the formula

κw′(G′) = s +
∑

a∈A

w′(a) + max(t, κw′′(G′ − C) −
∑

a∈A

w′(a)),

whereA is the set of0-vertices forC in G′. Note that
∑

a∈A w′(a) cliques of the minimum
weight clique cover ofG′ − C contain a vertex ofA and cannot be extended by adding a vertex
of C. Thus onlyκw′′(G′ −C)−∑

a∈A w′(a) cliques can be extended to cliques ofG′ by adding
{v4, v5}, {v4}, {v5} or {v2}.

Thus our recursive algorithm removesk ≤ n times aC5 and computes a minimum weight
clique cover for a cochordal graph. The minimum weight of a clique cover of the remaining
cochordal graph can be computed in linear time. Consequently the overall running time for the
minimum weight clique cover problem on graphs of class 3 is linear.

Summarizing we obtain

Theorem 27. There is a linear time algorithm to solve the minimum clique cover problem on
(P5,gem)-free graphs.
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