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Abstract

The paper offers a UNITY-based framework to model distributed appli-
cations which are built with a component based approach. The frame-
work enables components to be abstractly specified in terms of contracts.
Temporal properties are expressed and proven in the UNITY style. Com-
positional reasoning about components’ properties, including progress, is
supported. The semantical model is simple and intuitive.
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1 Introduction

Consider an application built from smaller components. They interact by calling
each other’s operations. Some of the components may actually not reside in the
application itself. Instead, they are owned and controlled by other applications,
which may run on different machines —access to these external components may
be facilitated by some kind of broker programs, though this may be transparent
to the application itself. This is a quite typical component based model used
in practice today, for example as adopted in COM, CORBA, and JavaBeans.

Because the components may run on separate machines, such an applica-
tion is essentially a distributed system whose temporal properties have to be
verified. For example, it will be essential to know that a third-party web-based
voting service does not unauthorizedly alter the information in the incoming
votes while the voting process is still going on. Verifying a property of a com-
ponent based system is however more complicated because we may not have
access to the source code of all its components. Instead, we have to rely on
their specifications —also called contracts. To enable temporal properties to
be inferred, the components will however have to offer a stronger kind of con-
tracts. Merely specifying the pre- and post-conditions of an object’s operations,
for example as in OCL, is usually not sufficient.

UNITY is a formalism introduced by Chandy and Misra in 1988 to reason
about distributed programs [5, 13]. It consists of a programming language to
model programs, a specification language to express temporal properties, and a
logic to prove them. The programming language is rather inconvenient for writ-
ing concrete programs, since it offers very little structuring constructs (UNITY
has for example no ; and no while). It does well however when used as a seman-
tical model of concrete programs, or to describe abstract programs. Compared
to LTL [12], UNITY’s specification language is less expressive, though in ex-
change UNITY is simpler and more intuitive —and one can still express a lot
of useful properties in UNITY.

This paper offers a UNITY-based framework to specify, using contracts,
the components of a distributed application and to infer temporal properties
of the application from the contracts of its components. UNITY is used in
two ways: as a semantical model and as a specification language. The use
of UNITY as a semantical model leads to a semantics which is simple and
intuitive. To specify concrete components, we use the combination of UNITY
programs and properties. This turns out to work quite well. Furthermore, we
provide laws to allow global properties, including progress, of an application
to be inferred in a compositional way from the properties of its components.
Program refinement is used as a part of the component-contract relation. On
purpose, the relation is made somewhat lenient, with the benefit that checking
component-contract consistency is cheaper and that a component’s author gets
more flexibility in hiding aspects of his component from its contract (while still
offering a consistent contract) —though the trade off is that the kind of progress
properties that can be inferred from a contract is limited.



2 Overview on the Model

We will take the same basic model as in CORBA: an application consists of
clients and objects. Both are computing entities, and to keep it simple, we
assume that they run continuously. These computing entities interact by per-
forming operations (methods) provided by the objects.

We define object as a computing entity which can only be interacted to by the
environment through a set of operations provided by the object!. Furthermore,
a developer developing an application cannot assume to have full information
of the objects used to build the application. In particular, their source code
may not be available. Clients are however assumed to be fully owned by the
developer, and thus he has access to their source code.

We also say that objects are available as components. We define (software)
component as a program that, for various reasons, only reveals limited amount
of information about itself. We will require commitment. That is, a component
is bound to realize whatever things it says about itself in the information it
releases to its users?. Because of this binding nature, the revealed information
is also called contract, and the object being bound by a contract is also called
a contractor.

So, the only information about an object that an application developer can
rely upon is the contract offered by the object.

We will use a hypothetical language, let us called it Dalang (Distributed ap-
plication development language), for showing some examples in a more program-
ming-like notation —hopefully it helps the reader to relate the framework to
the familiar concepts from the practice. We will not pay much attention to the
syntactical aspect of Dalang.

Figure 1 shows an example of a Dalang application. An application con-
sists of objects and clients. The application in the example has two objects
and one client. The objects are named v and d, the first is of the class
SimpleVotingSystem, and the latter of the class SimpleCalendar. A Simple-
VotingSystem object provides an operation allowing users to send votes; it
checks the validity of the incoming votes; and it also provides an operation to
count the votes. An example of a property which one may want to infer from
such an object is that it will not silently add or remove votes. We cannot do this
yet, since we have not seen SimpleVotingSystem’s contract —we will return to
this later.

Figure 1 also shows a contract. It is the contract offered by the class
SimpleCalendar. The public section of a contract shows the names and types
of variables that the contractor object should publicly expose. So, Simple-
Calendar only offers one public variable called current, intended to hold
the current date. The operation section lists available operations. In the

1 This is consistent with Szyperski’s definition of object (essentially: an object is something
that has state, behavior, and encapsulation) [18], which is quite commonly accepted.

2This is also consistent with Szyperski’s definition of component [18], essentially: compo-
nent is a unit of composition with contractually specified interfaces and subject to composition
by third parties. Our definition is stricter by saying the only knowledge we can rely on, placing
ourselves as a third party, about a component is its contracts.



application votingService
public
v :: SimpleVotingSystem ;
d :: SimpleCalendar

client superviseVoting(v,d)
closingDate :: Date = 01/01/2004 ;
today :: Date = 00/00/0000
do
d.getDate (today)
[] today>=closingDate --> v.count()

contract SimpleCalendar
public
current :: Date
operation
getDate(&today: :Date) = do today:=current
safety model

current := current + unittime
invariant

current>=0
progress

ID. true |-—> current>=D

Figure 1: The figure shows a simple application to do electronic voting. It uses
two objects: one for enabling users to send votes, and the other one is a simple
calendar system to keep track of the current date. The figure also shows the
contract of the calendar object.

SimpleCalendar example only one operation is offered, namely getDate, which
returns the value of current. The contract does not tell us how exactly a
SimpleCalendar object maintains the current date, though the safety model
may provide a partial answer. It shows a UNITY program serving as an ab-
straction of the actual object. In the example, it says that each step of a
SimpleCalendar object either increases current or leaves it unchanged —the
latter possibility is implicitly imposed by the object-contract relationship; we
will return to this later. It is not a strong model. Nevertheless, one can in-
fer from it that current will not decrease and thus the date maintained by a
SimpleCalendar object will never move backwards.

The invariant section specifies a property which is always maintained
through out the object’s life. In this case it says that current is never negative

The progress section specifies progress properties promised by the object.
In the example it says that current will increase, and thus the date maintained
by a SimpleCalendar object will move forward.

The client in the example regularly checks the date. If the closing date is



passed, it will call the count operation of v, with the effect that all incoming
valid votes up to that point will be counted.

As we use objects to build an application, it is important that an object
will always behave as its contracts specifies, regardless how the object is being
used in the application. In other words, we want the invariant and all progress
properties specified in the contract to hold, not only when the object is executed
alone, but also when it is composed in any (proper) environment. Since par-
allel composition tends to destroy temporal properties, we will introduce new
set of extended UNITY operators describing more robust classes of temporal
properties. We also have to define an abstraction relation between programs, so
that safety properties inferred from the safety model in the contract, which is
an abstraction of the actual contractor object, will be preserved by the object
itself.

We will not venture into complex features, such as inheritance and the
ability to pass object reference, or to pass an entire object, through an operation
call. Furthermore, our model is an abstract model: details of implementational
nature, such as parameters marshaling, object deployment, and optimization of
resources’ utilization will not be visible in the model.

Notational Convention

Tuples are used here to represent composite structures, such as an object. We
will use tuples with selector functions. For example,

Object = (prg :: Program,ops :: {Operation})

define a type Object consisting of two-elements tuples. If x = (P, M) is a value
of this type, then x.prg = P and z.ops = M.
The following lists the default use of letters to denote various concepts:

1. program variables: u, v, w

2. set of variables: U, V,W

3. predicate: p,q,r,s

4. invariant: i, j

5. temporal property, such as p+— q: @

action: a,b,c

e

set of action: X

8. program: P,Q, R

9. abstract program: A, B,C

10. abstract environment of a program: B

11. concrete environment of a program: @)



12. object: z,y, 2z

13. classes: X,Y, 7

14. set of objects: x, ¥

15. operation: k,l,m

16. set of operations: K, L, M
17. contract: ¢, d

18. application: A, B

19. vote (in the running example): v

3 Basic

Predicate Confinement

Predicates are used to specify a set of program states. A predicate p is confined
by a set of variables V' (written p conf V') if p does not constrain the value of
any variable outside V. For example, x > y+ 2z constrains the values of x, y and
z, but does not constrain the values other variables. So, x > y + z is confined
by {z,y,z}. Confinement enables us to specify how sensitive a predicate is to
interference. We write p, ¢ conf V' to abbreviate p conf V and ¢ conf V. As
a rule of thumb, if V' is the set of free (non-logical) variables of an expression
e, then e is confined by V.

Action

An action is an atomic, terminating, and non-deterministic state transition. An
action can be modelled by a function from the universe of states, denoted by
State, to P(State). We use the following syntax to describe basic actions:

(assignment)

(basic action) == skip (set of variables)?
|
| (expr) ——> (assignment)

If V is a set of variables, skip V is an action that leaves the variables in V'
unchanged, but can do anything to the rest. An assignment can also simulta-
neously assign to multiple variables. The meaning of g ==> a is that a will be
executed if g is true, otherwise the action behaves as skip.

Furthermore, if a and b are actions, a U b is an action that either does as
aorasb So, (aUb)s=as U bs. If¥isasetof actions then LY is a
shorthand for (Ua : a € ¥ : a). skip V is an action that leaves variables listed
in V unchanged, but can do anything to the other variables.

If a is an action, the syntax {var z; a} is used to introduce a local variable
x. The meaning is expressed in terms of Hoare triple as follows:

{p} {var z; a} {q} £ {p} alz'/2] {q}



where a[z’/x] means the action obtained by replacing x in a with a fresh variable
x'.

Sometimes it is convenient to borrow the syntax typically used to describe
non-atomic state transition, usually called statement, to describe an action. Let

us assume the following simple syntax to build statements:

(statement) = (assignment)

| (statement) ; (statement)

| if (expr) then (statement) (else (statement))?
|

while (expr) do (statement)

Their meaning is as usual. For any terminating statement S, we use the notation
action S to convert S into an action.

Action Refinement

We define the following notion of refinement over actions —it is a variant of the
standard one, e.g. as in [3]. Let V be a set of variables, and i is a predicate,
intended to be an invariant. An action b refines another action a with respect
to V and 1, if b can simulate whatever a can do on the variables in V', assuming
7 holds initially. Formally:

ViiFa<b 4 (Vp,q:p,qconf V :{iAp}a{q} = {inp}b{q})

The reverse of refinement is also called abstraction. So, if b refines a we can
also say that a is an abstraction of b.

An action b is said to weakly refine a, with respect to V, if it either refines
a, or it behave as skip V. Formally:

ViikaCTb £ Vik (aUskipV)<b

4 UNITY

We will use the original UNITY operators from [5] as a base for our extension.
We could have used those of new-UNITY [13], since both set of operators are
in principle of equal strength. However, the choice is a subjective one, to us
the older operators are simply more intuitive.

4.1 Programs

We will represent a UNITY program P by a tuple of this type:
Progunity 4 (acts :: {Action},init :: Pred,pub :: {Var},pri:: {Var})
Pi.init is a predicate specifying P’s possible initial states, P.pub is the set of

public (shared) variables offered by P, and P.pri is the set of P’s private (local)
variables. The notation P.var is used to refer to P.pub U P.pri. Implicitly,



P.init has to be confined by P.var; P.pub and P.pri are disjoint; and every action
a € P.acts is non-abortive, which means that for every state s, a s is non-empty.

A UNITY program runs forever. Its actions is executed interleavingly, where
at each step an action is selected non-deterministically. Each execution of the
program is assumed to be fair in the sense that each action of the program is
executed infinitely many often. UNITY actions may be guarded, though, unlike
in LTL with strong fairness, when an action is selected to be executed, and its
guard evaluates to false, then it will simply be executed as a skip.

We do not expect real programs to be written in UNITY, but we will assume
that they can be translated to UNITY programs —see for example [12]3. So,
in the rest of the paper, we will simply represent programs by their UNITY
translations.

We define a UNITY program to be an abstract program if it has no local
variables, otherwise it is a concrete program. An application is built by compos-
ing concrete programs, whose abstract behavior will be captured by an abstract
program. Note that the role of an abstraction is primarily to provide partial
information about the thing it abstracts from. So, an abstraction does not have
to be complete.

When composing different programs, we assume that each component pro-
gram is given a unique name space to name its private variables. For example,
this can be achieved by prefixing the names of all private variables of a program
with the program’s name. We will however not concern ourselves any further
with the used naming scheme —the unique name space assumption is sufficient
for us.

As a consequence, when composing, for example, two different programs P
and (), we can assume that the names in P.pri and Q).pri do not clash with
the names in, respectively, Q).var and P.var. Composing two programs means
letting them to run in parallel. The behavior of the parallel composition of P
and @ is modelled by the program P[(Q defined as follows:

Definition 4.1 : PARALLEL COMPOSITION
P|Q 4 (P.acts U Q.acts, P.init A Q.init, P.pub U Q.pub, P.pri U Q.pri)

a

4.2 Program Refinement

We will use the following simple notion of refinement on UNITY programs.
The definition mentions the notion ’invariant’. It is a predicate which holds
throughout the program’s executions —its formal definition will be given later.

Definition 4.2 : PROGRAM REFINEMENT AND ABSTRACTION
Let V be a set of variables and ¢ be a predicate, intended to be a strong
invariant of P. We define:

31t describes the translation from a simple programming language to fair transition systems,
which has a similar structure as UNITY programs



1. Viil-—PCQ
d

P.pub C Q.pub A P.pri C Q.pri A Q.init = Pl.init
A
(Vb:be Q.acts: V,i - U Pacts C b)

2.iFPCQ L Pvari|-——PCQ
Od

So, under the invariance of ¢, V¢ = P C () means that every action of
behaves, with respect to the variables in V', no worse than some action of P, or
it just skips V' (note the use of weak refinement at the action level). When this
is the case we say that @) is a refinement of P, and that P is an abstraction of

Q.

4.3 Properties

In the following, we will introduce several new sets of extended UNITY opera-
tors that will be especially useful to describe progress properties of an object,
under any proper environment, in its contract. The extensions are in the style of
[15] and are needed since the progress properties specified within a contract are
only of use when it can be easily inferred that they will be preserved regardless
of the environment the contractor is composed with.

Let us first give a definition of invariant, since we will use it later. A
predicate i is called a strong invariant* of P, denoted by P F sinv 4, if it holds
initially, and it is maintained by every action of P. So:

Definition 4.3 : INVARIANT
Phsinvi £ Pinit=1i A (Va : a € Pacts: {i} a {a})
a

A predicate j is an invariant if there exists a strong invariant ¢ implying j.
The first set of new operators defined below specify additional assumptions

on a given property ® of a program P so that we can infer what kind of envi-

ronment of P can preserve the property ®. They are defined as follows:

Definition 4.4 : EXTENDED UNITY OPERATORS (I)

1. P,i |- punlessq using V
d

P+ sinvi A pgconfV A (Va:a€ Pacts: {i ApA—q}a{pVq})

4We are going to use invariants to parameterize UNITY properties, in the style of Sanders
[16]. Strong invariants are however used here instead of just invariants (predicates that hold
through out any execution of a given program) as in [16], because the later cause a certain
technical problem [14].

10



2. P,i |-— pensures q using V
d

P,i |— punless g using V- A (a:a € Pacts: {i A\pA—q}a{q})
g

In [15] the V parameter can be used to specify interference at the run-time,
which is a dynamic property. In the framework here V' is fixed to P.var. Con-
sequently, it serves more as a static constraint. So, what we will do now is to
hide this parameter. However, for the purpose of proving some of the main
theorems it will be necessary to expose the V' again.

We define now an analogous set of operators, in which V' is fixed to P.var:

Definition 4.5 : EXTENDED UNITY OPERATORS (II)
For any property ® of the form p unless g, p ensures g we define:

Pil ® % Pi|— & using Pvar

O
Our previously defined refinement relation preserves unless properties:

Theorem 4.6 : SAFETY PRESERVATION BY REFINEMENT

P,i |—— p unless q using V
Viil—PCQ , QFsinvy , j=1i
Q,7 |- p unless q using V'

proof:

P,i |— p unless q using V

= { Definition 4.4 of unless }
(Va:a € Pacts: {i A\pA—q}a{pVq}

= { definition of LI }
{i A\pA—q} UPacts{pVq}

= { p conf V, so skip V maintains p }
{i ApAN—q} (UP.acts) Uskip V {pV ¢}

= { j =i, pre-condition strengthening }
{j ApA—q} (UP.acts) Uskip V {pV q}

= {V,jEPLCQ,soforalbe Q.acts: V,jF (LUP.acts) U
skipV <b}

(Vb:be Q.acts: {jApA—-q}b{pVq}

11



— { j is a strong invariant of @ }
Q,j |- p unless q using V
end

It follows, that if A is an abstractions of a program P, any unless property of
A]Q is also a property of P|Q. More precisely:

Theorem 4.7 : SAFETY PRESERVATION
Let A, P, and @ be such that A.var N Q.var = P.var N Q.var. We have:

A]Q,i F punlessq
jFACP | PlQFsinvi , j=i
P|Q,i + punless g

proof: First notice that A.varN @Q.var = P.var N Q.var implies that
(Q.var—A.var)NA.var = (Q.var— A.var)NP.var = (). So, by Theorem
A.8, the refinement in the premise implies this:

AvarU (Q.ar — Awar), j - AC P
which is equal to:

(a) (A4]Q).var, j H ACP
We derive now:

A]Q, i+ p unless g
= { Definition 4.5 }
A]Q, i F p unless g using (A]Q).var

= { by Theorem A.9 (a) implies (A]Q).var,j - A]Q C P|Q;
then use Theorem 4.6 }

P|Q,j b p unless q using (A]Q).var

= { AC P implies A.var C P.var, so (A]Q).var C (P]Q).var;
then use Theorem A.11 }

P|Q,j F p unless q using (P[Q).var
= { Definition 4.5 }

P|Q,j F punless q

end

12



Abstraction will be used later as part of the contract of an object. Recall
however, that with our definition of C we can abstract a program P by replacing
some its actions with skip. This is a powerful form of abstraction, but it also
means that the relation will not in general preserve progress properties. This is
a deliberate choice. Preserving progress properties across refinement typically
requires various internal details of P to be carried over to its abstraction, thus
requiring a weaker notion of abstraction. We favour a stronger abstraction
relation (more lenient refinement relation) as it gives users more choices in
deliberately hiding implementational details. The more we hide, the less we
can prove of course, but on the other hand, verification becomes quite often
easier.

In order to be able to reason about the preservation of progress proper-
ties, we will require that the author of a contract c¢ specifies a set of progress
properties which can be preserved if ¢’s contractor P is composed with some
environment F. Consider the following property:

PHE,il—qu

Suppose we know that this progress is driven solely by P. If E is an abstraction
of a concrete environment (), then we can expect that the same property will
be preserved in P|Q. To express this kind of reasoning, we will however have
to introduce a new set of extended UNITY operators, where the notion of
?progress @ is driven solely by P” as above can be specified. This is captured
by the following:

Definition 4.8 : EXTENDED UNITY OPERATORS (III)
Let P and B be UNITY programs. We define:

1. PyB, i b pensuresq
d

P|B, i F punlessq A (Ja:a € Pacts: {i ApA-q}a{q})

2. P]Q, i - p +— q is defined such that (Ap,q. P4]Q, i F p — q) is the
smallest transitive and disjunctive closure of (Ap, q. P4|Q, i F p ensures q).

a

Below is the theorem that makes it possible to specify progress properties in a
contract in such a way that their preservation can be inferred regardless of the
environment its contractor is composed with. More specifically, the theorem
states that every progress property from p to ¢ made by P, when specified in
terms of P,|E, will be preserved when P is composed with any program () that
refines F.

Theorem 4.9 : PRESERVATION OF —
PJB,iFpr—gq

jEBCQ , Pl[QFsinvy , j=i
Pl|Q,itp—gq

13



proof: We will prove the theorem using — induction —see for
example [5, 13| for explanation on how it works. The transitivity
and disjunctivity cases are trivial. So, it suffices to show the ensures
case:

P B, it pensures g
= { Definition 4.8 }

P|B, i F punlessq A (3a:a € Pacts: {i A\pA—q}a{q})
= { Theorem 4.7 }

P|Q, 7 F punlessqg A (Ja:a € Pacts: {i ApA—q}a{q})
= { j =i, pre-condition strengthening }

P|Q, j F punlessq A (Ja:a € Pacts: {j ApA—q}a{q})
= { Definition 4.8 }

P,]Q, 7 F pensures g

=  { + is a closure of ensures }

PQ,jFpr—gq

end

5 Object and Operation

In our model, an object is a program that exposes some of its variables to its
environment. For simplicity we assume that such a program runs forever. This
program is called the internal program of the object. The exposed variables
are called public or shared variables. Access to these variables are however
restricted: the environment can only inspect or update them via a set of oper-
ations provided by the object. Any program can be deployed as an object by
encapsulating it with the necessary interface implementing the above restriction
for accessing public variables. We will however not concern ourselves with the
detail of such an interface.

Figure 5.1 shows a Dalang class of objects called Simplevotingsystem.
Fach object of this class will have the specified set of variables and operations,
and main. The latter describes the internal program of the object. In principle
main can be written in any language. We assume that it can be translated to
UNITY. For simplicity, in the example main is written directly in UNITY.

In the example, a Simplevotingsystem object offers three operations. The
operation vote allows users to send votes to the objects. The operation count
causes the object to count collected votes. Only 'valid’ votes will be counted.
The result of the counting is reflected in the variable accept. It is set to True
if the object can count at least 100 valid votes, and else False. Calling count
also closes the voting process: after this incoming votes will be ignored.

14



The operation result allows a user to inspect the result of votes counting.
The result is passed in the return parameter r. It is set to [] if the voting
process is not closed yet (count has not been called). Else it will return the
value of [accept].

The main section describes the object’s internal program. In the example
it is written in UNITY. What the program does is to keep moving the first
element of votes to an internal buffer h. It will subsequently check if the vote
in h is a new and a valid vote. If so it will be moved to validvotes, else it will
be deleted from h.

Note that the program allows votes validation to be executed in parallel
with the buffering of the incoming votes. Moreover, it takes care that duplicate
votes will not be counted.

5.1 Semantical Model

We will semantically model an object = with a tuple of this type:
Object = (prg :: ProgunrTy,ops :: {Operation})

where x.prg models the object’s internal program, and x.ops is the set of oper-
ations offered by the object. Operation denote the universe of operation —its
structure will be detailed latter. In the example in Figure 5.1, the the main,
public, and private sections constitute the prg part; and the operation sec-
tion constitutes the ops part.

The code in Figure 5.1 specifies however a class of objects. If X is a class,
we write z :: X to mean that z is an object obtained by renaming every variable
v in the code of X with z.v —we assume that this does not cause any name
collision. We also say then that x is an object or an instance of class X.

We will also overload the selectors used on programs so that they also work
on objects, with their (the selectors’) meaning unchanged. So for example,
P.pub denotes the the set of all public variables of the program P. With the
same notation, if x is an object, x.pub denotes the set of all x’s public variables,
which is just equal to x.prg.pub.

Furthermore, we also overload | so that z]@ means z.prg|@, and similarly
for PJy. Similarly, we also overload 4].

Two objects are said to have an identical interface if they offer the same set
of public variables and operations.

An operation will be described by a structure of this form:

mname(yi,...,yg) = do b

where mname is the name of the operation, followed by a list of its formal
parameters, and b is an action describing the operation’s body. The names of
the formal parameters are assumed not to collide with the names of any variable
of . Parameters are passed either by value or by reference, but passing aliases

15



class SimpleVotingSystem

public
votes :: [Int] [] ;
validvotes :: [Int] a;
accept :: Bool := False ;
isOpen :: Bool := True

private
h :: [Int] =0
checkingDone :: Bool := False

operation
vote (key::Int) = do if isOpen then votes := key:votes

count() = do {isOpen := False ;
accept := length validvotes > 100 }

result(&r::[Bool]) = do if isOpen then r:=[] else r:=[accept]

main
“null votes /\ null h --> h:=[head votes]
[1 {var k::Int;
atomic{if “null h
then { k := head h ;
if valid k /\ “(k in validvotes)
then validvotes := k:validvotes ;
checkingDone := True }}}
[1 checkingDone
--> h,votes,checkingDone := [], tail votes, False

Figure 2: The figure shows a class called SimpleVotingSystem. Fach object
of this class will have the specified variables, operations, and main. The latter
specifies the object’s internal program. In the example it is described in UNITY.
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by reference is not allowed®. Furthermore, an operation has no access to global
information, other than the public variables of the object it belongs to.

The execution of an operation is assumed to be atomic. This may not be
efficient, for example if it works on a large data structure. There are ways to
infer which operations will actually not interfere with each others, and hence
can be safely executed in parallel. We will however abstract away this issue: it
is up to the implementator of the underlying computation model to optimize
the utilization of the objects.

In the sequel, to keep it simple, when discussing formal aspects of operations
we will assume that their headers have the following simple form:

mname(y, )

where y is a passed-by-value parameter used to pass input data to mname, and
r is a passed-by-reference parameter used to hold the return value of mname. If
x is an object to which mname belongs to, then a call to mname is denoted by
x.mname(e, z). If b is the body of mname, the effect of such a call is equivalent
to:

atomic{var y,r; y:=e; b; z:=r}

5.1.1 Object Properties

Since the environment of an object x can only interact with it through its
operations, the worst possible environment of x can be characterized by the
following UNITY program:

zenv 2 (3, z.init, x.pub, 0))
where ¥ is a set of actions modelling all possible calls to the operations in x.ops:

Y = {vary,r; xmyi(y,r)} | ... | {var y,r; z.mg(y,r)}

for all operations my,...,mg € x.ops.
So, any real or proper environment () of = is a refinement of x.env. Formally:

@ is a proper environment of 4 (Vi ::x.pub,i - z.envC Q)

Any unless and — properties proven with respect to z]|x.env respectively z4]z.env
will be preserved when x is composed with any proper environment.

As an example, consider an object x::Simplevotingsystem —see again
Figure 5.1. Note that the only action that can add a new element to votes is
the operation vote, which can only do so if the isOpen flag is true. It follows
that we have this property:

x[x.env, true (1)
l_
—x.isOpen A v ¢ x.votes unless false

®Passing aliases by reference in the distributed setting will explode the reasoning complex-
ity, if it is not already complicated enough, even without concurrency. So, we prefer to exclude
them.
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for any value v. It says that if the voting is already closed, no new votes can
be added. Note that the property is an unless property over x|x.env: it will be
preserved in the composition of x with any proper environment of x.

As another example, one can show that x satisfies the following progress
property, saying that every valid vote in votes will eventually be copied to
validvotes:

xq|x.env, i (2)
lf

v € filter valid x.votes +— v € x.validvotes

for any value v. The property is a +— property over zo|z.env, which will be
preserved in the composition of x with any proper environment of x. The i
above is some invariant of x and x.env. Note that in this example we will need
a sufficiently strong i to be able to infer the progress specified above. For
example, true will not be sufficient. For completeness, we include a possible i
below.

—null x.h = —null x.votes A (head x.h = head x.votes) (3)
A

x.checkingDone = —null x.h

A

x.checkingDone A valid(head x.h) = (head x.h = head x.validvotes))

N

(Vi,j :4,j € validvotes : i = j) A (Vi : i € validvotes : valid 7)

Abstraction Relation on Objects

We can lift the abstraction (refinement) relation between programs to the ob-
ject level. We will only define the relation between two objects with identical
interface®.

Definition 5.1 : ABSTRACTING OBJECT
Let 2’ and z be two objects with identical interface. We define:

iFo'Cae 2 i F 2 prgCaprg
Od

Note that, just as with the refinement relation on programs, the above relation
only preserves safety. So, any property of the form p unless ¢ proven on an
abstraction z’ of an object x, will also be a property of .

5In a more general setting, one may want to allow operations to be refined as well. We will
not do so here.

18



contract SimpleVotingSystem
safety model
~” null votes --> votes := tail votes
[] {var k::Int;
atomic{ if ~ null votes
then { k := head votes ;

if  valid k /\ “(k in valid votes)
then validvotes := k : validvotes }}}

invariant
(1i,j. i,j in validvotes ==> (i=j)) /\
(ri. i in validvotes ==> valid i)
progress
lv. v in filter valid votes |---> v in validvotes
Figure 3: The figure shows the contract offered by the class

SimpleVotingSystem from Figure 5.1. The public and operation sec-
tions are here omitted to mean that they are identical to that of the class.

6 Contract

An object does not release full information about itself to its environment.
Instead, the object’s users have to rely on a so-called contract offered by the
object to figure out what the object does. A contract is binding, as the object is
obliged to realize anything it commits in the contract. A simple form of contract
simply lists the header of the operations offered by the object. A contract can
be strengthened by putting more information in it, thus enabling the users to
infer more properties about the object. Of course, strengthening a contract also
makes an object less reusable, and its verification more expensive (it is then up
to the object’s producer to decide where to draw the line). Just keep in mind
that the main purpose of a contract is to specify some properties of an object
—it does not have to capture all of its properties. We will restrict ourselves
here to the scenario where every object is associated to only one contract.

An abstraction relation, as formally defined in the previous section, can
serve well as the base of a contract. We can use an abstract object a as a
contract of a concrete object x. The definition of C tells us exactly how to
check if z will indeed fulfil a. We use a quite powerful abstraction relation,
which gives considerable freedom to developers in deciding how detailed a is
(how much aspects of & we want to expose in a). This however has to be traded
with something else: the preservation nature of the relation becomes weaker.
As mentioned before, only safety properties proven on an abstract model a can
be guaranteed to be inherited by the corresponding concrete object x. Progress
properties of x cannot in general be inferred from a. So, if the producer of z
wants to expose a progress property, he will have to include the property in the
contract.

Figure 6 shows a Dalang example of a contract. The contract belongs to

19



the class SimpleVotingSystem from Figure 5.1. The safety model section
describes an abstraction, in the form of a UNITY program, of objects of the class
SimpleVotingSystem; and the progress section specifies progress properties
guaranteed by those objects. Implicitly here, the contract of a class C' also
exposes the public and operation sections of C7.

As an example of how properties of an object can be inferred from its con-
tract, consider an object x::SimpleVotingSystem. We can infer from the
safety model in the contract of SimpleVotingSystem that no element from
validvotes will ever be deleted, nor can an arbitrary value be added to it. The
only to add a new value to validvotes is by inserting head votes. Stronger
yet: the property is also maintained by x.env. Formally:

a[x.env, true (4)
F
(x.validvotes = o) unless (x.validvotes = head x.votes : 0)

for all value o. Here, a is the contract’s safety model. Since a C z, it follows
then that the above property will also be a property of z]|z.env.

Notice that the safety model in the example hides the fact that an actual
SimpleVotingSystem object uses private variables h and checkingDone to syn-
chronize parallel execution of votes buffering and votes validation. Because of
this abstraction, we will not be able, for example, to infer from the safety model
that the object will not arbitrarily delete a valid vote from its memory: an ac-
tual SimpleVotingSystem object regularly moves the head element of votes to
the internal buffer h; however, since h is not visible in the contract, this action
will be seen as a complete deletion of a vote.

The code in in Figure 6 actually defines a set of contracts rather than an
individual contract. If X is a class, a contract such as in Figure 6 binds all
instances of X. We will denote such a contract by X.contract. If z is an
object of class X, the specific instance of contract that binds x is denoted by
x.contract, which is obtained by replacing every variable v in X.contract with
x.v —assuming this does not cause any name collision.

6.1 Semantical Model

Formally, we will represent a contract ¢ with a tuple of this type:
Contract = (smodel :: Object,inv :: Pred, progress :: { ProgressSpec})

where c.inv is a predicate specifying an invariant, and c.progress is a set of spec-
ifications in form p — ¢ specifying progress made by ¢’s contractor. Properties
specified in c.progress are intended to be robust: they prevail regardless the en-
vironment —we will return to this later. Furthermore we impose that a.smodel
is a so-called abstract object, which is an object possessing no private variable®
(so a.smodel.pri = ().

"In a more general setup, a contract may only expose some abstractions of the operations.
Just to keep the discussion simpler we will not do this here.

8This is not a principle restriction, but more a matter of choice in defining how expressive
a contract should be.
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We will also overload the selectors used on objects so that they also work
on contracts, with their (the selectors’) meaning unchanged. So for example,
for an object x, x.pub denotes the the set of all x’s public variables. With the
same notation, if ¢ is a contract, c.pub denotes the set of all ¢’s public variables,
which is just equal to c.smodel.pub.

As said, c.inv specifies an invariant. More specifically, it is a strong invariant
of c.smodel, and of any proper environment of c.smodel. Furthermore, c.inv has
to be confined by c.pub. Formally:

c.inv conf c.pub A c.smodel|c.env  sinv c.inv

In the example in Figure 6, the public and operation sections of the
corresponding object class, and the safety model of the contract form the
smodel part; the invariant section forms the inv part; and the progress section
forms the progress part.

We will now define the relation between an object and its contract:

Definition 6.1 : OBJECT-CONTRACT RELATION
Let x :: X be an object and ¢ = x.contract. The relation between = and c is as
follows:

1. z and c.smodel have the same interface. So x.pub = c.pub and x.ops =
c.ops.

2. There exists a predicate j such that:

(a) j is a strong invariant of z|z.env and it implies c.inv.

(b) c.smodel is a consistent abstraction of x. More precisely:
j F c.smodel C z
(c) For every specification p +— ¢ in c.progress:

zq|xz.env,j F prg
O

The invariant j mentioned above is also called the concrete invariant of x, and
will be denoted by z.INV. Note an application developer cannot assume to
know what this x.INV exactly is, though he knows that it has the properties as
described in the object-contract relation above.

Note that since x and ¢ have the same set of operations, then z.env = c.env.
So, any proper environment of c.smodel is also a proper environment of x.

Note that although c.inv is a strong invariant of c.smodel|c.env, it may not
be a strong invariant of z]z.env. It is however an invariant of z]|z.env, since the
object-contract relation implies the existence of a strong invariant j of xz.env
implying c.inv.
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6.2 Inferring Object’s Properties

From the object-contract relation and from Theorem 4.9, it follow that the
composition of x with any proper environment ) will maintain all progress
properties specified in R:

Corollary 6.2 : PROGRESS COMMITMENT
Let z :: X be an object and ¢ = x.contract. Let ) be a proper environment of
x. Then, for any p — ¢ € c.progress we have:

z4q]Q, zINV F p—gq
O

Any unless property proven with respect to the safety model in the contract is
also, by Theorem 4.7, a property of the actual object. More precisely:

Theorem 6.3 : SAFETY COMMITMENT
Let x :: X be an object and ¢ = x.contract. Let @) be a proper environment of
x. Then:

c.smodel|c.env, c.inv - p unless ¢
z]Q,x.INV F punless g

a

For example, (4) shows an example of an unless we can infer from the contract
of SimpleVotingSystem. By the above theorem, it follows that the property
holds for any SimpleVotingSystem object, under any proper environment.

As another example, the progress part of SimpleVotingSystem’s contract
says that any valid vote in votes will eventually be copied to validvotes.
Corollary 6.2 says now that this progress is guaranteed by any SimpleVoting-
System object, under any proper environment.

Contract Refinement

One can also define a notion of contract refinement. Such a notion is useful
when an object broker cannot find an object offering a contract c¢. In that case
it may try to find another object whose contract refines c. We will not work
out this idea further here.

7 Application

Figure 1 has shown an example of an application. An application consists of
a set of objects and a set of programs, so-called clients, using the objects.
An object can be a private object, it cannot be accessed by the application’s
environment, and otherwise it is a public object®.

9In systems like CORBA a public object may actually be located outside the application
itself. It may belongs to and controlled by another application, which may even be owned
by a foreign organization. In such a setting a so-called object broker is used for searching the
objects needed by an application and to facilitate the communication between the application
and those foreign objects. This paper will however not concern itself with brokers.
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7.1 Semantical Model

We will semantically model an application A with a tuple of this type:

App £ ( pubobjs = {ObjDecl}
priobjs . {ObjDecl}
clients = {Proguniry
clientsinv :: Pred )

where ObjDecl represents object declarations. Its values are of form z :: X,
where x is an object and X is the class to which x belongs. A.pubobjs and
A.privobjs specify the set of A’s, respectively, public and private objects. We
will use the notation A.objs to refer to the set of all objects of A. The predicate
A.clientsinv is intended to augment the invariants of A’s objects with infor-
mation about the clients’ (private) variables. In addition, there are several
constraints, for example concerning the well-formedness of the model; we will
show them later, because we need to introduce several concepts first.

The set of all public variables of A, denoted by A.pub, consists of the public
variables of its public objects. Its private variables, denoted by A.pri, consists of
the private variables of its public objects, and all variables of its private objects
and clients. The set of all A’s variables is denoted by .A.var.

The concrete program induced by an application A is the following:

A.prg 4 (Je:x € Aobjs: z) | (]Q : Q € A.clients : Q)

Of course, the application developer does not actually see the programs in O and
7. Instead, all he knows about those objects are their contracts. Every contract
describes however a program abstracting the internal program of the contractor.
We can construct the total abstract model of the objects in application by
composing the safety models in their contracts. The total abstract model of
the application, denoted by .A.smodel, is the total abstract model of the objects,
composed with the clients. Formally:

Definition 7.1 : ABSTRACT MODEL OF APPLICATION
Let A be an application. We define:

A.model < (Jx : © € A.objs : x.contract.smodel)

[
(]Q : Q € A.clients : Q)

a

The worst environment of an application can modelled by a program that tries
all possible calls to the operations of the public objects:

Definition 7.2 : APPLICATION’S ABSTRACT ENVIRONMENT

Aenv < (J#, X : x : X € A.pubobjs : z.env)
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The notation A.inv refers to the conjunction of the invariants specified by the
contracts in A, strengthened by A.clientsinv. Similarly, we also define A.INV:

Definition 7.3 : APPLICATION’S INVARIANTS
Let A be an application. We define:

A.inv 4 ( Az :z € Aobjs : z.contract.inv) A A.clientsinv

4

A.INV (Az:z € Aobjs: z.INV) A A.clientsinv

|

7.2 Constraints

As mentioned earlier there are a number of constraints we put on the semantical
model of an application. Let A be an application. We have the following
constraints:

1. [CA1] Each object in A has its own unique name space. So, for any two
distinct objects x and y in A, z.var N y.var = ().

Note this implies that objects inside an application cannot call each other
operations. In other words, we require each object to be an independent
component. This simplifies the formal model'".

2. [CA2] A client can only interact with an object through its operations.
Furthermore, a client can only do a single operation in one atomic step.
In other words, with respect to every object = in A, each client should be
a proper environment of x.

3. [CA3] The only public information a client has access to is the set of all
public variables of the objects in A. So, for every () € A.clients:

Q.pub C ( Ux :x € A.objs : x.pub)
4. [CA4] A.clientsinv can only specify the variables known to the clients:

A.clientsinv conf A.model.var

Note that this constraint is actually implied by the following one.

5. [CA5] A.clientsinv can be maintained by A’s abstract model:
A.model]A.env, i F A.clientsinv unless false

where i = ( Az : © € A.objs : x.contract.inv).

10T here may however be a situation where one wants to build an object from smaller objects.
This is not directly allowed in our framework, because the top level object will then need to
access the name space of its sub-objects, which is forbidden by CAl. Instead, one can first
build an application, which does have access to its objects’ name space, and then wrap the
application as an object —see Subsection 7.7.

24



7.3 Some Facts

We list here a number of facts about applications. The first one below states
that we can indeed use A.model as A’s abstraction:

Theorem 7.4 : AINV F A.model C A.prg

proof: Since A.model consists of A’s clients and the safety models
of A’s objects, it suffices to show that for every object x in A, its
safety model (x.contract.smodel) is an abstraction of z.prg. But this
already follows from the object-contract relation.

end

Theorem 7.5 :
Let x be an object in A. Let (A — z).prg denote the program obtained by
removing the actions of x.prg from A.prg!'. We have:

iFzenv C ((A—x).prg]A.env)

for any 4. O

proof: (1) Each action a in (A — z).prg is either an action from
another object y or an action of a client program @. If it is an
action from another object, then it behaves as skip with respect to
x.var, because each object has its own unique name space (CA1),
and hence it automatically (weakly) refines z.env. If a is an action
of @), it too refines x.env, because each client is proper environment
with respect to each object (CA2).

(2) Each action in A.env is either a call to an operation of another
object y, or a call to an operation of z. By similar argument as
above, in both cases it too will refine z.env.

end

Theorem 7.6 : AINV = A.inv

proof: It follows from their definition and the fact that for any
object x, x.INV implies x.contract.inv.
end

The theorem below says that A.inv is a strong invariant of both A’s abstract
model and its environment.

Theorem 7.7 : A.model|A.env  sinv A.inv

proof: Let i =( Az :z € A.objs: xz.contract.inv). Note that:

(a) A.nv =i A A.clientsinv

The set of variables and the initial condition are left unchanged.
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Each z.contract.inv part of ¢ is a strong invariant of x.smodel]z.env.
It is also maintained by y.smodel|y.env, for any other object y, be-
cause objects do not share name space (CAl). The only way the
clients interact with x is through its operations (CA2), and thus
they refine x.env; hence they too maintain x.contract.inv. Hence,
x.contract.inv is a strong invariant in .A.model].A.env. Because this
holds for all = € A.objs, it follows, by the definition of i:

(b) A.model]A.env I sinvi

The invariance of A.inv follows from (a), (b), and CAS5.
end

The theorem below is the analogous of the one above for the application’s
concrete invariant:

Theorem 7.8 : A.prg]A.env F sinv AINV

proof: The proof is quite similar to that of Theorem 7.7. Let
j=(Az:xz € Aobjs: x.INV). Note that:

(a) AINV =j A A.clientsinv

Each z.INV part of 4 is by definition a strong invariant of z|x.env.
It is also maintained by y[y.env, for any other object y, because
objects do not share name space (CA1l). The only way the clients
interact with x is through its operations (CA2), and thus they refine
x.env; hence they too maintain x.INV. Hence, x.INV is a strong
invariant in A.prg].A.env. Because this holds for all =z € A.objs, it
follows, by the definition of j:

(b) A.prg]A.env F sinvj

Let i be defined as in CA5. Note that j = i. Next, by CA5, Theorem
7.4, 7 = i, and Theorem 4.7 we have:

(c) A.prg]A.env, j - A.clientsinv unless false

The invariance of A.INV follows now from (a), (b), and (c).
end
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7.4 Inferring an Application’s Properties

The following theorem says that a safety property proven with respect to the
abstract model of an application will extend to the application itself, under any
proper environment.

Theorem 7.9 : SAFETY BY ABSTRACT MODEL

A.model|A.env, A.inv = p unless q
A.prg|A.env, AINV F punless g

proof: First:

1. From Theorem 7.8 we have that A.INV is a strong invariant of

A.prg|A.env
2. By Theorem 7.6: A.INV = A.inv.

3. By Theorem 7.4 we have that A.prg refines .A.model, with re-
spect to A.INV.

From the above, and Theorem 4.7 the premise of the above theorem
now follows from its assumption.
end

The next theorem says that any progress property committed in the contract
of any object in an application, will be preserved by the application, and by its
environment.

Theorem 7.10 : PROGRESS BY CONTRACT
Let x :: X be an object in A and ¢ = x.contract.

pr>q € c.progress
A.prgJA.env, AINV F pigq

proof: Let (A — x).prg denote the program obtained by removing
the actions of x.prg from A.prg (as in Theorem 7.5). Let rest =
(A — z).prg]|A.env. Note that x.prg|rest = mathcal A.prg|.A.env.
We derive now:

ptr>q € c.progress
= { object-contract relation (Definition 6.1) }

z.prgglz.env, z.INV F pgq

= { (1) by Theorems 7.5 we have: A.INV I~ z.env C rest; (2)
by Theorem 7.8: A.INV is a strong invariant of x.prg|rest;
(3) by definition, A.INV implies z.INV; (4) then using
Theorem 4.9 }
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z.prgyfrest, AINV F p—gq
= { def. of rest and Theorem A.10 }
(x.prg|(A — z).prg)q]A.env, AINV F pgq
= { by definition of A —x }
A.prgJA.env, AINV F psgq

end

The theorem below states the kind of progress made by the clients that can be
be preserved by the application and its environment.

Theorem 7.11 : CLIENT PROGRESS

Let:
clients = (]|Q:Q € Aclients : Q)
smodel = (]z:x € A.objs: x.contract.smodel)
We have:
clientsq]|(smodel| A.env), A.iinv F p—q
A.prg|A.env, AINV F psgq
|
proof:
clientsq](smodel]|A.env), A.inv - p—gq
= { Theorem A.10, clients|smodel = A.model }
A.modelg]A.env, Ainv - p+—q
= { (1) by Theorems 7.4: A.model T A.prg; (2) by Theo-
rem 7.8: A.INV is invariant; (3) by Theorem 7.6: A.INV
implies A.inv; (4) then using Theorem 4.9 }
A.prg | A.env, AINV F pgq
end

7.5 Example

Consider again the VotingService application in Figure 1. The application
uses an object of class SimpleVotingSystem. Recall the property (1), saying
once the voting process is closed, no new vote will be accepted. This is however
not a property of an application, but merely a property of any object x of
the class SimpleVotingSystem. We want now to infer this property for our
application. Formally, this is the property we want to show:

app.prglapp.env, j + —wv.isOpen A v ¢ v.votes unless false (5)
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where app = VotingService and j = app.INV. By Theorem 7.9 it is sufficient
to show the following;:

app.model|app.env, i - —v.isOpen A v & v.votes unless false (6)

where i = app.inv The only action in app.model]app.env that can violate this
property is the operation vote, because it can insert v to votes. However, it
can only do so if isOpen is true, which is not the case in the unless property
above. Hence, it too respects the above property. Hence, the above property
holds in app.model|app.env.

In the next example let us consider this progress property: if there are
already more than 100 votes in the list validvotes, then eventually the value

of accept will be set to true!?:

app.prg.Japp.env, j F length v.validvotes > 100 — v.accept (7)

We will show the property with the help of several smaller properties of app.prg
aJapp-env, with respect to the invariant j:

true +— d.current > closingdate (8)
d.current > closingdate — afterClosingDate (9)
where a fterClosingDate = d.current > closingdate A today > closingdate
length v.validvotes > 100 unless false (10)
length v.validvotes > 100 A afterClosingDate +— v.accept (11)

The combination of (8), (9), and (10) implies that from length v.validvotes >
100 the application can progress to:

length v.validvotes > 100 A afterClosingDate

Subsequently, by (11) it will further progress to v.accept, and thus (7) is proven.

We are not going to prove all properties in (8) ... (11). The approach to
prove (10) is similar to that of (5), and that of (11) similar to that of (9). So,
we are going to show only the proofs of (8) and (9).

Consider now (8). Anticipating that this progress is realized by the Simple-
Calendar object of app, we use Theorem 7.10 to reduce the application level
property to an object level one. So, by the Theorem it suffices to show that
the same property is specified in the progress-part of the object d, which is
indeed the case (see the contract in Figure 1.

Consider now (9). We expect this progress to be realized by the client.
So, we use Theorem 7.11. By the Theorem, it suffices if we can show the

12\We can also show a stronger property, namely that if there are already more than 100
incoming valid votes (either still in votes and already in validvotes), then eventually accept
will be true. The proof of this is however more involved, so for the example we choose a simpler
property.
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same progress, but with respect to app.modelyJapp.env and invariant i. The
specified progress is a simple one, realized by the act of a single action, namely
the action d.getDate(today) of the client. Therefore, it suffices to show the
following ensures property, which implies -

app.modelg]app.env, i
l_
d.current > closingdate ensures afterClosingDate (12)

This property can be quite easily proven.

7.6 Open and Closed System

An application with non-empty set of public objects represents an open system
with which any other system can interact through operations of the public
objects. A closed system can be represented by an application that exposes
no public object. For both kinds of systems, we can use the same theory for
applications in Section 7.

7.7 Deploying an Application as an Object

Since an application is essentially just a program, it can be deployed as an
object. First we have to define an interface, because an object has public
and private variables, initial condition, and operations. An obvious choice is to
expose all public variables and operations of the public objects of an application
as the public variables and operations of the resulting object. However, we
may also want to expose less. For example, consider again the votingService
application from Figure 1. This application still has a problem, namely that an
arbitrary user can call the count method of v, forcing the votes to be counted
before the closing date. A way to get around this is not to give the users
access to the operation count. This is achieved by wrapping the application
votingService, for example by writing:

wrap votingService
expose d
expose v hiding count

The code above wraps the application votingService to an object. It exposes
all public variables and operations of d. It also exposes v, but it hides the
operation vote of v.

A wrapper can only expose public objects of an application. Since wrapping
may hide some part of a public object, this can only be done safely if the object
is fully controlled by the application itself (thus not an external object used by
the application).

If we require that wrapping can only hide variables and operations, and
not to introduce new ones, it follows that the actual environment of a wrapped
application A will not behave worse that A.env. Consequently, properties we
can infer from A using the theorems from Subsection 7.4, which assume A.env,
will be preserved by the wrapping.
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8 Related Works

The area of component based systems is currently very actively researched. We
will only mention several recent related works. Some examples of other for-
mal frameworks for component based systems are: Kim and Carrington’s [11],
Jifeng, Liu, and Xiaoshan’s [10], and Broy’s [4]. The first one, based on Z, fo-
cuses on formalizing static relations between components, specified in terms of
UML class diagrams. The other two, like ours, focus on the behavioural aspect
of systems and their components. Jifeng, Liu, and and Xiaoshan’s framework
relies on Hoare triple specifications to infer behavioural properties. It is suit-
able to deal with components that have no internal programs of their owns, and
hence cannot, on their own, enforce temporal properties. If internal programs
are added, specifying temporal properties would require the use of auxiliary
variables to record the objects’ history. Broy’s framework has a built in his-
tory variables, which are already part of its logic. The framework is especially
tailored for dealing with components that synchronize with channels. It may
however be too detailed if the components exchange information through op-
eration calls instead. In contrast, our framework is more attuned to the latter
scenario.

An important part in our framework is the use of an abstract program to
specify (a certain aspect of) the behavior of a concrete program or environment.
It turns out to be quite convenient. The same idea has been voiced by many
other researches, for example by Collete and Knapp [8, 9], Udink [19], Shankar
[17], and by Jifeng, Lui, and Xiaoshan [10].

We favour the use of UNITY as the underlying theory, because of its sim-
plicity and its axiomatic style. It yields a semantical model which is simple
and intuitive. The use of UNITY as the underlying theory to support com-
ponent based design has also been proposed by other researchers, for example
by Collete and Knapp [8, 9] and Udink [19]. As far as we know, our work is
the first UNITY framework offering formal notions of objects, contracts, and
application.

A key part in any formal system about component based systems is the
ability to compositionally infer a property of a system from the properties of its
components. The original UNITY [5] does not support compositional inference
of progress properties. People use extensions to get around this. Examples of
such compositional extensions can be found in Collete and Knapp’s and Udink’s
works mentioned above. The extension we use originates from our previous
work in [15]. It is more general than [15]. It conveys the same concept as Col-
lete and Knapp’s extension [9], though the semantical model is quite different.
Fundamental theories about program composition, in particular in distributed
setting, can be found in Abadi and Lamport’s work [1, 2] and Chandy, Sanders,
and Charpentier’s [6, 7].
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9 Conclusion

We have offered a formal framework to support a component based approach to
build distributed applications. The framework offers formal notions of objects,
contracts, and applications, and a set of laws to compositionally infer temporal
properties of an application.

The underlying theory is in UNITY style, which, for example, compared to
LTL is indeed less expressive. However, because of UNITY’s axiomatic style,
it yields a semantical model which is simple and intuitive.

The small experiment with the simple voting system example shows that
contracts in our framework can adequately, abstractly, and conveniently capture
the system’s components’ temporal properties. Using the laws provided by
the framework we are able to compositionally infer interesting properties of
the system, using basically only the information provided by the components’
contracts.

We have chosen for a lenient notion of refinement, which gives more free-
dom to developers in hiding their components’ details in the contracts. It is
possible to take a stronger notion of refinement, for example as in [20, 21], but
in exchange checking if a component satisfies its contract will be more expen-
sive. Our framework is suitable for dealing with systems in which components
synchronize by operations calls. It is less suitable to deal with message passing
systems, or with systems where components require tight synchronization as in
protocols.

Overall, we believe that the framework is at least worth further investiga-
tion. In the future we would like to experiment with larger examples, to see
its scalability. On the positive result we would then like to develop an actual
user-level programming and specification language (a real Dalang language, not
a hypothetical one, as used here) and its tool support (like a compiler, verifica-
tion condition generator, etc), and thus bringing the theory into practice.
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A Additional Laws

Theorem A.1 : Privacy
Let W be a set of variables. Let w denote the variables in W listed as a vector.

Let e[val /w] denote the result of replacing every free occurence of w; in e with
val;.
If b is an action that does not write to W (but may read from it), we have:

{inpyb{q} = (Voal:: {iAploal/w] A (@ = val)} b {gfval /@] A (@ = val)})

If b is an action that does not read from nor write to any variable in W, we
have:

{inp}b{q} = (Vval:{iAplval/w]} b {g[val/w]})

proof: We will prove the case when b does not write to W first:

{inp}b{q}
= { b does not write to W;disjunction of Hoare triple }
(Voal :: {i ApA (@ = wval)} b {g N (W= val)})
= { trivial }
(Voal = {i A plval /@] A (@ = val)} b {qval /@) A (@ = val)})
For the second case, where b does not read from W either, notice

that the last formula in the derivation above, because b does not
read from W, is equivalent to:

(Vval = {i Aplval/w]} b {qlval /w]})

end

Theorem A.2 :
If a and b do not read from nor write to any variables in W, then:

Viita<b
VUW,ika<b

proof: It suffices to show the following for all p,q conf V U W:

{i Ap}yb{q}
= { Theorem A.1 }

(Vval == {i Aplval/w]} b {qlval /w]})
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<  {p,qconf VUW, hence plval/w], q[val/w] conf V; the
refinement relation in the premise }

(Vval = {i Aplval/w]} a {q[val/w]})
= { Theorem A.1}

{inp}aiq}

end

Theorem A.3 : skiP NON-OBSERVABILITY

For any V, and W, the action skip V does not read from nor write to the
variables in W.

O

Theorem A.4 :

ViiFaUskipV <b
ViikFalUskip (VUW) <b

proof: It suffices to prove the following for all p, ¢ conf V:

{iAp}big}

< { the refinement in the premise }
{i Ap} aUskip V {q}

< {pgconfV}
{i Ap} aUskip (VUW) {q}

end

Theorem A.5 :
If a and b do not read from nor write to any variables in W, then:

ViFaChb
VUW,iFaCb

proof:

VUW,iFaCb
= { Definition of weak refinement }
VUW,ikFaUskip (VUW) <D

< { a does not read from and write to W; by Theorem A.3
neither does skip V; then apply Theorem A.2 }

ViikFaUskip (VUW) <b
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< { Theorems A4 }
ViiFalskipV <b
= { Definition of weak refinement }

ViiFaCb
end

Theorem A.6 :

ViiFa<ec
ViFalub<c

ViiFaCc
ViiFalbCc

proof: For the first law:

{iAp}eiq}

< { refinement in the premise }
{i Ap}aig})

< { definition of LI }
{iApyalib{g}

For the second one:

ViiFaUbCc

= { definition of C }
ViiFalblUskipV <c

< { the first law above }
ViiFalUskipV <c

= { definition of C }

ViiFaCec
end
Theorem A.7 : V,itEbC b

Theorem A.8 : EXTENDING V IN REFINEMENT

Vii—ACP , WnAvar=WnPvar=10

VUW,i|— AC P
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proof: Note first that the second premise implies that neither A
nor P reads from nor writes to W. We derive now:

Vuw,i|-——ACP
= { definition of program refinement }
(Vb:be€ Pacts: VUW,iF LUA.acts C b)

<  { UA.acts nor b reads from and writes to W; Theorem
A5}

(Vb:be€ Pacts: V,it UA.acts C b)

= { definition of program refinement }

Vii-—— ACP
end
Theorem A.9 :
Vii|l-—— ACP

V7i ‘__ AI]Q C PI]Q

proof: We have to show this:
Vi F U((A]Q).acts) C b

for all actions b € (P]Q).acts. There are two cases: b is an action
of @) or b is an action of ().

Case 1: Let b be an action of Q). We derive now:

Vi U((A]Q).acts) T b
= { definition | and U }
VyiF (U Aacts) U (U Q.acts)) T b
<  { Theorem A.6 }
ViU Q.actsCb
<  {beQ.acts, Theorem A.6 }
ViiFbCb
<  { Theorem A.7 }

true
Case 2: Let b be an action of P. We derive now:
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Vi F U((A]Q).acts) C b
= { definition | and U }

VyiF (U Aacts) U (U Q.acts)) T b
<  { Theorem A.6 }

ViU A.actsC b
< {bePacts}

Vii|-—ACP

end

Theorem A.10 : LEFT SHIFTING OF |

PQI](QI]R)vi Fp—gq
(PlQ)<IR,i F prq

proof: This is proven using — induction. The transitivity and
disjunctivity cases are trivial. So, it suffices to show the ensures
case:
P J(Q|R),i F p ensures q
= { Definition 4.8, | is associative }
(P|Q)[R, i F punlessg A (Ja: a € Pacts: {iApA—q} a {q})
= { trivial }

(P|Q)|R, i + punlessq A (Ja:a € P|Q.acts : {i ApA
—q} a{q})
= { Definition 4.8 }

(PlQ)|R.jEp—q
end

Theorem A.11 : ENLARGING INTERFERENCE SCOPE

P,i F punlessqusingV |, VCW
P,i F punless g using W

proof: By the definition of unless it suffices to show p,q conf W.
The theorem’s premise implies that p and ¢ are confined by V. Since
W is a superset of V, it too confines p and gq.

end
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