
Program Transformation Mechanics

A Classification of Mechanisms for Program Transformation

with a Survey of Existing Transformation Systems

Jonne van Wijngaarden

Eelco Visser

UU-CS-2003-048

Institute of Information and Computing Sciences

Utrecht University

May 2003

Copyright c© 2003 Jonne van Wijngaarden, Eelco Visser

Address:
Institute of Information and Computing Sciences
Utrecht University
P.O.Box 80089
3508 TB Utrecht

Eelco Visser <visser@acm.org>
http://www.cs.uu.nl/people/visser

mailto:visser@acm.org
http://www.cs.uu.nl/people/visser

Program Transformation Mechanics

A Classification of Mechanisms for Program Transformation

with a Survey of Existing Transformation Systems

Jonne van Wijngaarden and Eelco Visser

Institute of Information and Computing Sciences, Utrecht
University, P.O.Box 80089, 3508 TB Utrecht, The Netherlands.

visser@acm.org, http://www.cs.uu.nl/~visser

May 2003

Abstract

Transformation techniques are spreading from application in compil-
ers to general use in generative programming and document process-
ing. Since transformation requires operations such as pattern matching,
generic structure traversal, and querying, which are not normally pro-
vided by general-purpose programming languages, many tools have been
developed to provide higher-level support for the implementation of trans-
formations. These tools come in many flavors each with their own merits
and based on different paradigms, which makes comparison difficult.
In this paper, we consider transformation from the point of view of me-

chanics and develop a classification of transformation mechanisms that
provides a reference for comparing tools developed for different appli-
cations, using different implementations, and in different programming
paradigms. To do so we distinguish three fundamental aspects of trans-
formation mechanisms: scope, direction, and stages. We apply this classi-
fication in a discussion of design patterns for transformation, characteri-
zation of several typical transformations, and a systematic comparison of
eleven representative transformation tools.

1 Introduction

Program transformation, i.e., the automatic manipulation of source programs,
emerged in the context of compilation, as a set of techniques for the implementa-
tion of components such as optimizers [20]. While compilers are rather special-
ized tools developed by few, transformation systems are becoming widespread.
In the paradigm of generative programming [7], the generation of programs from
specifications forms a key part of the software engineering process. In refactor-
ing [10], transformations are used to restructure a program in order to improve
its design. Other applications of program transformation include migration and
reverse engineering. The common goal of these transformations is to increase
programmer productivity by automating programming tasks.

With the advent of XML, transformation techniques are spreading beyond
the area of programming language processing, making transformation and gen-
eration a necessary operation in any scenario where structured data play a role.

3

http://www.cs.uu.nl/~visser

Techniques from program transformation are applicable in document processing.
In turn, applications such as Active Server Pages (ASP) [19] for the generation
of web-pages in dynamic HTML has inspired the creation of program generators
such as Jostraca [21], where code templates specified in the concrete syntax of
the object language are instantiated with application data.

Since transformations are operations on structured data, they can be imple-
mented in any programming language with data structure support. However,
transformation requires operations such as pattern matching, generic structure
traversal, and querying, which are not normally provided by programming lan-
guages. Directly implementing these operations leads to low level code, which
is hard to develop and maintain. Consequently, many tools have been devel-
oped to provide higher level support for the implementation of transformations.
Such transformation tools come in many flavors, which can be accounted for
by differences in application area, implementation decisions, and programming
paradigm. A good understanding of these differences is key for designing trans-
formations and for comparing transformation tools to select an appropriate tool
for a project.

The application area is the prime determinant for choices in the expres-
siveness and usability of a tool. Many tools are specialized for one or a few
application areas and provide an ad hoc solution to a specific problem, while
others provide a more widely applicable generic solution. Also different appli-
cation areas may pose conflicting requirements on transformation tools. For
example, an application generator, which generates source code from some form
of specification, is required to produce human readable source code. If the gen-
eration can be performed in a single stage, there may be no harm in representing
the target program as a list of strings. On the other hand, an optimizing com-
ponent of a compiler should transform a program in some intermediate tree
structure produced by a front-end and is not required to produce readable code.
References to differences caused by application area can also be found in [7].

Implementation decisions are another source of differences between tools.
Many seemingly irrelevant implementational differences like the choice for a
certain parser or code representation can have a consirable impact on the ex-
pressiveness and usability of a tool. For example, the ATerm API and exchange
format [24] unifies the internal and external representation of abstract syn-
tax trees, making it very easy to divide a transformation system into reusable
components. On the other hand, the datatype facilities of general purpose
programming languages do not support cheap marshalling and unmarshalling,
which makes componentization much less natural.

The programming paradigm underlying the specification language used by
a transformation tool also has considerable impact on the way transformations
are developed. For example, pattern matching is natively supported in term
rewriting and functional programming with algebraic data types. On the other
hand, recognizing complex program patterns in an object-oriented program is
much harder.

While these differences explain historical development and popularity of a
tool for certain applications, they obscure the fundamental choices that un-
derly the design of a transformation tool, lacking a terminology for describing
the properties of transformations. For example, a transformation implemented
using an attribute grammar evidently has a different style from a similar trans-
formation using strategic programming, but there are no systematic studies into

4

these differences.
In this paper, we consider transformation from the point of view of mechan-

ics and develop a classification of transformation mechanisms that provides a
reference for comparing tools developed for different applications, using differ-
ent implementations, and in different programming paradigms. To do so we
distinguish three fundamental aspects of transformation mechanisms: scope, di-
rection, and stages. The scope of a transformation (Section 2) concerns the areas
of a program that are affected by a transformation and from which information
is used. The direction of a transformation (Section 3) determines whether the
shape of the source or the target program drives the transformation process.
The staging of a transformation (Section 4) determines the phases or iterations
required or used.

The idea of distinguishing transformation mechanisms is not completely new.
For example, the ASF+SDF rewrite system distinguishes several styles of trans-
formations through the mechanism of traversal functions [25], i.e., transformers,
accumulators, and accumulating transformers. While these styles can also be
recognized in other program transformation tools, this differentiation is too lim-
ited as a basis for comparing transformations or transformation tools. The sur-
vey of rewriting strategies in program transformation systems [28] focuses on the
control over the application of transformation rules specified using rewrite rules.
Here the focus is on the mechanisms behind the specification and implementa-
tion of individual transformation steps, rather than the control mechanisms.

The contribution of this paper is twofold. First we develop terminology for
discussing transformations and transformation tools separately from implemen-
tation details. For developers of program transformations, this will be useful in
assesing tools and for designing transformations at an abstract level. For tool
developers this terminology will be useful in documenting the types of transfor-
mation supported by their tool. The current diversity of terminology used in the
literature makes it difficult to determine the capabilities of tools. The transfor-
mation mechanisms introduced in this paper are a first attempt at establishing
such an idiom.

Secondly, we apply this terminology in the analysis of typical transformations
and transformation tools. In Section 5 we consider several transformation design
patterns that arise as combinations of the various mechanisms. Furthermore, we
consider several concrete transformations and describe their mechanics. In Sec-
tion 6 we examine the coverage of the transformation mechanisms by a number
of well known transformation paradigms and tools to evaluate the suitability of
different paradigms and tools.

2 Scope

Scope literally means the area covered by a given activity or subject. In the con-
text of program transformation we define scope as the area of an object program
covered by a single transformation step. A transformation step can be defined
as the single application of a transformation rule. A complete transformation
consists of one or more transformation steps. This is typically implemented as
some kind of traversal that applies transformation rules at multiple locations.
As an example consider a transformation that performs method inlining. A
single transformation step performs the inlining of a method body at one call

5

Source
��

�� �

�

�

Pivot

Target
��

	

�Transformation step

External information

Transformation

Figure 1: Schematical overview of transformation terminology

site, while the whole transformation transforms the initial source code into the
optimized form where all selected methods are inlined.

The notion of scope is relevant since it has impact on the design and imple-
mentation of transformations. Typically, transformations covering only a small
scope are much easier to implement than transformations with a larger scope.
Partly because these small scoped transformations are conceptually less diffi-
cult, but to a large extent because tool support is often better for this type of
transformation.

We make a rough characterization of types of scope. First, scope should be
considered in the source and the target of the transformation. Second, in both
source and target, a transformation step can have a local or global scope. To
define these notions more precisely we use the term pivot, which was introduced
by Boyle et al. [3] for the description of transformations in the Tampr [2, 3]
transformation system. The pivot of a transformation is the main input ele-
ment around which the transformation step revolves. In the method inlining
example the method call sites form the pivots while the method body is ex-
ternal information for the transformation. Figure 1 illustrates these terms in a
schematical overview of a transformation.

A transformation step has local source scope if the input consists of just
the pivot or can be found in the subtree of the pivot. If input information
is located outside the subtree of the pivot or no pivot can be determined the
transformation step has a global source scope. A transformation step has a local
target scope if there is only a single output node and it has a global target scope
if there are multiple output nodes. Source and target need not have the same
scope. Indeed all possible combinations exist in practice. The following is a
summary of the combinations illustrated with examples.

6

Local source to Local target A source node can be directly translated to a
target node. The generation of some simple documentation shown in Figure 2
is an example of this type of transformation.

1 to 1 This is a special form of the local source to local target category in
which, besides being directly translated, also the locations of source and target
node correspond. This means a simple traversal can be used in which every
source node is translated to a target node. An example transformation is the
simplification of mathematical expressions shown in Figure 3.

Global source to Local target When generating a simple target node, in-
formation from multiple source nodes is needed. The function inlining example
in Figure 4 illustrates this type of transformation. In this example the method
call site forms the pivot and the method definition provides extra information
needed for the transformation which cannot be found inside the pivot subtree.

Local source to Global target A single source node is translated into mul-
tiple target nodes. This type of transformation is illustrated in Figure 6 with
the translation of a domain-specific language to C++ code. Each variable decla-
ration is transformed into multiple references in a target C++ file, i.e., a normal
constructor, a copy constructor and an object logging method.

Global source to Global target Multiple source nodes are translated into
multiple target nodes. An example transformation is function specialization
illustrated in Figure 5. A function call with some constant arguments is replaced
with a call to a new function that is specialized with those constant values.
The function call site forms the pivot of the transformation and the function
definition is external information needed for the transformation that cannot be
found inside the pivot subtree. At the target side the definition of the specialized
function is added and the pivot is transformed into a call to the new function.

An interesting observation at this point is the fact that the scope of a trans-
formation is not only a technical artifact of its implementation, but is closely
coupled to the problem domain. That is, scope is often inherent in the spec-
ification of a transformation. For example, inlining requires information from

import javax.swing.*;

import java.io.*;

class MyClass

{

public int i ;

public int j ;

public MyClass()
{
}

}

class MyClass

exposes variables

i and

j

and imports packages

javax.swing.* and

java.io.*

Figure 2: Documentation generation - example of a local source to local target
scope

7

function defininitions in order to transform call sites, making it an inherent
global source transformation. Thus, scope is an ideal starting point when de-
signing a program transformation. This applies to a much lesser extent to the
other two mechanisms that will be discussed in this paper, i.e., direction and
staging.

The scope from the problem domain can be equivalent to the scope of the
transformation implementation that solves the problem, but it does not have to
be. Section 5 describes several design patterns that relate the scope of a trans-
formation in the problem domain to the implementation of a transformation.

r = (a+0) ∗(b+ (c * 1)); r = a ∗ (b + c);

×

+

a 0

+

b ×

c 1

×

a +

b c

Figure 3: Expression simplification - example of a 1-to-1 scope

void Log(int logval)
{

System.out.println(
"Value = " + logval

);
}

int Compute(int value)
{

Log(value);

return value * 2;
}

void Log(int logval)
{

System.out.println(
"Value = " + logvalue

);
}
int Compute(int value)
{

int logval = value;
System.out.println(

"Value = " + logvalue
);

return value * 2;
}

Figure 4: Function inlining - example of a global source to local target scope

8

int Compute(
int val1,
int val2)

{
return val1 * val2;

}

void main(int input)
{

System.out.println(
"" +

Compute(2,input)

);
}

int Compute(int val1, int val2)
{

return val1 * val2;
}

int Compute_2(int val2)
{

return 2 * val2;
}

void main(int input)
{

System.out.println(
"" +

Compute_2(input)

);
}

Figure 5: Function specialization - example of a global source to global target
scope

object Workspace
{

data <
ASKPRICE,

ASKVOLUME
>

}

CWorkspace::CWorkspace() :

m_AskPrice(0) ,

m_AskVolume(0)

{
}
CWorkspace::CWorkspace(

const CWorkspace& w)
{

m_AskPrice = w.m_AskPrice;

m_AskVolume = w.m_AskVolume;)

}
void CWorkspace::Log()
{

printf("AskPrice=%d",
m_AskPrice);

printf("AskVolume=%d",
m_AskVolume);

}

Figure 6: DSL code generation - example of a local source to global target scope

9

3 Direction

The notion of direction is best illustrated with an example. Compare the two
code fragments of the Stratego program in Figure 7, which simplifies mathe-
matical expressions, and the VBScript/ASP page in Figure 8, which generates
a webpage. While there are evidently syntactical and implementational dif-
ferences between the two code fragments there is also a fundamental difference
underneath those more superficial dissimilarities. The Stratego specification de-
fines a traversal over an abstract syntax tree applying simplification rules along
the way. In this transformation the output is defined completely in terms of
the input, which is why we call this Stratego example source driven or a for-
ward transformation. The ASP page, on the other hand, exactly describes the
format of the target upto a number of holes that are filled with values from the
source. This is why we call an ASP page target driven or, because we start
with the output and afterwards use the input, we also use the term reverse
transformation.

Now we can define the notion of direction more precisely. Thus, direction
indicates whether a transformation is controled by the source or the target.
In a forward or source driven transformation the target is built by walking
over the source tree and applying transformations. A schematical overview of
a forward transformation is shown in Figure 3. In a reverse or target driven
transformation an output template is used in combination with lookups in the
source where necessary to build the target. A schematical overview of a reverse
transformation is given in Figure 9.

From the examples and the definition it becomes clear why the difference

module ReduceExpression

imports lib

strategies

reduce-expr = bottomup(try(ReduceAdd + ReduceMul))

rules

ReduceAdd: Add(0,a) -> a

ReduceAdd: Add(a,0) -> a

ReduceMul: Mul(1,a) -> a

ReduceMul: Mul(a,1) -> a

Figure 7: Source driven Stratego specification of mathematical simplification

<% @Language = vbscript %>

<html>

<body>

<h1>ASP Calculator</h1>

The first number is <%= Request("number1") %>

The second number is <%= Request("number2") %>

The sum of both numbers is

<%= CInt(Request("number1")) + CInt(Request("number2")) %>

</body>

</html>

Figure 8: Target driven ASP page generating web page

10

Target
�

�

�

� �

��

��

Source
	

�

�

�

�

Query

Result
Dynamic Value

Static Value

Figure 9: Schematical overview of a reverse transformation

between forward and reverse transformations is significant. In a forward trans-
formation, traversals and transformation rules form the basis of the transfor-
mation. This implies a tool aimed at this type of transformation should have
sufficiently powerful mechanisms for defining these. When using a reverse trans-
formation on the other hand, traversals and transformation rules are of much
less importance, instead we have to be able to easily lookup data anywhere in
the source using some kind of query functionality.

To illustrate the difference consider using an ASP page written in the VBScript
language for defining a forward transformation. As we just stated, traversals
are very important in forward transformations. In object-oriented languages,
tree traversals are usually implemented with the visitor design pattern [11, 31].
This is very hard in VBScript since it is not a true object-oriented language.
Because of the limited generic traversal capabilities it is virtually impossible to
use ASP in combination with VBScript for forward transformations.

An important prerequisite for reverse transformation is the availability of a
sufficiently powerful query mechanism that makes it possible to easily lookup
information anywhere in the source, based on some conditional expression. This
is even more important when the input is an abstract syntax tree generated by
a parser, implying that the tree format is dictated by the language grammar
instead of representing the optimal data format for lookups.

While a domain study can indicate the scope of a transformation, this is less
clear cut for the direction of a transformation. One observation that can be
made is that reverse transformations emerged in template-based generation of
web pages and programs. In this approach a large part of the target is fixed and
specified by means of a template in which application-specific values are pasted.
The specification of large fragments of target code requires the use of concrete
object syntax [29] such that the generator looks much like the output file. For
example, to allow experts of the target language to easily make small changes to
the generated code without having profound knowledge of the meta-language.
Besides this observation we will discuss in Section 5 a number of patterns that
show how the choice for the direction of a transformation can also be influenced
by other transformation aspects.

11

Input Output

Figure 10: Schematical overview of a Multi-Stage Modify transformation

4 Staging

A final aspect of transformation mechanics is the division of a transformation
in stages. Many transformations consist of a single traversal in which some
transformation rules are applied. For some transformations, multiple traversals
are used or required. For example, many optimizers traverse the abstract syntax
tree multiple times, repeatedly applying optimizations during each traversal.
Other transformations are also implemented in several different stages. We can
distinguish between three different approaches when looking at the stages of a
transformation:

Single-Stage The target is generated in one single (complex) traversal over
the source. An example is the addition of log statements at the start of all
method bodies in a class.

Multi-Stage Modify The target is generated incrementally by making mul-
tiple walks over the source. In every stage the same code is modified over and
over again until the target is finished. See the schematical overview in Figure 10,
where the arrows represent transformations. Program optimizations are typical
examples of this type of transformation.

Multi-Stage Generate Every stage generates a piece of the target that is
merged with all other pieces afterwards to form the final target. A schematical
overview of this type of transformation can be seen in Figure 11. An example
of a multi-stage generate transformation is the transformation of a DSL into
a constructor, destructor and a logging method that is implemented as three
distinct transformations of which the targets are merged to form the complete
target class definition.

The choice for staging of a transformation can be partially influenced by
domain analysis. Typically one starts with a single-stage transformation. Do-
main analysis can reveal that a multi-stage modify transformation is needed, for
example, when a transformation has to be applied repeatedly until no further
application is possible. When this is not the case a multi-stage generate trans-
formations can be a substitute for a simple single-stage transformation, but this
consideration is usually based on practical issues instead of domain analysis.
This will be considered in more detail in Section 5.

12

Input

Intermediates

Output

Merge

Figure 11: Schematical overview of a Multi-Stage Generate transformation

5 Design Patterns in the Transformation Land-

scape

In the previous sections we have discussed three fundamental aspects of transfor-
mation mechanics, distinghuishing five types of scopes, two types of directions,
and three types of stages, giving rise to a landscape with thirty different types
of transformations. It is evident that all three aspects can be recognized in each
transformation and that almost all combinations can occur. However, some
combinations make more sense than others, and tools typically only support a
few of these combinations.

In this section we explore the landscape of transformation mechanisms by
considering several design patterns that provide standard solutions to certain
transformation problems. Although more patterns can be distinguished, we
discuss the most interesting ones, which already give a good indication of how
transformation mechanics can be used to describe standard designs at a high
level. We also examine several concrete transformations and discuss the mech-
anisms that could be used in their implementation, with a focus on their scope.

5.1 Design Patterns

1-to-1 When domain analysis reveals a 1-to-1 scoped transformation is pos-
sible this will most likely be the easiest to implement using a 1-to-1 scoped
single-stage forward transformation. Syntax directed translation, in which each
language construct is mapped onto a combination of constructs in the target
language, is a typical example of this kind of transformation.

Local-to-local The local-to-local scoped transformation is closely related to
the 1-to-1 scoped transformation but an implementation will often look quite
different. As an example, consider again the documentation generation in Fig-
ure 2. There are two possible implementation approaches for this example. In
the first approach we use a forward transformation. First all pivots from the
source are collected in a data structure that feeds a subsequent 1-to-1 scoped

13

single-stage forward transformation. For the example this would mean we would
collect all imported packages, the classname and the public variables from the
class, and then transform these nodes to the target documentation. An alter-
native approach uses a reverse transformation. In this approach a template for
the documentation is defined, which is completed by looking up the imported
packages, the classname and the public variables when necessary.

Global-to-local Transformations with a global-to-local scope can be imple-
mented in multiple ways. If a single-stage forward transformation is chosen,
global information somehow has to be acquired. This can be done using queries
to retrieve data anywhere in the input tree. Another option is to traverse the
whole tree collecting global information, followed by a traversal over the pivots
that performs the actual transformation. A small variation on this is to first
modify the tree by moving or copying some of the global data inside the pivot
subtree followed by a simple local-to-local or even a 1-to-1 scoped transforma-
tion. It is also possible to implement transformations with this scope using a
reverse transformation, performing multiple lookups for every target node that
is to be generated. It should be noted however that if the transformation is con-
trolled by the structure of the input a reverse transformation should probably
not be considered.

Local-to-global Transformations with a local-to-global scope can be imple-
mented in a number of ways. If we look at the example transformation in Fig-
ure 6 we can observe that in this example the generated targets are completely
independent. Because of this we can simply use multiple unrelated transforma-
tions and generate each target independently. In this example that would mean
we would write three transformations that each generate a single constructor
or method. This is not always possible since often the generated targets are
related. An example of this is the global target transformation of function spe-
cialization. If the targets are related we can make an implementation using a
multi-stage generate transformation. For example, the DSL translation in Fig-
ure 6 would in this case be implemented using a transformation that for each
pivot generates all constructors and methods but for just that single variable.
All these methods from all pivots are later merged to form the complete tar-
get. Finally, it is of course also possible to use a more ad hoc approach. An
example would be to start a traversal through the whole tree from every pivot
and propagate the information necessary to create all target nodes at the right
locations.

5.2 Scope of Transformations

To make the exploration of transformation mechanics more concrete, we examine
a number of concrete transformations and discuss the mechanisms used in their
implementation, focusing on their scope, since scope is the transformation aspect
most directly related to the problem domain. Figure 12 summarizes the results
of this examination. Note that some of these program transformations and their
definitions were taken from [28].

14

Transformation × Scope l:l 1on1 l:g g:l g:g

Instruction Selection x x
DSL code generation x x

Function inlining x
Desugaring x

Constant Folding x
Constant Propagation x

Renovation x x
Refactoring x

Simplification x
Migration x x x x x

Reducing lang extensions x x x x x

Figure 12: Scope of typical program transformations

5.2.1 Instruction Selection

Instruction selection deals with mapping intermediate representation (IR) trees
to machine instructions. Mapping of an IR instruction to machine instructions
is fairly straightforward and can be done in a simple 1-to-1 single-staged trans-
formation. In most scenarios however this does not produce the optimal result.
Instead we want to find the optimal mapping, where optimality depends on
multiple factors, such as execution speed, memory usage, and program size.
Sometimes a good mapping can be found by using simple optimizations to the
1-to-1 scoped transformation, such as the maximal-munch approach that prior-
itizes instructions that cover a large part of the IR over instructions that cover
a smaller part. If however the instruction set is complex, or there exist extra
constraints on the generated output, a simple 1-to-1 scoped transformation no
longer suffices. Instead more contextual information is needed for deciding what
mapping is optimal. In that case the needed transformation has a global-to-local
scope in which the cummulative effect of transformations of single nodes is taken
into account. This leads to a two-stage process in which the first stage computes
all possible mappings, and the second selects the optimal one. See [4] for an
overview of strategies for instruction selection.

5.2.2 DSL Code Generation

The scope of a transformation from a domain specific language to a general pur-
pose language typically depends on how much the two languages resemble each
other. In general, the source and target can be written in any type of language,
and the languages can have an arbitrary resemblance. However, typically the
resemblance can be assumed quite small since the DSL is usually created to
provide a much higher abstraction level. Therefore, a single element from the
input is typically transformed into multiple output elements, making the trans-
formations local-to-global or even global-to-global if source analysis is required.
Since these types of transformations are difficult and not very well supported
among transformation tools, as we will see in the next section, the DSL language
is sometimes designed with the implementation of the transformation in mind.
The result is that the DSL language in such a situation will have a structure
that is fairly similar to the target language, for the simple reason that it allows

15

for easier implementation with 1-to-1 scoped transformations.

5.2.3 Function inlining

Function inlining is an optimization that replaces a function call with the func-
tion body. This reduces the overhead of a function call at the expense of in-
creased code size. The main benefit comes from the possibility for better op-
timization of the function body using information from the function call site.
Function inlining is a typical example of a global-to-local transformation, since
the function definition is needed in addition to the function call site, which is
the pivot of the transformation.

5.2.4 Desugaring

Desugaring is a kind of normalization in which some constructs, known as syn-
tactic abstractions or syntactic sugar, of a language are eliminated by translat-
ing them into more fundamental constructs. These new constructs are usually
placed at the same location as the original ones, enabling the implementation
of the desugaring as a 1-to-1 scoped transformation.

5.2.5 Constant folding

Expressions with constant operands can be evaluated at compile-time, reduc-
ing run-time and code size. This simple optimization by itself does not have
great impact on most programs, since most programmers do not write much
code that could be directly optimized by constant folding. However, combining
this optimization with other transformations such as macro expansion, constant
propagation and function inlining, makes this a very simple and effective op-
timization. Because it is such a simple transformation that is based only on
local information, it can easily be implemented as a 1-to-1 single-stage forward
transformation.

5.2.6 Constant propagation

If a variable has a constant value, i.e., it is known at compile-time, it is possible
to replace all references to the variable with this constant value, reducing run-
time. The main benefit is achieved when combining this transformation with
constant folding, resulting in a cascading effect where large parts of a program
can be evaluated at compile time. Variable usage sites form the pivot of this
transformation. In order to determine if a variable can be transformed and to
what constant value it should be transformed, an analysis is needed to deter-
mine if the variable was constant earlier in the program flow. This is external
information to our transformation making this a global-to-local transformation.

5.2.7 Refactoring

A refactoring is a transformation that improves the design of a program while
leaving its functionality unchanged [10]. Typical refactorings first require some
analysis followed by making the design change which often includes changing
the pivot as well as some other locations, resulting in a transformation with a
global-to-global scope.

16

5.2.8 Renovation

Software renovation is the transformation of a program where extensional be-
havior is changed in order to fix an error or because the functional requirements
have changed. This process practically always requires some analysis after which
a pivot can be translated into one or sometimes multiple output nodes. This
means software renovation involves a global source and a local or global target
scope.

5.2.9 Simplification

When simplifying a program it is reduced to a normal form. Examples are the
filling in of default values or algebraic simplification of expressions. This simple
transformation, that looks like but is not the same as a desugaring, can usually
be implemented using a 1-to-1 scoped transformation.

5.2.10 Migration

When migrating a program it is transformed to another language at the same
level of abstraction. These migrations can often only be automated successfully
if the languages are fairly similar. When this is the case most of the trans-
formation can be done using a simple 1-to-1 scoped transformation. In most
non-trivial migrations however there are also some structures that cannot be
directly translated. To transform these often some global analysis is needed
and/or some code has to generated at multiple locations. Therefore nontrivial
migrations often involves a mix of all types of transformation scopes.

5.2.11 Reducing language extensions

This transformation deals with reducing arbitrary language extensions, from
a domain specific embedded language (DSEL) into normal host language con-
structs. This transformation shows similarities with the desugaring transforma-
tion in the sense that both reduce certain statements to more basic statements,
but there is one big difference. While a desugaring step is very small, which
means a certain expression is desugared to one or maybe a few other expres-
sions that are inserted at the location of the original statement, a language
extension usually has a much higher level of abstraction resulting in a more
complex transformation. It is very well possible a single extension statement
will be reduced to multiple code statements at different locations. For example,
inserting variable declarations for auxiliary variables used by the translation of
the extension. Furthermore, it is very well possible some intelligent analysis is
needed before the reduction can be done. We can therefore conclude that all
types of transformation scopes could be needed when implementing this type of
transformation.

6 Tool Survey

In this section we present a systematic technical evaluation of transformation
paradigms and tools aiming at discovering the transformation mechanics sup-
ported by a tool. For obvious reasons it was not possible to review all existing

17

transformation solutions, so we selected eleven of these solutions trying to cover
many fundamentally different tools and paradigms. Although we use the term
tool, the survey is not limited to classical program transformation tools, but
also includes some general purpose languages to provide a broad perspective on
all solutions.

We should stress that we do not aim at finding the best transformation tool
currently available. The fact that a tool lacks certain functionality does not
automatically mean it is inferior to a tool with more functionality. Limited
functionality dedicated to support a restricted problem domain can make a tool
more straightforward to use than a more generic solution. It completely depends
on the user and the problem that needs to be solved what works best. Aspects
such as the syntax of a language, the user interface of a tool, and the learning
curve should also be considered when evaluating a tool for a specific purpose or
project. Evaluation of these aspects is beyond the scope of this paper.

Because we have only firsthand experience with a limited number of tools,
we base the evaluation on tool descriptions in the literature. Although we
have spent a considerable amount of time studying papers and documentation
it is very well possible we erroneously report some features to be missing for
some tools just because we were not able to find references to these features in
the literature. This can be regarded a weak point of this evaluation, but it also
emphasizes the importance of a common idiom for describing the transformation
mechanics in a systematic way to ease tool comparison.

6.1 Tools and Functionality

Recognition of transformation mechanics in a tool is difficult without systematic
documentation or firsthand experience. Therefore, we have compiled a short list
of transformation features that play a role in the implementation of mechanics
and which are easier to recognize in tool descriptions: object-syntax, traver-
sals, queries, and data acquisition. First we introduce each of the tools and
discuss their support for these features. Then we determine the support for
transformation mechanics of each tool.

Object Syntax Meta-programs analyze, transform and generate object pro-
grams. When matching or building object program fragments one can use ab-
stract syntax (AS) or concrete syntax (CS). Especially for writing large object
fragments concrete syntax is preferred, while for smaller transformations ab-
stract syntax is usually preferred because it is unambiguous and does not require
special parser support.

Traversals For non-trivial transformations it is often necessary to traverse
the input tree. Many different approaches exist, some more powerful than oth-
ers. Especially important is the capability for generically specifying traversals,
i.e., without having to spell out the traversal for each data type and each trans-
formation.

Queries It is often useful to retrieve data from an arbitrary location in the
input. A common approach is to write a query to exactly select some input

18

Tools × Functionality CS AS Traversals Queries Data Acquisition

OO Languages x + − +
Functional Languages x − − −

String based generators x − + +
OpenC++/OpenJava x + + +

JTS/Jak x x + + ++
Alchemist x − −− −−

TXL x x − − −

ASF+SDF x x + − ++
Attribute grammars x + − ++

XSLT x + ++ ++
Stratego x x ++ + ++

Figure 13: Evaluation of tool functionality

elements based on structure and values. Here also support varies greatly between
tools.

Data acquisition A transformation often requires data from multiple loca-
tions in the input, so before a transformation can be performed this data has
to be acquired. Although this feature might resemble much the queries feature,
it is in fact different. Queries can be useful for data acquisition, but a more
popular approach is the usage of some kind of traversal that collects interesting
values. The support for this important feature however varies from tool to tool.
Since both queries and traversals influence the ease with which we can acquire
data the score will be influenced by the score we assigned to those two features.

Summary Table 13 summarizes the support for transformation functionality
for the tools we have examined. In the first two columns we only check whether
or not support is provided. On most other columns however we also show how
well certain features are supported. Because it is not easily possible to give an
exact score we decided to reward a score that has four possible values: ++ if
the support is excellent, + if there is some support, − if support is weak and
−− if there is no support at all.

6.1.1 Object-oriented languages

Object-oriented programming is a popular programming paradigm. In particu-
lar, the C++ and Java languages are widely used. Because of this popularity it
is interesting to see how well this type of programming language performs when
using it for implementing program transformations.

When we look at the input we typically see that the complete AST is avail-
able in the form of a hierarchically structured collection of objects. These objects
are created from classes that correspond to the non-terminals in the grammar.
These classes must be handwritten, although sometimes a tool can be used to
generate these from a grammar definition. These general purpose languages
typically do not have any support for working with concrete object syntax or
custom language extensions, which makes working with the AST quite verbose

19

when for example a new tree fragment must be built or matching against a
pattern has to be done.

Traversals are available in the form of the visitor design pattern [11] which
allows for easy tree traversals. However, one of the problems of the visitor
design pattern is the rather limited traversal control. Visitor combinators fix
this problem, but they are only recently explored [31]. They look promising,
but because a lot of code has to be written, additional tools must be relied upon
to generate this code. Because it is not yet clear how well this approach will
work in real scenarios and also because it is not an out-of-the-box solution it
will not be considered here.

There is also no real query functionality available. Simple queries are possible
using standard methods for getting the parent and children. This however often
requires a lot of type checking and casting which clutters code. Also no special
pattern matching support exist which makes matching of simple tree structures
very verbose. This basically makes only simple local matching manageable.
Simple collect queries can be mimicked by visitor but if collecting has to be
a bit more intelligent visitors fail because of the weak traversal control and
matching support. Visitors are very good at collecting data during traversal
which makes data acquisition potentially powerful. Due to a lack of pattern
matching and query support however this support is suboptimal.

6.1.2 Functional languages

Especially in research projects general purpose functional programming lan-
guages like Haskell and ML are very popular and there have already been some
published results applying this paradigm to program transformations. Because
there are many very different functional languages it is difficult to generalize
over them for this evaluation. That is why we will assume the functional lan-
guage Haskell where necessary. The reason for choosing Haskell is because it is
a modern language which is used a lot in recent research.

In a functional programming language every language construct is repre-
sented by a special constructor. Just as with object-oriented languages these
constructors must be handwritten or a tool must be used to generate these
from a grammar definition. Just as the other general purpose solutions most
functional programming languages do not have support for concrete syntax. It
should be noted however operations on the AST can often be defined in an el-
egant way solving some of the problems of writing transformations in abstract
syntax.

Traversals often have to be written by hand. This means that for every node
in the AST you have to define how the traversal should recurse into the children.
It should be clear this severely limits usability. This problem is recognized and
gradually several solutions [17, 15] are presented that will allow for generic
traversals. Although they look promising, these solutions require extensions to
the compiler or the language. Therefore, we will not consider these solutions in
this overview.

There is no special query support. However, some languages, including
Haskell, have very nice pattern matching support. The only problem is that
because of the limited traversal functionality this is only useful for matching
against patterns close to the current location. Furthermore, the root of the in-
put tree is not easily available, only allowing for queries in the current subtree.

20

We can conclude that only very simple queries can be implemented and that
more complex queries are not supported.

6.1.3 String-based Generators

There exist quite a few string based program transformation tools, mainly be-
cause they are very simple to develop using existing tools and environments.
Examples are ASP and JSP that were intended for the generation of dynamic
webpages but similar tools have also been employed for meta-programming.
The Jostraca [21] tool is an example of this. These tools are characterized by
the fact that the output is specified in the form of plain strings. The reason
for including them in this overview is because they provide a very easy to use
approach to program transformations.

A characteristic feature of string based generators is that the target template
can be defined in concrete syntax. This concrete syntax is not parsed, however,
but is treated as plain strings. As a result the AST is never available. Since
the engine does not care about the content of the strings any output can be
generated, ranging from HTML to C++ code.

These engines typically get their input from a flat input structure like page
arguments or a database through the usage of SQL-queries. Because of this
traversal code is underdeveloped. If the input or output is a tree structure,
depending on the meta-language, the traversal can sometimes be handwritten
using the visitor design pattern. Two very popular meta-languages, VBScript
and PHP however do not support this.

There is no real query support and basically you can only access global
variables. Because of the flat input structure however, this ‘query’ functionality
is sufficient for typical applications of string-based generators. Because of this
sufficient query functionality we rated data acquisition support also as sufficient.
Again here also we took into consideration the fact that the typical input of these
engines is flat, allowing only for simple traversals and as a result data acquisition
support does not have to be very advanced.

6.1.4 OpenC++/OpenJava

OpenC++ and OpenJava provide an interesting approach that extends an
object-oriented language with meta objects that control the compilation of the
class a meta object is assigned to. These meta objects can be used to make
modifications to a class, for example to improve efficiency but also to desugar
simple language extensions. OpenC++ [5] is interesting specifically because it
is one of the earlier approaches in this direction and recently the same approach
was applied to the Java language [23]. Both tools operate directly on the AST.
OpenJava provides a little more abstraction compared to OpenC++ by pro-
viding an extra interface that hides some of the irrelevant details of the AST,
like the declaration order of some variable modifiers. Neither tool provides any
support for concrete syntax.

The output of the two tools is C++ and Java respectively and cannot easily
be changed. The input language is the same language with some extensions.
There are some fixed extensions that support the attachment of a meta object
to a class. Furthermore, there is support for simple language extensions in the

21

form of custom keywords at a several fixed locations, e.g., in front of a class or
variable declaration.

When a class is transformed an implicit traversal is performed over the input,
which calls the right meta object method for a number of fixed elements such
as method call, variable get, variable set, etc. Through these method calls
the target code is modified. Although this built-in traversal is sufficient for
simple code generation, more advanced traversals may be required for other
transformations, which seems to be impossible.

Querying data can be done through a large number of available methods very
similar to Java or C# introspection. A meta class, for example, has methods
for getting all implemented interfaces, all class variables and all methods of a
class. For example, the method descriptors provide easy access to information
such as the return type, arguments, the body, etc. A more complex query,
such as getting all referenced variables inside methods that start with ’log’,
however, becomes very verbose. One of the reasons is the lack of generic traversal
functionality that forces the complete specification of every traversal step.

Data acquisition could have been better if query functionality would be more
powerful, but the readily available introspection functionality is quite complete
considering the targeted transformations which makes data acquisition support
quite powerful.

6.1.5 JTS/Jak

Jak is part of the Jakarta Tool Suite [1] and provides an extensible Java language
that supports meta-programming. One of its special features is that it allows for
arbitrary language extensions and that concrete syntax can be used for meta-
programming. The JTS tool is based on the GenVoca model allowing for easy
combining of different components.

Jak provides an extension to Java to make it a meta language for generating
other Java programs. Although it is possible to write transformations using
abstract syntax there is an extra extension that includes functionality to write
concrete syntax that is later reduced to abstract syntax. The current JTS imple-
mentation only seems to support Java output, although it should be relatively
straightforward to extend this to other languages.

Traversals are possible through cursors that define a location in the tree.
Although this approach allows for easy traversals through a whole tree, node-
specific actions can be very verbose requiring a lot of type testing using the
instanceof operator and casting. Since many intelligent traversals rely on
node-specific, they can be awkward to implement. There is however a special
matching mechanism available that is implemented through a simple language
extension and allows easy iteratation over nodes from the input tree matching
an arbitrary pattern. Besides looking up data, this matching support can also
be easily used to make changes to the tree at specific locations. This can there-
fore also be used for simple traversals. One of the primary applications of the
matching support is queries, since it allows for easy data lookups that match
against a certain pattern anywhere in a subtree. Quite complex queries can be
made using this matching support, although they probably require multiple of
these matching patterns to be applied successively, which can be quite verbose.

The reduce2javamethod that is responsible for the actual transformation of
a node into Java code has a properties argument, which basically is a hashtable

22

that allows passing around arbitrary information. Although no usage examples
could be found in the literature, we expect this feature to provide quite good
data acquisition support. The only downside is that it only works in the last
transformation stage, just before the final Java code is generated. For custom
traversals this support is not available and has to be implemented manually.
Another option is presented by the SymbolTable mixin, which presents meta
information about packages, classes, methods and so on through a globally
available interface. Although unfortunately it is not possible to use the matching
support on AST nodes that are stored in the symbol table, the matching support
can of course be employed to run simple queries against the root of the AST
to acquire data. If we sum up all these features we can conclude JTS provides
good support for data acquisition.

6.1.6 Alchemist

This approach described in [18] is primarily of interest because it was one of
the first program transformation environments and because it is based on TT-
grammars [13], a paradigm not commonly used but that looks interesting be-
cause it has been intended exactly for the definition of program transformations.

Transformations in Alchemist are based on grammar productions. The tool
allows specification of the transformation of a grammar production of the source
into the production of the target. Transformations are defined completely in
terms of grammar productions, which actually is a mix of concrete and abstract
syntax but in the context of this evaluation we consider it abstract syntax. After
specifying the exact transformation the system will perform a simple traversal
over the input to transform every node. This traversal is implicit and cannot
be customized in any way. Furthermore, it is not possible to add user-defined
traversals over the input. Support for data acquisition and queries is absent,
which is recognized by the developers.

6.1.7 TXL

The tree transformation language TXL [6] is a language designed for specifying
rule-based source-to-source transformations, claiming to be a general purpose
transformation system. Due to its long history – work on a direct predecessor
started as early as 1990 – this tool has been used in many different industrial
projects.

In the transformation rules a mix of concrete and abstract syntax can be
used. From the literature it does not become clear how the parsing of this
concrete syntax works. From the different applications shown in different papers
we assume it is relatively easy to generate code for an arbitrary language. The
TXL engine applies all transformation rules repeatedly in a nondeterministic
way until no more rules succeed. When a rule is applied it is possible to call
other rules that operate on a supplied argument that could for example be a child
node. This provides a basic mechanism of custom traversals over the input tree,
but it is not very powerful. There is no query support, but template matching
support is quite powerful. It is however unclear if and how this functionality
allows one to retrieve input from an arbitrary location in the input.

Support for data acquisition is rather limited. If information from elsewhere
is needed in a transformation one option is to first do a custom traversal that

23

collects the necessary data followed by a traversal that takes all collected values
as arguments and traverses to the pivots. Due to the weak traversal support and
due to the bad scaling characteristics of this approach this is not a very good
solution. A possibly better approach, that is also aimed at allowing for trans-
formations in which source and target language are different, is to use several
intermediate grammars and apply multiple successive rewrites from one gram-
mar to the next. This way global source transformations become possible, but
the code becomes hard to maintain, because of two reasons. First, the interme-
diate grammars do not have any real world meaning and can therefore become
hard to understand. Furthermore, if the number of intermediate grammars be-
comes large, there is quite a high risk that a lot if not all of those grammars
will have to be modified if new functionality is needed. It is reported in [8] that
a COBOL to Java transformation required about seventy of these intermediate
grammars. A solution for this problem is the usage of a union grammar which
means the source and target grammars are combined in such a way that all
intermediate representations can be expressed in that single grammar. This
indeed solves the problems caused by having many intermediate grammars, but
it remains unclear whether a suitable grammar can be constructed for any two
source and target grammars, especially if they are very different.

6.1.8 ASF+SDF

The ASF+SDF meta environment [9] provides a complete environment for pro-
gram transformations based on the term rewriting paradigm. One of its qualities
is that it provides strong type checking on transformation rules. Another reason
that make it an interesting tool to study is because it has been used in a number
of industrial projects.

The equations that define the transformation are written in concrete syntax.
This concrete syntax is fully parsed and the resulting AST is used internally.
Besides the equations, a transformation specification also consists of a complete
grammar definition of both input and output, which makes it possible to easily
generate any type of output.

Traversals are fairly well developed. There are two basic traversals, bot-
tomup and topdown. It is also possible to define new traversals by manually
specifying inside every rule how a transformation should recurse into its chil-
dren. Due to the tight coupling of the transformation and this type of traversals
it is unfortunately not possible to separate this functionality, making reuse of
custom traversals very difficult.

There is no special query functionality that allows for easy lookups of in-
formation. Although the rich equation functionality can be used for expressing
certain queries, it does not provide a very compact syntax and is only practical
for querying the current subtree not allowing for easy access to other parts of
the input tree.

There are a number of special features that allow for easy data acquisition.
First of all it is possible to collect data in extra attributes during a manual
traversal. This suffers from the problem that the addition of a single attribute
will affect many equations, which presents a scaling problem. The usage of
the predefined traversal types accumulator or transformer provide a much nicer
approach. For these predefined traversal types the system generates default rules
that will automatically handle the traversal over terms for which no traversal is

24

specified. It even takes extra arguments into account, making data acquisition
easy. This however only works nicely if the traversal can be captured in a basic
bottomup or topdown traversal. If this is not the case there is the option of
overriding the traversal at some key points, but these overrides should specify
exactly all extra arguments used, introducing again the same scaling problem
as in the manual traversal.

6.1.9 Attribute grammars

Although attribute grammars have a long history [14] they have never managed
to become widely used. Recently however there is some renewed interest in
them [22, 12]. Although there is hardly any experience using attribute grammars
for program transformations we included it in this evaluation because it is yet
another programming paradigm and it looks like it can provide an attractive
implementation of global source transformations worth studying.

The AST forms the basis for attribute grammars since attributes are assigned
to every node in the AST. For each of these attributes a specification defines how
its value can be computed based on values from the children, parent or other
attributes. The output of an attribute grammar can be anything ranging from
a simple value, such as the number of variables used, to much more complex
values, such as a transformed input tree. However, since attribute grammars
are hardly ever used for building new trees they usually do not support concrete
syntax for this.

Traversals are special in the context of attribute grammars because they only
exist implicitly. When evaluating an attribute grammar the framework or tool
will determine the order of attribute calculation, thus allowing for some very
intelligent ’traversals’. In some situations custom traversals might be needed
which are often not sufficiently supported.

The attribute grammar paradigm does not provide special support for queries.
Although attributes can also quite easily be used to make data available else-
where in the tree, queries are more lightweight and allow for easy ad hoc value
retrieval, while attributes are a bit more heavyweight in the sense that a system-
wide set of attributes should be defined that should be solved by the framework.
If the attribute grammar system is implemented inside an existing general pur-
pose language query support from that language can be used. Unfortunately,
many general purpose languages have weak query support so this is not of much
help.

Gathering data from anywhere in the input tree is exactly what attributes
do best. Just define which value should be put in attributes and the framework
will make sure all referenced values will be transferred to the right locations.
Although this sounds very neat, there are some catches. The biggest catch is
that most attribute grammar systems do not have a type of attribute that can
be directly used for this, but instead they work with synthesized and inherited
attributes. To enable sharing of information through the whole tree we would
first write a synthesized attribute that collects information. The value of this
synthesized attribute will be assigned to an inherited attribute at the root of the
tree that distributes this information through the whole tree making it available
anywhere.

Although the explained approach is rather straightforward it requires at
least two attributes for looking up one simple external value of our transforma-

25

tion. For all of these attributes simple copy rules are needed, which number can
quickly explode if a number of global source transformations with widespread
information are to be implemented. It is therefore of vital importance the used
framework has powerful support for the definition of default copy rules. Fur-
thermore it is important support is available to group together related attribute
definitions to be able to handle the large amounts of attributes this approach will
need. We conclude that the attribute grammar paradigm has excellent support
for data acquisition, but it should be noted that there can be implementational
issues that might limit the usability.

6.1.10 XSLT

The very popular functional transformation language XSLT [33] can be used
to transform XML documents into arbitrary output and cannot be overlooked
when studying program transformations, although up to now it has not been
used much for program transformation.

A typical XSLT rewrite rule, or template in XSLT terms, receives as input
an XML document, for example, the abstract syntax for a Java file. The right
hand side of these templates is the output also in terms of XML. However,
since simple string values can be used as XML values, concrete syntax can be
used just as well. Although this approach is widely used, we will not assume
this approach since it does not provide any format checking and suffers from
escaping problems. Another reason is that we think XSLT was not designed
to be used like this, which is supported by for example the new XSLT 2.0
specification that allows for applying a transformation to the result of another
transformation. This is of course only possible if all transformation results are
specified in terms of XML. Although we think only XML should be output,
this XML can of course be abstract syntax for any language and can be pretty
printed to the concrete syntax of that language.

It is possible to define traversals by manually recursing into the children of
a node, but this does not allow for a clean separation of traversal and rewriting.
For this reason, intelligent traversals are hard to write and maintain. This is
compensated by the powerful XPath matching functionality [32], which can be
used for defining the nodes a template should be applied on. It allows not only
for matching against a specific node, but also against the context a node occurs
in, for example by putting restrictions on it’s ancestors. Query support, through
XPath expressions, is very well developed. These expressions allow selection of
nodes precisely, using a compact and easy to learn syntax. Furthermore, it
always allows direct access to the whole tree and not only to just the current
subtree. Data acquisition is easy, primarily because of the powerful queries.
Furthermore, it is also possible to manually pass extra arguments to recursive
template applications allowing propagation of data through a traversal. Finally,
there are variables inside templates and global variables that can hold arbitrary
values, making sharing of data very easy.

6.1.11 Stratego

The special purpose transformation language Stratego is based on term rewrit-
ing [30] and can be seen as the first incarnation of the strategic programming
paradigm [16]. It provides numerous features such as hygienic variables, concrete

26

object syntax and dynamic rules that make it very suitable for implementing
program transformations.

Internally all transformations operate on an AST. The programmer has the
choice between abstract syntax, usually preferable for small transformations or
small code fragments that are ambiguous in concrete syntax, or concrete syntax,
that can be mixed into a Stratego program using a fully customizable syntax
for defining quotation and antiquotation [29]. The output of a transformation
always is an AST that can be pretty-printed to concrete syntax. Since the
programmer is completely free to choose the format of the output AST any
type of output can be generated.

Because of the strategic programming paradigm used in Stratego traversal
support is excellent. Generic term traversal is readily available through the us-
age of congruence operators and generic basic traversal strategies such as all
and one. These can be combined using strategy combinators for sequential
composition, non-deterministic choice and many others, to build very complex
traversals. In fact, Stratego includes a library with many common generic traver-
sal strategies such as topdown, buttomup, collect, innermost and many others
which is evidence of the power of this mechanism.

There is no standard query functionality available, but powerful pattern
matching support in combination with intelligent traversals provides access to
data. Although this approach at first sight only seems to give access to data in
the subtree of the input of a transformation, scoped dynamic rewrite rules [27]
can be used to access the initial input tree at any time during the transformation.
Furthermore, a recent study [26] shows the user-defined extension with XPath-
like [32] queries using a custom, application-specific, syntax.

Data acquisition is possible in a number of ways; scoped dynamic rewrite
rules provide a very interesting approach of making data available elsewhere in
a way nicely fitting in the term rewriting paradigm. Furthermore, it is possible
to tuple the normal input tree with other data and carry along this informa-
tion during the traversal. This can present a scaling problem, since addition of
new arguments will likely force modificaton of many rules. An approach that
scales much better is the definition of a special traversal that holds an envi-
ronment which values can be used inside every transformation. The standard
Stratego library already contains a number of these traversal strategies such as
env-topdown and env-bottomup.

6.2 Tools and Mechanics

Based on the previous analysis of tool functionality, we can now derive an anal-
ysis of the support for transformation mechanics. Figure 15 presents a table
summarizing the results of this analysis. The rest of this section justifies the
results for each tool. For this purpose, Figure 14 relates transformation me-
chanics to the tool features discussed in the previous section. That is, for each
of the mechanical aspects introduced before, the figure indicates which tool fea-
tures are required for its implementation. Also, in parentheses we introduce an
abbreviation used as reference in the table. Note that only a simplified view
of the relations between mechanics and features is given since much of this in-
formation can also be derived from the design patterns section. Furthermore,
note that the scores for the different mechanisms do not only depend on the
features introduced earlier, but also take tool-specific features and limitations

27

• Scope

– 1:1 (1on1) transformations depend mainly on traversals.

– Local-to-local (l:l) transformations depend on powerful traversal
support and support for reverse transformations. Also good data
acquisition support can be helpful.

– Local-to-global (l:g) transformations can implemented with multi-
stage generate transformations as can be concluded from the design
patterns in Section 5.

– Global-to-local (g:l) transformations can be achieved by collecting
all data prior to transformation, requiring support for queries or
data acquisition. In some case reverse transformations can be used.

– Global-to-global (g:g) transformations start with good data acqui-
sition support. Multi-stage generate transformations can be used
sometimes. Mostly application-specific solutions must be chosen.

• Direction

– Forward (fwd) transformations require good traversal support.

– Reverse (rev) transformations require queries for retrieval of data
from arbitrary locations. Often large target fragments are specified,
which greatly benefits from concrete syntax for readability.

• Stages

– Single-Stage (ss) transformations are the basis that is always sup-
ported.

– Multi-Stage Modify (msm) transformations require an abstract syn-
tax tree for intermediate representation allowing analysis and mod-
ification.

– Multi-Stage Generate (msg) transformations also require abstract
syntax trees, although some limited merging is also possible if no
tree is available.

Figure 14: Relation between transformation mechanics and tool features

into account. The following subsections provide some explanation about the
assessment of each tool. Due to space limitations a full explanation for each
score for each tool cannot be given, but only the most interesting scores are
discussed.

6.2.1 Object-oriented languages

The visitor design pattern can be used for forward transformations using the
fairly good traversal support provided by the visitor design pattern. The support
for reverse transformation on the other hand is not very good, particularly, since
concrete syntax is not available and due to weak query functionality. Visitors
provide reasonable traversal support, which makes 1:1 scoped transformations

28

Tools × Mech. fwd rev ss msm msg l:l 1on1 l:g g:l g:g

OO Languages + − ++ ++ ++ + ++ + + +
Functional Lan-
guages

+ − ++ ++ ++ + + − − −

String-based gen-
erators

− ++ ++ −− −− ++ − − ++ −

OpenC++/
OpenJava

+ − ++ ++ −− + + + + +

JTS/Jak + + ++ ++ ++ + ++ + ++ +
Alchemist + −− ++ −− −− + ++ −− −− −−

TXL + −− ++ ++ − + ++ − − −

ASF+SDF ++ −− ++ ++ ++ ++ ++ + ++ +
Attribute gram-
mars

++ −− ++ − − + ++ + ++ +

XSLT ++ ++ ++ −− −− + ++ + ++ +
Stratego ++ + ++ ++ ++ ++ ++ ++ ++ ++

Figure 15: Tool support for transformation mechanics

relatively easy to implement. Global source transformations are also reasonably
well supported because data acquisition is fairly good.

Global target transformations are also supported. If the targets are relatively
close to the pivot you can exploit the fact that object-oriented languages are
imperative and allow you to directly modify the AST at the right location after
a short and simple traversal using calls like getParent() or getChildren(). If
the distance is larger this type of traversal becomes problematic so you might
have to resort to another approach: first do a collect of all needed information
after which the transformations at all target locations can take place. This
however, for reasons discussed earlier, is not a perfect solution.

We can summarize that a plain object-oriented language can be used for
numerous program transformations, but compared to other evaluated tools it
simply lacks some specialized features. As a result almost all types of transfor-
mations are supported, but this support is never very good.

6.2.2 Functional Languages

Support for forward transformations is relatively good, although the lack of
traversal support limits usability. Reverse transformations are difficult because
concrete syntax is not supported and because queries are not very powerful.
Due to limited traversal control, queries and data acquisition support combined
with the nature of functional programming languages that disallows you to easily
make non-local changes to the tree while traversing it, only 1-to-1 and local-
to-local scoped transformations are easy to implement. Although there is some
form of data acquisition that allows global source transformations, implementing
this type of transformation often turns out to be difficult. It is very easy to
successively apply transformations to the input tree allowing for multi-stage
transformations.

29

6.2.3 String-Based Generators

String-based generators are completely centered around reverse transformations
and provide good support for that. Forward transformations are often much
more difficult to implement because of the limited traversal support. Multi-
stage transformations are very difficult if not impossible, because the AST is not
available. Another practical problem that hinders this type of transformations is
that most engines automatically write all output directly to the receiver making
multi-stage transformations impossible. The only two transformation scopes
that are very well supported are transformations with a global-to-local or local-
to-local. All other transformations suffer from the weak traversal and multi-
stage support.

6.2.4 Attribute Grammars

By design, attribute grammars are very suitable for defining forward transfor-
mations. On the other hand it is unclear what reverse transformations would
look like in the attribute grammar paradigm. Support for these is therefore
nonexistent.

The 1-to-1 scoped transformations fit in these frameworks and can be im-
plemented intuitively. The real value of attribute grammars lies in their use for
global source transformations, because data acquisition support is good. Global
target transformations are a bit more difficult to implement due to a lack of
special support for this type of transformations. In imperative implementations
it is possible to make direct changes to non-local tree parts, although it is ques-
tionable how well an attribute grammar can cope with this type of changes to
the tree while evaluating the attributes. Also this calls for some custom traversal
support for which support is not very good.

As discussed earlier multi-stage generate transformations can sometimes also
be used for global target transformations, but this can also prove difficult since it
is unclear how attribute grammars can be used to merge the multiple generated
trees. A general-purpose host language however could provide good support
for this type of transformation. Multi-stage modify transformations present
another problem. Since often a tree with attributes cannot be easily changed
without breaking attribute evaluation, the new tree should be generated as an
attribute value. Combining this with multi-stage modify transformations means
that the new tree itself should again be an attribute grammar. Although this
does not seem to present any fundamental problems, hardly any transformation
framework provides documented support for this type of recursive attribute
grammars.

6.2.5 OpenC++/OpenJava

The main implicit traversal in OpenC++ and OpenJava has a forward direction,
traversing over some common language elements such as method calls, variable
getting and variable setting. There is no support for reverse transformations.
Simple 1:1 scoped transformations of these nodes are very easy to implement,
transformation of other nodes however is problematic, because it is not possible
to define a custom traversal over these nodes.

Both tools do provide quite nice query support that allows easy lookup of
information from the input tree, but in general they have the same strengths and

30

weaknesses as normal object-oriented programming. For sure these tools add
an extra layer over normal object-oriented programming helping you to define
certain transformations, but it has been specialized to a large extent to reducing
simple language extensions while little attention has been paid to other types
of transformations.

6.2.6 JTS/Jak

The fairly good traversal support combined with the availability of concrete
syntax and query support allows for both forward and reverse transformations.
Both could be supported better. Forward transformations suffer from the less
than optimal traversal support, while reverse transformations could benefit from
a better antiquotation mechanism. It seems that JTS only supports easy inser-
tion of meta-variables, but that it does not support a loop containing quotations.
Although it still is an improvement over normal Java, the language extended
by Jak, this does limit usability of reverse transformations. The score for the
different scopes is quite similar to object-oriented languages. The only clear ex-
ception is support for global-to-local transformations, which clearly benefit from
the good data acquisition support combined with nice reverse transformation
and query support.

Furthermore, the system has some other small improvements such as the
availability of a symbol table that slightly improves query support and allows
for easy looking up of values. Features such as this certainly increase usability,
but it does not present some fundamental improvements over normal object-
oriented approach, therefore not justifying higher scores on for example the
other transformation scopes.

6.2.7 Alchemist

Although tree transformation grammars can be very good at 1-to-1 and some
local-to-local forward transformations, there is absolutely no support for traver-
sals, queries or data acquisition. This makes all other transformation scopes
very hard to implement. It is unclear what a reverse transformation should
look like in the context of tree transformation grammars. It is therefore no
surprise that Alchemist does not support this. Multi-stage transformations are
possible in theory, but no references have been found in the literature on this
functionality and we assume it is not present.

6.2.8 TXL

The TXL tool is completely aimed at 1:1 scoped forward transformations and
indeed these are easy to implement. Also since very simple traversals are possi-
ble, some simple local-to-local transformations are possible. However, because
of lacking support for reverse transformations combined with weak traversal
support and lack of powerful data acquisition functionality, both global source
and global target transformations are very hard to implement.

6.2.9 ASF+SDF

The ASF+SDF Meta-Environment is based on forward transformations. Al-
though concrete as well as abstract syntax is supported, some basic limitations

31

prevent the implementation of reverse transformations. The easiest type of for-
ward transformations is the 1-to-1 scoped transformation for which excellent
support exists. Local-to-local transformations also have excellent support due
to good traversal and data acquisition support. Global source transformations
are also easy to implement due to this data acquisition functionality. Imple-
menting global target transformations is less straightforward since no special
functionality exists to make these possible. Also reverse transformations can-
not be used for this type of transformations, because these are not available.
Fortunately, this tool can handle multi-stage transformations easily that can be
used for certain global target transformations. Furthermore, traversal support
is quite good also allowing for some ad hoc solutions using multiple traversals.

6.2.10 XSLT

This tool has good support for both forward and reverse transformations. Al-
though for other tools we used concrete syntax as one of the criteria for good
reverse transformations, we do not do so for XSLT because basically the XML
inside XSLT is used as if it was a concrete syntax. This does however not
mean XSLT does not suffer from the problems other tools have with reverse
transformations in combination with abstract syntax.

It would for example not be a very good idea to try to generate large pieces
of C++ code using reverse transformations and plain XML inside XSLT. In-
stead you would have to use a tool that parses concrete C++ syntax fragments
during compilation and transforms it into an XML AST after which the XSLT
transformation can be used as usual. However, this is hardly used, probably
because XSLT is typically used for making small transformations on XML doc-
uments instead of some higher-level language. Despite this issue, we rewarded
XSLT the maximum score for reverse transformations because commands like
for-each combined with very powerful XPath query support do provide the best
possible reverse support given the limitations associated with abstract syntax.

Good traversal support makes 1:1 transformations easy. This combined with
the available data acquisition functionality also allows for powerful global source
transformations. Global target transformations are slightly less easy to imple-
ment, because XSLT does not provide any special functionality for this type of
transformations. Furthermore, multi-stage transformations are impossible since
XSLT cannot reapply transformations on the result of another transformation
and because of this limitation multi-stage generate transformations cannot be
used to implement global target transformations. This severe limitation will be
cured in the upcoming XSLT 2.0 specification.

6.2.11 Stratego

The excellent traversal functionality of Stratego allows for easy forward transfor-
mations. Reverse transformations are also possible using abstract and concrete
syntax. The concrete syntax approach has powerful customizable quotation and
anti-quotation support allowing for perfect mixing of meta and object language.
Even when using concrete syntax the AST is always available. Therefore, multi-
stage transformations are fully supported. Furthermore, Stratego supports the
creation of multiple trees and apply transformations on any of these (temporary)
trees, thus supporting multi-stage generate transformations.

32

Because all these types of transformations are possible, combined with ex-
cellent traversal and data acquisition which can be contributed to the power of
strategic programming, all transformation scopes are easy to implement. Most
noteworthy is the good support for global target transformations, which can
largely be contributed to scoped dynamic rewrite rules, which provide a nice
solution for certain types of global target problems. Furthermore, the availabil-
ity of reverse transformations provides developers with yet another choice when
developing transformations. We can conclude Stratego is a very powerful trans-
formation tool suitable for implementing all discussed types of transformations
proving its versatility and applicability in all kinds of different projects.

6.3 Evaluation result

We can draw a number of conclusions from this evaluation. If we look at the
program transformation tools we can see the 1-to-1 scoped transformations have
the best support, followed by global-to-local transformations. This is easy to
explain by noting that these are conceptually the easiest transformations. Fur-
thermore, most paradigms allow for an easy and intuitive approach by having
a simple traversal with some support to rewrite a term to another term for
1-to-1 scoped transformations and simple data acquisition support to be able
to implement global-to-local transformations. Combining this observation with
the scopes of typical program transformations in Section 5.2, we see that indeed
a lot of these transformations have a 1-to-1 or global-to-local scope, however
many of them also need transformations with a different scope.

Another very interesting conclusion is that overall support for global target
transformations is not very strong, while this type of transformation is needed by
a number of typical program transformations. The reason for this is probably
that it is not yet completely clear how to implement these in a clean way in
different programming paradigms, making this is an area that needs further
research. Another reason is that we think, after reading a lot of literature
regarding program transformations, that up to now this type of transformation
has received little attention.

Support for reverse transformations is also weak amongst the studied tools.
This can largely be contributed to weak parser support. Traditional parser
technology does not easily allow for mixing a meta-language with a custom
output language, which forces many transformation tool developers to choose
not to support concrete syntax at the expense of not supporting powerful reverse
transformations. In [29] it is shown how the syntax definition formalism SDF
can be used to fit any (meta-)programming language with concrete syntax for
an arbitrary output language. Another likely reason for this weak support is
that this type of transformations is simply overlooked by transformation system
developers, just as the global target transformations.

In this section we have shown an interesting application of transformation
mechanics in a large systematic evaluation of transformation tools. Again we
want to make clear an evaluation like this is never complete and it is possible to
introduce many more interesting features and aspects to use in this evaluation.
However, we believe we have succeeded in showing the usefulness of program
transformation aspects and raising some awareness of different types of program
transformations and the need for tools to provide sufficient support for these.

33

7 Concluding Remarks

Contribution In this paper we have introduced a novel way of distinguishing
different types of transformations using high-level transformation mechanics.
This allows for several interesting applications that were not possible before.
From a research perspective it provides a better general understanding of dif-
ferent types of transformations, providing a starting point for transformation
design patterns and giving researchers a better insight in the strengths and
weaknesses of different transformation tools.

From a practical perspective it can provide transformation system develop-
ers structure for their documentation. It now becomes possible to describe for
which types of transformations a tool can be used for in a structured way and,
maybe even more importantly, provide explanation, examples and design guide-
lines on how to implement them. The user of a transformation tool can use
transformation mechanics in the design of a transformation and in selecting the
tool that has the best support for the needed transformation. Also, because of
more structured documentation, it will be easier to convert a high-level design
into an implementation. Although this all sounds very obvious, at this moment
it is still far from trivial.

Future Work Although the transformation mechanics can be used for both
transformation implementation and transformation problems, the last applica-
tion shows an interesting issue. Looking again at the constant propagation
example, observe that the scope aspect can be influenced by the choice of pivot.
If a constant variable is chosen to be the pivot this transformation has a local-to-
globalscope, but if all variables in a block are chosen as pivot this transformation
has a global-to-local scope. More research is needed to find out if different or
more precise definitions can solve such ambiguities.

Another area for further research are the presented mechanics themselves.
We provided an abstract view based on three key aspects of transformations.
These key aspects were determined mainly based on our own experiences, but
it is very well possible other general applicable or application dependent trans-
formation aspects can be defined.

Acknowledgments Martin Bravenboer, Eelco Dolstra and Karina Olmos
gave useful feedback on a previous version of this paper.

References

[1] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing
domain-specific languages. In Proceedings Fifth International Conference
on Software Reuse, pages 143–153, Victoria, BC, Canada, 2–5 1998. IEEE.

[2] J. M. Boyle. Abstract programming and program transformation—An ap-
proach to reusing programs. In T. J. Biggerstaff and A. J. Perlis, editors,
Software Reusability, volume 1, pages 361–413. ACM Press, 1989.

[3] J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR program
transformation system: Simplifying the development of numerical software.

34

In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools for Scientific Computing, pages 353–372. Birkhäuser, 1997.

[4] M. Bravenboer and E. Visser. Rewriting strategies for instruction selec-
tion. In S. Tison, editor, Rewriting Techniques and Applications (RTA’02),
volume 2378 of Lecture Notes in Computer Science, pages 237–251, Copen-
hagen, Denmark, July 2002. Springer-Verlag.

[5] S. Chiba. A metaobject protocol for C++. In In Proceedings of the 10
th Conference on Object-Oriented Programming Systems, Languages and
Programming, pages 285–299, 1995.

[6] J. Cordy, T. Dean, A. Malton, and K. Schneider. Software engineering
by source transformation - experience with txl. In SCAM’01 - IEEE 1nd
International Workshop on Source Code Analysis and Manipulation, pages
168–178, Florence, Novenber 2001.

[7] K. Czarnecki and U. W. Eisenecker. Generative Programming. Addison
Wesley, 2000.

[8] T. Dean, J. Cordy, A. Malton, and K. Schneider. Grammar programming
in txl. In SCAM’02 - IEEE 2nd International Workshop on Source Code
Analysis and Manipulation, Montreal, October 2002.

[9] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyp-
ing. An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, Singapore, September 1996.

[10] M. Fowler. Refactoring: Improving the Design of Existing Programs.
Addison-Wesley, 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley, 1994.

[12] G. Hedin and E. Magnusson. Jastadd - a java-based system for implement-
ing front ends. In M. van den Brand and D. Parigot, editors, Electronic
Notes in Theoretical Computer Science, volume 44. Elsevier Science Pub-
lishers, 2001.

[13] S. E. Keller, J. A. Perkins, T. F. Payton, and S. P. Mardinly. Tree transfor-
mation techniques and experiences. In ACM SIGPLAN ’84 - Symposium
on Compiler Construction, pages 190–201, June 1984.

[14] D. E. Knuth. Semantics of context-free languages. InMathematical Systems
Theory, volume 2, pages 168–178, 1968.

[15] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical de-
sign pattern for generic programming. In A. SIGPLAN, editor, Proc. of
the ACM SIGPLAN Workshop on Types in Language Design and Imple-
mentation (TLDI 2003). ACM Press, 2003. To appear in ACM SIGPLAN
Notices.

[16] R. Lämmel, E. Visser, and J. Visser. The essence of strategic programming,
2002.

35

[17] R. Lämmel and J. Visser. Typed combinators for generic traversal, 2002.

[18] G. Lindén, H. Tirri, and A. I. Verkamo. Alchemist: A general purpose
transformation generator, 1995.

[19] Microsoft. Active Server Pages (ASP). http://msdn.microsoft.com/asp.

[20] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[21] R. J. Rodger. Jostraca: a template engine for generative programming.
European Conference for Object-Oriented Programming, 2002.

[22] S. Swierstra and P. Azero. Attribute grammars in the functional style. In
SI2000 Chapman-Hall, 1998.

[23] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. Openjava: A class-
based macro system for java. In OORaSE, pages 117–133, 1999.

[24] M. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient annotated
terms. Software, Practice and Experience, 30(3):259–291, 2000.

[25] M. van den Brand, P. Klint, and J. Vinju. Term rewriting with traversal
functions, 2001.

[26] J. van Wijngaarden. Code generation from a domain specific language.
Master’s thesis, Utrecht University, 2003. To Appear.

[27] E. Visser. Scoped dynamic rewrite rules. Electronic Notes in Theoretical
Computer Science, 59(4), 2001.

[28] E. Visser. A survey of strategies in program transformation systems. Elec-
tronic Notes in Theoretical Computer Science, 57, 2001.

[29] E. Visser. Meta-programming with concrete object syntax. In D. Batory,
C. Consel, and W. Taha, editors, Generative Programming and Component
Engineering (GPCE’02), volume 2487 of Lecture Notes in Computer Sci-
ence, pages 299–315, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

[30] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. ACM SIGPLAN Notices, 34(1):13–26, January
1999. Proceedings of the International Conference on Functional Program-
ming (ICFP’98).

[31] J. Visser. Visitor combination and traversal control. InOOPSLA 2001 Con-
ference Proceedings: Object-Oriented Programming Systems, Languages,
and Applications, pages 270–282, 2001.

[32] W3C. Xml path language (xpath) version 1.0. w3c recommendation 16
november 1999. http://www.w3.org/TR/xpath.

[33] W3C. Xsl transformations (xslt) version 1.0. w3c recommendation 16
november 1999. http://www.w3.org/TR/xslt.

36

