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Abstract

Array processing languages such as APL, Matlab and
Octave rely on dynamic typechecking by the interpreter
rather than static typechecking and are designed for user
convenience with a syntax close to mathematical notation.
Functions and operators are highly overloaded. The price
to be paid for this flexibility is computational performance,
since the run-time system is responsible for type checking,
array shape determination, function call dispatching, and
handling possible run-time errors. In order to produce effe-
cient code, an Octave compiler should address those issues
at compile-time as much as possible. In particular, static
type and shape inferencing can improve the quality of the
generated code. In this paper we discuss how overload-
ing in dynamically typed Octave programs can be resolved
by program specialization. We discuss the typing issues in
compilation of Octave programs and give an overview of
the implementation of the specializer in the transformation
language Stratego.

1. Introduction

Array processing languages such as APL, Matlab1, and
Octave rely on dynamic typechecking by the interpreter
rather than static typechecking by the compiler. Types of
variables and functions are not explicitly declared, but in-
ferred at run-time depending on run-time values. Type
errors are detected at run-time and caught by the inter-
preter. These programming languages are designed to be
user-friendly. The syntax is close to the mathematical no-
tation and a rich set of mathematical functions is available.
In keeping with mathematical notation, functions and op-
erators can be highly overloaded. For example, a function
can operate on scalars as well as matrices, and can have a
variable number of arguments. These features make array
processing languages easy to use as prototyping languages.
However, the price to be paid for this flexibility is computa-
tional performance when production quality code is needed.

1MATLAB is a registered trademark of The MathWorks, Inc.

Deferring typechecking to run-time, and in particular,
run-time resolution of overloading, prevents high quality
compilation. First of all, extra instructions need to be spent
in performing dynamic checks. Secondly, overloading re-
quires a more generic data representation, which can be
avoided when more precise type information is available.
Thus, type information is essential for high quality com-
pilation. Compilation for array processing languages is a
topic of ongoing research [8, 3, 4, 1]. Issues that distinguish
their compilation from other languages are type and shape
inferencing, which become a problem when a language has
overloaded operators and ’ad-hoc’ overloaded functions as
is the case in Octave [6].

In this paper we give an overview of a source-to-source
transformation system for Octave which turns dynamically
typed programs into statically typed ones by specializing
overloaded functions and operators to the types they are ac-
tually used with. This transformation system is a front-end
for a vectorizing compiler for Octave that we are developing
in collaboration with University Dresden.

The transformation system is implemented in Strat-
ego [13], a rewriting system extended with programmable
rewriting strategies [15] for the control over the applica-
tion of rules and dynamic rewrite rules [12] for the propa-
gation of information. The specializer extends the constant
propagation techniques developed earlier for use in optimiz-
ers [11]. An important aspect of our specializer is that it
does not require the annotation of the source program with
declarations as other systems do.

The rest of the paper is organized as follows. The next
section discusses overloading in Octave and shows how spe-
cialization resolves overloading. Section 3 presents the ar-
chitecture of the transformation system and explains the in-
dividual components by means of examples. The remain-
ing sections discuss the implementation of selected compo-
nents. Section 4 describes the abstract interpretation style of
type checking. Section 5 explains the approach used to type
user-defined and intrinsic functions. Section 6 discusses
shape inference for the detection of the shape of matrix val-
ues.
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2. Overloading in Octave

Octave, an open source clone of Matlab, is a high-
level programming language and development environment
which is widely used for rapid prototyping and simula-
tion [6]. Distinctive features of the language are its high-
level built-in data types, overloaded operators and a rich set
of mathematical functions. Another advantage of this lan-
guage is that it is more declarative than procedural, provid-
ing freedom to the compiler on how to structure the compu-
tation of operations.

Although these features make the language easy to use,
they are also a source of ambiguities. For instance, the state-
mentM = X * Yperforms matrix multiplication ifX and
Y are matrices. The same statement performs multiplica-
tion of scalars such as integers, reals, complex numbers or
any combination of them depending on the type ofX andY.
The lack of variable, type, and shape declarations in Octave
makes identification of the proper invocation of a subroutine
call problematic. It is the task of the interpreter to perform
type checks and resolve overloading in order to invoke the
proper operation.

In addition, certain functions are interpreted according
to their context. The number and type of the actual ar-
guments in a function call determine the behaviour of a
function. Furthermore, a function can yield multiple re-
turn values determined by the return context. As an exam-
ple consider the statementp = find([ 1 0; 5 0]) .
The result of the call tofind is a vector of the non-
zero positions in the argument matrix considered as a one-
dimensional vector organized by columns. Thus, the out-
come isp = [1 ; 2] . The same function called in a
context where two results are required, as in the statement
[r, c] = find([ 1 0; 5 0]) , gives the non-zero
positionsin the matrixas a pair of coordinate vectors for
the row and column positions. Thus the result of the
statement isr = [1 ; 2] andc = [1 ; 1] . If the
context requires three results fromfind as in the state-
ment[r, c, v] = find( [ 1 0; 5 0]) , the last
requested result will contain the elements from the matrix
which are non zeror = [1 ; 2] , c = [1 ; 1] and
v = [1 ; 5] . This example shows how contextual in-
formation is required in order to correctly type these state-
ments.

User-defined functions inherit overloaded features from
operators. The lack of declarations represents a problem for
type inferencing. When defining the signature of a func-
tion, the type of the arguments cannot be restricted, which
can lead to run-time errors. To prevent this, the function
definition could include restrictive type checks explicitly to
enforce certain argument types. Furthermore, functions can
have different behaviour depending on the type and number
of the arguments.

function retval = reshape (a, m, n)
if (nargin == 2 && prod (size (m)) == 2)

n = m(2);
m = m(1);
nargin = 3;

endif

if (nargin == 3)
[nr, nc] = size (a);
if (nr * nc == m * n)

retval = zeros (m, n);
if (isstr (a))

retval = setstr (retval);
endif
retval(:) = a;

else
error(’reshape: sizes must match’);

endif
else

usage(’reshape(a, m, n) or ...
reshape (a, size(b))’);

endif
endfunction

c = [ 1 2 3 ];
s = ’hello’;
c1 = reshape(c, 3, 1);
s1 = reshape(s, 5, 1);

⇓
function retval =

reshape_string_int_int (a , m , n)
()
[nr, nc] = size_lib (a)
if (nr * nc) == (m * n)

retval = zeros_lib (m , n);
retval = setstr_lib (retval);
retval(:) = a;

else
error_lib(’reshape: sizes must match’)

endif
end
function retval =

reshape_matrix(_int)_int_int (a , m , n)
()
[nr, nc] = size_lib(a)
if (nr * nc) == (m * n)

retval = zeros_lib(m , n)
()
retval(:) = a

else
error_lib(’reshape: sizes must match’);

endif
end

c = [ 1 2 3 ];
s = ’hello’;
c1 = reshape_matrix(_int)_int_int(c, 3, 1);
s1 = reshape_string_int_int(s, 5, 1);

Figure 1. Typing by means of program spe-
cialization

An example of code which includes different function-
ality for different argument types is the functionreshape
shown in Figure 1, which is part of the Octave distribution.
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In this function there are some notions of contextual infor-
mation. From the signature of the function we can see that
the function is specified to be called with three arguments.
In fact, the reshape function can also be called with two
arguments. That is the reason for performing the verifica-
tion of nargin which represents the number of incoming
arguments. This variable is part of the interpreter and it
can be manipulated in any function definition. Observe that
the code performs many type checks in order to execute the
right computation. Most of these checks can be performed
statically based on the arity and types of a function call.
For instance, Figure 1 shows how a specialized program is
derived by propagating known information to the function
definition in order to infer the resulting type. Thereshape
function has been specialized for two different instances of
a reshape call. We have introduced() where code has been
removed from the program. Intrinsic functions have been
identified and renamed to indicate it, by means of the suffix
_lib .

This example shows how context dependent information
is needed for static type inferencing. By function specializa-
tion the result of type inference is expressed in context in-
dependent functions such that subsequent compiler phases
can deal with unambiguous code.

3. Architecture

The architecture ofoctave-front is depicted in Fig-
ure 2. The transformation system performs a source-to-
source transformation. Octave source code is parsed using
the octave parser which was updated to generate abstract
syntax trees using the ATerm format [2]. The other compo-
nents of the front-end are implemented in Stratego. Desug-
aring, variable and function name disambiguation are per-
formed before type and shape inferencing. Type-based spe-
cialization is implemented to obtain code suited for clean
compilation.

Parsing To parse Octave programs we use Octave itself.
The output is an abstract syntax tree which contains user-
defined functions as well as Octave functions that are part
of the Octave distribution.

Desugaring The abstract syntax obtained after parsing
is converted into a simpler representation of the program
that reduces the number of constructs to ease subsequent
phases. Complex statements, such asswitch are desug-
ared into semantically simpler ones as is illustrated in the
following example:

source code octave

desugar

disambiguation

type 
 inferrencer

shape 
 inferrencer

post 
 processing

pretty 
 printer

output code

Figure 2. Overview of the system architecture

switch a
case (1)

x = 1;
case (2)

x = 2;
case (3)

x = 4;
otherwise

x = 5;
end

⇒

if a == 1
then x = 1
else

if a == 2
then x = 2
else

if a == 3
then x = 4
else x = 5

endif
endif

endif

Side effects in expressions are removed by translating
them into statements which have a simpler and cleaner
representation, as in the following example:

a = [10,11];
++a;
b = ++a ;

⇒
a = [ 10 11 ];
a = a + 1;
a = a + 1;
b = a;
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Disambiguation An identifier in Octave can represent a
variable or a function call. A mechanism to determine to
which name space an identifier belongs is needed. In Oc-
tave, assignments are closest to variable declarations. Thus,
an occurrence of an identifier in the left hand side of an
assignment defines it as a variable. The occurrence of an
identifier in the right hand side of an assignment or else-
where may represent a function call. Without disambigua-
tion, an erroneous interpretation can be given to a program.
For instance, consider the following code:

function x = test(y)
a = y + rand;
rand(3) = a;
x = rand(2) + 1;

⇒

function x = test(y)
a = y + rand();
rand[3] = a;
x = rand[2] + 1;

end

This example shows three occurrences of the identifier
rand . The first occurrence is a function invocation without
arguments. Note that a function invocation does not have
to use parentheses. The second occurrence of this identifier
denotes an assignment to the arrayrand with three ele-
ments. Although only the third element is being assigned
explicitly, this statement will create an array with three ele-
ments. The first and the second elements of the array will
contain zero. The third occurrence ofrand(2) denotes
a subscript for the arrayrand accessing the second ele-
ment. The same expression in the absence of the second
statement will have a completely different interpretation,
i.e.,rand(2) will denote a function invocation which will
produce a two by two matrix of randomly generated values.

Type Inference Octave does not have an explicit notion
of types. Type casting is done transparently when the result
of a computation requires it. We could assign aComplex
data type which will represent all types in a proper way, but
this leads to a waste of memory allocation for computations
that not require this data type. The goal of a type infer-
encer is to make types explicit and determine the smallest
data type for each variable, and characterize proper casting
actions when are required.

The type inferencer is implemented by traversing the ab-
stract syntax tree of a program twice. The first traversal is
responsible for determining data types and characterizing
operations. The following traversal is responsible for de-
termining shapes. The type and shape information is added
to every node of the abstract syntax tree and decorates it
with the information of shape. The reason for performing
type and shape inferencing in two separate traversals is be-
cause the first phase performs specialization based on type
information. The shape inferencer adds shape information
extending the information which is contained in the term.

The following example shows how specialization can
eliminate “ad-hoc” function overloading. Different special-
ized functions are created for different type invocations.

function x =
f(a, b)

x = a + b;

c = 4;
r = f(c, c);
y = f([3, 4], r);

⇒

function x =
f_matrix(_int)_int(a,b)

x = b + a;
end
function x =

f_int_int(a,b)
x = a + b;

end

c = 4;
r = f_int_int(c, c);
y = f_matrix(_int)_int...

([3 4], r);

User functions inherit overloading features from opera-
tors. Different data types can be supplied to the arguments
of the functionf in the example. The type inferencer de-
termines the type of the arguments and propagates this in-
formation to specialize functions. Functions are renamed
using the name of the type of arguments of the call.

Shape Inference Shape inference consists of determining
the structure and size of a matrix. Inferring exact shape
information can avoid run-time memory allocation. Fur-
thermore, shape information is vital for matrix calculations.
Matrix operators impose shape restrictions for matrix calcu-
lations. For instance, to multiply two matrices, the number
of columns of the first matrix has to be equal to the num-
ber of rows of the second matrix. In matrix addition the
argument matrices should have the same shape. In addition,
single elements are also considered matrices. These matri-
ces are referred to by the community asscalars.

a = [1,2;5,3];
b = ones(2);
......
m = a * b;

⇒
a = [1,2;5,3];
b = ones(2);
......
m = a *m b;

Operations have been typed by the previous phase. This
reduces the number of constructors that are required to be
inspected. When not enough information has been inferred,
our system inserts a guard to guarantee that shape operation
conditions are satisfied to execute matrix operations. This
is illustrated with the following example:

a = zeros(n);
b = zeros(n1);
......

m = a + b;
⇒

a = zeros(n);
b = zeros(n1)

.....
m =

if (n == n1)
then a +m b
else error(...)

endif

The shape inferencer is able to identifya andb as square
matrices. How to infer shape information from built-in
functions will be discussed in Section 6. From the program
we cannot statically determine ifa andb are matrices that
satisfy the shape restriction for multiplication. In this sit-
uation, the program is instrumented to apply this operation
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only when the restriction is satisfied. The operation is being
guarded by anif construction. Other components of the
compiler may eliminate this guard when the restriction can
be satisfied.

Post processing After type and shape inferencing, the
code contains empty statements and the outcome for instru-
menting the program with guards. The code needs some
restructuring. We have also applied other optimizations af-
ter type and shape inferencing, but these optimizations are
not the focus of this paper. For example, consider the hoist-
ing of anif statement from an assignment in the following
transformation:

a = zeros(n);
b = zeros(n1)

.....
m =

if (n == n1)
then a +m b
else error(...)

endif

⇒

a = zeros(n);
b = zeros(n1)

.....

if (n == n1)
then m = a + b
else error(...)

endif

Pretty-Printing The pretty-printer turns the abstract syn-
tax tree back into readable source code. The output of the
transformation is designed for consumption by a compiler
back-end. Therefore, the output of the pretty-printer is not
completely valid Octave code, since complex identifiers are
used for specialized functions. If necessary these identifiers
can be mangled into valid Octave identifiers.

4. Type Inference

Octave data types are organized in two sorts. Scalar
types such asBoolean, Integer, Float, Complex, Charand
Matricesof scalar values. Boolean types are represented by
integer numbers as in the C language. Matrices are two di-
mensional arrays of scalar types. The type inferencer of our
transformation system annotates expressions in an Octave
program with their static types and shapes. In this section
we will discuss the specification of type inference for ex-
pressions.

4.1. Expressions

The annotation of expressions with their type is per-
formed with rewrite rules which are applied in a bottom-
up traversal over the abstract syntax tree. Each rule infers
the type of the expression from the operator and the types
of its arguments. Type information is encoded using Strat-
ego term annotations. A term annotationt{t’} embeds
a termt’ into the termt without altering the signature or
the structure of the termt . Some typical typing rules for
expressions are shown in Figure 3. The first three rewrite

TcExp:
|[ ˜int: i ]| -> |[ (˜int: i){INT} ]|

TcExp:
|[˜str: s ]| -> |[ (˜str: s){STRING}]|

TcExp:
|[ e1{t} - e2{t} i ]| ->
|[ (e1{t} - e2{t} i){COMPLEX} ]|

TcExp:
|[ e1{t1} + e2{t2} i ]| ->
|[ (e1{t1} + e2{t2} i){FLOAT} ]|
where <INT + FLOAT> t1

; <INT + FLOAT> t2
TcExp:

|[ /( e1{INT}, e2{INT} ) ]| ->
|[ /(e1{INT}, e2{INT}){FLOAT} ]|

TcExp:
|[ bo( e1{t}, e2{t} ) ]| ->
|[ bo(e1{t}, e2{t}){t} ]|
where <is-scalar> t

Figure 3. Type inferencing rules for simple
Octave expressions

TcExp:
|[ bo(e1{t1}, e2{t2}) ]| ->
MBinOp(bo, e1’, e2’){t}
where <is-Matrix> t1

; <is-Matrix> t2
; <casting-matrices>

(e1,t1,e2,t2) => (e1’,e2’,t)

Figure 4. Typechecking rules for matrix oper-
ations

rules type leaf nodes for integers, strings and complex num-
bers. The last three rules type several binary operators. For
brevity, we only show a small subset of these rules, the rest
of the rules are specified in similar fashion.

Observe that the type inference rules are specified us-
ing the concrete syntax of the object language [14]. For
example, binary operations are specified using infix nota-
tion. Thus, rewrite rules are expressed in a natural way to
the reader and are more concise than specifation using only
abstract syntax tree notation. The concrete syntax used in
the specification of the type inferencer is slightly different
from the original Octave language. Since the Octave syntax
is ambiguous, we use a concrete syntax that is like Octave,
but not ambiguous, which should look transparent for the
reader.

4.2. Matrix Expressions

Matrix expressions are typed using rules similarly to nor-
mal operators. In order to distinguish matrix operators from
scalar operators and to ease the verification of matrix re-
strictions, they are characterized using special constructors.
Figure 4 defines a rule to typecheck matrix operations, it
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TcAssg:
|[ v = (e{t}) ]| -> |[ v{t} = (e{t}) ]|

where rules(TcVar: |[ v ]| -> |[ v{t}]|)

Figure 5. Typing assignments

characterizes them withMBinOp to denote matrix binary
operations and it insert casting operations if required. In
order to apply certain transformations we must have exact
information about the shape of the matrix. This shape infor-
mation is added during shape analysis.

4.3. Matrix Expansion

In Octave a scalar function or operation can be lifted
to apply to matrices. For example, consider the statement
a = abs([-2,5;3,-1]); . While the functionabs is
defined for scalar types, it can be applied to a matrix, which
entails the application of the function to each element of
the matrix. This feature is calledmatrix expansion. The
function that can be applied can be an intrinsic function or a
user-defined function. Element-wise operators are instances
of matrix expansion operations. When the type system en-
counters matrix expansion operations, it captures and char-
acterizes them by representing these operations with a spe-
cial term constructor, which reduces the number of cases to
deal with in subsequent phases of the system.

4.4. Assignments

Octave has no explicit variable declarations. Assign-
ments denote a kind of declarations, where the type of a
variable is determined by the type of the assigned expres-
sion. Inferred types from variables are propagated toward
their use by means of dynamic rules [12]. Dynamic rules
are used to propagate information following the data flow
path imposed by the programs [11, 5]. Figure 5 shows how
dynamic rules are created at the point of assignments. The
strategyTcAssg matches an assignmentv = (e{t}) ,
that is an assignment of expressione with type t to vari-
ablev . For this specific variablev , a dynamic ruleTcVar
is generated, which annotates an occurrence of that vari-
able with the typet . The dynamic ruleTcVar thus prop-
agates the type of a variable to all its uses. Multiple as-
signment statements will create multiple rules to propagate
corresponding types of each assigned variable.

4.5. Constant Folding

As part of the type annotation transformation, run-time
type checks expressed in the program using intrinsic func-
tions such asisstr andisempty can be eliminated when
the type of the argument expression is known. Instances for
these rules can be seen in Figure 6.

EvalFunc:
|[ isstr( e{STRING} ) ]| ->
|[ (˜int: 1) {INT} ]|

EvalFunc:
|[ isstr( e{t} ) ]| ->
|[ (˜int: 0) {INT} ]|
where <not(?STRING)> t

EvalFunc:
|[ isempty([]) ]| ->
|[ (˜int: 1) {INT} ]|

Figure 6. Rules for eliminating type checks

5. Typing Functions

The power of problem solving environments in general
and Octave in particular relies on the rich set of functions.
This type of system contains a specialized library for dif-
ferent fields, which constitutes the main reason to use these
systems for rapid prototyping. Octave functions come in
two kinds. On the one hand, intrinsic functions are func-
tions that are part of the language and are available in all Oc-
tave programs. On the other hand, scripts and user-defined
functions are specified by means of the language itself and
are stored in “.m” files. Functions have their own scope,
where arguments are passed by value. In each function
scope there is a copy that holds the argument of a function
call. There is no way to have side effects on the arguments
of the function call. This does not mean that functions are
side-effect free. Functions can only have side-effects modi-
fying global variables.

5.1. User-Defined Functions

Due to operator overloading and the lack of declarations,
a user-defined function can be called with different types of
arguments. In this sense functions admit “ad-hoc” overload-
ing. A function cannot restrict the type of its arguments by
means of the signature of its definition. Functions can also
be very flexible with respect to the number of arguments
which can be present at function calls. Another character-
istic of Octave is that functions can yield multiple return
values depending on the context of the call. Furthermore,
not all return arguments of a function may be defined. All
these features make it very hard to correctly type functions.
We use program specialization as a technique to find the
precise type of a function.

Our strategy is to infer the resulting type of a function
call by providing the types of the arguments of a function
call and propagating this information to determine the type
of the result. Providing context information we can elim-
inate certain branches within the function body which do
not contribute to the result. Context information such as the
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tc-asg-multi(s) =
{| NumArgsOut:

?AssignMulti(vs, _)
; where(

<length> vs => val
; rules(

NumArgsOut: Var("nargout") -> val
)

)
; AssignMulti(id, s)
; try(TcAssg <+ TcAssg(s))

|}

tc-asg(s) =
{| NumArgsOut:

Assign(id, id)
; rules(

NumArgsOut: Var("nargout") -> 1
)

; Assign(id, s)
; try(TcAssg <+ TcAssg(s))

|}

Figure 7. Rules to provide context information

types-func(tc) = ?(f-name, call-types)
; where(

<GetFunc> f-name =>
FuncDec(ret-vars, name, args, body)

;<zip’(\(Var(x), t)-> Var(x){t}\)>
(args, call-types) => var-args

;<length> call-types <+ !0) => nargin
;(<NumArgsOut> Var("nargout") <+ !0)

=> nargout
;{| TcVar:

<typecheck-body(tc)>
(var-args, nargout, nargin, body)=> body’

; <take(?nargout)> ret-vars => num-ret-vars
; <map(try(TcVar))> num-ret-vars

=> r-vars-types
|}

;<rename-func> call-types => type-names
;<concat-fnames> (f-name, type-names)

=> new-fname
;<map(get-type)> r-vars-types => ret-types
;<record-funcs>

FuncDec(r-vars-types, name, var-args, body’)
)

;!(name, ret-types)

Figure 8. Typing user-defined functions

number of expected results of a function call are injected
in the inference process by means of dynamic rules. Val-
ues forbuilt-in variablessuch asnargin andnargout
are added to eliminate branches of the program that are not
used and/or do not contribute to the required computation.

Figure 7 shows how context information is discovered
and injected into the system. At the point of assignments the
system discovers the number of the expected values, which
is propagated by the local dynamic ruleNumArgsOut .

5.2. Intrinsic or Library Functions

To type intrinsic functions, context information is also
required, recall the example on the functionfind dis-
cussed in the introduction. The question arises how to incor-
porate functions that can yield a set of different values. For
intrinsic functions we do not have a program to infer the
resulting type from or to extract further information. Our
solution is to encode information about intrinsic function in
a data base. Although this idea is not new [4], our approach
considers functions with multiple results. From this repos-
itory dynamic rules are created that will provide the infor-
mation about the set of possible outcomes. The decision to
extract the proper one is delayed until more information is
discovered. This delay leads to select the proper resulting
type from the set.

Table 1 shows a classification of functions into 7 groups.
In the first group, the functions are defined for scalar types,
the number of in and out arguments is fixed, and the out-
come value is also a scalar type. For example the func-
tion abs(4.3 + 2i) will result into 4.7424 . These
functions can be typed statically provided some information
about the argument types.

Functions in the second group can be typed by having
information about the value of the argument of the call. The
function sqrt(n) will give a Float type as a result for
n bigger or equal to zero. For negative instances ofn the
result will be of typeComplex.

Functions in group three can have a variable number of
arguments, the number of results is fixed. To type functions
in this group it is required to know the type of the argu-
ments. For example, the functioncumsum will preserve
the type and shape of the first argument of the call.

Functions in group four accept different numbers of ar-
guments and the number of results is static. As an example
considerzeros(4,3) , which will yield a matrix contain-
ing integer values, namely the number zero. Functions in
this group such aseye , rand , ones can be typed stati-
cally.

The fifth group is characterized by having variable num-
ber of in arguments and also a variable number of return
values. Functions in this group can be typed with additional
context dependent information. An example for this group
is the functionsize([1 3 6]) , which can yield one or
two return values. To infer the type for functions in this
group, we encode all the possible outcome types and the se-
lection of the proper type is delayed until the point where
further information is encountered.

Groups VI and VII will be discussed in section 6.
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[// fname,[arg-types], [ret-type]
("abs", [INT], S([INT]) ),
("abs", [FLOAT], S([FLOAT]) ),
("abs", [COMPLEX],S([FLOAT]) ),
("find", [INT], M([INT, [INT, INT],

[INT, INT, INT]])),
("find", [FLOAT], M([INT, [INT, INT],

[INT, INT, FLOAT]]))
]

Figure 9. Intrinsic library typing rules

5.3. Function Specialization

Program specialization is a compiler technique to
achieve a residual program, given part of the input. In the
functional programming community type-based specializa-
tion is applied to obtain a residual expression and a residual
type [7]. For typing Octave, the same criteria have been
used. Data type information inferred by the system is used
to trigger specialization. Furthermore, some of the informa-
tion available to the interpreter, is applied during transfor-
mation as well. This includes the arity of function calls, the
expected number of results of a function, and the types and
shapes ofintrinsic functions.Residual programs restrict the
types that can be assigned to function results.

Function specialization is part of partial evaluation. Ba-
sically, there are two sorts of partial evaluators: online and
offline. Our function specializer is an online partial evalua-
tor. It determines ‘static’ type information during transfor-
mation and propagates this information as it is encountered
and uses it to obtain residual programs. Since the transfor-
mation only propagates type information, the normal risks
of online partial evaluation do not apply.

The disadvantage of this approach is that it increases
code size. However, as a side effect of function special-
ization, branches that are not reachable are eliminated from
residual programs. Furthermore, the code obtained is much
more suitable for compilation and optimization.

6. Shape Inference

Shape inference is done using the same traversal as the
data type inferencer. The same sort of rules are defined for
most of the language constructs such as expressions, state-
ments, and intrinsic and user defined functions. The main
difference with type inference is that this phase does not
performe function specializations. Shape inference extends
the information discovered by adding information about the
number of rows or columns. Octave, in contrast to Matlab,
only has arrays of two dimensions.

Expressions Inferring shape for scalar expressions is
easy, the shape information is added to the annotation term

SaExp:
|[ e{INT}]| -> |[ e{INT, S(1,1)} ]|

SaExp:
|[ bo( e1{s}, e2{s}){t} ]| ->
|[ bo(e1{s}, e2{s}){s} ]|

SaExp:
MBinOp(op, x{sx}, y{sy}){t} ->
MBinOp(op, x{sx}, y{sy}){sx}
where <PLUS + MINUS> op

; <eq> (sx, sy)

Figure 10. Shape inferencing rules scalar Oc-
tave expressions

as is depicted in Figure 10. The constructionS(1,1) de-
notes a shape with the number of rows and columns of an
expression. The last rule in the picture infers the shape for
the matrix operations addition and subtraction. The rule
verifies that the shapes of the matrices are equal. Other-
wise the expression is transformed into anif statement
which uses symbolic computation to reproduce run-time be-
haviour. Similar rules to infer shapes of matrix expressions
are defined in the system. Matrix expansion operations are
also characterized and these operations preserve the shape
of the matrix.

Intrinsic Functions Intrinsic functions can provide
means of extracting type and shape information, especially
from functions such asrand , zeros , ones , eye , which
define the shape of arrays.

Joisha et al. classify intrinsic functions in three types
[10]. Shape of Type I functions can be determined stati-
cally. Symbolic determination is required to find out the
shape of functions in Type II. Functions that are not in Type
I or II are functions in Type III. In addition, we have also
considered the flexibility for different arguments of the call
and different return values. We have extended the classifi-
cation taking these aspects into account. Table 1 contains
information on shapes.

Shape can be inferred statically for functions in group I
and II. Type and shape information for functions in group
III are argument dependent, maybe it is more accurate to
say it can preserve type and shape of one argument, in the
example it preserves the first argument of the call. To extract
shape information for functions in group IV, it is required to
know the value of the arguments of the call.

Thesize function is in group V, because it can be typed
and shaped according to the context.

Functions in Type VI can be typed statically as for exam-
ple in case case of the functionfind , the shape information
depends on the values that are contained in the argument
call. Accurate information is not possible to extract, and
this is the reason to open an extra group fordynamicshape
determination.
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Group arguments arguments
Func #In # Out Type Shape

I Fixed Fixed Argument Static
dependent Static

II Fixed Fixed Value Static
dependent Static

III Variable Fixed First Arg. First Arg.
dependent dependent

IV Variable Fixed Static Argument
IV dependent
V Variable Variable Context Context

dependent dependent
VI Variable Variable Static Dynamic

VII Variable Variable Dynamic Dynamic

Table 1. Shapes of intrinsic functions

Group VII describes functions that are dynamically
typed and shaped, for instance consider the functioneval .
This function can evaluate any function call and the result
can be of any type and shape.

7. Discussion

7.1. Related Work

In the literature, the problem of typing Matlab is solved
by a combined approach of a static and dynamic type in-
ferencing system [4, 8]. Other approaches include user an-
notations [3] and type speculation as mechanism for just in
time compilation [1].

Rose [4] uses data-flow analysis to propagate type infor-
mation and they resort to inserting many possible branches
when type information is not available. To extract shape in-
formation from intrinsic functions, a data base is mentioned
in his work, but no further details are provided.

In [8], shape inferencing is modeled by an algebra which
infers shapes to resolve operator overloading and to avoid
dynamic shape inferencing. Shape information is also
discovered by considering the algebraic properties such
as identity, associativity, commutativity, and idempotency,
preserved by operators. The authors classify intrinsic func-
tions in the three categories that have been discussed above.
Because their system can infer types using symbolic com-
putation and using algebraic properties satisfied by an op-
eration, more accurate shape information can be extracted.
As a restriction they mention that function calls have to be
of the same type, i.e., the same context. This model has
been implemented in the MAGICA system [9], which re-
quires the user to provide code in single static assignment
form and single operator form. Usings this type system in-
side a compiler implies a dependence on MATHEMATICA
and MAGICA.

The work from [3] is a bit more ambitious than ours, in

that they want to infer all possible types which can be valid
for a Matlab program. With the information of the inferred
types for argument expressions, specialized functions can
be invoked using techniques known as telescoping compil-
ers. This system requires some user provided annotations in
order to infer proper types. Although they mention that their
system can deal with a limited range of variability which
respect to number of arguments they do not give further de-
tails.

Our system does not require any annotations from the
user. It makes overloading explicit by function specializa-
tion, which restricts the input and output types of functions
to the ones that are used in actual function calls, and pro-
duces code that is suitable for compilation. Code that is
unreachable based on type checks is eliminated. This ap-
proach handles context typing information, and variability
in input arguments and output results.

7.2 Conclusion

This is work has been done in order to type Octave and
to create a user friendly compiler which does not require
further effort from the user. In order to resolve as much
type information as possible statically, we have used several
compiler techniques, which are normally used for optimiza-
tion. With a combination of partial evaluation, context in-
formation propagation and function specialization, the cur-
rent framework can eliminate most dynamic type checks
from library functions.
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