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Abstract

Virtually every non-trivial software system exhibitsvari-
ability: the property that the set offeatures—characteristics
of the system that are relevant to some stakeholder— can be
changed at certain points in the system’s deployment life-
cycle. Some features can be bound only at specific moments
in the life-cycle, while some can be bound atseveraldistinct
moments (timeline variability). This leads to inconsistent
configuration interfaces; variability decisions are generally
made through different interfaces depending on the moment
in the life-cycle. In this paper we propose to formalize vari-
ability into a feature model that takes timeline issues into
account and to derive from such feature models configura-
tion interfaces that abstract over the life-cycle.

1. Introduction

Managing the variability in software systems is rapidly
becoming an important factor in software development. In-
stead of developing and deploying a “fixed” one-of-kind
system, it is now common to develop a family of systems
whose members differ with respect to functionality or tech-
nical facilities offered [4]. As a simple example, consider
a software development environment that is delivered in a
light, professional, and enterprise version, each providing
increasing amounts of functionality. As another source for
variability, modern systems need to run on different com-
puting platforms and provide a user interface in different
natural languages and possibly interaction styles. Finally,
systems typically offer extensive means for configuration
and customization during installation, startup, and run-time.
Again, this extends the space of actual systems of the fam-
ily.

An important reason for explicitly introducing variabil-
ity into a system is to obtain reuse of software. Building
a separate system for each variant means that the overall
development effort and time will increase, and that time to
market will be seriously affected. In addition, having multi-
ple systems with significant overlap among them seriously
affects the programming and management effort needed in
maintenance.

Variability is studied, among others, in the field of sys-
tem families or software product lines [2]. A common ap-
proach found there is to explicitly identify features that are
common to a family of products, or specific for some of
its members, and to organize them in a feature model. A
feature then represents a variation point in the system for
which multiple choices or variants can be made available.
For each variation point, a particular variant may have to be
selected to actually use the system.

A feature model specifies the variability in a system on
a conceptual level. It is typically used as a basis for the de-
sign and implementation of family-common and product-
specific assets. However, since feature models are not first-
class citizens in development environments, the link from
variability on a conceptual level to the actual implementa-
tion typically has to be maintained manually and frequently
is not available at all [5].

Timeline variability To create an implementation, the
feature model itself is not enough, because the timing char-
acteristics of variation points [7] play a prominent role in
the design process. For each variation point, we have to ask
ourselves when (in the development, deployment and usage
timeline) it should be possible to extend or reduce the set
of variants and when the variation point should be bound to
a particular choice. Typical examples of such decision mo-
ments are compilation-time, distribution-time, build-time,



installation-time, start-time, and run-time. To identify such
moments, it is necessary to consider the needs of various
parties or stakeholders that might be involved in the deci-
sion process — e.g., designer, coder, product manager, sys-
tem administrator, end-user.

From such an analysis it may follow that it should be pos-
sible to make a decision atseveralmoments on the timeline.
For instance, if we consider an operating system it may be
desirable to statically link a driver into the kernel, but also
to have the opportunity to load it at startup-time. Thistime-
line variability is an extra dimension to variability that is
often ignored. In current practice, the issues of the timeline,
decision moments, stakeholders and timeline variability are
not considered, nor modeled explicitly. As a result, variabil-
ity is often not orthogonal to the timeline and the variabil-
ity of a system appears to have been designed in an ad-hoc
fashion. Some features can be configured at install-time,
others at startup-time, and still others at run-time. More-
over, thebinding time[7] of variability is usually fixed and
cannot be altered, e.g., binding a run-time variation point at
installation-time.

A typical scenario is a system that supports bundling of
a selection of packages from a package repository. Config-
uration of the packages with file system layout information
is done after package selection and distribution. However,
it might be desirable to configure packagesbeforebundling,
for example, for mass deployment on machines with a stan-
dardized file system layout. Such alternative orders for
making variability decisions typically require a completely
different set-up.

Configuration mechanisms The realization of variability
decisions can be achieved using a wide variety ofconfigu-
ration mechanisms. For example, conditional compilation
allows us to choose a particular variant during compila-
tion by identifying whether or not a piece of code should
be compiled. Likewise, we can transform existing code
to introduce particular behavior. Source tree composition
on the other hand, allows us to include or exclude partic-
ular (source) components [9]. For more late-time variabil-
ity we can use object-oriented techniques like inheritance
and abstract-coupling combined with a factory object and
a parameter file that defines the correct variant to use. Al-
ternatively, we can use run-time discovery and binding of
(distributed) objects in platforms such as Corba. In prac-
tice, there is a significant distance between variability on a
conceptual level (features, variation points) and the config-
uration mechanisms actually used.

Configuration interface A software system with vari-
ability provides aconfiguration interface, through which
variability decisions are made. Ideally this interface pro-
vides a view to the system that corresponds to variability at

the conceptual level (i.e., the feature model). However, the
underlying mechanisms are usually reflected in the inter-
face to such an extent that the high-level view is obscured
by low-level mechanisms. Since variability decisions are
realized through many different configuration mechanisms,
which are closely tied to moments in the timeline, variabil-
ity appears to be treated in an ad-hoc fashion. A particular
mechanism is chosen arbitrarily, or for technical reasons,
rather than for support of an appropriate configuration in-
terface. As a result configuration is not transparent, but de-
termined by the time of configuration.

Implementation of timeline variability Another issue
of current practice and mechanisms is that changing the
timing-characteristics of a variation point involves a lot of
work, typically because the implementation of the varia-
tion point is scattered across many different artifacts (source
code files, build files, et cetera). For example, allowing
“pre-binding” of run-time variation points during installa-
tion (e.g. making a partially parameterized version of an
X Window System server configuration) may involve a lot
of work in different parts of the system. Finally, the con-
sequences of a particular choice, e.g., in terms of perfor-
mance, resource overhead, or maintainability, are often un-
clear or not considered. As a consequence, potential tech-
niques to optimize the software at a particular binding time
may not be fully used.

Contribution In this paper we demonstrate the problem
of timeline variability and the configuration issues related to
variability in general. The central idea is to provide a gen-
eral formal model of variability that can cope with timeline
aspects. Such a model can be annotated withactionsto per-
form configuration transitions depending on the configura-
tion state of the system (i.e., the “moment” on the timeline).
From such a model we can generically derive configuration
interfaces that close the current gap between variability at
the conceptual and implementation levels.

Outline In section 2 we provide some concrete examples
of timeline variability and their impact on the developers
and users of a system. In section 3 we describe a general
model of feature models. We describe in section 4 how
configuration interfaces can be obtained generically from
the feature models by annotating the models with actions.
We discuss related work in section 5. Concluding remarks
and directions for future work are given in section 6.

2. Motivating Examples

In this section we show some examples of variability in
real systems. In particular we are interested in the impact of



variability on configuration of the system, and in the pres-
ence and implementation oftimeline variability—the phe-
nomenon that certain features may be selected atseveral
different moments on the timeline.

The Linux kernel The Linux kernel provides the basis
for several variants of the GNU/Linux operating system.
The Linux kernel was originally implemented as a tradi-
tional monolithic kernel. In this situation all device drivers
are statically linked into the kernel image file. Conditional
defines and makefile manipulation are used to selectively
include or exclude drivers and other features.

The disadvantage of this approach is that it closes a large
number of variation points at build-time. Hence, the ker-
nel was retro-fitted with amodulesystem. A set of source
files constituting a module can be compiled into an object
file and linked statically into the kernel image, or compiled
into an object file that is stored separately and may be dy-
namically loaded into a running kernel. Modules may refer
to symbols exported by other modules. A tool exists to au-
tomatically determine the resulting dependencies to ensure
that modules are loaded in the right order.

The implementation of the variation points realized
through the module system is for the most part straight-
forward. For example, operations on files are implemented
through dispatch through a function pointer; this is a fea-
ture of standard C. However, these function pointers must
at some point beregistered. That is, they must be made
known to the system, and this presents difficulties. Slightly
simplified, every module exports an initialization function
f which must be called during kernel initialization, in the
case of statically linked modules, or at module load-time, in
the case of dynamically loaded modules.

For dynamically loaded modules, obtaining the address
of f is a matter of looking it up in the module’s symbol table
at load-time. For statically linked modules, the problem is
harder, since the C language does not provide a mechanism
to iterate over a set of function names that are not statically
known. For example, we have no way of calling every func-
tion calledinit˙module() that is linked into the executable
image. This problem is solved by emitting these addresses
in a specially designatedsectionof the executable image,
which can then be iterated over at run-time. The point here
is not to show the details of the implementation of timeline
variability in the Linux, but rather to show that it is non-
obvious and quite different at each point on the timeline. In
this case, we achieve timeline variability of module activa-
tion at build-time and run-time, through a combination of
preprocessor, compiler, and linker magic.

Another issue is how variability appears to the user. A
problem with systems that allow configurability at different
moments on the timeline is that the configuration interface
tends to be different at each conceptual moment. For exam-

ple in the case of the Linux kernel, modules are added at
build-time through an interactive tool that allows variation
points to be bound through a textual or graphical user inter-
face based on a feature model of the kernel. On the other
hand, at run-time the interface is more primitive: adding
a module happens through commands such asmodprobe
which simply takes the name of a module to be loaded.

The Apache web server The Apachehttpd server is a
freely available web server. In order to support various
kinds of dynamic content generation, authentication, etc.,
the server provides a module system. Modules can be linked
statically at build-time, or dynamically at startup-time. Dy-
namically loaded modules can be compiled inside or outside
the Apache source tree.

Apache faces the same problem as the Linux kernel: how
to register a variable set of modules (that is, how to make
statically included modules known to the core system)? The
solution used by the Apache developers is to have the con-
figuration script generate a C source file containing a list of
pointers to the module definition structures. Note that this
solution is again, in a sense, outside of the C language; we
need togenerateC code (a process external to the language
proper) in order to deal with these open variation points.
Registering a module at startup-time happens by loading the
module and lookup up a fixed name in its symbol table.

Configuration is quite different at build-time and startup-
time. At build-time, modules are selected by specifying the
list of desired modules to an Autoconf configuration script
(which constructs the build files). If modules are added
later, at startup-time, they must be added to a configuration
file (httpd.conf).

Issues The aforementioned examples demonstrate the two
main issues in implementing timeline variability. First, we
tend to havea different configuration interface per config-
uration moment, even when some features can be bound at
several moments during the life-cycle (thus presenting an
inconsistent interface to the user).

Second,implementations techniques aread hoc. This is
almost necessarily so, because the underlying languages do
not offer the required support. Providing a variation point
either at build-timeor at run-time is not hard, but provid-
ing it at both tends to require some hackery. Consider, for
example, a binary variation point that is bound at run-time,
implemented in C. This might be implemented as follows:

if (feature) f() else g();

Moving this variation point to build-time is not hard ei-
ther using conditional compilation:

#if FEATURE
f()

#else



g()
#endif

But to allow for this feature to be bound both at build-
time and run-time, we would need, e.g.,:

#if FEATURE_BOUND_AT_BUILD_TIME
#if FEATURE

f()
#else

g()
#endif
#else

if (feature) f() else g()
#endif

which is inelegant: not only do we need two different im-
plementation mechanisms, but binding the feature will tend
to happen through different configuration interfaces, and the
corresponding implementation is difficult to understand.

3. Feature models and time

The main problem in timeline variability is that every
stage in the life-cycle tends to present a different configura-
tion interface to the user. This is particularly annoying for
variation points that have several binding times. In order to
generalize system configuration, we propose that a generic
configuration interface is parameterized with a formalized
feature model.

In approaches such as FODA [10] or FDL [6] feature
models are described as graph-like structures, where the
edges between features denote certain relationships (such
as alternatives, exclusion, and so on). The model therefore
describes a set ofvalid configurations that satisfy all con-
straints on the feature space. Apart from being used dur-
ing analysis and design, such models can also be used to
drive the configuration process directly. For example, the
CML2 [14] language was designed to drive the configura-
tion process of the Linux kernel (and other systems) on the
basis of a formal feature model of the system.

However, these models provides astaticview of the con-
figuration space: a configuration is either valid or it is not;
no timeline aspects are taken into account. In order to model
timeline aspects, it is necessary to take into account that
some feature selections, i.e., bindings of variation points,
are valid only on certain points on the configuration time-
line. That is, we should not place constraints on configura-
tions but on transitions between configurations.

Formally, a feature model for a system with a statically
fixed set1 of variation points has the following elements:

1It is possible for the set of variation points to be dynamic, e.g., load-
able modules may add their own variability. For simplicity we do not take
this possibility into account here.

• A set of named variation pointsP and, for each varia-
tion pointp ∈ P , the set of named statesSp.

• A configurationC is an assignment of states to varia-
tion points, that is, a functionP → ∪p∈P Sp.

• An initial configurationc0 ∈ C.

• A relationT ⊆ C × C expressing valid configuration
transitions; i.e., it constrains configurations. As noted
above, it is not sufficient merely to describe valid con-
figurations, since not every valid configuration can be
transformed into any other valid configuration. How-
ever, the set of valid configurations is the transitive clo-
sure of{c0} under theT relation.

Note that static feature models such as FODA, FDL, and
CML can be transcoded into this model; they are just differ-
ent ways of expressing the valid-transition relationT . In-
deed, the main problem in making this approach useful is
to find a suitable way to specifyT . Note that this is just an
usability issue; the model is as described above.

It may be argued that implementation restrictions should
not appear in the feature model. However, they are required
to generate configuration systems. In addition, we can iden-
tify several types of constraints. First, there are constraints
that are inherent to the problem domain; these arise from the
domain analysis. Second, some constraints result from im-
plementation restrictions. This may well be the largest set in
typical systems. Finally, some constraints are not forced by
the domain or implementation, but rather are added by some
stakeholder. An example would be a system administrator
who restricts some end-user configurability. The specifi-
cation language for the feature model should allow these
constraints to be specified separately.

Example An example may be useful. We shall encode a
very small subset of the variant space of the Apache web
server using the formalism given above.

What is the set of variation pointsP and the associated
sets of states for each variation point? An example of a
simple variation point in this model isdebug to enable or
disable emission of debug information (with stateson and
off, respectively). This variation point can only be bound
at build-time. More relevant to timeline variability is
Apache’s module support. For example, we have variation
points such asmod˙cgi (also with stateson andoff) to en-
able or disable support for CGI scripts, respectively. Re-
calling the discussing of modules in Apache in section 2,
such features can always be bound at build-time, but they
can only be changed at startup-time when support for dy-
namic loading of modules is enabled. This is also a vari-
ation point, of course, which we denote asmod˙dso (for
dynamic shared objects).



In order for our approach to work we need to encode in
the valid-transition relationT that the state ofmod˙cgi can
be changed up to build-time, but up to startup-time only if
mod˙dso is set toon. Hence, we need to be able to dis-
tinguish the point on the timeline that we are at. To do this
we introduce apseudo variation pointtime with statesini-
tial, built, andrunning, denoting the deployment points at
which the source has been obtained, the system has been
built, and the system has been started.

Note that there is nothing particularly special abouttime,
except that it does not denote a real (i.e., conceptual) vari-
ation point; i.e., this is quite general: any aspect of the de-
ployment state (such as an installation path) can be stored
in the configuration.

Using time we can fill inT , which describes the set of
valid transitions. Hence, we have to deal withtwo config-
urations: the configurationc1 we are coming from, and the
configurationc2 that we are going to. For anyc1 andc2,
(c1, c2) ∈ T if and only if the following hold:

(1) c1.time ≤ c2.time
(2) c1.time ≥ built → c1.debug = c2.debug
(3) c1.time ≥ built → c1.mod dso = c2.mod dso
(4) c1.time ≥ built ∧ c1.mod dso = off

→ c1.mod cgi = c2.mod cgi
(5) c1.time ≥ running

→ c1.mod cgi = c2.mod cgi

(The ordering ontime is initial ≤ built ≤
running ). Condition(1) encodes that time is monoton-
ically non-decreasing. Conditions(2) and(3) specify that
thedebug andmod˙dso variation point can never change
after the system has been built. On the other hand, condi-
tion (4) says thatmod˙cgi cannot change if, additionally,
support for dynamic loading is disabled. Hence,mod˙cgi
canchange after build-time if DSO support is enabled. Fi-
nally, condition(5) restricts this a bit: CGI support cannot
be changed after the system has been started.

4. From models to configuration interfaces

The construction of a formal feature model as discussed
in the previous section is valuable in itself because it enables
analysis of both conceptualand implementation-defined
variability in a system. The real strength of a formal model,
however, is that it allows the automatic generation of config-
uration interfaces. The intent is that using the feature model
we can drive a generic configuration tool calledTraCE(for
Transparent Configuration Environment). The idea is out-
lined in figure 1. At each point in time we maintain the
configuration state corresponding to the state of the sys-
tem. Starting with an initial system (e.g., the source code
distribution of Apache), the user can make modification to
the configuration through the TraCE user interface, which

Figure 1. Sketch of the TraCE system operat-
ing on a feature model for Apache.

presents a visualization of the feature model. Such modi-
fications are actualized upon the system by TraCE. For ex-
ample, in the Apache example, the transition from initial
to built stage is performed by configuring the source with
the right parameters (depending on the selected variation
points) and building it.

More precisely, given acurrent configurationc ∈ C,
the user can modifyc by changing the states of variation
points, yielding atargetconfigurationc′ ∈ C. We associate
with each valid transitiont ∈ T some imperative action
that should be performed torealize the configuration tran-
sition. Hence, if(c, c′) ∈ T , the configurationc′ can be
realized by executing the associated action. Note that ac-
tions are associated with transitions, and so configurations
may be realized in different ways depending on the configu-
ration we are coming from. This is necessary for supporting
timeline variability, since the binding of variation points can
proceed through different implementation points depending
on the time, or on the state of other variation points.

A problem here is that while(c, c′) may not be a
valid transition, there may be a sequence of transitions
(c, c1), (c1, c2), . . . , (cn, c′) ∈ T that realizes the desired
transition. Finding a path in the transition space is com-
putationally prohibitive. We can side-step this problem by
requiring that the user always specifies transitions that are
in T . This is not unreasonable if the developer of the fea-
ture model ensures thatT is (more or less) transitive, that
is, (c1, c2) ∈ T ∧ (c2, c3) ∈ T → (c1, c3) ∈ T .

5. Related work

Variability is an emerging area of research. The first
attempts to handle variability in a disciplined way are the
feature-modeling formalisms originally developed in [10].
These models are directed at domain analysis, however, and
are not directly used for implementation. Rather, such mod-



els suggest where in the system the implementor should
construct variation points to deal with anticipated or unan-
ticipated variants. In [16] another feature modeling is ad-
dressed, which uses feature logic to reason about collec-
tions of components and their properties. Basic support for
timeline variability is addressed in [13]. They use partial
evaluation techniques of components parameters to choose
between compile-time and run-time variability. Variability
mechanisms are described in [7]. They introduce the notion
of variability binding time (i.e., the moment in time where a
variability point is bound) but binding time is not explicitly
modeled nor transparently handled. Feature binding cannot
be rolled back in product instances to change parts of its
functionality. Variation management in software product
lines is discussed in [12]. They discuss variation during the
life-time of a product line rather than during the deployment
time of a product instance.

Several techniques have been developed to realize vari-
ability at compile-time, such as Frame Technology [8],
Mixin layers [15], and aspect-oriented programming [11].
None of these explicitly model variability. GenVoca is
another compile-time variability mechanism [1]. Feature
modeling in combination with GenVoca is briefly addressed
in [3] but timeline variability is not considered.

6. Conclusion

We have discussed some of the issues in timeline vari-
ability. We suggest that the problem of inconsistent con-
figuration interfaces can be solved through formal feature
models that encode timeline aspects and that these can be
used to generically drive the configuration process.

We are currently implementing a prototype of TraCE.
There are several important issues that must be addressed.
First, we need a language (or interface) that allows the ef-
ficient formulation of feature models, as well as the asso-
ciation of actions to transitions. Second, there are user in-
terface issues. For instance, how do we present the feature
space to the user? In formalisms such as CML2 or FDL the
presentation structure is more-or-less obvious (due to the
use of an essentially tree-like model structure). In TraCE
we need to automatically derive an appropriate presentation
structure from the feature model.

The other main problem in timeline variability—
implementation techniques—deserves study; e.g., language
mechanisms and programming techniques that allow easier
binding at several moments must be investigated.
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