
Timeline Variability
The Variability of Binding Time of Variation Points

Eelco Dolstra
Gert Florijn
Eelco Visser

Technical Report UU-CS-2003-052
Institute of Information and Computing Sciences

Utrecht University

January 2003



Preprint of
E. Dolstra, G. Florijn, and E. Visser. Timeline Variability: The Variability of Binding Time of Variation Points. In Workshop
on Software Variability Modeling (SVM’03), number IWI preprint 2003-7-01, Groningen, The Netherlands, 2003. Reseach
Institute of Computer Science and Mathematics, University of Groningen.

Copyright c© 2003 Eelco Dolstra, Gert Florijn, Eelco Visser

ISSN 0924-3275

Address:
Eelco Dolstra
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands
eelco@cs.uu.nl

Gert Florijn
SERC, P.O. Box 424,
3500 AK Utrecht, The Netherlands
florijn@serc.nl

Eelco Visser
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands
visser@cs.uu.nl



Timeline Variability: The Variability of Binding Time of Variation Points

Eelco Dolstra
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Gert Florijn
SERC, P.O. Box 424,

3500 AK Utrecht, The Netherlands
florijn@serc.nl

Eelco Visser
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

visser@cs.uu.nl

1. Introduction

Timeline variability is the ability of a software system
to have variation points bound at different moments of the
system’s life-cycle.

Virtually every non-trivial software system exhibitsvari-
ability: the property that the set offeatures— characteristics
of the system that are relevant to some stakeholder— can
be changed at certain points in the system’s life-cycle. The
parts of the system that implement the ability to make such
changes are calledvariation points. Selecting some variant
supported by a variation point is calledbinding the vari-
ant. Every variation point has at least one associatedbind-
ing time: the moment in the system’s life-cycle at which the
variation point can be bound. A more detailed exposition of
this terminology can be found in, e.g., [6, 2].

For example, the decision to build an operating system
kernel with multiprocessor support, or to build a “light” or
“professional” version of a word processor, might be im-
plemented at build time. On the other hand, the decision
to include support for some brand of hard drive in an op-
erating system, or to use some particular language for spell
checking in a word processor, might be made at runtime.

Generally, one would like variation points to be as flex-
ible as possible with regard to binding time. That is, ide-
ally one wants to have the ability to bind a variation point
at build time, installation time, runtime, and so on. This
leads to the notion oftimeline variability: that certain fea-
tures can be bound atseveralstages of the life-cycle. We
do not formalise the termtimelinehere. Intuitively, we use
if to refer to the set of distinguished moments during the
build and deployment process where a user can potentially
select variants. For example, the Linux operating system
kernel allows functionality, e.g., device drivers, to be in-
cluded either at build time or at runtime. However, chang-

ing features at runtime proceeds through entirely different
interfaces than changing them at build time. Similarly, the
Apachehttpd webserver allows server extensions to be in-
cluded at build time or at load time, but through different
configuration mechanisms. Microsoft Office 2000 allows
components to be installed either at install time proper or
on demand, at runtime.

The concept of timeline variability—that is,variability
of binding time—should not be confused with the binding
time of variation points. In this paper we illustrate timeline
variability through two case studies, Apache and the Linux
kernel, and show that the two main technical issues in time-
line variability areinconsistent configuration interfacesand
ad hoc implementation mechanisms. We also provide some
directions for future research.

2. Examples

In this section we show some examples of timeline vari-
ability in real systems. As we shall see, implementation of
such variability is problematic. Consider, for example, a bi-
nary variation point that is bound at runtime, implemented
in C. This is not hard to implement:

if (feature) f() else g();

Moving this variation point to build time is not hard either
using conditional compilation:

#if FEATURE
f()

#else
g()

#endif



But suppose we wish to allow for this feature to be bound
both at build time and runtime. A possible implementation
would be:

#if FEATURE_BOUND_AT_BUILD_TIME
#if FEATURE

f()
#else

g()
#endif
#else

if (feature) f() else g()
#endif

which is not very elegant. For more complex variation
points, the situation becomes even worse.

2.1. The Linux kernel

The Linux kernel provides the basis for several variants
of the GNU/Linux operating system. The kernel’s job is to
virtualise the hardware (e.g., provide multitasking and vir-
tual memory) and abstract from it (e.g., provide a unifying
interface to different types of storage devices or file sys-
tems).

The Linux kernel was originally implemented as a tradi-
tional monolithic kernel. In this situation all device drivers
are statically linked into the kernel image file. Conditional
defines and makefile manipulation are used to selectively
include or exclude drivers and other features.

The disadvantage of this approach is that it closes a large
number of variation points at build time. Hence, the ker-
nel was retro-fitted with amodulesystem. A set of source
files constituting a module can be compiled into an object
file and linked statically into the kernel image, or compiled
into an object file that is stored separately and may be dy-
namically linked into a running kernel. Modules may refer
to symbols exported by other modules. A tool exists to au-
tomatically determine the resulting dependencies to ensure
that modules are loaded in the right order.

The implementation of the variation points realised
through the module system is for the most part straight-
forward. For example, operations on block or character de-
vice files are implemented through dispatch through a func-
tion pointer; this is a feature of standard C. However, these
function pointers must at some point beregistered(i.e., be
made known to the system), and this cannot be done in stan-
dard C. In particular, every module exports an initialisation
function which must be called during kernel initialisation,
in the case of statically linked modules, or at module load
time, in the case of dynamically loaded modules. The C
language, however, does not provide a mechanism to iterate
over a set of functionnamesthat are not statically known.
For example, we have no way of calling every function

called init˙module() that is linked into the executable im-
age.

The Linux kernel solves this problem through the tech-
nique of emitting certain data in specially designatedsec-
tionsof the executable image. An invocation of the macro
˙˙initcall(f ) arranges for the address off to be placed in the
special section.initcall.init;

typedef int (*initcall_t)(void);

#define __initcall(f) \
static initcall_t __initcall_##f \

__attribute__((unused,__section__\
(".initcall.init"))) \

= f

A module can declare some initializerf by invoking the
macromodule˙init(f ). For statically linked modules,mod-
ule˙init expands to an invocation of˙˙initcall, and so the
address off is emitted in the.initcall.init section. We can
then iterate through all initialisers as follows:

initcall_t *call = &__initcall_start;
do {

(*call)();
call++;

} while (call < &__initcall_end);

The symbolṡ ˙initcall˙start and ˙˙initcall˙end are emitted
at the start and end of the.initcall.init section by the linker
script that guides the linker.

For dynamically loaded modules, on the other hand,
module˙init(f ) emits a symbolinit˙module as an alias for
f . The module loader will simply look this symbol up and
call it.

Hence, we achieve timeline variability of module activa-
tion extending to build time and runtime, through a combi-
nation of preprocessor, compiler, and linker magic.

Cross-cutting features One problem facing the scheme
implementing the module system is that it is closely tied
to the structure of source modules; it is therefore difficult
to modularise features that are not localisable into one or a
few distinct source modules, i.e., cross-cutting features. An
example is whether the kernel is built for uniprocessing or
for symmetric multiprocessing (SMP). In an SMP configu-
ration, many kernel data structures have to be guarded care-
fully against concurrent access; this affects a large amount
of code. Quantitatively, we can get an indication of the
degree to which a feature cross-cuts a system by count-
ing the ifdefs conditionalised on the feature variable. In
this case, we see that#ifdef CONFIG˙SMP occurs more
that 540 times in 250 source files of version 2.4.10 of the
kernel. Because they impact so many source components,
cross-cutting features are not very well suited for dynamic



loading. Additionally, variation points such as SMP support
affect the definition of data structures, which makes it prac-
tically impossible to bind them at any time later than build
time.

Analysis A problem of the Linux kernel is its monolithic
distribution. If a feature is required that is not part of the dis-
tribution, either the kernel must be patched (e.g., the JFS file
system) or the code must be compiled separately, outside of
the kernel source tree (e.g., the ALSA sound system). Note
that the latter solution makes static linking into the kernel
impossible, the build mechanism is totally different, and it
creates more work for users. Dynamic source tree compo-
sition [3] can alleviate this problem.

Note that the timeline variability of the module system
does not directly extend to startup time, i.e., the loading of
the kernel, since the kernel may not have the ability to load
kernel modules at boot time. For example, the modules sup-
porting the storage medium and file system on which the
modules are stored must be statically linked into the kernel
to prevent a chicken-and-egg problem. In essence, the time-
line variation point has been closed with respect to startup
time by the problem domain. However, aninitial ramdisk
(which is part of the kernel’s image) may be used to store
the required modules, thus extending the timeline variabil-
ity to startup time.

2.2. Apache

The Apachehttpd server is a freely available web server.
In order to support various kinds of dynamic content gen-
eration, authentication, etc., the server provides a module
system. Modules can be linked statically, or dynamically, at
startup time. Dynamically loaded modules can be compiled
inside or outside the Apache source tree.

Apache faces the same problem as the Linux kernel: how
to register a variable set of modules (i.e., how to make stat-
ically included modules known to the core system)? The
solution used by the Apache developers is to have the con-
figuration script generate a C source file containing a list of
pointers to the module definition structures:

module *ap_preloaded_modules[] = {
&core_module,
&access_module,
&auth_module,
...

};

Note that this solution is again, in a sense, outside of the C
language; we need togenerateC code (i.e., externally) in
order to deal with these open variation points.

Analysis Note that neither Apache nor the Linux kernel
take advantage of static linking beyond the fact that it may
be a necessity, e.g., dynamic linking may not be available
on some platforms on which Apache is configured, pro-
vides simplified runtime characteristics, or, in the case of
the Linux kernel, may be perceived as a security feature
(the absence of dynamic loading of kernel modules makes
it a little bit more difficult to subvert the kernel). Compile
time knowledge of the module configuration does not lead
to more efficient code, since this requires cross-module op-
timisation; many C compilers are not capable of this.

2.3. Issues

So what are the issues in timeline variability? First,
though some features can be bound at several moments
during the life-cycle, the configuration interfaces tend to
be different for each moment. For example, in the case
of the Linux kernel, a module may be included at build
time through the use of an interactive configuration tool that
shows variants, dependencies between features, and so on.
On the other hand, including a module at runtime happens
by running themodprobe command; an entirely different
interface. Likewise, Apache modules can be added at build
time through a Autoconfconfigure script, or at startup time
by editing a configuration file.

Second, the techniques used to implement timeline vari-
ability aread hocnecessarily because the underlying lan-
guages do not offer the required support. Providing a varia-
tion pointeitherat build timeor at runtime is not hard, but
providing it at both requires quite a bit of “magic”.

3. Future Work

We have seen that timeline variability causes difficulties
at two different levels, namely, in theimplementationand in
theconfigurationof the system.

Implementation The main implementation issue is that
variation points are not first-class citizens in conventional
programming languages and development environments,
that is, they are not represented explicitly and cannot be ma-
nipulated directly. Rather, the implementation of a variation
point happens through some mechanism that is specific to
the binding time, e.g., conditional compilation or dynamic
loading of shared libraries. This means that moving a varia-
tion point to a different binding time, or supporting binding
at multiple binding times, requires explicit and often non-
trivial modification to the system.

A partial solution to this problem is the use ofstaged
compilation. For example, partial evaluation may be used
to move an apparent runtime variation point to build time.



The converse—moving from build time to runtime—is gen-
erally harder. For example, it is not obvious how to deal
with conditional data structure definitions.

Configuration The main problem here is that every stage
in the life-cycle tends to present a different configuration
interface to the user. This is particularly annoying for vari-
ation points that have several binding times. In theTrans-
parent Configuration Environments(TraCE) project we aim
at generalising system configuration interfaces. TraCE con-
sists of a generic configuration interface parameterised with
a formalised feature model.

In approaches such as FODA [4] feature models are de-
scribed as graph-like structures, where the edges between
features denote certain relationships such as alternatives and
exclusion. The model therefore describes a set ofvalid con-
figurations that satisfy all constraints on the feature space.
Apart from being used during analysis and design, such
models can also be used to drive the configuration process
directly. For example, the CML2 [5] language was designed
to drive the configuration process of the Linux kernel on the
basis of a formal feature model of the system.

However, these models provides astaticview of the con-
figuration space: a configuration is either valid or it is not;
no timeline aspects are taken into account. In order to model
timeline aspects, it is necessary to take into account that
some feature selections, i.e., bindings of variation points,
are valid only on certain points on the configuration time-
line. Therefore, the feature model presented in this section
does not place constraints on configurations, but rather on
transitions between configurations.

Formally, a feature model for a system with a statically
fixed set of variation points has the following elements:

• A set of named variation pointsP and, for each varia-
tion pointp ∈ P , the set of named statesSp.

• A configurationC is a mapping from variation points
to states, that is, a functionP → ∪p∈P Sp.

• An initial configurationc0 ∈ C.

• A relationT ⊆ C × C expressing valid configuration
transitions; i.e., it constrains configurations. As noted
above, it is not sufficient merely to describe valid con-
figurations, since not every valid configuration can be
transformed into any other valid configuration. How-
ever, the set of valid configurations follows by com-
puting the transitive closure of the set{c0} under the
T relation.

Note that static feature models such as FODA [4], FDL
[?], and CML [5] can be transcoded into this model; they are
just different ways of expressing the valid-transition relation
T . Indeed, the main problem in making this approach useful

is to find a suitable way to specifyT . Note that this is just a
usability issue; the model is as described above.

It may be argued that implementation restrictions should
not appear in the feature model (e.g. in [1], p. 117). How-
ever, they are required to generate configuration systems. In
addition, we can identify several types of constraints. First,
there are constraints that are inherent to the problem do-
main; these arise from the domain analysis. Second, some
constraints result from implementation restrictions. This
may well be the largest set in typical systems. Finally, some
constraints are not forced by the domain or implementation,
but rather are added by some stakeholder. (for example, a
system administrator restricting some end-user configura-
bility). The specification language for the feature model
should allow these constraints to be specified separately.

4. Conclusion

Timeline variability makes the configuration of software
systems more flexible by leaving open the decision about
the binding time of a feature. However, the implementa-
tion of timeline variability is often ad hoc and presented
through inconsistent configuration interfaces. Better sup-
port for timeline variability requires features models to de-
scribe the variability of a systemincludingits timeline vari-
ability, and transparent configuration environmentwhich
provide an abstract interface to the details of configuration
mechanisms required

References

[1] K. Czarnecki and U. W. Eisenecker.Generative Programming
— Methods, Tools, and Applications. Addison-Wesley, June
2000.

[2] L. Geyer and M. Becker. On the influence of variabilities
on the application-engineering process of a product family.
In G. J. Chastek, editor,Proceedings of the Second Software
Product Line Conference (SPLC2), volume 2379 ofLecture
Notes in Computer Science, August 2002.

[3] M. de Jonge. Source tree composition. InProceedings:
Seventh International Conference on Software Reuse, volume
2319 ofLNCS, pages 17–32. Springer-Verlag, Apr. 2002.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (FODA) feasi-
bility study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 1990.

[5] E. S. Raymond. The CML2 language: Python implemen-
tation of a constraint-based interactive configurator. In9th
International Python Conference, March 2001.

[6] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion
of variability in software product lines. InProceeedings of
WICSA 2001, August 2001.


	. Introduction
	. Examples
	. The Linux kernel
	. Apache
	. Issues

	. Future Work
	. Conclusion

