A Note on the Complexity of
Network Reliability Problems

Hans L. Bodlaender
Thomas Wolle

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-001

www.cs.uu.nl

A Note on the Complexity of
Network Reliability Problems

Hans L. Bodlaender and Thomas Wolle

Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
hansb@cs.uu.nl thomasw@cs.uu.nl

Abstract. Let be given an undirected, simple graph G = (V, E). We associate to each vertex a
number in [0, 1] - its reliability, i.e. the probability that it does not fail. Furthermore, let a set
S C V of servers and a set L C V of clients be given. Vertex failures are independent of each other.
The network reliability asks for the probability that the graph induced by the non-failed vertices is
connected. We can also ask for the probabilities of connections between vertices of S and between
vertices of S and L, e.g. ‘What is the probability that all clients are connected to at least one server?’
In this note, we consider a list of such problems and prove their # P-completeness.

1 Introduction

Networks are an essential part of current information and communication technology. The
reliability of these networks is of great importance. In this note, we look at the problem
to determine such reliabilities for networks, modelled in the following way. We model the
real world networks as undirected graphs; sites correspond to vertices and links to edges.
A number representing the non-failure probability (i.e. the reliability) is associated to each
element of the network. The surviving subgraph is a subgraph of the graph, where the
reliability of an element gives the probability that it is present in the surviving subgraph.
We furthermore assume that failures of network elements do not influence each other,
i.e., the probabilities that vertices fail are independent. The classical network reliability
problems ask for the probability that the surviving subgraph is still connected or for the
probability that there is a connection between two distinguished vertices.

Twenty years ago, Provan and Ball [7] and Valiant [9] showed that the classical network
reliability problems are # P-hard. A similar result was shown independently by Jerrum [4].
The complexity class # P was first defined by Valiant [9]. Carlier and Lucet give a decom-
position method to compute the reliability of a network [2]. This decomposition method
was introduced by Rosenthal [8]. Because of the computational hardness of the problems
on general graphs, Arnborg and Proskurowski [1], Mata-Montero [6], Lucet, Manouvrier
and Carlier [5] and Wolle [10] give efficient algorithms for graphs of bounded treewidth
(pathwidth).

In our model we are given a graph and the reliabilities of its vertices. We assume
edges are perfectly reliable. Furthermore, we have a set of servers and a set of clients as
distinguished vertices. We extend the classical network reliability problems to questions
such as: “‘What is the probability that all clients are connected to at least one server?’
or ‘What is the expected number of components of the graph induced by the non-failed

Complexity of Network Reliability Problems 3

elements that contain a vertex of S7” We prove these and similar questions to be #P’-
complete on general graphs. # P’ is an extension of # P to include rational valued functions.

#P' was called #P in [7]. We use the different notation # P’ to avoid confusion with
the original class #P. The #P’-completeness proofs in this paper consist, as usual, of
two parts: proofs of membership in #P’, and transformations from problems known to be
#P’-hard. Unlike as is common for N P-completeness proofs, the membership part is not
entirely trivial, although it is not very complex.

The paper is organised as follows. In Section 2, we give preliminary definitions and
results: descriptions of the classical network reliability problems, the formal definition of
P’ and some elementary consequences of the definition, a discussion how edge failures
can be modelled by vertex failures, and our graph theoretic model. At the end of Section 2,
we give the list of network reliability problems that are considered in this note. Section 3
contains proofs of the # P’-membership of two network reliability problems. The member-
ship in # P’ of the other network reliability problems mentioned in Section 2 can be proven
in the same way. In Section 4, we prove each of the considered network reliability problems
to be #P’-hard. In Section 5, we consider variants of most of the problems which amount
to computing the numerator of the probability one is interested in; the denominator is
easily computable. These ‘numerator variants’ are shown to be # P-complete. Section 6
gives some concluding remarks.

2 Preliminaries

2.1 The Classic Network Reliability Problems

The two problems our transformations are based on, are the classical network reliability
problems. Let an undirected, simple graph G be given with a number p, € [0, 1] associated
to each edge e of G. This number p,. is the probability that the edge e is present in the
surviving subgraph. We can now consider the following problems:

— [2 < t] (Two Terminal Network Reliability Problem): What is the probability that
there is a path between two distinguished vertices s and ¢?

— [A < t]. (All Terminal Network Reliability Problem): What is the probability that all
vertices remain connected?

We will use the abbreviations with brackets as the name of the problem when we refer
to network reliability problems in formulas or figures.

The Two Terminal Network Reliability Problem was proven to be # P-hard by Valiant
[9]. More precisely, Valiant shows that computing the number of subgraphs or induced
subgraphs of a given graph G such that there is a path between given vertices s and t is
P-complete. This implies the # P’-completeness of the Two Terminal Network Reliability
Problem for the case that all edges, or all vertices (except possibly s and t), respectively,
have the same reliability. Provan and Ball [7] show #P-hardness for the All Terminal
Network Reliability Problem. They state that the problem is #P-complete (i.e. in our
terms: #P’-complete), but do not give a proof for the membership of the problem in

4 Hans L. Bodlaender and Thomas Wolle

#P'. Jerrum [4] showed that the probability that the surviving network is connected,
viewed as a polynomial in the edge failure probabilities is complete for Valiant’s class of
P-definable polynomials with respect to P-projections. As the proofs of membership in #P’
of the network reliability problems are not available in currently easily accessible scientific
literature, we give such a proof here (Lemma 2), for one of the considered problems; the
other problems can be showed to belong to #P’ in the same way.

Provan and Ball [7] also showed that it is # P-hard to approximate the two problems,
even for the case that all edges have the same reliability.

2.2 Complexity

Valiant introduced in [9] the notions # P and # P-completeness to express the hardness of
problems that ‘count the number of solutions’. More precisely, #P is the set of integer-
valued functions that express the number of accepting computations of a nondeterministic
Turing machine of polynomial time complexity. Let F'P represent the class of polynomial-
time computable functions. Furthermore, let IV denote the set of nonnegative integers and
let X' be the finite alphabet of the input and output of the Turing machines considered in
this note. The next definition that defines # P equivalently to Valiant’s definition, can be
found in [3], which also contains an extensive overview of the theory of counting complexity.

Definition 1. The class #P consists of the functions f : X* = IN such that there exists
a nondeterministic polynomial time Turing machine M such that for all inputs x € X%,
f(x) is the number of accepting paths of M.

As problems like the network reliability problems are functions to the rational numbers
in [0, 1] and not to the integers, we cannot say, using Valiant’s definition, that they belongs
to #P. Provan and Ball [7] extended Valiant’s notion of # P and # P-completeness to deal
with functions with a range of multiple or rational values.

A language (function) g is polynomially transformable to a language (function) f, writ-
ten as g < f, if there exists a Turing machine that for any input x, computes g(x) with a
polynomial (in the size of x) number of elementary operations and evaluations of language
(function) f. (The size of x is the number of bits needed to denote z.) A function f is
#P-hard, if every function g in # P is polynomially transformable to f. f is #P-complete,
if f belongs to #P and f is #P-hard.

Where NP, N P-hardness and N P-completeness deal, roughly said, with verifying and
finding one solution to a combinatorial problem, # P, # P-hardness and # P-completeness
deal, again roughly said, with establishing the number of solutions to a combinational
problem. As the problem of counting the number of solutions to a problem is at least as
hard as determining if there is at least one solution, # P-complete problems are ‘as least
as hard’, but possibly harder than N P-complete problems.

If we would use the terminology of [7], we would indeed be able to prove that our
network reliability problems are # P-complete. In order not to depart from most of the
current complexity theory literature, we restrict our use of the notion of #P and #P-
completeness to the original definition, and denote the version we use for dealing with

Complexity of Network Reliability Problems 5

another type of functions as #P’. We define # P’ as the class of functions, that can be
computed in polynomial time from input x and a value f(z) for some f € #P.

Definition 2. The class #P' is defined as follows. Hardness and completeness for this
class are defined as usual.

#P'={ hlh: XY= 2%
df e #P, f:X*= IN,
dge FP, g: IN x X* = X~
Vo e X" h(z) = g(f(x),z) }

Lemma 1. Let b’ : X* = X* be a function.

1. 4P C 4P’
2. W is #P-hard = h' is #P'-hard
3. W' is #P-complete = h' is #P'-complete

Proof. 1. This follows trivially from the definition by choosing ¢ to be the projection on
the first argument.

2. For all f € #P, we have: f < I/, since h' is # P-hard. Hence, there is a deterministic
Turing machine M that when given input x € X* computes f(z), using polynomial time
and a polynomial number of evaluations of h'. Let h € #P’, i.e. h(z) = g(f(x),z) for
f € #P, g€ FP and all x € X*. We describe a deterministic Turing machine M’ that
for input * € X* computes h(z), using polynomial time and a polynomial number of
evaluations of A'. At input z, M’ computes f(x) by simulating machine M. After that, M’
computes deterministically in polynomial time h(z) = g(f(z), x), since g € F'P. Hence we
have: h < K/, for all h € #P'.

3. This follows directly from 1. and 2. O

2.3 Edge Failures vs. Vertex Failures

In the classical network reliability problems only links between sites can fail; or translated
into graph theory: only edges of a graph can be non-present. In this note, however, we con-
sider network reliability problems where only vertices can go down (and hence its incident
edges as well), but edges between two present vertices will always be present in the graph
(i.e. edges are perfectly reliable).

This model with only vertex failures is not a restriction, since edge failures can be
simulated by vertex failures in the following way. Place on each edge {u, w} of the graph a
new vertex v, see Figure 1. The reliability p(v) of v is equal to the reliability p,,, of the edge
{u, w}: p(v) = pyw. All edges of the resulting graph will be defined to be perfectly reliable.
The size of the new graph is polynomially bounded in the size of the original graph. Let
G = (V, E) be the original graph and G’ = (V', E’) be the graph after the subdivisions.
Then we have: |V'| = |V| + |E| and |E'| =2 - |E].

6 Hans L. Bodlaender and Thomas Wolle

&_ Ruw A ‘ P(V)= Ry, :
/J w — u % w

Fig. 1. Simulating edge failures by introducing new vertices.

2.4 Our Graph-Theoretical Model

For all our problems, we are given an undirected, simple graph G = (V, E') with each vertex
v € V a rational number p(v) € [0, 1] associated to it:

p(v) = —, a,,b, € N, a, <b,, b,#0, and

a,, b, have no common devisor greater than 1

For each v € V| the number p(v) is the reliability of v, and models the probability that
the network element represented by v is properly functioning. We are interested in the
subgraph of G obtained as follows: each v € V is in the subgraph with probability p(v),
and each edge is in the subgraph if and only if both its endpoints are in the subgraph. Such
a model is often called a stochastic graph. The subgraph resulting from this experiment
is called the surviving subgraph. The vertices in the surviving subgraph are said to be up,
while the others not in the surviving subgraph are said to be down.

Furthermore, we are given a set S C V of servers and a set L C V of clients, ng = |S|
and ny = |L|. The problems we consider ask for the probabilities that there are certain
connections between vertices in S, and also that there are certain connections between
vertices of S and vertices of L. These are listed in the next Section 2.5.

2.5 Network Reliability Problems

This section lists all network reliability problems that are proven to be # P’-complete in
this note. In the same way, as for the classic network reliability problems, we will use the
abbreviations to refer to a problem.

[2 < t]: What is the probability that there is a path in the surviving subgraph between

two distinguished vertices u and v?

— [S < t]: What is the probability that all servers (S) are connected in the surviving
subgraph?

— [L <> 15]: What is the probability that each client (L) is connected to at least one

server (S) in the surviving subgraph?

[> xS]: What is the probability that at least = servers are connected to each other in

the surviving subgraph?

— [Ec > 1S]: What is the expected number of components of the surviving subgraph with

at least one server?

Complexity of Network Reliability Problems 7

— [> 21 L 4> 15]: What is the probability that at least x; clients are not connected to a
server in the surviving subgraph?

— [< 23l <> 1S]: What is the probability that at most zo clients are connected to at
least one server in the surviving subgraph?

— [< 23L ¥»> 15]: What is the probability that less than x3 clients are not connected to
a server in the surviving subgraph?

— [> 4L <> 15]: What is the probability that more than x4 clients are connected to at
least one server in the surviving subgraph?

— [1 = [< z3L ¥»> 15]]: What is the probability that it is not the case that less than x
clients are not connected to a server in the surviving subgraph?

— [€ yS < L]: What is the probability that at most y servers are not connected to a
client in the surviving subgraph?

— [> 2L < SA > yS < L]: What is the probability that in the surviving subgraph at
least x clients are connected to at least one server, while at least y servers are connected
to at least one client?

— [> 1L <> zS]: What is the probability that in the surviving subgraph at least one
client is connected to at least x servers?

3 #P’-membership

As already mentioned, for showing the completeness of a problem for a complexity class,
we have to show the hardness of the problem and the membership to this complexity
class. Using Valiant’s original definition of #P [9], we cannot prove the membership of
our network reliability problems. Instead, we prove that these problems belong to #P’.
However, we will only have a close look at two problems ([2 <> t] and [E'¢c > 15]), since the
description of the machines is very similar for the other problems.

Often, scientists describing nondeterministic Turing machines restrict themselves to
machines that can branch in only 2 (or any other constant) computation paths at each
step. However, to ease the description of our machines, we will use machines that branch
in b, computation paths at step for vertex v. In our case that is allowed, because such a
branch in b, paths can be simulated by [log b, | binary branches, see Figure 2. Note that we

oo 0 00

Fig. 2. Simulating one b,-branch by [log b, | binary branches.

need [logb, | bits to represent b, in the input z. Hence, we see easily that the first n steps
of our machines can be simulated by 3 ,cy [logb,| steps of a machine with only binary

8 Hans L. Bodlaender and Thomas Wolle

branches. This is linear in the input size. If b, is not a power of 2, in some branches, we
stop branching at an earlier time. Thus, the altogether length of a computation path after
the ‘blowup’” due to a restriction to binary branches is still bounded by a polynomial.

Lemma 2. [2 < t] € #P’

Proof. To prove the membership in #P’, we specify a function h € #P’ by describing
functions f € #P and g € FP with h(z) = g(f(x),z) for all z € X*. Let #M (x) be the
number of accepting computation paths of M with input z.

To describe f, we give a #P Turing machine M with f(z) = #M (x). M is constructed
as follows. During the first n = |V| steps, M considers each vertex of GG, one at a time. In
the step for vertex v, M branches b, times, where in a, branches the vertex v is present in
the graph G and in b, — a, branches, vertex v is not present in GG. After considering each
vertex, M decides deterministically on each computation path, whether the corresponding
property is fulfilled. In our case, that is checking, whether u and w are connected in the
surviving subgraph corresponding to the considered computation path of M. If this is the
case, M accepts on this path, and rejects otherwise.

The probability that a vertex v is present in the graph is encoded in the total number
of branches b, at the step for vertex v, of which in exactly a, branches vertex v is present
in the graph. After fixing the state of each vertex, i.e. after n steps, each path represents
exactly one surviving subgraph. Note, however, that each surviving subgraph G’ might be
represented by more than one such path, depending on the occurrence probability of G.
Hence, it is easy to see, that the probability h(x) that v and w are connected is:

) #M(2)
total number of paths of M (x)

h(x)

The number of accepting paths #M (x) is given as f(z), but the total number of paths of
M is not given. However, this number can be computed in polynomial time by function g
as the product over all vertices v of b,:

hz) = g(f(2), z) =
g

The method used above works also for all network reliability problems considered in this
note that have the form: ‘What is the probability that the surviving subgraph has property
X7 However, problem [Ec > 15| has a different form: ‘What is the expected number of
components of the surviving subgraph that have property Y7’ and hence, we use a slightly
different Turing machine and different functions to prove its #P’-membership.

Lemma 3. [Ec > 15| € #P’

Proof. Similar to the proof of Lemma 2, we give functions f (i.e. a Turing machine M,
with f(z) = #M(z)) and g.

Complexity of Network Reliability Problems 9

M is constructed as follows. The first n steps are the same as of the machine described
in the proof of Lemma 2. However, after these steps, (i.e. after the surviving subgraph on
each computation path so far, is completely defined), machine M works differently. Note
that for the expected number h(x) of components of the surviving subgraph with at least
one server we have:

1 <h(x) <n=|V|

Furthermore, note that for each fixed surviving subgraph G’, the number ¢(G") of compo-
nents with at least one server is a number in IV. After the first n steps M branches on each
computation path into exactly ¢(G’) accepting paths, where G’ is the surviving subgraph
defined by the corresponding computation path. If ¢(G’") = 0 then M does not branch any
further but rejects on this path.

We use the same function ¢ as in the proof of Lemma 2.

_ fl@)
HvEV bv

h(x) = g(f(x),)

We can see in the following way that this is indeed correct. When we consider the
computation tree of M as a probability distribution, we see that after the first n steps
every path has the same probability. The different probabilities of the surviving subgraphs
G’ is expressed by an appropriate number of paths that define G’. This automatically
assigns the correct weights to ¢(G’) for all G', when computing the expected number of
components with at least one server. O

Due to the last two lemmas and the similarity of the problems in the list in Section 2.5,
the correctness of the following corollary is easy to see.

Corollary 1. The following network reliability problems are in #P': [2 — t], [S < t],
L <> 15], [> z5], [Ec > 18], [> x1L > 15], [€ oL <> 15], [< 3L 4> 19],
[> x4l > 15], [1 — [< z3L 4> 15]], [yS & L], [> 2L < SA > yS < L] and
[> 1L <> z85)].

When we want to show membership in #P’ for network reliability problems where
edges can fail, the proof of Lemma 2 is changed as follows: The first n = |V/| branching
steps which make ‘decisions’ for every vertex, would be replaced by m = |E| branching
steps making the decisions whether this edge is ‘up’ or ‘down’ for every edge on a certain
computation path.

4 # P-hardness

In this section, we prove the # P-hardness of the problems given in the list of network
reliability problems in Section 2.5. For each problem we give a simple transformation from
a known # P-hard problem, thus proving the considered problem to be # P-hard. The
P’-hardness of the problems then follows directly from Lemma 1.

10 Hans L. Bodlaender and Thomas Wolle

Lemma 4. The following network reliability problems are #P-hard: [2 < t]|, [S < t],
L <> 15], [> z5], [Ec > 18], [> &1L > 15], [€ oL <> 15], [< 3L 4> 195],
[> x4l <> 15], [1 = [< a3L 4> 15]], [yS & L], [> 2L < SA > yS < L] and
(> 1L <> z5)].

Proof. For each of the problems, we give a transformation from a problem that is known
to be # P-hard.

2 < t]. < [2 < t]: Given an instance of [2 < t]., we construct an instance of [2 « {]
by simulating edges as described in Section 2.3. All vertices v that do not simulate an
edge are perfectly reliable, i.e. they have p(v) = 1. It is easy to see that this is a correct
transformation. The same transformation can be used to show that [2 < t] is # P-hard
when we additionally require that both distinguished vertices are perfectly reliable.

2 — t] < [9 < t]: Suppose we are given an instance of [2 < t] with two distinguished
vertices u and v. We turn this into an instance of [S « t| by simply letting v and v be
the only servers. Again, as the transformation does not change the value of the requested
probability, we have a correct transformation from [2 < ¢] to [S < {].

[A < t]. < [S < t]: Given an instance of [A < t]., we construct a [S < t]-instance by
simulating edges as described in Section 2.3. We let the set of servers be the set of vertices
that do not simulate an edge. Note that these are perfectly reliable. This transformation
does not change the value of the requested probability.

[S < t] < [L <> 15]: Let an instance of [S « t] be given. We assume that we do not
have clients, and if we have, we delete their ‘client’-flag, turning them to non-clients. Now,
we choose an arbitrary server. This is again a server in the new to be formed instance. All
other servers in the [S « t|-instance become clients in the new instance. Thus, we have
formed an instance of [L «»> 1S]. Now, one can note that all servers are connected in
the [S « t]-instance, if and only if each client is connected to at least one server in the
[L <> 1S]-instance. Hence, this transformation does not change the value of the requested
probability.

2 — t] <[> xS]: Suppose we are given an instance of [2 < ¢]. Taking the two distinguished
vertices as the only two servers and setting z = 2 gives an instance of [> xS] with the
same probability value.

[2 < t] < [Ec > 1S]: More precisely, we give a transformation from the version of [2 < ¢]
where we assume that both distinguished vertices are perfectly reliable. We have argued
above that this version is also #P-hard, so this is not a restriction. Let a [2 <> t]-instance
G be given, where the two distinguished vertices are perfectly reliable. Mark the two
distinguished vertices u and v as the only servers, which gives us a [Ec > 1S]-instance G'.
Let P be the probability that there is a path between u and v in the surviving subgraph
G of G, and let E be the expected number of components with at least one server in the

Complexity of Network Reliability Problems 11

surviving subgraph G’ of G’. E is the sum of the probability that the two servers are in one
component in the surviving subgraph and two times the probability that the two servers
are in two different components in the surviving subgraph. This equals the sum of the
probability that there is a path between v and v in the surviving subgraph and two times
the probability that there is no path between u and v in the surviving subgraph. Thus, we
have £ = 2 — P, and the transformation is easy to see.

[> 2L > 18] = [< 5L <> 15]: This is easy to see, because at least z; clients are not
connected to a server, if and only if at most x5 := n. — z; clients are connected to at least
one server in the surviving subgraph.

[< 23l > 15] = [> x4L <> 15]: This is also easy to see, since less than x3 clients are
not connected to a server, if and only if more than x4 := n. — x3 clients are connected to
at least one server in the surviving subgraph.

In the previous two transformations, the symbol ‘=’ does not only mean equivalence
concerning the hardness of the problems, but it could also be understood as equality of the
corresponding solutions, i.e. the solutions of the equivalent problems are equal, respectively,
and hence, the transformations follow trivially. In the next transformation, we use ‘=’ in
the same way, however with a complementary problem:

For a problem [Z] in our list, we define the complementary problem [1 — [Z]]. For all
instances o of [Z], we have [Z]o = 1—[1 —[Z]]o, i.e. [1 —[Z]] maps an instance to 1 minus
the value [Z] maps the instance to. So, when [Z] gives us the probability that a certain
property holds for the surviving subgraph, [1 —[Z]] gives the probability that this property
does not hold for the surviving subgraph. Concerning the complexity of the problems,

clearly [Z] = [1 — [Z]].

[> oL 4> 15] = [1 — [< 3L > 15]]: This is again not difficult to see: At least x;
clients are not connected to at least one server, if and only if it is not the case that less
than z3 := x; clients are not connected to at least one server in the surviving subgraph.

[L <> 15] < [> z4L <> 15]: This transformation is easy, since we do not have to
modify the instance. We simply solve the [> x4L <> 1S]-problem for z4 := n, — 1 and
get immediately an answer for the [L <> 1S]-problem.

[< z3L > 18] < [< yS ¢ L]: We interchange the roles of servers and clients and we
choose y := x3 — 1.

[L &> 15] <[> aL < SA > yS < L|: The [> 2L < SA > yS < L]-problem contains
the [L «»> 1S]-problem as a special case: x :=n, and y = 0.

[> 2S] <[> 1L <> zS]: Given a [> xS]-instance without any clients. We add to each
server a pendant which is a private client for this server. This results in a [> 1L <> zS]-
instance. Now, it is easy to see, that this is a correct transformation. a

12 Hans L. Bodlaender and Thomas Wolle

5 Computing the Numerators of Probabilities

In this section, we look at the problems from our list that compute the value of a probability,
(i.e., all problems except [E'c > 15]). Each of these probabilities is a rational number, which
can be expressed as a fraction with an easily computable denominator and a numerator
that is # P-complete to compute.

As before, we assume that each vertex v € V has a reliability p(v) = a,/b,, with a, a
nonnegative integer, and b, a positive integer. Let

D=T[b

veV

be the product of all denominators of the reliabilities of the vertices. The following lemma
can be easily be observed.

Lemma 5. For each induced subgraph G’ of G, the probability that the surviving subgraph
equals G is an integer multiple of 1/D.

Given a function [X] (assumed to be one of the considered network reliability problems),
we define the function [D * [X]] by taking for each input ¢, [D * [X]]¢ = D * [X]¢. For
instance, [D * [S « t]] asks for D times the probability that all servers are connected in
the surviving subgraph.

Theorem 1. The following problems are functions to the integers and # P-complete: [D
2 = t]], [Dx[S < t]], [Dx[L <> 15]], [D*[> 25]], [D*[> x1L 4> 15]], [D * [<
xol —>15]], [D * [< x3L 4> 15]], [D * [> x4L <> 15]], [D = [1 — [< x3L ¥> 15]]],
(D [<yS < L, [D*[>xL < SAN>yS < L|] and [D x [> 1L <> z5]].

Proof. Consider some property Y.The probability that the surviving subgraph has this
property Y is the sum over all induced subgraphs G’ of G with property P of the probability
that the surviving subgraph equals G'. Thus, by Lemma 5, the probability of Y is an integer
multiple of 1/D. Hence, we have that [D x [Y]] is a function to the integers.

The proof of membership in #P of [D 2 < t]] is similar, and even slightly easier than
that of Lemma 2: note that the requested value precisely equals the number of accepting
paths #M (x). For the other problems, membership in # P can be derived in the same way.

P-hardness for the problems can be shown with basically the same proof as for
Lemma 4. a

So, we have for each of the considered network reliability problems apart from [Ec > 15]
that these are functions to the rational numbers, which can be written as the quotient of a
P-complete function (a [Dx- -] variant of the problem) and a function in P (the product
of all values b,). The problems of the type [Dx*- -] hence can be seen as numerator-versions
of the original problems.

Complexity of Network Reliability Problems 13

6 Conclusions

In this note we have given a formal definition of an extension # P’ of # P to include rational
valued functions. Our main result can be stated as the following theorem, which follows
directly from Corollary 1 and Lemma 4.

Theorem 2. The following network reliability problems are #P'-complete: [2 < t], [S <
t], [L <> 19], [> xS], [Ec > 15], [> 1L > 19], [2oL <> 15], [< 23L > 19],
[> x4l > 15], [1 — [< z3L 4> 15]], [yS ¢ L], [> 2L < SA > yS < L] and
(> 1L <> z5].

The hardness proofs were obtained through simple transformations from known # P-
hard problems. Figure 3 gives an overview which transformations were used. A path from
left to right corresponds to a chain of transformations and vertical lines represent trans-
formations showing the hardness equivalence of the corresponding problems.

[2xL+>1S]
[SXZL‘-Z:IS]
[Ec>1S] [<x, |‘_+ >19] [<yS* L]
2], — [2-1] [L—2>19] [>x,L—>1S]
[>xg i [2XL—~SA 2yS-L]

[A—t], [S—1] \ [>1L—2xS]

Fig. 3. The transformations in this note.

We showed the # P-hardness of some network reliability problems on general graphs.
This justifies to look at graphs with a special structure to enable efficient algorithms. The
list given in Section 2.5 is obviously not complete. However, it is not hard to show the
same type of results for other network reliability problems of a similar ‘flavour’.

Acknowledgements

We thank Mark Jerrum, Jan van Leeuwen, Gerard Tel, and Peter Verbaan for very useful
discussions and comments.

References

1. S. Arnborg, A. Proskurowski: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete
Appl. Math. 23, (1989), 11-24.

2. J. Carlier, C. Lucet: A decomposition algorithm for network reliability evaluation. Discrete Appl. Math. 65,
(1996), 141-156.

14

Hans L. Bodlaender and Thomas Wolle

L. Fortnow: Counting complexity. In L. A. Hemaspaandra and A. Selman, editors: Complezity Theory Retro-
spective II. Springer-Verlag, Berlin, (1997), 81-107.

. M. Jerrum: On the complexity of evaluating multivariate polynomials. Ph.D. Thesis, Technical report: CST-

11-81, Dept. Computer Science, University Edinburgh, (1981).

C. Lucet, J.-F. Manouvrier, J. Carlier: Fvaluating network reliability and 2-edge-connected reliability in linear
time for bounded pathwidth graphs. Algorithmica 27, (2000), 316-336.

E. Mata-Montero: Reliability of Partial k-Tree Networks. Ph.D. Thesis, Technical report: CIS-TR-90-14, Uni-
versity of Oregon, (1990).

J. S. Provan, M. O. Ball: The complexity of counting cuts and of computing the probability that a graph is
connected. SIAM J. Comput. 12/4, (1983), 777-788.

A. Rosenthal: Computing the reliability of complex networks. STAM J. Appl. Math. 32, (1977), 384-393.

L. G. Valiant: The complezity of enumeration and reliability problems. STAM J. Comput. 8, (1979), 410-421.

. T. Wolle: A framework for network reliability problems on graphs of bounded treewidth. In P. Bose and P. Morin,

editors: Algorithms and Computation (ISAAC 2002). LNCS 2518, Springer-Verlag, Berlin, (2002), 137-149.

