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Abstract

A qualitative probabilistic network is a graphical model of the probabilistic influences
among a set of statistical variables in which each influence is associated with a qualitative
sign. A non-monotonic influence between two variables is associated with the ambiguous sign
7’ which indicates that the actual sign of the influence depends on the state of the network.
The presence of such ambiguous signs is undesirable as it tends to lead to uninformative
results upon inference. In this paper, we argue that, in each specific state of the network,
the effect of a non-monotonic influence is unambiguous. To capture the current effect of the
influence, we introduce the concept of situational sign. We show how situational signs can
be used upon inference and how they are updated as the state of the network changes. By
means of a real-life qualitative network in oncology, we show that the use of situational signs
can effectively forestall uninformative results upon inference.

1 Introduction

The formalism of Bayesian networks [1], is generally considered an intuitively appealing and pow-
erful formalism for capturing the knowledge of a complex problem domain along with its uncer-
tainties. A Bayesian network consists of a directed acyclic graph in which each node represents
a statistical variable and each arc expresses a probabilistic relationship between the connected
variables. To capture the strengths of these relationships, each variable has associated a set of
conditional probability distributions that describe the effect of all possible combinations of values
for its predecessors in the digraph, on the probabilities of its values. For reasoning with a Bayesian
network, powerful algorithms are available.

For probabilistic reasoning in a qualitative way, qualitative abstractions of Bayesian networks
were introduced. These qualitative probabilistic networks (QPNs) [2] equally encode statistical
variables and the probabilistic relationships between them in a directed acyclic graph. The rela-
tionships between the variables are not quantified by conditional probabilities, however, but are
summarised by qualitative signs instead. For reasoning with a qualitative probabilistic network
in a mathematically correct way, an efficient algorithm is available that is based on the idea of
propagating and combining these signs [3].

Recently, a methodology for building Bayesian networks was introduced in which the construc-
tion and validation of a qualitative network is proposed as an intermediate step [4]. For Bayesian
networks, the usually large number of probabilities required, tends to pose a major obstacle to
their construction [5]. By first building a qualitative network, with the help of domain experts,
the reasoning behaviour of the Bayesian network in the making can be studied and validated prior
to probability assessment. The signs of the validated qualitative network, moreover, can be used
as constraints on the probabilities to be obtained for the Bayesian network, thereby simplifying
the quantification task.

To exploit the use of qualitative probabilistic networks in a methodology for building Bayesian
networks, inference with a qualitative network should yield results that are as informative as pos-



sible. Qualitative networks, however, model the probabilistic relationships between their variables
at a higher abstraction level than Bayesian networks. Reasoning with a qualitative network can,
as a consequence, lead to results that are not informative with respect to the Bayesian network in
the making. In the past decade, various researchers have addressed this tendency of qualitative
networks to yield uninformative results upon inference, and have proposed extensions to the basic
formalism. Renooij and Van der Gaag [6], for example, have enhanced qualitative networks by
adding a notion of strength to provide for resolving trade-offs between conflicting influences.

Closely linked with the high abstraction level of representation in qualitative probabilistic
networks, is the issue of non-monotonicity. An influence of a variable A on a variable B is
called non-monotonic if it is positive in one state and negative in another state of the network
under consideration. A non-monotonic influence cannot be assigned an unambiguous sign of
general validity and is associated with the uninformative ambiguous sign ’?’. Although a non-
monotonic influence may have varying effects, in each particular state of the network its effect is
unambiguous. In this paper, we extend the framework of qualitative probabilistic networks with
signs that capture information about the current effect of non-monotonic influences. These signs
are termed situational to express that they are valid only in particular situations, or states of the
network. We show how situational signs can be used upon inference and how they may forestall
uninformative results. Because situational signs are associated with a particular state of the
network under consideration, they are dynamic in nature and may need updating as the state of
the network changes. We present a method for this purpose and adapt the standard algorithm for
qualitative probabilistic reasoning to provide for inference with situational qualitative networks.

To investigate the practicability of situational signs, we study the effect of their introduction
into a real-life qualitative network in the field of oesophageal cancer. We study the difference in
performance between the original network with ambiguous signs for its non-monotonic influences
and the same network in which these ambiguous signs have been supplemented with situational
signs. For our study, we use the medical records of 156 patients diagnosed with cancer of the
oesophagus. We show that the introduction of situational signs serves to decrease the percentage
of ambiguities that are propagated to one of the main diagnostic variables in the network from 45%
to 12%. More in general, the results of our study demonstrate that a network supplemented with
situational signs can yield more informative results upon inference than the original qualitative
network.

The paper is organised as follows. Section 2 provides some preliminaries on qualitative prob-
abilistic networks and introduces the basic algorithm for reasoning with a qualitative network.
Section 3 introduces the concept of situational sign. The dynamics of situational signs are detailed
in Section 4, which also gives an adapted algorithm for reasoning with a situational qualitative
network. In Section 5 the effect of introducing situational signs upon the performance of the qual-
itative oesophageal cancer network is described. The paper ends with our concluding observations
in Section 6.

2 Preliminaries

In Section 2.1 we describe the formalism of qualitative probabilistic networks and in Section 2.2
we review the basic algorithm for probabilistic reasoning with a qualitative network.

2.1 Qualitative Probabilistic Networks

In this paper, we are concerned with probability distributions over sets of statistical variables.
The (sets of) variables will be denoted by upper-case letters. We assume all variables A to be
binary, taking one of the values a; and ay. We further assume that the values of A are ordered,
with a; > as. For abbreviation, we write a to denote A = a1, and a to denote A = as.

As qualitative probabilistic networks were introduced as qualitative abstractions of Bayesian
networks, we begin by briefly reviewing the latter type of network. A Bayesian network is a
graphical model of a joint probability distribution Pr over a set of statistical variables. This



Pr(f) =04 Pr(t) = 0.1

Pr(w | ft) = 0.90 Pr(w | ft) = 0.05
Pr(w | ft) = 0.75 Pr(w | ft) = 0.35

Figure 1: An example Bayesian network, modelling the effects of fitness (F') and training (7") on
a feeling of well-being (W).

model comprises a directed acyclic graph in which each node represents a statistical variable. As
there is a one-to-one correspondence between nodes and variables, we will use the two terms inter-
changeably. The probabilistic relationships between the variables are captured by the digraph’s
set of arcs. The absence of an arc A — B between the nodes A and B indicates that there is
no direct influence between the associated variables. If all trails between A and B are blocked
by the available evidence, moreover, there is also no indirect influence between the variables. We
say that a trail between A and B is blocked by the evidence if it includes either an observed
variable with at least one outgoing arc, or an unobserved variable with two incoming arcs and no
observed descendants. If there is no influence between A and B, then the associated variables are
conditionally independent given the available evidence [1].

Associated with the digraph of a Bayesian network are numerical probabilities from the mod-
elled distribution. With each variable A is associated a set of (conditional) probability distribu-
tions Pr(A | m(A)); each of these distributions describes the joint effect of a specific combination
of values for the parents 7(A) of A on the probabilities of A’s values.

Example 1 We consider the small Bayesian network from Figure 1. The network represents a
fragment of fictitious knowledge about the effect of training and fitness on one’s feeling of well-
being. Variable F' captures one’s fitness and variable T' models whether or not one has undergone
a training session; variable W models whether or not one has a feeling of well-being. All variables
are binary, with the values true > false. O

In its initial state where no observations have been entered, a Bayesian network captures a prior
joint probability distribution over its variables. When observations are entered for one or more of
the variables discerned, the network converts to another state and then represents the posterior
distribution given the entered evidence.

Since qualitative probabilistic networks are qualitative abstractions of Bayesian networks, they
bear a strong resemblance to their quantitative counterparts. A qualitative network also comprises
a directed acyclic graph modelling variables and the probabilistic relationships between them.
Instead of conditional probability distributions, however, a qualitative probabilistic network asso-
ciates with its digraph qualitative influences and qualitative synergies to capture features of the
represented distribution [2].

A qualitative influence between two variables expresses how observing a value for the one
variable affects the probability distribution over the values of the other variable. For example, a
positive qualitative influence of a variable A on a variable B along an arc A — B expresses that
observing the higher value for A makes the higher value for B more likely, regardless of any other
direct influences on B, that is,

Pr(b| ax) — Pr(b|ax) >0

for any combination of values x for the set w(B)\ {A} of parents of B other than A. The influence
is denoted ST (A, B); the '+’ is termed the sign of the influence. A negative qualitative influence,
denoted S, and a zero qualitative influence, denoted S°, are defined analogously, replacing > in
the above formula by < and =, respectively. For a positive, negative or zero influence of A on B,
the difference Pr(b | ax) — Pr(b | az) has the same sign for all combinations of values z. These
influences thus describe a monotonic effect of a change in A’s distribution on the probability
distribution over B’s values. If the influence of A on B is positive for one combination x and



negative for another combination, however, we say that the influence is non-monotonic. Non-
monotonic influences are associated with the sign ’?’, indicating that their effect is ambiguous.
The same sign is used for influences whose sign is unknown.

The set of all influences of a qualitative probabilistic network exhibits various important prop-
erties [2]. The property of symmetry states that, if the network includes the influence S°(A, B),
then it also includes S°(B, A), 6 € {4, —,0,?}. The transitivity property asserts that the qualita-
tive influences along a trail that specifies at most one incoming arc for each variable, combine into
a net influence whose sign is defined by the ®-operator from Table 1. The property of composi-
tion asserts that multiple influences between two variables along parallel trails combine into a net
influence whose sign is defined by the @-operator. The three properties with each other provide
for establishing the sign of the net influence between any two variables in a qualitative network.

Table 1: The ®- and $-operators for combining signs.
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In addition to influences, a qualitative probabilistic network includes synergies to capture the
joint interactions among three or more variables. An additive synergy between three variables
expresses how the values of two variables interact to yield a joint effect on the probability distri-
bution for the third variable. For example, a positive additive synergy of the variables A and C on
their common child B, denoted Y+ ({A, C}, B), expresses that A and C' serve to strengthen each
other’s influence on B regardless of any other direct influences on B, that is,

Pr(b| acx) + Pr(b | acx) > Pr(b| acx) + Pr(b | acx)

for any combination of values = for the set w(B) \ {A,C} of parents of B other than A and
C. A negative additive synergy, denoted Y, and a zero additive synergy, denoted Y?°, are
defined analogously. A non-monotonic or unknown additive synergy of variables A and C on B
is denoted Y’ ({A,C}, B). A product synergy expresses how the value of one variable influences
the probability distribution over the values of another variable in view of a previous observation
for a third variable [7]. As in this paper we will only consider single observations or multiple
simultaneous observations, we will not further elaborate on this type of synergy.

Example 2 We consider again the Bayesian network from Figure 1 and construct its qualitative
abstraction. From the conditional probability distributions specified for the variable W, we have
that Pr(w | ft) — Pr(w | ft) > 0 and Pr(w | ft) — Pr(w | ft) > 0. We conclude that ST(F, W):
fitness favours a feeling of well-being regardless of training. We further have that Pr(w | ft)—Pr(w |
ft) > 0 and Pr(w | ft) — Pr(w | ft) < 0. We thus find that S?(T,W): the effect of training on
well-being depends on one’s fitness. From Pr(w | ft) + Pr(w | ft) > Pr(w | ft) + Pr(w | ft), to
conclude, we find that Y ({F, T}, W). The resulting qualitative network is shown in Figure 2; the
signs of the qualitative influences are shown along the arcs, and the sign of the additive synergy
is indicated over the curve over variable W. [J

Figure 2: The qualitative abstraction of the Bayesian network from Figure 1.



procedure Process-Observation(Q,0,sign):
for all A, € V(G) in Q
do sign[4;] <0’
Propagate-Sign(Q,a,0,sign).

procedure Propagate-Sign(Q,trail,to,message):

sign[to] « sign[to] & message;

trail — trail U {to};

for each relevant neighbour A; of to in Q

do linksign < sign of influence between to and A;;
message < sign[to] ® linksign;
if A; & trail and sign[A;] # sign[A;] ® message
then Propagate-Sign(Q,trail, A; ,;message).

Figure 3: The basic sign-propagation algorithm.

We would like to note that, although in the previous example the signs of the qualitative re-
lationships were computed from the conditional probability distributions of the corresponding
quantitative network, in realistic applications these signs would be elicited directly from domain
experts.

2.2 Qualitative Probabilistic Reasoning

For probabilistic reasoning with a qualitative network, an efficient algorithm is available [3]. This
algorithm provides for computing the effect of an observation that is entered into the network,
upon the probability distributions for the other variables. It is based upon the idea of propagating
and combining signs, and builds upon the properties of symmetry, transitivity and composition of
qualitative influences. The algorithm is summarised in pseudo-code in Figure 3.

The algorithm takes for its input a qualitative network (Q), a variable for which an observation
has become available (O), and the sign of this observation (sign), that is, either a ’+’ for the
observed value 01 or a ’—’ for the value 0;. The algorithm now traces the effect of the observation
throughout the network, by passing messages between neighbouring variables. For each variable A,
it determines a node sign ’sign[A]’ that indicates the direction of change in probability distribution
that is occasioned by the observation; initially all node signs are set to '0’. The actual inference
is started by the observed variable receiving a message with the sign of the observation. Each
variable that receives a message, updates its node sign using the @-operator and subsequently
sends a message to each relevant neighbour; a neighbour is relevant if it is not blocked from the
observed variable along the trail that is currently being followed. The sign of the message that the
variable sends to a neighbour, is the ®-product of its own node sign and the sign of the influence
that the message will traverse. This process of message passing between neighbouring variables is
repeated iteratively. A trail of messages ends as soon as there are no more relevant neighbours to
visit or as soon as the last message does not change the node sign of the visited variable. Since
the node sign of each variable can change at most twice, once from ’0’ to '+’, ’—’ or ’?’, and then
only to ’?’, the process visits each variable at most twice and is guaranteed to halt in polynomial
time.

The sign-propagation algorithm reviewed above serves to compute the effect of a single obser-
vation on the distributions for all other variables in a qualitative network. In realistic applications,
often the effect of multiple simultaneous observations on a single variable is of interest. This joint
effect can be computed as the @-sum of the effects of the separate observations on the variable of
interest [8].

Example 3 We consider the qualitative network from Figure 4. Suppose that we are interested
in the effect of observing the value es for the variable E on the probability distributions for the
other variables in the network. Prior to the inference, the node signs of all variables are set to



'0’. Inference is started by entering the observation into the network, that is, by sending the
message '—’ to the variable E. E updates its node sign to 0 & — = — and subsequently sends
the message — ® + = — to its neighbour B. Upon receiving this message, B updates its node
sign to 0 @ — = —. It subsequently sends the messages — ® — = +to C, —®7? =7 to A and
— ® + = — to F. Upon receiving these messages, variables C'; A and F' update their node signs
to0d+ = 4,007 =7and 0 — = —, respectively. Variable C sends the message + ® + = +
to D. The inference ends after D has updated its node sign to 0 @ + = +. The resulting node
signs are indicated in the figure.

Now suppose that we are interested in the joint effect of the simultaneous observations D = d;
and E = e on the variable A. The effect of the observation F = e; on the probability distribution
for A is ambiguous, as illustrated above. The effect of the observation D = d; on the distribution
for A is also computed for the initial state of the network. The inference runs comparably, except
that the variable A is blocked from the observed variable D: upon receiving its message from C,
variable B does not send any information to A. Propagation of the observation D = d; thus results
in the node sign ’0’ for variable A. We conclude that the combined effect of the two observations
onAis?®0=7 0O

3 Situational Signs

The presence of influences with ambiguous signs in a qualitative probabilistic network is likely to
give rise to ambiguous, and therefore uninformative, results upon inference, as was illustrated in
the previous section. From the definitions of the ®- and @®-operators, moreover, we have that,
once an ambiguous sign is encountered upon inference, it tends to spread throughout the network.
The use of ambiguous signs to indicate non-monotonicity thus has undesirable consequences.

We take a closer look at the origin of the ambiguous sign of a non-monotonic influence. We
observe that, for a qualitative influence of a variable A on a variable B along an arc A — B
to be unambiguous, the difference Pr(b | ax) — Pr(b | ax) has to have the same sign for all
combinations of values x for the set X = w(B) \ {A} of parents of B other than A. This sign
then is valid in all possible states of the network under study. More specifically, it is valid for any
probability distribution over X. If the difference Pr(b | az) — Pr(b | ax) yields contradictory signs
for different combinations x, we have that the sign of the influence is dependent on the state of
the network. The influence then is assigned the ambiguous sign '?’. In each specific state of the
network, associated with a specific probability distribution Pr(X) over the combinations of values
x, however, the influence of A on B is unambiguous, that is, it is either positive, negative or zero.
To capture information about the current effect of a non-monotonic influence, associated with a
specific state, we now introduce the concept of situational sign.

We consider the influence of a variable A on a variable B along an arc A — B. A positive
situational sign for the influence indicates that

e S’(A,B) and
e [Pr(b|a)—Pr(b|a)lpx) >0,

Figure 4: A qualitative network and its node signs after propagating the observation E = es.



where [Pr(b | a) — Pr(b | a)]py(x) denotes the difference between the probabilities Pr(b | a) and
Pr(b | @) in the state of the network associated with Pr(X). Negative, zero and unknown situational
signs are defined analogously. We note that while the regular signs of qualitative influences and
additive synergies have general validity, a situational sign is dynamic in nature: it pertains to a
specific state of a network and may lose its validity as the network’s state changes. An influence
with a situational sign § now is called a situational influence; the sign of this situational influence
is denoted ’?(d)’. A qualitative probabilistic network with situational signs is termed a situational
qualitative network.

Example 4 We consider again the Bayesian network from Figure 1 and its qualitative abstraction
from Figure 2. We recall that the qualitative influence of the variable T" on the variable W was
found to be non-monotonic. The sign of this influence therefore depends on the state of the
network. In the prior state of the network, where no evidence has been entered, we have that
Pr(f) = 0.4. Given this probability, we find that Pr(w | t) = 0.39 and Pr(w | ¢) = 0.51. From
the difference Pr(w | t) — Pr(w | t) = —0.12 being negative, we conclude that, in this particular
state, the influence of T on W is negative. The current sign of the situational influence therefore
is ’?(—)’. The situational qualitative network for the prior state is shown in Figure 5.

The dynamic nature of the situational sign of the influence of T on W is demonstrated by
entering the observation true for the variable F' into the network. As a consequence of this
observation, the state of the network changes. More specifically, we now have that Pr(f) = 1.0.
Given this probability, the difference Pr(w | t) — Pr(w | £) = 0.90 — 0.75 = 0.15 is positive. In the
new state of the network, therefore, the sign of the situational influence is *?(4)’. O

Once again we note that, although in the previous example the prior situational sign was computed
from the corresponding quantitative network, in a realistic application it would be elicited directly
from a domain expert. In the remainder of the paper, we assume that an expert has given the
signs for all situational influences for the prior state of a network.

4 Inference with a Situational Qualitative Network

For inference with a regular qualitative probabilistic network, an efficient algorithm is available
that is based on the idea of propagating and combining signs of qualitative influences; we reviewed
this algorithm in Section 2. For inference with a situational qualitative network, we observe that
the situational sign of an influence of A on B indicates the effect of a change in A’s distribution
on the probability distribution over B’s values just like a regular sign, yet only for a particular
state of the network. A situational sign can therefore be used as a regular sign upon inference
provided that it is valid. In Section 4.1, we present a method for verifying the validity of the
situational signs in a network as observations become available that cause the network to convert
to another state; this method also provides for updating the signs if necessary. In Section 4.2,
we incorporate this method into the sign-propagation algorithm to provide for inference with a
situational qualitative network.

4.1 The Dynamics of Situational Signs

To investigate the dynamics of a situational sign, we begin by studying a network fragment of
the simplest topology in which a non-monotonic influence occurs; this fragment is composed of a

Figure 5: The network from Figure 2, with the situational influence of T" on W in the prior state
of the network.



single variable with two mutually independent parents. For this network fragment, we show how
the validity of the situational sign involved can be verified upon inference. We then extend the
main idea to arrive at a method for verifying situational signs in networks of general topology and
for updating them if necessary.

We consider the network fragment from Figure 6. We assume for now that the variables A
and C remain independent as observations are being entered into the rest of the network. By
conditioning on A and C, we find for the probability of b that

Pr(b) Pr(a)- (Pr(b|a)—Pr(b|a))+Pr(b|a)
= Pr(a) - [Pr(c)- (Pr(b]| ac) — Pr(b| ac) — Pr(b | ac) + Pr(b | ac)) +
Pr(b | a¢c) — Pr(b | ac)] + Pr(c) - (Pr(b | ac) — Pr(b | ac)) + Pr(b | ac) .

We observe that Pr(b) is a function of the probabilities of @ and ¢. For a fixed Pr(c), moreover,
the probability of b is linear in Pr(a). This linear function has the extremes Pr(b | a) and Pr(b | a)
for Pr(a) = 1 and Pr(a) = 0, respectively. The sign of the difference Pr(b | a) — Pr(b | @) now is
the situational sign of the influence of A on B in the state of the network that is associated with
that particular Pr(c). The sign of the difference also is the sign of the gradient of the function. We
thus have that the sign of the gradient of the function that expresses Pr(b) in terms of Pr(a) at a
particular, fixed, Pr(c), matches the situational sign of the influence of A on B in the associated
state of the network.

In essence, there are two different manifestations of the non-monotonic influence of A on B:
either the situational influence is negative for lower values of Pr(c) and positive for higher values of
Pr(c), or vice versa. An example of the former manifestation is shown in Figure 7, while Figure 8
depicts an example of the latter manifestation. We observe that the manifestation from Figure 7
has associated a positive additive synergy of A and C' on B: for this manifestation, we have
Pr(b | ac) — Pr(b | ac) > 0 and Pr(b | ac) — Pr(b | ac) < 0 from which we find Pr(b | ac) + Pr(b |
ac) > Pr(b | aé) + Pr(b | ac). Similarly, the manifestation from Figure 8 corresponds with a
negative additive synergy of A and C' on B.

As observations are being entered into the network, the probability of ¢ may change. When
Pr(c) changes, we find another linear relationship between Pr(a) and Pr(b), with a different gradi-
ent, possibly with a different sign. If the probability of ¢ changes, therefore, the current situational
sign of the influence of A on B may become invalid. Whether or not it is invalidated, depends on
the manifestation of the non-monotonic influence and on the direction of change of the probability
of c¢. In the graph depicted in Figure 7, for example, the situational sign will definitely persist if it
is negative and the probability of ¢ decreases, or if it is positive and the probability of ¢ increases.
The reverse holds for Figure 8.

The previous observations suggest that a method for verifying whether or not a situational sign
retains its validity, has to distinguish between the two possible manifestations of the underlying
non-monotonic influence. We recall that these manifestations are characterised by different signs
for the additive synergy involved. Now, after a change in the probability of ¢, we have to reconsider
the difference [Pr(b | a) — Pr(b | a)]prc):

[Pr(b | a) = Pr(b| a)lpxc) =
Pr(c) - (Pr(b | ac) — Pr(b| ac) — Pr(b| ac) + Pr(b | ac)) + Pr(b | ac) — Pr(b | ac) .

We observe that the difference [Pr(b | a) — Pr(b | a)]py(c) is a linear function in Pr(c). We further
observe that the sign of the gradient of the function equals the sign of the additive synergy of

Figure 6: A fragment of a situational network, consisting of variable B and its parents A and C,
with S”00(A, B) and Y% ({A, C}, B).






A and C on B. Now suppose that Y ({4, C}, B). The gradient of the function then is positive
and the manifestation exemplified in Figure 7 holds. If the probability of ¢ increases as a result
of newly entered observations, a positive situational sign will definitely remain valid. If, on the
other hand, Y~ ({4, C}, B) and the probability of ¢ increases, then a negative situational sign will
retain its validity. We thus have that, upon an increase of Pr(c), a situational sign d; persists if
01 = + ® J2, where 5 is the sign of the additive synergy involved; otherwise, the situational sign
becomes unknown and d; should be changed to ’?’. Similar observations hold for a decreasing
probability of ¢. We conclude that the updating of a situational sign is captured by

01« 01 @ (sign[C] ® d2) .

Without further substantiation, we extend the previous observations to the more general situation
in which B has two or more mutually independent parents. We consider a variable B with
parents A and Cy, i = 1,...,n,n > 1, with S°@®) (A, B) and Y% ({A, C;}, B). Then, updating the
situational sign of the influence of A on B is captured by

In our analysis so far, we assumed that the two parents A and C of the variable B are mutually
independent and remain to be so as evidence is entered into the network. In general, however,
A and C can be (conditionally) dependent. Variable A then not only influences B directly, but
also indirectly through C. The situational influence of A on B, however, pertains to the direct
influence in isolation even though a change in the probability of ¢ may affect its sign. When a
change in the probability of a causes a change in the probability of ¢ which in turn influences
the probability of b, the indirect influence on B is processed separately and the sign of the net
influence equals the composition of the signs of the two influences.

4.2 The Adapted Sign-Propagation Algorithm

The basic sign-propagation algorithm for inference with a qualitative network has to be adapted
to render it applicable to situational qualitative networks. In essence, the following modifications
are required. First, of non-monotonic influences, the situational signs should be used for the
propagation instead of the original ’?’. Due to the process of sign propagation, moreover, it
may occur that a sign is propagated from a variable A to a variable B, while the fact that the
probability distribution of another parent of B has changed does not become apparent until later
in the inference. It may then turn out that the situational sign should have been updated and
that incorrect signs were propagated over the influence with the situational sign. The algorithm
therefore has to verify the validity of a situational sign as soon as information to this end becomes
available and, if the situational sign is updated, to restart the inference with the updated network.
Since a situational sign can change at most twice, from ’0’ to 4+’ or ’—’ and then to ’?’, the number
of restarts is limited. The adapted algorithm is summarised in pseudo-code in Figure 9.

The algorithm takes for its input a situational qualitative network (Q), a variable for which
an observation has become available (O), and the sign of this observation (sign). The algorithm
constructs from the network the set ARC,,,, of all arcs with an associated non-monotonic influ-
ence, and the set COP,,,, of all nodes that are co-parents of a variable exerting a non-monotonic
influence. The function COP-ARC,,,,(A) takes for its argument a variable and returns all arcs
with a non-monotonic influence exerted by a co-parent of this variable. While the procedure
"Process-Observation’ is identical to the same procedure in the regular algorithm, the procedure
"Propagate-Sign’ is modified. After ’sign[to] < sign[to] @ message’, which may have led to a
change of node sign, a call to the new procedure 'Determine-Effect-On’ is added. This procedure
updates the situational signs of the network and, if necessary, restarts the inference.

Like the basic sign-propagation algorithm, the adapted algorithm serves to compute the effect
of a single observation on the distributions for all other variables in a network. The joint effect,
on a variable of interest, of multiple simultaneous observations can again be computed as the $-
sum of the effects of the separate observations. However, when a situational sign changes during
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COPym = {Ax | Ay € m(A;)\ {Ai}, Ai — A; € ARGy}
COP-ARCpm(A) = {A; — A | A; — Aj € ARCppm, A, €
U(A),Az 75 A},

procedure Process-Observation(Q,0,sign):
for all A; € V(G) in Q
do sign[A;] <0’
Propagate-Sign(Q,a,0,sign).

procedure Propagate-Sign(Q,trail,to,message):

sign[to] « sign[to] & message;

trail — trail U {to};

Determine-Effect-On(Q,to);

for each relevant neighbour A; of to in @

do linksign < (situational) sign of influence between to and Aj;
message «— sign[to] ® linksign,;
if A; & trail and sign[A;] # sign[A;] ® message
then Propagate-Sign(Q,trail, A; ,message).

procedure Determine-Effect-On(Q, A;):

if A; € COPpm,
then for all A; — A, € COP-ARCrnm(4:)
do Verify-Update(S?® (A4;, Ap));
if a § changes
then @Q — @Q with adapted signs;
return Process-Observation(Q,0,sign).

Figure 9: The adapted sign-propagation algorithm.

the propagation of one of the observations, the propagation of all other observations has to be
performed anew with the adapted network before establishing the joint effect. Again, because a
situational sign can change at most twice, the number of restarts is limited.

Example 5 We consider the situational qualitative network from Figure 10; the network is iden-
tical to the regular qualitative network from Figure 4, except that it is supplemented with a
situational sign for the non-monotonic influence of variable A on variable B for the prior state
of the network. From the situational network, the sets ARCy,, = {A — B} and COP,,, = {C}
are established. Suppose that we are again interested in the effect of observing the value es for
the variable F on the probability distributions for the other variables in the network. Inference is
started by sending the message '—’ to the variable E. E updates its node sign to 0 & — = — and
subsequently sends the message — ® + = — to its neighbour B. Variable B updates its node sign
to 0 @ — = — and subsequently sends the messages — ® — = +to C, — ® + = — to 4, and
— ® + = — to F. Upon receiving these messages, variables C'; A and F' update their node signs
to0®+ =4,00 — = —and 0 & — = —, respectively. The algorithm now establishes that C'
is a co-parent, with A, of B and that the influence of A on B is non-monotonic. Because the node
sign of C' has changed, the validity of the situational sign of the influence of A on B needs to be
verified. The algorithm therefore checks if the current situational sign equals the product of the
node sign of C' and the sign of the additive synergy involved. Since + = + ® +, the algorithm
concludes that the situational sign remains valid. The inference resumes with variable C' sending
the message + ® + = + to D. D updates its node sign to 0 & + = + and the inference ends.
The resulting node signs are indicated in the figure. [J

We conclude from Examples 3 and 5 that inference with a situational network can yield more
informative results than inference with the corresponding regular qualitative network.
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Figure 10: An example situational qualitative network.

5 An Experimental Study

In the previous section we demonstrated that a situational network can yield more informative
results upon inference than a corresponding regular qualitative network. The example that we
used, however, pertained to a small, artificially constructed network. In this section, we investigate
the practicability of situational signs by studying the effects of their introduction into a real-life
qualitative network in the field of oesophageal cancer. In Section 5.1 we provide some background
information on this network. In Section 5.2 we describe the performance of the network before
and after the introduction of situational signs, for a number of real patients. In Section 5.3 we
review the results of our study.

5.1 The Oesophageal Cancer Network

A chronic lesion of the inner wall of the oesophagus may develop into a malignant tumour. This
tumour invades the oesophageal wall and upon further growth may invade adjacent organs. In
time, the tumour may give rise to metastases in lymph nodes and to secondary tumours in the
lungs and the liver. The depth of invasion and extent of metastasis indicate how far the cancer
has progressed or, phrased alternatively, in which stage it is. To establish the stage of a patient’s
cancer, various diagnostic tests are performed, ranging from multiple biopsies of the primary
tumour to a radiograph of the patient’s lungs. The state-of-the-art knowledge about oesophageal
cancer was captured in a Bayesian network [9]. This network includes 42 statistical variables
and some thousand conditional probabilities. Its main diagnostic variable is the variable Stage,
classifying a patient’s cancer in one of six possible stages of disease. The leaves of the network
capture the possible results of the different diagnostic tests.

For our study, we abstracted the oesophageal cancer network to a qualitative network. To
this end, we first summarised all variables into binary variables, building upon our knowledge of
the domain. The original six-valued variable Stage, for example, was translated into the binary
variable Stage with the values early and late. We further defined orderings on the values of
the resulting binary variables. We took, for example, early < late. Given these orderings, we
established the signs for the influences and the additive synergies between the variables from the
probabilities specified for the original network. We decided to delete the arcs that were associated
with a (nearly) zero influence, which resulted in the removal of 15 arcs and two nodes. Figure 11
shows the binary quantitative oesophageal cancer network as well as its qualitative abstraction.
For each variable, its name, its values, and its prior probability distribution are shown; for each
arc, moreover, the sign of the associated qualitative influence is depicted.

The qualitative oesophageal cancer network includes a single non-monotonic influence, between
the variables Lymph-metas and Metas-cerviz. The variable Lymph-metas models whether or not
the primary tumour has metastasized to distant lymph nodes; the variable Metas-cerviz models
whether or not the lymph nodes in the neck are affected by the cancer. The actual sign of the
influence between the two variables depends on the value of the variable Location. This variable
models whether the primary tumour resides in the upper one-third of the oesophagus, or in the
lower two-third. The lymph nodes in the neck are considered local for a primary tumour in the
upper one-third of the oesophagus, and distant otherwise. For a tumour located in the upper
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one-third of the oesophagus, the presence of metastases in distant lymph nodes has a negative
effect on the probability of metastases in the neck; if, on the other hand, the primary tumour is
located in the lower two-third of the oesophagus, the presence of distant lymphatic metastases has
a positive effect on this probability. In the initial state of the network, where no evidence has been
entered, the probability of the tumour being located in the lower two-third of the oesophagus is
quite high, and the situational sign of the non-monotonic influence, accordingly, is '+’.

The non-monotonic influence between the variables Lymph-metas and Metas-cerviz resides
in a pivotal position in the qualitative oesophageal cancer network. For establishing its stage,
knowledge of the extent of the lymphatic metastases of a patient’s cancer is of primary importance.
The presence or absence of metastases in the neck and their classification as local or distant,
therefore, play a crucial role in the staging. The non-monotonic influence now links the variable
Lymph-metas to the part of the network pertaining to metastases in the neck.

The variables Physical-exam and Sono-cerviz model the diagnostic tests that are generally per-
formed to establish the presence or absence of lymphatic metastases in the neck; they represent the
findings from a physical examination of the neck and from a sonography of the neck, respectively.
The location of the primary tumour is established through a gastroscopic examination of the
oesophagus. The result of this examination is captured by the variable Gastro-location. The vari-
ables Physical-ezam and Sono-cerviz upon observation influence the node sign of Lymph-metas.
A simultaneous observation for the variable Gastro-location bears no influence on Lymph-metas,
because, in the prior state of the network, Gastro-location is independent of Lymph-metas. The
node sign of the variable Location is influenced by observations for all three variables. We note
that the node sign of this variable is instrumental in updating the situational sign of the non-
monotonic influence between Lymph-metas and Metas-cerviz after observations have caused the
network’s state to change.

5.2 The Effect of the Introduction of Situational Signs

To gain insight into the practicability of situational signs, we study the performance of the quali-
tative oesophageal cancer network, before and after the introduction of a situational sign for the
influence between Lymph-metas and Metas-cerviz. In doing so, we focus on the part of the net-
work that serves for interpreting the findings with regard to metastases in the neck; the part of the
network under study is indicated in black in Figure 11. We investigate whether useful information
from this part of the network is propagated towards the variable Lymph-metas upon inference.
In our study, we use the data of 156 real patients diagnosed with cancer of the oesophagus. We
first demonstrate, as an example, the effect of introducing the situational sign for a single patient,
after which we summarise the effect for all patients from our data collection.

Example 6 For patient 90-1042, gastroscopic examination showed a primary tumour in the lower
two-third of the oesophagus. Physical examination did not reveal any enlarged lymph nodes in the
patient’s neck. A sonography was not performed. The two available observations are entered into
the network as a '+’ for the variable Gastro-location and a =’ for Physical-exam, respectively.
Upon inference with the regular qualitative network without the situational sign, the variable
Lymph-metas receives the message — ® + ® 7 =7 from Physical-exam. The observation of Gastro-
location does not affect the node sign of Lymph-metas and inference results in an overall influence
of sign ’?7” on this variable.

In the situational oesophageal cancer network, the influence between Lymph-metas and Metas-
cerviz is supplemented with a situational sign. We note that Metas-cerviz has the variable Location
for its other parent. Because the two available observations upon inference change the node sign of
Location, the sign-propagation algorithm identifies that the situational sign needs updating. The
node sign of Location captures the combined effect of the two observations: since both observations
have a positive effect on Location, its node sign is '+’. The additive synergy of Location and
Lymph-metas on Metas-cerviz also is '+’. Updating the situational sign of the influence between
Metas-cerviz and Lymph-metas now gives + @ (+ ® +) = +, that is, the situational sign retains
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its validity and, hence, its informativeness. The part of the network that pertains to metastases
in the neck now exerts an overall influence of sign — ® + ® + = — on the variable Lymph-metas.

Note that, if the node sign of Location would have changed to '—’, then the situational sign
would have been updated to '?’. The observation for the variable Physical-exam would then have
exerted an ambiguous influence on Lymph-metas. A similar observation holds if the node sign
of Location would have changed to ’?’. Such a change occurs if the available observations exert

discordant influences on Location, for example Physical-ezam = yes and Gastro-location = lower.
O

The data collection that we have available for our study includes the medical records of 156
patients diagnosed with oesophageal cancer. For 11 of these patients we have that either Sono-
cerviz = yes and Physical-ezam = yes or that one of these observations is yes and the other one
is unknown. In the sequel we will call such combinations of observations consistently positive;
negative consistency has an analogous meaning. For 4 of these patients we further have that
Gastro-location = upper and for 7 of them we have that Gastro-location = lower. For another
7 patients we have that Sono-cerviz and Physical-ezam are consistently negative, and Gastro-
location = upper. For 52 patients, we have that the observations for Sono-cerviz and Physical-
exam are consistently negative, and Gastro-location = lower. For one patient contradictory results
were found from the sonography and the physical examination. For the remaining 85 patients,
no observations are available from a sonography of the neck or from a physical examination. For
2 of these patients we have that Gastro-location = lower; for the other 83 patients we have that
Gastro-location = upper. These statistics are summarised in Table 2.

For the 85 (55%) patients for whom no observations are available for Sono-cerviz and Physical-
eram, the part of the network under study does not partake in establishing the node sign of
Lymph-metas. The non-monotonic influence between Lymph-metas and Metas-cerviz, therefore,
is not used upon inference for these patients. For the remaining 71 (45%) patients, inference with
the regular qualitative oesophageal cancer network results in an unknown influence on the variable
Lymph-metas.

We now address inference with the corresponding situational network. For the 85 patients
without any observations for Sono-cervix and Physical-exam, the availability of the situational
sign makes no difference. For the other 71 patients, the situational sign of the non-monotonic
influence is used upon inference, instead of the original ’?’. For all these patients, the available
observations result in a change of the node sign of the variable Location, thereby enforcing the
situational sign to be updated. For 19 (12% of all patients) of the 71 patients for whom at least one
observation is available for the variables Sono-cerviz and Physical-exam, the node sign of Location
changes to a =’ or a '?’. As for these patients the situational sign is updated to ’'?’, inference
results in an unknown effect on the variable Lymph-metas. For the remaining 52 (33%) patients,
the node sign of Location changes to a '+’ and the situational sign retains its validity. For these
patients, inference yields an overall negative influence on the variable Lymph-metas and, hence,
an informative result. The inference results obtained with the regular and situational qualitative
oesophageal cancer networks are summarised in Table 3.

Table 2: The available observations for the relevant variables for 156 patients.

Sono-cerviz and Gastro-location
Physical-exam upper  lower
consistently positive 4 7
consistently negative 7 52
inconsistent - 1
not observed 2 83
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Table 3: The signs propagated from the part of the network under consideration to the variable
Lymph-metas.

| + - ? 0
regular - - 71 (45%) 85 (55%)
situational | - 52 (33%) 19 (12%) 85 (55%)

5.3 Discussion

Before the introduction of situational signs into the qualitative oesophageal cancer network, for
45% of the patients ambiguous information was propagated from the part of the network under
consideration. This percentage reduced to 12% after introducing a situational sign for an important
non-monotonic influence in the network. We may conclude that the introduction of situational
signs served to considerably increase the expressive power of the qualitative oesophageal cancer
network.

In our experiment, we observed that, for all 71 patients for whom one or more observations are
available for the variables Sono-cerviz and Physical-exam, the situational sign had to be updated
upon inference. For 52 of these patients, the sign proved to retain its validity. Also for the other
85 patients, the situational sign was updated upon inference, even though it was not used for
further propagation. For two of these patients, the situational sign changed to ’?’ and for 83 of
these patients, the situational sign remained a '+’. We thus find that for a total of 135 (87%)
patients, the situational sign retained its validity after updating. This apparent robustness is not
coincidental. The situational sign depends on the prior probability of the tumour being located
in the lower two-third of the oesophagus. Given the positive additive synergy of the variables
Location and Lymph-metas on Metas-cerviz, this probability, being quite high, causes the prior
situational sign to be positive. This prior probability, moreover, is quite high because we are more
likely to find observations that lead to a change of the node sign of the variable Location to '+7;
observations like this are exactly those that do not induce a change of the situational sign.

6 Conclusions

Qualitative probabilistic networks capture the probabilistic influences among their variables by
means of qualitative signs. If an influence between two variables is non-monotonic, it has associated
the ambiguous sign ’7’, even though the effect of the influence is unambiguous in any particular
state of the network. The presence of such ambiguous signs tends to lead to ambiguous and, hence,
uninformative results upon inference. In this paper, we introduced the concept of situational sign
to capture information about the current effect of non-monotonic influences. We showed that
situational signs can be used upon inference and may effectively forestall ambiguous results. We
identified conditions under which situational signs retain their validity and presented a method
for updating them if necessary. Although we studied the dynamics of situational signs in networks
where the non-monotonicity involved originates from a single variable, the presented ideas and
methods are readily generalised to networks where the non-monotonicity is provoked by more
than one variable.

To investigate the practicability of situational signs, we studied the effect of their introduction
into a real-life qualitative network in the field of oncology. In this study, we compared the perfor-
mance of the network before and after the introduction of situational signs, using the data from
156 patients. We found that the introduction of situational signs served to considerably increase
the expressive power of the network under study. As our network is in no aspect exceptional, we
expect similar results for other real-life qualitative networks in a variety of problem domains.
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