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Abstract

A proper coloring of a graph G is equitable if the sizes of any two color classes
are differ by at most one. The related notion is `-bounded coloring where each of the
color classes is of cardinality ≤ `. We consider the problems to determine for a given
graph G (and a given integer `) whether G has an equitable (`-bounded) coloring.
We prove that both problems can be solved in polynomial time on graphs of bounded
treewidth.

1 Introduction

There is a wide believe that almost every natural hard problem can be solved efficiently on
graphs of bounded treewidth. Of course this is not true, a nice example is the bandwidth

minimization problem which is NP hard even on trees of degree three [11, 25]. Another
part of ’folklore’ in Graph Algorithms community is that if some (natural) problem can be
solved in polynomial time on trees, one should be able to solve it in polynomial time on
graphs of bounded treewidth. However, there are some striking and frustrating examples,
like L(2, 1)-coloring, when efficient algorithm for trees can be constructed [7] and nothing
is known about the complexity of the problem on graphs of treewidth ≥ 2. For more than
ten years, equitable coloring and `-bounded coloring were also examples of such
problems. Both problems can be solved in polynomial time on trees and forests [9, 2, 17], i.e.
graphs of treewidth 1 and existence of a polynomial time algorithm for graphs of treewidth
≥ 2 was an open question. In this paper we introduce the first polynomial time algorithm
on graphs of bounded treewidth for both versions of coloring. Due to enormous exponents
in the running our algorithm is mainly of theoretical interest. Our main technique is quite
far from the standard dynamic programming on graphs of bounded treewidth. To convince
the reader (and ourselves) that the standard dynamic programming approach is unlikely
to implemented for equitable coloring on graphs of bounded treewidth, we prove that
a pre-colored version of the problem is NP hard on graphs of treewidth 1, i.e. forests. The
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main idea behind our polynomial time algorithm is to use recent combinatorial results of
Kostochka et al. [21] that allow us to handle graphs with ’large’ vertex degrees separately.

Previous results. The equitable coloring problem has a long history. The cel-
ebrated theorem of Hajnal & Szemerédi [13] says that any graph G has an equitable
k-coloring for k ≥ ∆(G) + 1. This bound is sharp. One of the direction of research in this
field was in obtaining better upper bounds than ∆(G) + 1 for special graph classes. See
the survey [23] for a review of the results in this field.

The coloring problem can be trivially reduced to equitable coloring problem
and thus equitable coloring is NP hard. Polynomial time algorithms are known for
split graphs [8] and trees [9].

`-bounded coloring has a number of applications. It is also known as the mutual

exclusion scheduling problem (MES) which is the problem of scheduling unit-time
tasks non-preemptively on m processors subject to constraints, represented by a graph G,
so that tasks represented by adjacent vertices in G must run in disjoint time intervals. This
problem arises in load balancing the parallel solution of partial differential equations by
domain decomposition. (See [2, 26] for more information.) Also the problems of this form
have been studied in the Operations Research literature [3, 22]. Other applications are in
scheduling in communication systems [15] and in constructing school timetables [19].

The `-bounded k-coloring problem can be solved in polynomial time on split graphs,
complements of interval graphs [24, 8], forests and in linear time on trees [2, 17]. This is
almost all what is known on graph classes where the `-bounded coloring problem is
efficiently solvable. When one of the parameters ` or k is fixed the situation is different.
For example, for fixed ` or k the problem is solved on cographs [4, 24] and for fixed ` on
bipartite graphs [4, 14] and line graphs [1]. For ` = 2 the problem is equivalent to the
maximum matching problem on the complement graphs and is polynomial. Notice that
for fixed ` the problem can be expressed in the counting monadic second-order logic and
for graphs of bounded treewidth linear time algorithm for fixed ` can be constructed [18].
When ` is not fixed (i.e. ` is part of the input) even for trees the situation is not simple
and the question on existence of a polynomial time algorithm on trees [14] was open for
several years.

The problem remains NP-complete on cographs, bipartite and interval graphs [4], on
cocomparability graphs and fixed ` ≥ 3 [24], on complements of line graphs and fixed ` ≥ 3
[10], and on permutation graphs and ` ≥ 6 [16]. For k = 3 the problem is NP-complete on
bipartite graphs [4].

Almost all NP-completeness results for `-bounded k-coloring for different graph
classes mentioned above can also be obtained for equitable k-coloring by making use
of the following observation.

Proposition 1.1. A graph G on n vertices is `-bounded k-colored if and only if the graph
G′ obtained from G by adding an independent set of size `k − n is equitable k-colorable.

Our contribution. A standard dynamic programming approach for the coloring prob-
lem needs to keep O(wkn) entries, where w is the treewidth of a graph and k is the number
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of colors. Since the chromatic number of a graph is at most w+1 this implies that the clas-
sical coloring problem can be solved in polynomial time on graphs of bounded treewidth.
Clearly such a technique does not work for equitable coloring because the number
of colors in an equitable coloring is not bounded by a function of treewidth. For exam-
ple, a star on n vertices has treewidth 1 and it can not be equitable k-colored for any
k < (n − 1)/2. One of the indications that the complexity of equitable coloring for
graphs of bounded treewidth can be different from ’classical’ is that by Proposition 1.1
and [4], the problem is NP hard on cographs and thus on graphs of bounded clique-width.
(Note that chromatic number is polynomial on graphs of bounded clique-width [20].)

However, one of the properties of equitable colorings making our approach possible is
the phenomena observed first by Bollobás & Guy [5] for trees: ’Most’ trees can be equitable
3-colored. In other words, for almost all trees the difference between the numbers of colors
in equitable coloring is not ’far’ from the chromatic number. Recently Kostochka et al.
[21] succeed to generalize Bollobás & Guy result for degenerated graphs and our main
contribution — the proof that equitable coloring can be solved in polynomial time
on graphs of bounded treewidth (Section 3) — strongly uses this result. Very roughly, we
use the results of Kostochka et al. to establish the threshold when the problem is trivially
solved and when it become to be solvable in polynomial time by dynamic programming
developed in Section 2. In Section 4 we show that such an approach can not be extended
to pre-colored equitable coloring by showing that the pre-colored version of the
problem is NP hard on graphs of treewidth 1, i.e., forests.

1.1 Definitions

We denote by G = (V, E) a finite undirected and simple graph. We usually use n to denote
the number of vertices in G. For every nonempty W ⊆ V , the subgraph of G induced by
W is denoted by G[W ]. The maximum degree of G is ∆(G) := maxv∈V dG(v). A graph
G is d-degenerate if each of its nonempty subgraphs has a vertex of degree at most d.
A nonempty subset of vertices I ⊆ V is independent in G if no two of its elements are
adjacent in G.

Definition 1.2. A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T =
(I, F )), with {Xi | i ∈ I} a family of subsets of V and T a tree, such that

• ⋃
i∈I Xi = V .

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

• For all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then Xi0 ∩ Xi2 ⊆ Xi1 .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth
of a graph G is the minimum width of a tree decomposition of G.

Lemma 1.3 (Folklore). Every graph on n vertices and of treewidth ≤ w has at most wn
edges.
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A k-coloring of the vertices of a graph G = (V, E) is a partition A1, A2, . . . , Ak of V
into independent sets (in which some of the Aj may be empty); the k sets Aj are called the
color classes of the k-coloring. The chromatic number χ(G) is the minimum value k for
which a k-coloring exists. A k-coloring A1, A2, . . . , Ak is `-bounded if |Ai| ≤ l, 1 ≤ i ≤ k.
A k-coloring A1, A2, . . . , Ak is equitable if for any i, j ∈ {1, 2, . . . , k}, |Ai − Aj | ≤ 1.

Theorem 1.4 ([21]). Every n-vertex d-degenerate graph G is equitably k-colorable for any
k ≥ max{62d, 31d n

n−∆(G)+1
}.

Every graph of treewidth ≤ d is d-degenerate and Theorem 1.4 implies the following
corollary.

Corollary 1.5. Every n-vertex graph G of treewidth w is equitably k-colorable for any
k ≥ max{62w, 31w n

n−∆(G)+1
}.

2 Covering by equitable independent sets.

Let S ⊆ V be a set of vertices of a graph G = (V, E). We say that S can be covered by
independent sets of sizes [n/k] if there is a set of subsets Ai ⊆ V , i ∈ {1, 2, . . . , p}, p ≤ |S|,
such that

(i) For every i ∈ {1, 2, . . . , p}, Ai is an independent set;

(ii) For every i, j ∈ {1, 2, . . . , p}, i 6= j, Ai ∩ Aj = ∅;
(iii) For every i ∈ {1, 2, . . . , p}, either |Ai| = dn/ke, or |Ai| = bn/kc;
(iv) S ⊆ ∪1≤i≤pAi.

Covering by independent sets is a natural generalization of equitable coloring: A graph
G has equitable k-coloring if and only if V can be covered by independent sets of sizes
[n/k]. We use the following observations in our proof.

Lemma 2.1. Let S ⊆ V be a vertex subset of a graph G.

(a) If S can not be covered by independent sets of sizes [n/k], the graph G is not equitable
k-colorable;

(b) If S can be covered by p independent sets A1, . . . , Ap of sizes [n/k] and the graph
G′ = G[V − ∪1≤i≤pAi] is equitable (k − p)-colorable, the graph G is equitable k-
colorable.

Let G be a graph of treewidth w. The next theorem implies that when the cardinality
of S ⊆ V or the number k is at most f(w), where f is a function of w, the question if S can
be covered by independent sets of sizes [n/k] can be answered in polynomial time. Because
there are graphs that need Ω(n) colors in an equitable coloring, Theorem 2.2 does not
imply directly that for graphs of bounded treewidth the equitable coloring problem
can be solved in polynomial time.
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Theorem 2.2. Let G = (V, E) be an n-vertex graph of treewidth ≤ w, let S be a subset of
V , and let k be an integer. One can either find a covering of S by independent sets of sizes
[n/k], or conclude that there is no such a covering in polynomial time when k is bounded
by a constant, or when |S| is bounded by a constant.

Proof. This can be shown using standard dynamic programming techniques for graphs
of bounded treewidth. Note that we can check for a covering of at most min{k, |S|}
independent sets of sizes [n/k]. An algorithm comparable to those e.g. shown in [6, 27],
that also has different table entries / homomorphism classes when sets have different sizes
solves the problem in polynomial time on graphs of bounded treewidth.

3 Bounded treewidth

The main result of this paper is the following theorem.

Theorem 3.1. Equitable k-colorability problem can be solved in polynomial time on graphs
of bounded treewidth.

Proof. Let G = (V, E) be a graph of treewidth w and let k be an integer. To determine if
G has an equitable k-coloring, we consider the following cases.

Case 1. ∆(G) ≤ n/2 + 1 and k ≥ 62w. Since

max
0≤∆(G)≤n/2+1

n

n − ∆(G) + 1
= 2,

we have that

k ≥ 62w = max{62w, 2 · 31w} ≥ max{62w, 31w
n

n− ∆(G) + 1
}

and by Corollary 1.5, G is equitably k-colorable.

Case 2. ∆(G) ≤ n/2 + 1 and k ≤ 62w. In this case, it follows from Theorem 2.2 that the
question whether G has an equitably k-coloring can be solved in polynomial time.

Case 3. ∆(G) > n/2 + 1. Let S ⊂ V be the set of vertices in G of degree ≥ n/2 + 2.
By Lemma 1.3, G has at most wn edges, so |S| ≤ 4w. Thus by Theorem 2.2, it can be
checked in polynomial time whether S can be covered by independent sets of sizes [n/k].
If S cannot be covered, by part (a) of Lemma 2.1, G has no equitable k-coloring.

Let Ai ⊂ V , i ∈ {1, 2, . . . , p}, p ≤ |S|, be an equitable covering of S by independent
sets of sizes [n/k]. We define a new graph G′ = G[V − ∪1≤i≤pAi]. The maximum vertex
degree in G′ is at most n/2 + 1 and the treewidth of G′ is ≤ w. Graph G′ has

n′ = |V − ∪1≤i≤pAi| ≥ n − p

⌊
n

k

⌋
≥ n − 4w(

n

k
− 1) > (1 − 4w

k
)n

vertices.
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Let k′ = k − p. We need again case distinction.

Case A. k′ ≥ max{62w, 31w n′
n′−n/2

}. Then

k′ ≥ max{62w, 31w
n′

n′ − n/2
} ≥ max{62w, 31w

n′

n′ − ∆(G′) + 1
}

and by Corollary 1.5, G′ is equitably k′-colorable. By part (b) of Lemma 2.1, G has
equitable k-coloring.

Case B. k′ < max{62w, 31w n′
n′−n/2

} and k′ < 62w. Since p ≤ 4w, we have that k =

k′ + p < 66w. Then by Theorem 2.2, the question whether G has an equitably k-coloring,
can be solved in polynomial time.

Case C. k′ < max{62w, 31w n′
n′−n/2

} and k′ ≥ 62w. Then

k′ < 31w
n′

n′ − n
2

< 31w
n

(1− 4w
k

)n − n
2

=
31w

1
2
− 4w

k

. (1)

Using k = k′ + p ≥ 62w, we have that

4w

k
≤ 4w

62w
=

2

31

and
1

2
− 4w

k
≥ 27

62
. (2)

By (1) and (2),

k′ < 31w
62

27
< 72w

and we conclude that k = k′ + p ≤ 76w. Again, by Theorem 2.2 the question if G has an
equitably k-coloring, can be solved in polynomial time.

By Proposition 1.1, Theorem 3.1 implies directly that there is a polynomial time algo-
rithm for the `-bounded coloring problem restricted to graphs of bounded treewidth.

4 Equitable coloring with pre-coloring

For a graph G, a pre-coloring p of a subset V ′ ⊂ V in k colors is a mapping π : V ′ →
{1, 2, . . . , p}. We say that a coloring A1, A2, . . . , Am of G extends the pre-coloring π if u ∈
Aπ(u) for every u ∈ V ′. We consider the following problem: Equitable coloring with

pre-coloring: For a given graph G, integer k and a given pre-coloring π of G, determine
the smallest integer k for which there exists an equitable k-coloring of G extending π.

Theorem 4.1. Equitable coloring with pre-coloring is NP hard on forests.
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Proof. We use a reduction from the problem

3-partition

Instance: A set A of non-negative integers a1, . . . , a3m, and a bound B, such
that for all i with 1 ≤ i ≤ 3m, (B+1)/4 < ai < B/2 and

∑
1≤i≤3m ai = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that∑
ai∈Aj

ai = B for every j with 1 ≤ j ≤ m?

3-partition is NP-complete in the strong sense (Problem SP15 in Garey & Johnson [12]).
Let the set A = {a1, . . . , a3m} and the bound B be an instance of 3-partition. We

construct a forest G and pre-coloring of G such that G is equitable (m + 1)-colorable if
and only if A can be 3-partitioned.

For every i ∈ {1, 2, . . . , m} we define the set Ni = {1, 2, . . . , m} − {i} and pre-colored
star Si as a star with one non-pre-colored central vertex v adjacent to m − 1 leaves which
are pre-colored in all colors from Ni. Thus vertex v can be colored only in color i or m+1.
For every i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , 3m}, we define the pre-colored tree Gi,j as a
tree obtained by taking the disjoint union of aj +1 pre-colored stars Si and by making the
central vertex v of one of them to be adjacent to the central vertices of the others aj stars.
We call the vertex v the central vertex of Gi,j. Thus Gi,j has m(aj + 1) vertices; for every
color ` ∈ Ni there are (aj + 1) vertices of Gi,j pre-colored by `. Every (m + 1)-coloring of
Gi,j either colors v in m + 1 and remaining aj non-pre-colored vertices in i, or it colors v
in i and remaining aj non-pre-colored vertices in m + 1. (See Fig. 1.)

1 3 4

v

1 3 4 1 3 4 1 3 4

Figure 1: Tree Gi,j . Here aj = 3, m = 4, i = 2 and N2 = {1, 3, 4}. In any 5-coloring of
Gi,j, either v should be colored by 5 and all its non pre-colored neighbors by 2, or v should
be colored by 2 and the neighbors by 5.

For every j ∈ {1, 2, . . . , 3m}, we define a pre-colored tree Gj as follows: We take the
disjoint union of pre-colored trees Gi,j, i ∈ {1, 2, . . . , m}, add one vertex cj adjacent to all
central vertices of trees Gi,j and add one leaf adjacent to cj pre-colored in m + 1. Thus Gj

has m2(aj +1)+2 vertices; for every color ` ∈ {1, 2, . . . , m}−{i} there are (m−1)(aj +1)
vertices of Gj pre-colored by ` and there is 1 vertex pre-colored by m + 1. Also in any
coloring of Gj vertex cj can not be colored in m+1. Thus for every (m+1)-coloring of Gj

the spectra of colors used on neighbors of cj does not contain all colors from {1, 2, . . . , m}.
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Finally, the forest G is the disjoint union of pre-colored trees G1, G2, . . . , G3m and
independent set of cardinality 3m(m − 2) + B pre-colored in color m + 1. Thus G has

∑
1≤j≤3m

m2(aj + 1) + 3(m − 2) + B = m2(mB + 3m) + 3(m − 2) + B

vertices. For every color ` ∈ {1, 2, . . . , m} − {i} there are
∑

1≤j≤3m

(m − 1)(aj + 1) = (m − 1)(mB + 3m)

vertices of G pre-colored by ` and 3m(m − 1) + B vertex are pre-colored by m + 1.

Suppose that A can be partitioned into m disjoint sets A1, A2, . . . , Am such that∑
ai∈Aj

ai = B. We define an extension of pre-coloring of G as follows. For every fixed

j ∈ {1, 2, . . . , 3m}, we choose i such that aj ∈ Ai. We color central vertex of Gi,j in color
m+1 and the remaining noncolored aj vertices of Gi,j in color i. In each graph G`,j, ` 6= i,
aj vertices are colored by m + 1 and one vertex by `. Also we color vertex cj with i. Thus
in every graph Gj on the set of non-pre-colored vertices color i is used aj + 1 times. Any
color ` ∈ {1, 2, . . . , m} − {i} is used one time and color m + 1 is used

aj(m − 1) + 1

times on non-pre-colored vertices. Thus in graph G the number of vertices colored by color
` ∈ {1, 2, . . . , m} is

(m− 1)(mB + 3m) +
∑

aj∈A`

(aj + 1) +
∑

{1≤j≤3m|aj 6∈A`}
1 = (m− 1)(mB + 3m) + B + 3m.

The number of vertices colored in m + 1 is

3m(m − 2) + B +
∑

1≤j≤3m

(aj(m − 1) + 1) = (m − 1)(mB + 3m) + B + 3m

and we conclude that the obtained coloring is equitable (m + 1)-coloring.

Suppose now that G is equitable (m+1)-colorable. The main observation here is that for
every j ∈ {1, 2, . . . , 3m} at most aj(m−1)+1 vertices of a graph Gj are colored by m+1.
(Otherwise coloring of central vertices of graphs Gi,j , i ∈ {1, 2, . . . , m}, uses the whole
spectra {1, 2, . . . , m} thus leaving no space for color of cj.) If for some j ∈ {1, 2, . . . , 3m}
less than aj(m−1)+1 vertices of a graph Gj are colored with color m+1 then (the coloring
is equitable) for some j′ ∈ {1, 2, . . . , 3m} at least ajm vertices of graph Gj′ are colored by
m + 1, which is a contradiction.

Thus we can conclude that for every j ∈ {1, 2, . . . , 3m} there is exactly one subgraph
Gi,j such that aj non-pre-colored vertices of Gi,j are colored with i. For all other i′ ∈
{1, 2, . . . , m}, i 6= i′, aj non-pre-colored vertices of Gi′,j are colored with m + 1. We define

Ai = {aj : aj non-pre-colored vertices of Gi,j are colored with i}.
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In G the number of vertices colored by color i ∈ {1, 2, . . . , m} is

(m− 1)(mB + 3m) + B + 3m = (m− 1)(mB + 3m) +
∑

aj∈Ai

(aj + 1) +
∑

{1≤j≤3m|aj 6∈Ai}
1.

Thus for every i ∈ {1, 2, . . . , m}
∑

aj∈Ai

(aj + 1) = B

and A1, A2, . . . , Am is a 3-partition of A.
So we have a polynomial reduction from 3-partition to equitable coloring with

pre-coloring. As equitable coloring with pre-coloring trivially belongs to NP,
we can conclude it is NP-complete.
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