
Linear, Online, Functional Pretty
Printing
(corrected and extended version)

S. Doaitse Swierstra

institute of information and computing sciences,
utrecht university

technical report UU-CS-2004-025a

www.cs.uu.nl

Linear, Online, Functional Pretty Printing

(corrected and extended version)

S. Doaitse Swierstra

August 24, 2004

Abstract

We present yet another implementation of Oppen’s pretty printing
solution in Haskell. The algorithm is linear in the size of the input,
independent of the line width, uses limited look ahead, and has online
behaviour.

1 Background

In 1980 Derek Oppen [5] published a paper in which he describes a pretty
printing algorithm that attempts to nicely format a document within a given
line width.

The essential ideas are that one specifies:

• potential line breaks, each to be formatted as either an actual line break
or as a space character, depending on the amount of free space left on
the current line;

• a grouping mechanism to indicate that a specific set of such potential
breaks should all be formatted in the same way; thus either all as line
breaks or all as space characters.

This problem has been studied by many, some of whom have attempted
to derive an equivalent Haskell algorithm [3, 8, 9]. This work has been a
basis for the pretty printing library that is currently being distributed as a
Haskell library ([6]).

At the Haskell workshop in 2001 Olaf Chitil finally presented an al-
gorithm that fulfills all the nice properties of Oppen’s original algorithm
[1, 2]. The solution uses a clever coupling between two data structures, in

1

2 PROBLEM SPECIFICATION 2

which the structure of one data structure is used to update another, not yet
existing data structure.

The purpose of this paper is to present a more straightforward solution
than Chitil’s, in which the two aspects of the formatting problem, i.e. the
actual formatting and the computation of the choices to be made are clearly
separated. We furthermore show why some of the claims made in Chitil’s
paper about making a change in the main data representation are unjustified.

Since the underlying problem has already been described several times,
we will only give a very brief introduction to the formatting problem itself.
Next we will discuss properties one might require from a solution, and finally
we present, in a number of steps, our solution that has all these desirable
properties.

2 Problem specification

Oppen’s algorithm aims at formatting a document of the following type:

data Doc = NoDoc
| Text String
| Line
| Doc ’:<>’ Doc
| Group Doc
| Nest Int Doc

The rôle of the alternatives is as follows:

• NoDoc is the unit element for :<>

• Text String holds a piece of text that is to be included in the document

• :<> concatenates two documents

• Line is to be either formatted as a space or as a line break

• Group indicates that all Line’s directly inside this group have to be
formatted in the same way, i.e. either all as spaces or all as line breaks

• Nest Int Doc indicates that all line breaks inside the Doc are to be
indented by Int spaces more than the current indentation

The specification requires that the length of all the lines in the format-
ted document should not exceed a given width w . If all the Line tokens

2 PROBLEM SPECIFICATION 3

that directly or indirectly contribute to a group can be formatted as spaces
without making the group extend beyond the end of the line, we say that a
group fits. A direct consequence of this specification is that if a group fits,
then all its contained groups fit too. Finally we are looking for an algorithm
that takes a decision based on a limited look-ahead. A short moment of
thought will show that in this way we may not get an optimal solution, in
the sense that the the total number of lines in the formatted document in
minimized.

Instead of first building a value of type Doc and then destructing it
through pattern matching we will directly provide the functions constitu-
ing the formatting algebra. The domain of this algebra will be of type
Formatter , a type that we will develop in a number of steps:

noDoc :: Formatter
text :: String → Formatter
line :: Formatter
(<>) :: Formatter → Formatter → Formatter
group :: Formatter → Formatter
nest :: Int → Formatter → Formatter

For the sake of completeness we will repeat here an example of the use
of these functions, directly taken from from Wadler [9].

We want to compute a nice layout for values of the following structure:

data Tree = Tree String [Tree]

An example of such a structure being:

ex = Tree "aaa" [Tree "bbbb" [Tree "ccc" []
,Tree "dd" []
]

,Tree "eee" []
,Tree "ffff" [Tree "gg" []

,Tree "hhh" []
,Tree "ii" []
]

]

To this end we define the function showtree:

2 PROBLEM SPECIFICATION 4

showTree (Tree s ts) = group
(text s <> nest (length s)

(showBracket ts)
)

showBracket [] = noDoc
showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"
showTrees t = foldr (<>) noDoc

(intersperse (text "," <> line) t)

Our solution will format the example tree within a maximum line lengths
of 15 and 20:

aaa[bbbb[ccc, aaa[bbbb[ccc, dd],
dd], eee,

eee, ffff[gg,
ffff[gg, hhh,

hhh, ii]]
ii]]

In order not to clutter our code too much, we assume that the line width
in which the formatting has to take place is fixed by a global constant w .

We now introduce the first version of our type Formatter , followed by a
description of the rôle of its various components:

type Fit = Bool
type Space = Int
type Hp = Int
type Indent = Int
type Formatter = Fit → Space → Hp → Indent → (Space,Hp,Result)

The function takes a Fit value that indicates whether the current group
fits, and thus determines how line breaks are to be formatted.

Furthermore we thread two values through the computation:

• a value of type Space that keeps track of the remaining free space on
the current line

• a value of type Hp (horizontal position) that keeps track of the position
of an element in an hypothetical formatting in which all potential line
breaks are formatted as spaces

3 REQUIREMENTS 5

The latter value enables us to compute the size of a document by taking the
difference between the entry and exit value of this threaded value. We might
have computed this value in a more direct way, but later the approach taken
here will come in handy.

Besides the two threaded values, a Formatter returns a Result for which
type we take the usual String → String type, that enables us to concatenate
partial results in linear time. In the program text variables will in general
be chosen as to match with the first character of their type.

We can now easily define the formatting functions, which we also take
as the logical specification of the formatting problem:

noDoc s h = (s , h , id)
text t s h = (s − length t , h + length t , (t++))
line f s h i = (s ′ , h + 1 , r)

where (r , s ′) = newLine f s i
dl <> dr f s h i = (sr , hr , rl · rr)

where (sl, hl, rl) = dl f s h i
(sr, hr, rr) = dr f sl hl i

group d f s h i = v
where mep = h + s

v@(sd, hd, rd) = d (hd 6 mep) s h i
nest j d f s h i = d f s h (i + j)
newLine True s i = ((’ ’:) , s − 1)
newLine False s i = (((’\n’ : replicate i ’ ’)++),w − i)
format :: Formatter → String
format d = let (, , v) = d False w 0 0

in toSeq v

For a group we will call the value h + s the maximal end point for this
group (mep), and a group apparently fits if a group does not extend beyond
it’s maximal end point: hd 6 mep (hd is the horizontal position h returned
by the call to d), which is equivalent to its size being less than the available
free space: hd − h 6 s. Note furthermore that we make essential use of lazy
evaluation. The Fits value that is passed in the function group is expressed
in terms of the result of this same call, i.e. in terms of hd.

3 Requirements

The solution we are after computes the same layout as the functions just
given, but also has all of the following properties:

4 A PRUNING SOLUTION 6

1. a complexity that is linear in the size of the formatted object

2. a complexity that is independent of the width w in which the string
has to be formatted

3. produces results with at most w characters of look-ahead , and

4. is online, i.e. it takes constant time to produce a next piece of output

Since all of our functions perform a constant amount of work for each
kind of node, the first requirement is clearly met. It is also fairly obvious that
the second part of the specification has been fulfilled already, so apparently
the catch is to find a solution that has the last two properties, without losing
any of the first two.

The third requirement unfortunately has not been met, since for each
group we compute its full size, before we can decide (hd 6 mep) whether the
group fits. As a consequence, if the top constructor is a Group, the whole
document has to be traversed (and thus be available and be stored in the
heap) before any output can be produced. Obviously the last requirement
is not met either, since the time needed before producing any output for a
group depends on the size of the group.

4 A Pruning Solution

Apparently the last two problems are caused by the fact that we have to
traverse a group completely before being able to decide whether it fits or
not. This decision could be made earlier however, if we take all elements of
a group into account separately. We change the above algorithm by removing
the computation of the horizontal position, and make all functions return
the list of horizontal sizes of the contained elements instead (again in the
efficient list representation [Int] → [Int]). The rephrased algorithm now
reads:

nDoc s i = (s , id , id)
text t s i = (s − length t , (length t :), (t++))
line f s i = (s ′ , (1:) , r ′)

where (r ′, s ′) = newLine f s i
dl <> dr f s i = (sr , pl · pr , rl · rr)

where (sl, pl, rl) = dl f s i
(sr, pr, rr) = dr f sl i

group d f s i = v
where v@(, pd,) = d (prune s (toSeq pd)) s i

5 A STEPWISE DEVELOPMENT 7

nest j d f s i = d f s (i + j)

The function prune checks the elements of the returned sequence one by
one in order to return False as soon as we have no free space left for the
group under inspection.

prune [] = True
prune s (p : ps) = (p 6 s) ∧ prune (s − p) ps
format :: Formatter → String
format d = let (, , v) = d False w 0

in v []

Although this modification makes the algorithm fulfill the third require-
ment, we no longer fulfill the second requirement: the time taken by the
function prune is in general O(w), and the work is done for each group in-
dividually. One can see this easily since the result pd in the function group
is both used in pruning, and is being returned as part of the value v to
be made part of the list of pruning values of the embracing groups. So the
question arises how we can reuse some of work done by a call to prune, when
investigating whether an enclosed group fits.

5 A stepwise development

We now ”derive” a solution that consists of two loosely coupled parts:

1. the computation of the layout, provided we know for each group whether
it fits

2. the computation of this useful fitting information

Our final solution will turn out to be an intricate mixture between the
specification and the pruning version.

5.1 Computing a layout

We start by building on top of the specification, by assuming that we have
a list of values available that tells us, in a pre-order arrangement, for each
group whether it fits. This value is threaded through the tree too: when
visiting a child d of a Group node the head of this list indicates whether this
group d fits, and the value returned from d has all values associated with
its children removed. We show only those parts of our final solution that

5 A STEPWISE DEVELOPMENT 8

do really change with respect to the earlier shown code. The functions that
are not mentioned just return the list f unmodified as part of their result.

type Fits = [Bool]

type Formatter = Fits → Space → Hp → . . .
→ (Fits , Space , Hp,Result , . . .)

line f . . . = (f , . . .)
where (r ′, s ′) = newLine (head f) s i

(dl <> dr) f . . . = (fr , . . .)
where (fl , . . .) = dl f . . .

(fr , . . .) = dr fl . . .
group d ∼(f : ff) . . . = (f : tail fd, . . .)

where (fd , . . .) = d ff . . .

The major differences here are that in the case of a line we look at the
head of the list of fitting information, and that in case of a group we pass
the tail ff of the argument list to the contained group d. This group now
finds its corresponding element at the head of the list. In order to make sure
that siblings of this group element again find the element of the common
ancestor group at the head of the list, we reinsert the value f that was active
when entering the group. The rest of the result is formed by the tail fd of
possibly updated list ff , returned by the call to group d. In this way each
group effectively removes its corresponding element from the list of fitting
information, once it has served its rôle. In the next section we concentrate
on how to compute this quite useful list of fitting information.

5.2 Maintaining the pruning state

The first problem we address now is what extra information to maintain
while investigating whether a specific group fits; once we have discovered
–when pruning– that the group under investigation does not fit, we want
to continue cheaply with the investigation of the next group, i.e. without
again inspecting values that we have seen before

Taking a closer look at the specification we see that we can take the
nodes into account in a prefix order, since this is the order in which they
will be consumed. Let us now draw a picture (figure 1) of the situation
when the earlier pruning has reached a specific element. Each circle in the

5 A STEPWISE DEVELOPMENT 9

picture corresponds to a Group node. This current position, which is either
at a text element or a line element, has been indicated by the large arrow,
pointing between the last two groups at the bottom of the picture. We can
distinguish four different kinds of Group nodes:

1. the top node, that is currently being subjected to pruning

2. the path nodes on the path between the root node and the current
position, for which we have not made a decision yet. Such nodes will
either be moved to the next category (traversed) when we leave the
group they correspond to, or they will eventually become a root node
themselves, once their ancestors have been pruned away.

3. the traversed nodes to the left of this path, which have been traversed
completely, and of which we can, just as in the original specification,
cheaply decide whether they fit or not

4. nodes to the right of the path, of which we do not even know that they
exist

The nodes on the path from the active node to the current point in this
tree structure each correspond to a pending question, i.e. we still have to
decide whether these nodes fit. Now, instead of computing a list of element
sizes and passing that list to the function prune, we carry a representation
of the pending questions through the tree, at the same time performing the
pruning in an incremental way: we perform a little bit of the pruning work
for the top node of this tree whenever we encounter a new element that
takes up horizontal space. The rest of the tree representation contains extra
information that we are deducing in the mean time. In the pruning version
of our algorithm the values to be pruned were collected and moved to the
call site of the function prune; now we move the new function prune to the
values it uses for pruning!

Looking at the picture we see that each group we have entered, but not
yet left, corresponds to a node on the path. For each such node we maintain
a value of type Q , and the whole Path is a list of such Q ’s.

type TraversedChildren = Fits → Fits -- efficient list implementation
type Mep = Int
data Q = Q Mep TraversedChildren
type Path = [Q]

The Mep stores the maximal end point for a group, and the TraversedChildren
field contains a Fits value for each fully traversed child.

5 A STEPWISE DEVELOPMENT 10

top node, being pruned

completely traversed groups

no information available yet

path nodes

point we have reached

Figure 1: The situation when a pruning fails

In the next step we extend our algorithm so that it maintains this Path
information in an extra threaded variable p. At the same time we introduce a
threaded variable a (for answers) of type Fits → Fits, again a functional list
implementation. This variable however is threaded in the opposite direction
through the tree, and carries all the fitting information we are discovering
to the beginning of the computation tree. This is the value we finally use as
the initial argument for the root of the whole document at the Fits position.
In order to shorten the code we have decided to tuple the variables p and a
and will indicate the that tuple in our code by pa.

We define three functions that update the Path structure, two of which
may return newly found fitting information as a side effect:

enterGroup :: Mep → Path → Path
leaveGroup :: Hp → (Path,Fits) → (Path,Fits)
prune :: Hp → (Path,Fits) → (Path,Fits)

5 A STEPWISE DEVELOPMENT 11

Each of these functions possibly updates the tree structure of type Path
and may return newly acquired fitting information by updating the com-
ponent Fits.

When descending into a new group we update the tree structure by
appending the question associated with this new group to the end of the
path, with id indicating that we know nothing about its children yet:

enterGroup mep p = p ++ [Q mep id]

When we leave a group we distinguish three cases for the path p:

length p ≡ 0 the length of the path equals 0, i.e. we have already discovered
that none of the groups we are investigating fits, and so we learn
nothing new

length p ≡ 1 we are leaving the top node and this node was not pruned away
yet, so we can now test (just as in our initial specification) whether
the group fits. We also incorporate the elements c to be consumed by
the children into the list of answers.

length p > 1 we leave an inner group, i.e. we can test whether the group
at the end of the path fits. We incorporate this information, together
with the information about its children into the node of the group one
level up, to be included later in the list of answers we are constructing.

Based on these cases we define the function leaveGroup, that updates the
path p and possibly returns newly found fitting information by updating. We
will use c to refer to the information associated with the traversed children.
In order to describe easy access to the final two elements of the path sequence
we have taken some notational liberty in the pattern matching:

leaveGroup hp pa@(p, a) =
case p of
[] → pa
[Q mep c] → ([], (mep 6 hp) : c a)
pp ++ [Q mep1 c1] ++ [Q mep2 c2]

→ (pp ++ [Q mep1 (c1 · ((hp 6 mep2):) · c2)]
, a
)

The third function, prune, is called when we visit a text or a line node, since
these are the only points where some output is produced. Prune compares

6 ASSEMBLING THE FRAGMENTS 12

the current position hp with the maximal end point of the top node (if
present). If this node still fits on the line we do nothing, and return the
path p unmodified; if we have reached the point where we can conclude that
the top node does not fit we report this by prefixing a False to the sequence
of answers, append any pending information about fitting children (c), and
continue pruning the new top node.

prune hp pa@(p, a) =
case p of
[] → pa
(Q mep c : p ′) | hp 6 mep → pa

| True → let (p ′′, rest) = prune hp (p ′, a)
in (p ′′,False : c rest)

As we can see leaveGroup updates the end of the path and and prune
the beginning, so the type we have to use actually is a dequeue, which Chris
Okasaki showed how to implement with linear amortized cost [4].

6 Assembling the fragments

Merging the two different parts we have developed, i.e. the formatting part
and the computation of the fitting information and the maintenance of the
path we get for the new Formatter type:

type Formatter = Fits → Space → Hp → (Path,Fits) → Indent
→ (Fits, Space , Hp , (Path,Fits) , Result)

noDoc f s h pa = (f , s , h , pa, id)
text t f s h pa = (f , s − l , h + l , prune (h + l) pa, (t++))

where l = length t
line f s h pa i = (f , s ′ , h + 1, prune (h + 1) pa, r)

where (r , s ′) = newLine (head f) s i
dl <> dr f s h (p, a) i = (fr, sr, hr , (pr, al) , rl · rr)

where (fl, sl, hl, (pl, al), rl) = dl f s h (p, ar) i
(fr, sr, hr, (pr, ar), rr) = dr fl sl hl (pl, a) i

group d ∼(f : ff) s h (p, a) i = (f : tail fd, sd, hd, (p ′′, ad) , rd)
where (p ′) = enterGroup (h + s) p

(fd, sd, hd, (pd, ad), rd) = d ff s h (p ′, a ′) i
(p ′′, a ′) = leaveGroup hd (pd, a)

7 VARIATIONS 13

nest j d f s h pa i = (fd, sd, hd, pad , rd)
where (fd, sd, hd, pad, rd) = d f s h pa (i + j)

The actual formatting function, in which we feed back the computed list
of answers back into the tree, now becomes:

format :: Formatter → String
format d = let (, , , (, ans), v) = d (False : ans) w 0 ([], []) 0

in toSeq v

7 Variations

7.1 A Process View

In our derivation we can distinguish two different processes:

• one process that traverses the tree, consumes fitting information, and
produces “pruning and grouping events”

• one process that consumes these pruning events, and produces the
fitting information.

We can make this view more explicit in the code if we remove the actual
computation of the pruning information from the tree catamorphism. In
order to do so we return a list of pruning steps:

data Prune = E Mep -- enter
| L Hp -- leave
| P Hp -- prune

The function ans converts a sequence of such Prune steps into a sequence
of type Fits:

type Formatter = Fits → Space → Indent
→ (Fits , Space,Hp , [Prune],Result)

ans :: Path → [Prune] → Fits
ans p (E mep : r) = ans (p ++ [Q mep []]) r
ans [] (L hp : r) = ans [] r
ans [Q mep c] (L hp : r) = (hp 6 mep) : c (ans [] r)
ans (qs ++ [Q mep1 c1] ++ [Q mep2 c2])

(L hp : r) = ans (qs ++ [Q mep1 (c1 · ((hp 6 mep2):) · c2)])
r

8 DISCUSSION 14

ans [] (P : r) = ans [] r
ans q@(Q mep c : qs)

(P m : r) = if m 6 mep
then ans q r
else False : c (ans qs r))

ans [] = []

The functions d and ans now function as two individual processes, com-
municating with each other over the channels pe and fits:

format d = let (, , , pe, v) = d (False : fits) w 0 [] 0 -- process 1
fits = ans [] pe -- process 2

in v

If we proceed along this line, we end up in a situation where we have
two sequential processes expressed by means of state monads, synchronized
with each other through the channels fits and pe.

7.2 Extending groups

The above algorithms may find solutions that extend beyond the end of the
line, because all the text elements following a group up to the next line in
the sequence, effectively form part of the group. The obvious thing to do is
thus to check whether at a Line not only space is left for the ’ ’-character
resulting from the line itself, but to prune also for all the Text items that
follow upto the next Line node. So we decide to thread yet another value
future through the computation, which is the list of sizes of these following
Text items. It will be clear that at a Text item itself we do not have to
prune anymore. We sketch the changes to the code:

line . . . pa future = (. . . , foldr prune pa (1 : pend), r ′, [])
text t . . . pa future = (. . . , pa, (t++) , length t : future)

8 Discussion

As mentioned in the introduction many have tried to derive a backtrack free
implementation of Oppen’s algorithm. Especially Hughes [3] and Wadler
[8, 9] tried so by employing algebraic techniques, and one may wonder why
they did not come up with a solution satisfying all four properties. We think
the answer lies in the fact that we are dealing here with two mutual recursive

8 DISCUSSION 15

processes, that run asynchronously. This is not easy to express in purely
algebraic style.

Since Chitil [1] already presented a solution to this problem the ques-
tion arises what are the differences between his solution and the solution
presented here. If we look at the way we deal with the data structure of
type Path we see that our prime interest is what is happening at the root
side of the path: will it be pruned away or will this node make it to the end
of the group before the end of the line is reached? What we discover about
contained nodes is happily accepted and stored in this data structure for
later inclusion in the list of answers. There is a subtlety involved here: we
may have all the variables available here to construct the expression, but lay
evaluation is again essential to make sure that this expression is only eval-
uated when all values are indeed available! As such it is a straightforward
extension of the version using the function prune.

Chitil also computes a list of boolean values, but the main emphasis of
his solution starts with trying to find out whether the deepest nested group
fits, with a pruning process merged with this. In order to store information
about pruned away nodes he has to refer to positions in a sequence that
does not exist yet. In short: we extend the pruning version of the algorithm,
and carry along fitting information, whereas Chitil starts from the original
specification, and has to insert pruning results into a second dequeue. Due
to the fortunate presence of the dequeue of pending questions, which has the
same structure as the queue of results to be produced, he is nevertheless able
to address elements of this not yet existing sequence. By keeping the list in
the reversed order we can address the head of the list of answers easily, and
do not have to revert to the trick used by Chitil.

We furthermore have shown that the overall computation can be nicely
expressed as a catamorphism over the input data structure, and that there is
no need to revert to a transformation of the tree structure into a sequential
one, as claimed by Chitil. Also the change in specification, caused by the
inclusion of succeeding text elements into a group, was easily added.

Finally we want to remark that if we convert the formatting functions
into continuation passing style, thus making the <> operator implicit, we
will get highly imperative code, that, together with the function ans we have
given, resembles the two cooperating, sequential processes even more. If one
compares our code with the original code of Oppen, one sees that it is the
implicit scheduling caused by the lazy evaluation that makes the functional
formulation so much shorter.

9 ACKNOWLEDGEMENTS 16

9 Acknowledgements

I want to thank Markus Lauer for spotting a bug in an earlier version of
this paper and Andres Löh fur ample support with lhs2TEX.

References

[1] Olaf Chitil. Pretty printing with lazy dequeues. In Ralf Hinze, editor,
ACM Sigplan Haskell Workshop, number 23 in UU-CS, pages 183–201,
September 2001.

[2] Olaf Chitil. Pretty printing with lazy dequeues. accepted for Transaction
on Programming Languages and Systems, 2004.

[3] John Hughes. The Design of a Pretty-printing Library. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming, volume 925.
Springer Verlag, 1995.

[4] Chris Okasaki. Catenable double-ended queues. In Proceedings of the
second ACM SIGPLAN international conference on Functional program-
ming, pages 66–74. ACM Press, 1997.

[5] Dereck C. Oppen. Pretty-printing. ACM Trans. Program. Lang. Syst.,
2(4):465–483, 1980.

[6] Simon L. Peyton Jones. Haskell pretty-printing library.

[7] S. D. Swierstra, P. R. Azero Alocer, and J. Saraiava. Designing and
implementing combinator languages. In Doaitse Swierstra, Pedro Hen-
riques, and José Oliveira, editors, Advanced Functional Programming,
Third International School, AFP’98, volume 1608 of LNCS, pages 150–
206. Springer-Verlag, 1999.

[8] Philip Wadler. A prettier printer. Journal of Functional Programming,
1999.

[9] Philips Wadler. A prettier printer. In Jeremy Gibbons and Oege de Moor,
editors, The fun of programming, pages 223–244. Palgrave Macmillan,
2003.

A THE EQUIVALENT ATTRIBUTE GRAMMAR DEFINITIONS 17

A The equivalent attribute grammar definitions

If the reader would argue that the code of our final solution can hardly be
called a Pearl, let us argue that it is actually an intricate composition of
a large number of different aspects. In this appendix we show how we can
describe the final algorithm using an attribute grammar system [7], and in
such a way that the individual aspects clearly stand out.

We start by defining the underlying context free grammar:

DATA Doc
| NoDoc
| Text t : String
| Line
| Besides l : Doc r : Doc
| Group d : Doc
| Nest j : Int d : Doc

The idea is that we describe each of the aspects of the algorithm by a
separate piece of code. This allows for a nice incremental development. We
start by the definition of how the overall result is to be computed in an
attribute res of type String . The notation [| res : String |] indicates that
the non-terminal has both an inherited and a synthesized attribute with the
same name res that is of type String .

ATTR Doc [| res : String |]

We take a somewhat different approach here than before, by building
the result by threading an attribute value backwards through the tree. Had
we done so before then we would have introduced yet another argument to
all our formatting functions. There are three places where we have to do
something; for a Text element we prepend the value of the text to the result,
in case of a Line we refer to a local attribte value lr (to be introduced later)
that is to be prepended, and in the case of a Besides we have to make sure
that the value is propagated backwards by making explicit how the value
is passed around. If we had omitted these rules, the default copy rules of
the UAG system would have made the value being passed forward instead
of backwards through the Besides. We will see this pattern showing up a
few times more.

A THE EQUIVALENT ATTRIBUTE GRAMMAR DEFINITIONS 18

SEM Doc
| Text lhs.res = @t ++ @lhs.res
| Line lhs.res = @lr
| Besides r .res = @lhs.res

l .res = @r .res
lhs.res = @l .res

For the “horizontal position” aspect, all we have to do is to increment
this value when encountering a Line or a Text element. In the case of a
Text element we compute the length of the text in a local attribute l , so we
can refer to it later. We have taken the short notation here, combining the
introduction of the new attribute with its associated semantic rules.

SEM Doc [| h : Int |]
| Text lhs.h = @l + @lhs.h

loc.l = length @t
| Line lhs.h = 1 + @lhs.h

We have made use of the possibility to introduce a new attribute (h),
together with its associated semantics. Next we introduce the attribute
s, for keeping track of the free space left on the line; this value is only
updated in case of a Text or a Line element. Here we also place the joint
computation of the local attributes lr (line result) and ls (line space) values.
The attribute i will be introduced later.

SEM Doc [| s : Int |]
| Text lhs.s = @lhs.s −@l
| Line lhs.s = @lhs.s −@ls

loc.(lr , ls) = newLine (head@lhs.f)@lhs.s @lhs.i@lhs.res
{
newLine True s i rest = ((’ ’ : rest) , s − 1)
newLine False s i rest = (((’\n’ : replicate i ’ ’) ++ rest),w − i)
}

The values indicating whether groups fit is threaded through the tree
in a forward way, the copy rules taking care of most of the work. Only in
case there is something interesting to do, i.e. in case of a Group we have to
provide some definitions. An interesting observation can be made now: the
code given thus far is complete, i.e. if we were generating code from this
we get a complete program that we can test provided we are prepared to
provide the initial value of the attribute f . In contrast to the case in the
paper we do not have to refer to . . . , and when adding further aspects we do

A THE EQUIVALENT ATTRIBUTE GRAMMAR DEFINITIONS 19

not have to touch existing code! We can extend the code by just introducing
further aspect by introducing new attributes and their associated semantic
functions.

SEM Doc [| f : Fits |]
| Group d.f = tail (@lhs.f)

lhs.f = head@lhs.f : tail@d.f

The indentation is very easy to take care of:

SEM Doc [i : Int ||]
| Nest d.i = @lhs.i + @j

Since we are going for the solution with the final adaptation we introduce
now a backwards threaded attribute:

SEM Doc [| future : {[Int]} |]
| Text lhs.future = length@t : @lhs.future
| Line lhs.future = []
| Besides r .future = @lhs.future

l .future = @r .future
lhs.future = @l .future

The only aspect now missing is the joint computation of the Path and
the list of answers.

ATTR Doc [| p : Path a : Fits |]

In the case of a text or a a Line we have to prune:

SEM Doc
| Line loc.(p, a) = foldr prune (@lhs.p,@lhs.a) (1 : @lhs.future)

In the case of a Besides we have to make sure that the answers are
threaded backwards:

| Besides r .a = @lhs.a
l .a = @r .a
lhs.a = @l .a

In the case of a Group we have to add the computations for entering and
leaving the group:

| Group d.p = enterGroup (@lhs.h + @lhs.s)@lhs.p
loc.(p, a) = leaveGroup @d.h (@d.p,@lhs.a)
lhs.a = @d.a

A THE EQUIVALENT ATTRIBUTE GRAMMAR DEFINITIONS 20

Finally we have to initialize the various attributes. For this we introduce
a starting symbol Root , with only a single production Root . Here we see
clearly how the synthesized attribute a of child d is used to initialize the
inherited attribute f of the same child d.

DATA Root [||res : String]
| Root d : Doc

SEM Root
| Root d.s = w

d.res = []
d.f = False : @d.a
d.h = 0
d.i = 0
d.future = []
d.p = []
d.a = []

To be compatible with the original version we add some code to redefine
the generated semantic functions:

noDoc = sem Doc NoDoc
text = sem Doc Text
line = sem Doc Line
(<>) = sem Doc Besides
group = sem Doc Group
nest = sem Doc Nest
format = sem Root Root

